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Anderson localization

H = −∆ + Vω = electron Hamiltonian in a disordered solid.

• The low energy part of spect(H) is a.s. pure point,

H|ψi〉 = Ei|ψi〉 , Ei ∈ [−∆,∆]

The eigenfunctions ψi are exponentially localized
around random points xi ⊂ R

d.

• At low temperature kBT � ∆, the relevant states for
transport are close to the Fermi level EF = 0
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Coupling with phonons

• Apply to the solid a small constant electric field E
He −→ He,E = He + EX , X= position operator.

spect(He,E) a.c. with resonances Ei(E) close to R-axis.
electons in perturbed states ψi(E) remain localized
↪→ no transport!

• At temperature T > 0: coupling with phonons allows for
electronic jumps between the localized states ψi(E)
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↪→ hopping transport
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Conductivity σβ

Let |Ej − Ei| � kBT , |xi − xj| � 1 = localization length.

Jump rate from ψi to ψj: γi→j ∝ e−|xi−xj | e−β max{Ej−Ei,0}

Effective jump rate (Mean Field): ci→j = γi→jfi(1 − fj)

fi =
(
eβ(Ei−µ) + 1

)−1
= mean ] of electrons in ψi for E = 0

⇒ ci→j ∝ e−|xi−xj |e−β(|Ei−Ej |+|Ei|+|Ej |)

distance
ΕF

Ε i

Ε Mott

Ε j

Mottr

Energie
Optimal jumps for |xi − xj| ∼ rMott

and |Ei − Ej| ∼ εMott,

rMott = const. β1/(d+1)

εMott = const. β−d/(d+1)

(const. depends on DOS at EF ).

Mott law: σβ ∼ σ0 exp
{
−const.β

1
d+1

}
, β � 1 [Mott ’ 68]
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Electron dynamics (exact)

• Electron Hamiltonian Ĥe =
∑

i

Ei a
†
iai (2nd quantization)

Electronic observables Ae belong to a CAR algebra Ae

= C∗-algebra generated by the creation op. a†i = a†(ψi).

• Electron-phonon interaction Hamiltonian (for N atoms):

Ĥe−ph =
λ√
N

∑

q

√
νq êiqX

(
bq + b†−q

)

b†q = creation op. of a longitudinal acoustic phonon
with momentum q and frequency νq = cs|q|

λ = coupling constant.

• Assume the phonons are in state ωph at time t = 0 and
are uncorrelated with the electrons

Ae(t) = ωph

(
eit(Ĥe+Ĥph+Ĥe−ph)Ae ⊗ 1ph e

−it(Ĥe+Ĥph+Ĥe−ph)
)
.
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Van Hove limit (weak coupling)

• Phonons = ∞ bath at equilibrium with inv. temperatureβ
↪→ initial state ωph = β-KMS state for free bosons.

• Van Hove limit: λ→ 0 , t = λ−2τ → ∞ [Davies ’74]

‖Ae(λ
−2τ) − eτ(Le+D)(Ae)‖ → 0.

Liouvillian : Le(Ae) = i
[
Ĥe, Ae

]

D(Ae) =
∑

i6=j

γi→j

(
a†iajAe a

†
jai −

1

2

{
a†iai aja

†
j , Ae

})

= Lindblad generator

↪→ commutes with Le

a†i , ai = creation & annihilation op. of an electron in state ψi

γi→j = jump rate from ψi to ψj as given by Fermi golden rule.
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When is weak coupling OK?

• Let f, g ∈ L2(Rd, d3q) , (Hphf)(q) = ωqf(q)

b(f) = annihilation op. of a phonon in state f .

Phonon correlation time τc: If f, g are analytic in a
strip around the R-axis, the phonon correlation function

ωph

(
b†(f)b(e−iτHphg)

)
= 〈f |e−iτHph(eβHph − 1)−1g〉

decreases exponentially to 0 as τ → ∞ with a rate 1/τc.

• The electron dynamics is well-approximated by the
semigroup of completely positive maps (et(Le+D))t≥0 if

(1) τc � t . λ−2τ−1
c (Markov limit + perturbation theory)

(2) ∆E � λ2τc with ∆E = smallest energy difference
|Ei − Ej| for relevant jumps (adiabatic limit).

Here ∆E ∼ εMott, τc = β ↪→ λ� β−(2d+1)/(2d+2).
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Current density j
• Apply to the solid a small constant electric field E

Le −→ Le,E = i[Ĥe + EX̂ , ·]
D −→ DE depends on E .

X̂ =
∑

i〈ψi|X|ψj〉a†iaj = 2nd quantized position op.

• Solid with finite volume Ω

connected to two reservoirs
with chemical potentials µ∗ 6= µ�.

↪→ Dynamics in van Hove limit:
semigroup (Φt,E)t≥0 with generator

E

❉

x = 0

i
j

µµ

Le,E + DE + electron exchanges with reservoirs

• Current density: j =
1

|Ω| lim
t→∞

ϕeq

(
Φt,E (Le,E + DE)(X̂)︸ ︷︷ ︸

velocity

)
.
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Invariant commutative algebra

• Electron Hamiltonian Ĥe =
∑

i∈I

Ei a
†
iai

Eigenvectors in Fock space

|η〉 =
∏

i∈I

(
a†i

)ηi |0〉 , η ∈ {0, 1}I

• The dissipative part D of the generator commutes with
Le = i[Ĥe, ·] (adiabatic approximation)

If (i) Ĥe has simple eigenvalues
(ii) et(Le+D) has a unique stationary state ϕ∞ . Then

1. kerLe = {Ĥe}′ = commutative invariant algrebra for
the semigroup (et(Le+D))t≥0.

2. ϕ∞

(
Le(A)

)
= 0 for any A ∈ Ae.
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Decoherence

Thm : If (i) Ĥe has simple eigenvalues
(ii) et(Le+D) has a unique stationary state ϕ∞

1. et(Le+D)
∣∣
{Ĥe}′

defines a Markov semigroup with generator
(
Lcl f

)
(η) =

〈
η
∣∣D

(∑
η′ f(η′)|η′〉〈η′|

)∣∣η
〉

=
d

dt
Eη

(
f(ηt)

)
, f ∈ C({0, 1}I)

2. The corresponding Markov process (ηt)t≥0 is an
exclusion process on {xi} with the jump rates γi→j

µ∞ = invariant measure.

3. For any state ϕ and any observable A ∈ Ae,

lim
t→∞

ϕ
(
et(Le+D)A

)
=

∫
〈η|A|η〉 dµ∞(η) .
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Classical current

Current density: j =
1

|Ω| lim
t→∞

ϕeq

(
Φt,E(Le,E + DE)(X̂)

)

=
1

|Ω|

∫
〈η|Lcl,E(X̂diag,E)|η〉 dµ∞,E(η)

X̂diag,E =
∑

i

〈ψi(E)|X|ψi(E)〉a†i (E)ai(E)

E

j
i

ψ
ψ

↪→ j‖ ∝
∑

(xi)‖<0<(xj)‖

(
γi→j µ∞

(
ηi(1 − ηj)

)
−

(
i↔ j

))
.

see [Miller & Abrahams ’ 60]
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Random environment

• Let xi be random distinct points in R
d with a

stationary and mixing distribution P̂ .

NB = ] points in B ⊂ R
d (B bounded Borel set)

EP̂(NB) = ρ|B| , ρ = mean density, ρ <∞.

• EX : (stationary) Poisson process
(i) P̂(NB = n) = (ρ|B|)ne−ρ|B|/n!

(ii) the NB are independent for disjoint B’s.
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Random environment (2)
• To each point xi is associated a random energy

Ei ∈ [−1, 1].

The Ei are independent and have all the distribution ν.

• Pick up (at random) a point among {xi} and choose it

as the origin → new distribution = Palm distribution P̂0

EX : P̂ = stat. Poisson process → P̂0 is obtained
by adding 1 (deterministic) point at x = 0.
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Random walk

Configuration of the environment ξ = {xi, Ei}.

A particle located at Xt at time t, starting from X0 = 0,
walks randomly on {xi} :

Xt

Jumps are possible between any pair of points (xi, xj), with
the rate

cxi→xj
= e−|xi−xj |e−β(|Ei−Ej |+|Ei|+|Ej |)

β = inverse temperature.
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Random walk (2)

Xt

For a given configuration ξ = {xi, Ei} of the environment,

let P
ξ be the distribution of the Markov process (Xt)t≥0.

∀ xi 6= xj, ∀ t, t0 ≥ 0,

P
ξ(Xt0+t = xj|Xt0 = xi) = t c ξ

xi→xj
+ O(t2) .

No explosion if EP̂0
(N 2

B) <∞.
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Main results

Of interest here: diffusion constant

Dβ = lim
t→∞

1

t
EP0(EPξ(X2

t ))

Thm 1 : in dimension d ≥ 2,
(i) Dβ exists and Dβ > 0 (normal diffusion)
(ii) the process Yt = εXtε−2 converges weakly in

probability as ε→ 0 to a Brownian motion WD.

Thm 2 : Let d ≥ 2, energy distribution s.t. ∃ g0 > 0,∃ α ≥ 0,

ν(|Ei| ≤ E) ≥ g0E
1+α .

Then

Dβ ≥ c β−
(α+1)(d−2)

α+1+d exp

{
−

(
β

β0

) α+1
α+1+d

}

(c, β0 = constants independent of β).
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Low temperature limit

Energy distribution for E → 0 :

ν(|Ei| ≤ E) ∼ g0E
1+α

⇒ lnDβ ∼ −
(
β

β0

) α+1
α+1+d

, β ↑ ∞ [Mott ’68]

(heuristic). [Ambegoakar, Halperin, Langer ’71]

For β ↑ ∞, the jump rates

cxi→xj
= e−|xi−xj |e−β(|Ei−Ej |+|Ei|+|Ej |)

fluctuate widely with xi, xj

↪→ the particle follows with

high probability one of the

optimal paths.
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