Hopping transport in disordered solids

Dominique Spehner

Institut Fourier, Grenoble, France

- Hopping transport
- Models for electron-phonon interactions
- Link with classical Markov processes
- Random walk in a random environment

Joint work with: J. Bellissard, A. Faggionato, H. Schulz-Baldes,

R. Rebolledo

Hopping transport

Anderson localization

 $H=-\Delta+V_{\omega}$ = electron Hamiltonian in a disordered solid.

• The low energy part of spect(H) is a.s. pure point,

$$H|\psi_i\rangle = E_i|\psi_i\rangle$$
 , $E_i \in [-\Delta, \Delta]$

The eigenfunctions ψ_i are exponentially localized around random points $x_i \subset \mathbb{R}^d$.

• At low temperature $k_BT\ll \Delta$, the relevant states for transport are close to the Fermi level $E_F=0$

Coupling with phonons

• Apply to the solid a small constant electric field ${\cal E}$

$$H_e \longrightarrow H_{e,\mathcal{E}} = H_e + \mathcal{E}X$$
, $X = \text{position operator.}$

 $\operatorname{spect}(H_{e,\mathcal{E}})$ a.c. with resonances $E_i(\mathcal{E})$ close to \mathbb{R} -axis. electons in perturbed states $\psi_i(\mathcal{E})$ remain localized \hookrightarrow no transport!

• At temperature T > 0: coupling with phonons allows for electronic jumps between the localized states $\psi_i(\mathcal{E})$

Conductivity σ_{β}

Let $|E_i - E_i| \gg k_B T$, $|x_i - x_i| \gg 1 = \text{localization length}$.

Jump rate from ψ_i to ψ_i : $\gamma_{i \to i} \propto e^{-|x_i - x_j|} e^{-\beta \max\{E_j - E_i, 0\}}$

Effective jump rate (Mean Field): $c_{i\rightarrow j} = \gamma_{i\rightarrow j} f_i (1-f_j)$

 $f_i = \left(e^{\beta(E_i - \mu)} + 1\right)^{-1} = \text{mean} \ \sharp \ \text{of electrons in} \ \psi_i \ \text{for} \ \mathcal{E} = 0$

$$\Rightarrow$$
 $c_{i \rightarrow j} \propto e^{-|x_i - x_j|} e^{-\beta(|E_i - E_j| + |E_i| + |E_j|)}$

Optimal jumps for $|x_i - x_i| \sim r_{\text{Mott}}$ and $|E_i - E_j| \sim \epsilon_{\mathsf{Mott}}$,

$$r_{\mathsf{Mott}} = \mathsf{const.}\,\beta^{1/(d+1)}$$

$$\epsilon_{\mathsf{Mott}} = \mathsf{const.}\, \beta^{-d/(d+1)}$$

(const. depends on DOS at E_F).

Mott law: $\sigma_{\beta} \sim \sigma_0 \, \exp\left\{-\mathrm{const.}\beta^{\frac{1}{d+1}}\right\}$, $\beta \gg 1$ [Mott '68]

- Hopping transport
- Models for electron-phonon interactions

Electron dynamics (exact)

- Electron Hamiltonian $\hat{H}_e = \sum_i E_i \, a_i^\dagger a_i$ (2 nd quantization)
 - Electronic observables A_e belong to a CAR algebra A_e
 - = C*-algebra generated by the creation op. $a_i^{\dagger} = a^{\dagger}(\psi_i)$.
- Electron-phonon interaction Hamiltonian (for N atoms):

$$\hat{H}_{e-ph} = \frac{\lambda}{\sqrt{N}} \sum_{q} \sqrt{\nu_q} \, \widehat{e^{iqX}} \left(b_q + b_{-q}^{\dagger} \right)$$

- $b_q^\dagger=$ creation op. of a longitudinal acoustic phonon with momentum q and frequency $\nu_q=c_s|q|$ $\lambda=$ coupling constant.
- Assume the phonons are in state ω_{ph} at time t=0 and are uncorrelated with the electrons

$$A_e(t) = \omega_{ph} \left(e^{it(\hat{\boldsymbol{H}}_e + \hat{\boldsymbol{H}}_{ph} + \hat{\boldsymbol{H}}_{e-ph})} A_e \otimes 1_{ph} e^{-it(\hat{\boldsymbol{H}}_e + \hat{\boldsymbol{H}}_{ph} + \hat{\boldsymbol{H}}_{e-ph})} \right).$$

Van Hove limit (weak coupling)

- Phonons = ∞ bath at equilibrium with inv. temperature β \hookrightarrow initial state $\omega_{ph} = \beta$ -KMS state for free bosons.
- Van Hove limit: $\lambda \to 0 \; , \; t = \lambda^{-2} \tau \to \infty$ [Davies '74]

$$||A_e(\lambda^{-2}\tau) - e^{\tau(\mathcal{L}_e + \mathcal{D})}(A_e)|| \to 0.$$

Liouvillian : $\mathcal{L}_e(A_e) = i[\hat{H}_e, A_e]$

$$\mathcal{D}(A_e) = \sum_{i \neq j} \gamma_{i \to j} \left(a_i^{\dagger} a_j A_e \, a_j^{\dagger} a_i - \frac{1}{2} \left\{ a_i^{\dagger} a_i \, a_j a_j^{\dagger}, A_e \right\} \right)$$

= Lindblad generator

 \hookrightarrow commutes with \mathcal{L}_e

 $a_i^{\dagger}, a_i = \text{creation \& annihilation op. of an electron in state } \psi_i$ $\gamma_{i \to j} = \text{jump rate from } \psi_i \text{ to } \psi_j \text{ as given by Fermi golden rule.}$

When is weak coupling OK?

• Let $f,g\in L^2(\mathbb{R}^d,\mathrm{d}^3q)$, $(H_{ph}f)(q)=\omega_q f(q)$ b(f)=annihilation op. of a phonon in state f.

Phonon correlation time τ_c : If f, g are analytic in a strip around the \mathbb{R} -axis, the phonon correlation function

$$\omega_{ph} \big(b^{\dagger}(f) b(e^{-i\tau H_{ph}}g) \big) = \langle f|e^{-i\tau H_{ph}}(e^{\beta H_{ph}}-1)^{-1}g \rangle$$
 decreases exponentially to 0 as $\tau \to \infty$ with a rate $1/\tau_c$.

- The electron dynamics is well-approximated by the semigroup of *completely positive maps* $(e^{t(\mathcal{L}_e+\mathcal{D})})_{t\geq 0}$ if
 - (1) $\tau_c \ll t \lesssim \lambda^{-2} \tau_c^{-1}$ (Markov limit + perturbation theory)
 - (2) $\Delta E \gg \lambda^2 \tau_c$ with $\Delta E =$ smallest energy difference $|E_i E_j|$ for relevant jumps (adiabatic limit).

Here
$$\Delta E \sim \epsilon_{\text{Mott}}$$
, $\tau_c = \beta \quad \hookrightarrow \lambda \ll \beta^{-(2d+1)/(2d+2)}$.

Current density *j*

• Apply to the solid a small constant electric field ${\cal E}$

$$\mathcal{L}_e \longrightarrow \mathcal{L}_{e,\mathcal{E}} = i[\hat{H}_e + \mathcal{E}\hat{X}, \cdot]$$

$$\mathcal{D} \longrightarrow \mathcal{D}_{\mathcal{E}}$$
 depends on \mathcal{E} .

$$\hat{X} = \sum_{i} \langle \psi_i | X | \psi_j \rangle a_i^{\dagger} a_j = 2^{nd}$$
 quantized position op.

• Solid with finite volume Ω connected to two reservoirs with chemical potentials $\mu_* \neq \mu_{\diamond}$.

 \hookrightarrow Dynamics in van Hove limit: semigroup $(\Phi_{t,\mathcal{E}})_{t\geq 0}$ with generator

 $\mathcal{L}_{e,\mathcal{E}} + \mathcal{D}_{\mathcal{E}} + ext{electron exchanges with reservoirs}$

• Current density:
$$j = \frac{1}{|\Omega|} \lim_{t \to \infty} \varphi_{eq} \left(\Phi_{t,\mathcal{E}} \underbrace{(\mathcal{L}_{e,\mathcal{E}} + \mathcal{D}_{\mathcal{E}})(\hat{X})}_{\text{velocity}} \right).$$

- Hopping transport
- Models for electron-phonon interactions
- Link with classical Markov processes

Invariant commutative algebra

• Electron Hamiltonian $\hat{H}_e = \sum_{i \in I} E_i \, a_i^\dagger a_i$

Eigenvectors in Fock space

$$|\eta\rangle = \prod_{i \in I} (a_i^{\dagger})^{\eta_i} |0\rangle , \ \eta \in \{0, 1\}^I$$

- The dissipative part \mathcal{D} of the generator commutes with
 - $\mathcal{L}_e = i[\hat{H}_e, \cdot]$ (adiabatic approximation)
 - If (i) \hat{H}_e has simple eigenvalues
 - (ii) $e^{t(\mathcal{L}_e + \mathcal{D})}$ has a unique stationary state φ_{∞} . Then
 - 1. $\ker \mathcal{L}_e = \{\hat{H}_e\}' = \text{commutative invariant algrebra for the semigroup } (e^{t(\mathcal{L}_e + \mathcal{D})})_{t \geq 0}$.
 - 2. $\varphi_{\infty}(\mathcal{L}_e(A)) = 0$ for any $A \in \mathcal{A}_e$.

Decoherence

- **Thm**: If (i) \hat{H}_e has simple eigenvalues
 - (ii) $e^{t(\mathcal{L}_e + \mathcal{D})}$ has a unique stationary state φ_{∞}
 - 1. $e^{t(\mathcal{L}_e + \mathcal{D})}|_{\{\hat{H}_e\}'}$ defines a Markov semigroup with generator

$$\begin{aligned} \left(\mathcal{L}_{\mathsf{cl}} f \right) (\eta) &= & \left\langle \eta \middle| \mathcal{D} \left(\sum_{\eta'} f(\eta') \middle| \eta' \right\rangle \langle \eta' \middle| \right) \middle| \eta \right\rangle \\ &= & \frac{d}{dt} \, \mathbb{E}_{\eta} \big(f(\eta_t) \big) \quad , \quad f \in C(\{0, 1\}^I) \end{aligned}$$

2. The corresponding Markov process $(\eta_t)_{t\geq 0}$ is an exclusion process on $\{x_i\}$ with the jump rates $\gamma_{i\to j}$

$$\mu_{\infty} = \text{invariant measure.}$$

3. For any state φ and any observable $A \in \mathcal{A}_e$,

$$\lim_{t\to\infty} \varphi\left(e^{t(\mathcal{L}_e+\mathcal{D})}A\right) = \int \langle \eta|A|\eta\rangle \,d\mu_\infty(\eta) \ .$$

Classical current

Current density:
$$j = \frac{1}{|\Omega|} \lim_{t \to \infty} \varphi_{eq} \left(\Phi_{t,\mathcal{E}} (\mathcal{L}_{e,\mathcal{E}} + \mathcal{D}_{\mathcal{E}})(\hat{X}) \right)$$

$$= \frac{1}{|\Omega|} \int \langle \eta | \mathcal{L}_{\mathsf{cl},\mathcal{E}}(\hat{X}_{\mathsf{diag},\mathcal{E}}) | \eta \rangle \, d\mu_{\infty,\mathcal{E}}(\eta)$$

$$\hat{X}_{\mathsf{diag},\mathcal{E}} = \sum_{i} \langle \psi_{i}(\mathcal{E}) | X | \psi_{i}(\mathcal{E}) \rangle a_{i}^{\dagger}(\mathcal{E}) a_{i}(\mathcal{E})$$

$$\hookrightarrow j_{\parallel} \propto \sum_{(x_i)_{\parallel} < 0 < (x_i)_{\parallel}} \left(\gamma_{i \to j} \, \mu_{\infty} \left(\eta_i (1 - \eta_j) \right) - \left(i \leftrightarrow j \right) \right).$$

see [Miller & Abrahams ' 60]

- Hopping transport
- Models for electron-phonon interactions
- Link with classical Markov processes
- Random walk in a random environment

Random environment

• Let x_i be random distinct points in \mathbb{R}^d with a stationary and mixing distribution $\hat{\mathcal{P}}$.

 $N_B=\sharp$ points in $B\subset\mathbb{R}^d$ (B bounded Borel set) $\mathbb{E}_{\hat{\mathcal{P}}}(N_B)=
ho|B|$, ho= mean density, $ho<\infty$.

• EX: (stationary) Poisson process

(i)
$$\hat{\mathcal{P}}(N_B = n) = (\rho |B|)^n e^{-\rho |B|} / n!$$

(ii) the N_B are independent for disjoint B's.

Random environment (2)

• To each point x_i is associated a random energy $E_i \in [-1,1]$.

The E_i are independent and have all the distribution ν .

• Pick up (at random) a point among $\{x_i\}$ and choose it as the origin \to new distribution = Palm distribution $\hat{\mathcal{P}}_0$

EX : $\hat{P} = \text{stat. Poisson process} \rightarrow \hat{P}_0$ is obtained by adding 1 (deterministic) point at x = 0.

Random walk

Configuration of the environment $\xi = \{x_i, E_i\}$.

A particle located at X_t at time t, starting from $X_0 = 0$, walks randomly on $\{x_i\}$:

Jumps are possible between any pair of points (x_i, x_j) , with the rate

$$c_{x_i \to x_j} = e^{-|x_i - x_j|} e^{-\beta(|E_i - E_j| + |E_i| + |E_j|)}$$

 $\beta =$ inverse temperature.

Random walk (2)

For a given configuration $\xi = \{x_i, E_i\}$ of the environment, let \mathbf{P}^{ξ} be the distribution of the Markov process $(X_t)_{t\geq 0}$.

$$\forall x_i \neq x_j, \forall t, t_0 \geq 0,$$

$$\mathbf{P}^{\xi}(X_{t_0+t} = x_j | X_{t_0} = x_i) = t c_{x_i \to x_j}^{\xi} + \mathcal{O}(t^2).$$

No explosion if $\mathbb{E}_{\hat{\mathcal{P}}_0}(N_B^2) < \infty$.

Main results

Of interest here: diffusion constant

$$D_{\beta} = \lim_{t \to \infty} \frac{1}{t} \mathbb{E}_{\mathcal{P}_0}(\mathbb{E}_{\mathbf{P}^{\xi}}(X_t^2))$$

Thm 1: in dimension $d \geq 2$,

- (i) D_{β} exists and $D_{\beta} > 0$ (normal diffusion)
- (ii) the process $Y_t = \varepsilon X_{t\varepsilon^{-2}}$ converges weakly in probability as $\varepsilon \to 0$ to a Brownian motion W_D .

Thm 2: Let $d \ge 2$, energy distribution s.t. $\exists g_0 > 0, \exists \alpha \ge 0$,

$$\nu(|E_i| \le E) \ge g_0 E^{1+\alpha} .$$

Then

$$D_{\beta} \ge c \beta^{-\frac{(\alpha+1)(d-2)}{\alpha+1+d}} \exp \left\{ -\left(\frac{\beta}{\beta_0}\right)^{\frac{\alpha+1}{\alpha+1+d}} \right\}$$

 $(c, \beta_0 = \text{constants independent of } \beta).$

Low temperature limit

Energy distribution for $E \rightarrow 0$:

$$\nu(|E_i| \le E) \sim g_0 E^{1+\alpha}$$

$$\Rightarrow \ln D_{\beta} \sim -\left(\frac{\beta}{\beta_0}\right)^{\frac{\alpha+1}{\alpha+1+d}}, \beta \uparrow \infty$$

[Mott '68]

(heuristic).

[Ambegoakar, Halperin, Langer '71]

For $\beta \uparrow \infty$, the jump rates

$$c_{x_i \to x_j} = e^{-|x_i - x_j|} e^{-\beta(|E_i - E_j| + |E_i| + |E_j|)}$$

fluctuate widely with x_i, x_j

the particle follows with high probability one of the optimal paths.

