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Anderson localization

H = —-A +V, = electron Hamiltonian in a disordered solid.

* The low energy part of spect(H) is a.s. pure point,

H;) = Eilby) . By € [=AA]

The eigenfunctions v; are exponentially localized
around random points z; C R¢.

* At low temperature kg1 < A, the relevant states for
transport are close to the Fermi level Er =0
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Coupling with phonons

* Apply to the solid a small constant electric field £

Ho— He=H.+&X , X=position operator.

spect(H, ¢) a.c. with resonances E;(£) close to R-axis.
electons in perturbed states v;(£) remain localized
— No transport!

* At temperature 7" > 0: coupling with phonons allows for
electronic jumps between the localized states ; (&)

Energie

— hopping transport

O
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Let ‘E] — Ez‘ > kpT',

Jump rate from ; to ¢;: v, X e

Conductivity o

z; — x;] > 1 = localization length.

—|ZIZZ'—£Cj| 6—6 maX{Ej—Ei,O}

Effective jump rate (Mean Field): c¢;_; = v, fi(1 — f;)

Ji = (GB(EZ"“) + 1)_1 — mean g of electrons in ¢, for £ =0

= i X e~ 1wi—xj| o= B(| Bi—Ej|+|Es |+ Ej)

Energie

Optimal jumps for |z; — ;| ~ Mot
N and ‘Ez — Ej‘ ™~ €Mott;
‘EMott/Ej _ TMOtt — COnSt 51/(d+1)

- L eMott = CoONst, f~4/(d+1)
(const. depends on DOS at Ey).

Mott law: o3 ~ 0p exp {—constﬂﬁ} , 3>1 [Mott’68]
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Electron dynamics (exact)
* Electron Hamiltonian 4, = » ~ F; ala; (2" quantization)
Electronic observables A, belong to a CAR algebra A,
= C*-algebra generated by the creation op. aj = a'(v;).

* Electron-phonon interaction Hamiltonian (for N atoms):
. A .
fem = = zq: NATI OB

b}; — creation op. of a longitudinal acoustic phonon
with momentum ¢ and frequency v, = c|q|
A = coupling constant.

* Assume the phonons are in state w,;, at time ¢t = 0 and
are uncorrelated with the electrons

Ae(t) — wPh (ezt(He+th+Heph)Ae ® 1ph e—Zt(He—I—th—l—Heph)) .
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Van Hove limit (weak coupling)

* Phonons = oo bath at equilibrium with inv. temperature 3
— Initial state w,;, = 3-KMS state for free bosons.

* Van Hove limit: A = 0, t = A7 — o0 [Davies '74]

|[Ac(A727) — eTEF PN AL )] — 0.
Liouvillian : £.(A.) = i[H,, A.]

1
D(A.) = Z%_V (a:fajAe a;-az- — 5{@3% aja;, Ae})
1]
= Lindblad generator

— commutes with L,

a!, a; = creation & annihilation op. of an electron in state v,

79

vi—; = jump rate from ; to v; as given by Fermi golden rule.
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When is weak coupling OK?

° Let f,g € L*(RY, d°q) , (Hpnf)(q) = w,f(q)
b(f) = annihilation op. of a phonon in state f.

Phonon correlation time 7.: If f, g are analytic in a
strip around the R-axis, the phonon correlation function

wn (b1 (f)b(e™Hrng)) = (fle='THrm (e — 1)1 g)
decreases exponentially to 0 as 7 — oo with a rate 1/7..

* The electron dynamics is well-approximated by the
semigroup of completely positive maps (e!(¢<*P)),-, if

(1) 7. <t < X277t (Markov limit + perturbation theory)
(2) AE > M1, with AE = smallest energy difference
|E; — E;| for relevant jumps (adiabatic limit).

Here AE ~ eyott, . = 8 < \ < 5~ (2d+1)/(2d+2)
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Current density )
* Apply to the solid a small constant electric field £
Lo — Lee=i[l. +EX, ]
D — Dg dependsonf.
X = (4| X|h;)ala; = 2" quantized position op.

e Solid with finite volume {2 o
connected to two reservoirs -
with chemical potentials ., # po. | B .

— Dynamics in van Hove limit: i
semigroup (P, ¢):>o With generator x=0

L. s+ D¢ + electron exchanges with reservoirs

1 R
|Q‘ hm 0 Peq (<I>t < (ﬁe,g + Dg)(XD.

velocity
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Invariant commutative algebra
* Electron Hamiltonian . — Z E;ala;

el
Eigenvectors in Fock space

) = 1] (al)”

el

0), ne{0,1}

* The dissipative part D of the generator commutes with
L.=i[H.,-] (adiabatic approximation)
If (i) H. has simple eigenvalues
(i) e!“<*P) has a unique stationary state ., . Then

1. ker £, = {H.} =commutative invariant algrebra for
the semigroup (e!“<+P)),,.

2. 9oo(Le(A)) =0forany A € A..
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Decoherence

Thm : If (i) H. has simple eigenvalues
(i) e/“<*P) has a unique stationary state ¢

1. e!(FetD) \{H , defines a Markov semigroup with generator
(Laf)m) = DS, FNI ) [n)
d
= th (f(n) . [feC({0,1})

2. The corresponding Markov process (7;);>¢ IS an
exclusion process on {x;} with the jump rates ~;_.;

—~ o - oo = INVariant measure.

3. For any state ¢ and any observable A € A,

lim o (eC+P) 4) = / (| Al) dptoo () -

t—00
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Classical current

: 1 .
Current density: j = 1 tlggo Peq( Pt e(Leg + De)(X))

— @/<U|£cl,8(Xdiag,8)|77> dpico.£(N)

Xdiag,c‘?:z< ( )\XW@( )> ( )a’&(g)

()

i L l'!J;

™~

— ]| X Z (%Hj uoo(m(l — 77j)) - (Z = 9))

($¢)||<0<(lej)”
see [Miller & Abrahams ’ 60]
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Random environment

* Let 2; be random distinct points in R with a
stationary and mixing distribution 7.

Ngp = # pointsin B Cc RY (B bounded Borel set)
Es(Np) = p|B|, p= mean density, p < oc.
 EX : (stationary) Poisson process
(i) P(Np = n) = (p|B|)"e 1P /nl
() the N are independent for disjoint B’s.
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Random environment (2)

* To each point zx; Is associated a random energy
E; € [—1,1].

The E; are independent and have all the distribution v.

by v
N
ffffffffff ji?ﬁiJ‘lLT*ji{
A RN Z
S B I A

* Pick up (at random) a point among {z;} and choose it
as the origin — new distribution = Palm distribution 7,

EX : P = stat. Poisson process — P, is obtained
by adding 1 (deterministic) point at x = 0.
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Random walk

Configuration of the environment ¢ = {x;, F; }.

A particle located at X; at time ¢, starting from X, = 0,
walks randomly on {x;} :

R

)

Jumps are possible between any pair of points (z;, z;), with
the rate

Cﬂ?i—>$j — €_|xi_5’3j|€_B(|E1—Ej|—|—|Ei|+|Ej|)

£ = Inverse temperature.
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Random walk (2)

SN
-\

For a given configuration ¢ = {z;, F;} of the environment,

let P be the distribution of the Markov process (X;);>o.
\V/ZCZ' #ZCj,\V/t,to > O
P (X = 2| X3, = 13) = tcxz_mj +Ot?).

No explosion if Ez (N3) < oo
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Main results

Of interest here: diffusion constant

1
Dg = lim =~ Ep, (Epe(X7))

t—oo 1

Thm 1 : in dimension d > 2,

(1) Ds exists and Dg > 0 (normal diffusion)

() the process Y; = ¢X,.-2 converges weakly Iin
probability as e — 0 to a Brownian motion Wp,.

Thm 2 : Let d > 2, energy distribution s.t. 4 g9 > 0,3 a > 0,
V(|E;| < E) > go BMT .

Then ot 1
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_ (at1)(d—2) a+1+d
Dg > ¢ oxisd eXp{ (g)
0

(c, By = constants independent of ().



Low temperature limit

Energy distribution for £ — 0 :
v(|Ei| < E) ~ go B

a+1

= InDg ~ — (g) o , BT o0 [Mott '68]
0

(heuristic). [Ambegoakar, Halperin, Langer '71]

For 5 1 oo, the jump rates

Cosp, = € 17Tl BUBIEjIHIEil+|E; )

fluctuate widely with z;, z;

— the particle follows with

high probability one of the

optimal paths. m
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