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Abstract We study the dynamics of a Brownian quantum particle hopping on an infinite
lattice with a spin degree of freedom. This particle is coupled to free boson gases via a
translation-invariant Hamiltonian which is linear in the creation and annihilation operators
of the bosons. We derive the time evolution of the reduced density matrix of the particle in
the van Hove limit in which we also rescale the hopping rate. This corresponds to a situation
in which both the system-bath interactions and the hopping between neighboring sites are
small and they are effective on the same time scale. The reduced evolution is given by a
translation-invariant Lindblad master equation which is derived explicitly.

Keywords Out-of-equilibrium quantum statistical physics · Open quantum systems ·
Weak coupling limit · Singular coupling limit · Quantum Brownian motion

1 Introduction

The irreversible dynamics of a quantum system coupled to infinite baths is often described
by determining the time evolution of the reduced density matrix of the system, the latter
being obtained by tracing out the bath degrees of freedom in the system + bath state. Under
certain approximations (including a Born-Markov approximation), this density matrix is the
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solution of a Lindblad master equation [1, 2]. We are aware of three mathematically well-
defined ways to derive such a Lindblad equation starting from the Hamiltonian dynamics
of the system and baths [3–5]: the weak coupling limit, the singular coupling limit, and the
low density limit. The weak coupling limit goes back to [6] and it was put on a rigorous
footing in a series of papers by E.B. Davies [7, 8]. It consists in letting the system-bath
coupling constant λ going to zero and rescaling time like t = λ−2τ , with τ > 0 fixed. This
limit enforces the separation of time scales

tS � tR, tB � tR, (1)

where tS (sometimes called the “Heisenberg time”) is the time scale on which the system
evolves in the absence of coupling with the baths, tB is the correlation time of the baths, and
tR ≈ t is the time scale at which we describe the dynamics, that is, the time scale on which
the system evolves under the coupling with the baths (the “relaxation time” for systems
converging to stationary states). The first time scale separation in (1) allows to perform
the rotating wave approximation. The second time scale separation allows for the Born-
Markov approximation. The singular coupling limit is the limit of delta-correlated baths,
corresponding to

tB � tS, tB � tR. (2)

Such a limit, which is a quantum analog of the white noise limit for classical stochastic
processes, has been analyzed rigorously in [9–11]. It is physically meaningful in the limit
of large bath temperature. Finally, we refer the reader to [12] for a description of the low-
density limit.

The weak coupling, singular coupling, and low-density limits have been applied and de-
fined primarily for confined systems (typically atoms) coupled to free fermion or free boson
baths. There is a compelling reason for this in the case of the weak coupling limit: the
Hamiltonian of a confined system has discrete spectrum, and therefore a well-defined time
scale tS (given by the maximum of the inverse level spacings); in contrast, extended systems
may have continuous spectra, corresponding to arbitrarily slow processes in the uncoupled
system dynamics, thus invalidating (1) (see, however, [13] for a different approach). A phys-
ical example of this is diffusion, where the relevant time scale is set by a spatial scale. In
contrast, the singular coupling limit remains well-defined for extended systems, as one can
guess from inspection of (2) and as we will illustrate in this article. Note that in the physics
literature the dynamics of systems with arbitrarily large tS are often described by a Bloch-
Redfield master equation with a time-dependent generator which is not of the Lindblad form
(see [14] and references therein). This equation is perturbative in the system-bath coupling
but does not include a rotating wave approximation.

The derivation of the reduced dynamics of extended quantum systems is considerably
more involved. In [15], an extended system is studied in the scaling limit t = λ−2τ , x =
λ−2ξ , λ→ 0 (with τ > 0 and ξ ∈ R

d fixed) in which both the time t and the position x are
rescaled. The scaling of space is dictated by the scaling of time, since on the microscopic
scale the particle moves a distance of order λ−2 in a time of order λ−2. In this limit, the
resulting equation is a linear Boltzmann equation for the Wigner distribution of the particle.
This framework has been extended to describe decoherence in position space in [16] and an
essentially analogous result, with the weak coupling limit replaced by the low-density limit,
was obtained in [17].

Let us also note that quantum systems coupled to infinite baths have been studied in the
past fifteen year from another perspective. This approach, due to Jakšić and Pillet [18], uses
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operator algebras and spectral analysis to describe the dynamics of the system and bath at
large time and small but finite coupling constant λ. For confined systems, we refer the reader
to the lecture notes collected in [19] and the references therein. Extended systems have been
analyzed recently from a similar perspective in [20, 21]. Another branch of activity on open
quantum systems is the derivation of quantum stochastic equations, see for example [35, 36].

In this work, we consider an extended system coupled to bosonic baths. We are interested
in the dynamics of the reduced density matrix of this system at long times and for weak cou-
plings. The system is a quantum particle moving on an infinite lattice Z

d , which has some
internal degrees of freedom acting on a finite-dimensional Hilbert space. In the simplest
case, the Hamiltonian of the particle is the sum of the discrete Laplacian −� on �2(Zd) and
of a self-adjoint Hamiltonian S describing the internal degrees of freedom. One may also
think of more general Hamiltonians coupling the position and internal degrees of freedom.
The particle interacts with free boson gases via a translation-invariant Hamiltonian, assumed
to be linear in the creation and annihilation operators of the bosons. We consider the follow-
ing scaling limit: (i) the time is rescaled as t = λ−2τ , where λ is the particle-boson coupling
constant and τ > 0 is fixed, (ii) the particle Hamiltonian is rescaled as HP = −λ2� + S,
(iii) one takes the limit λ→ 0. This scaling combines the weak coupling and the singular
coupling limits: if the translational degrees of freedom are frozen, it reduces to the weak
coupling limit for the internal state, whereas if one ignores the internal degrees of freedom
it amounts to a singular coupling limit for the motional state, as will be explained below
(see [3, 11]). In the latter case, however, the master equation is trivial. Indeed, by energy
conservation the particle can only absorb or emit bosons with a vanishing frequency in the
limit λ→ 0; since such bosons have also a vanishing momentum and the total momentum
is conserved, one has no momentum transfers between the particle and the baths; thus the
coupling to the baths has no effect on the particle, except possibly for decoherence in the
momentum basis. This is in fact the main reason why we consider a particle with internal
degrees of freedom even though we are primarily concerned with its motion on the lattice.
Note that since the hopping strength is of order λ2, we do not need a space rescaling as in
[15–17].

The above model allows for a tractable rigorous analysis in spite of the fact that we deal
with a spatially extended system. Our main result states that, in dimension d ≥ 2, the reduced
density matrix of the particle converges in the aforementioned scaling limit to the solution
of a Lindblad master equation which is determined explicitly. This equation contains the
physics of dissipative extended systems, in particular diffusion (whose analysis is, however,
not treated in this work, we refer the reader to [20, 21] for results in this direction). Its
derivation requires much less mathematical complications than in the works [15–17].

Some related models have been studied in [22–25]. In particular, Vacchini and coworkers
considered in a series of non rigorous works [23, 24] similar models but in a low density
limit; they argue that the evolution of the particle density matrix (that is, not only of the as-
sociated Wigner transform) is governed in this limit by a Lindblad master equation. In [25],
drift and diffusion of an electron moving on a one-dimensional lattice and submitted to a
static electric field have been studied in a model in which the coupling to the bath is simu-
lated by repeated interactions with two level systems. Finally, we point out that our model
can be viewed as a continuous version of a dissipative quantum walk [26].

The paper is organized as follows. We introduce the model in Sect. 2, first at finite volume
for the particle and baths and then by considering the infinite volume limit. Our results are
presented and discussed in Sect. 3, together with two important examples. The last Sect. 4
contains the proofs and some technical results are proven in the Appendix.
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2 The Model

2.1 The Quantum Particle

Our model consists of a quantum particle on the lattice Z
d coupled to free boson fields. In

this subsection and the three following ones, we describe the model at finite volume.1 We
thus restrict the lattice to a finite hypercube with periodic boundary conditions and consider
Λ = Z

d/(2LZ)d with 1 ≤ L <∞, d being the space dimension. We will often identify Λ

with ]−L,L]d ∩ Z
d ⊂ Z

d . The infinite volume limit L →∞ will be taken in Sect. 2.5.
The particle has translational degrees of freedom x ∈Λ and an internal degree of freedom
s = 1, . . . ,N <∞, which may correspond to a spin or to an internal state of an atom or a
molecule. The Hilbert space of the particle, HΛ

P = �2(Λ)⊗C
N , has finite dimension |Λ| ×

N , where |Λ| = (2L)d is the cardinality of Λ. The particle Hamiltonian HΛ
P consists of

a hopping term acting on �2(Λ) plus a term governing the internal dynamics given by a
self-adjoint operator S acting on C

N ,

HΛ
P = λαHΛ

hop + S (3)

where we identified S with 1�2(Λ) ⊗ S. We have introduced in front of the hopping term
a small parameter λα playing the role of a hopping strength or of an inverse mass; λ > 0
will be chosen below to be the particle-boson coupling constant and α is a positive scaling
exponent. Our most interesting result will correspond to α = 2 and d ≥ 2. Note that for
α =∞ and λ < 1, i.e., λα = 0, the translation degrees of freedom can be dropped altogether
and the dynamics takes place on C

N . In the simplest setup, HΛ
hop is (up to a minus sign) the

discrete Laplacian on �2(Λ),

HΛ
hop =−�=−

∑

x,y∈Λ, |x−y|Λ=1

(|x〉〈y| − |x〉〈x|)⊗ 1CN (4)

where {|x〉; x ∈Λ} is the canonical basis of �2(Λ), the Dirac notation |x〉〈y| refers to the
operator ψ �→ψ(y)|x〉 from �2(Λ) to �2(Λ), and |x − y|Λ =∑d

i=1 mink∈Z |xi − yi + 2kL|,
i.e., we use periodic boundary conditions. In a more elaborate setup, HΛ

hop will be modified
such that the propagation of the particle may couple to the internal state. An Hamiltonian
that accommodates this idea is presented in Sect. 3.3.

An important property of our model is invariance under space translations. These trans-
lations are represented on HΛ

P by unitary operators UΛ
P (x) defined by UΛ

P (x)|y〉 ⊗ |φ〉 =
|x + y〉 ⊗ |φ〉 for any x, y ∈Λ and |φ〉 ∈C

N . We state some conditions on HΛ
hop, which are

in particular satisfied by the Hamiltonian (4).

(A1) The hopping Hamiltonian HΛ
hop has the form

HΛ
hop =

∑

x∈Λ

UΛ
P (−x)hhopU

Λ
P (x)=

∑

x,y,z∈Λ

|y − x〉〈z− x|〈y|hhop|z〉 (5)

1In the mathematical literature on open quantum systems, it is common to work from the beginning with
baths in the thermodynamical limit; the bath state and dynamics are defined with the help of (a representation
of) an abstract CCR algebra (see e.g. [19]). We shall not use such an approach here and treat together the
infinite lattice limit for the particle and the thermodynamical limit for the bath.
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where hhop is a Λ-independent self-adjoint operator on �2(Zd)⊗C
N satisfying

〈y|hhop|z〉 = 0 whenever |y|> R or |z|> R (6)

for some R < ∞. In particular, this implies that HΛ
hop is translation-invariant,

UΛ
P (−x)HΛ

hopU
Λ
P (x)=HΛ

hop for any x ∈Λ, and has a finite range independent of Λ.

One has hhop = (1/2)
∑

|z|=1(2|0〉〈0| − |0〉〈z| − |z〉〈0|) ⊗ 1CN in the case of the discrete
Laplacian (4).

By using the Combes-Thomas estimate, which can be applied independently of S since
the latter operator does not act on the translation degrees of freedom, one can show that the
finite range condition (6) implies the propagation bound

∥∥〈x|e−itHΛ
P |y〉∥∥≤ eκλα |t |e−|x−y|Λ (7)

for some positive and Λ-independent constant κ . Here and in what follows, ‖A‖ denotes
the operator norm of the operator A (acting either on C

N , HΛ
P , or another space); in (7), the

quantity inside the norm is a N ×N matrix acting on the internal degrees of freedom of the
particle.

2.2 The Bosonic Baths

The particle is coupled to one or several bosonic baths labelled by i ∈ I (I is a finite set). Let
T

d be the d-dimensional torus, identified with the hypercube ]−π,π]d . Let Λ∗ = (π/L)Zd∩
T

d \ {0} be the dual of the lattice Λ after having removed the origin .2 The frequency νi(q)

of a boson with a (nonzero) quantized momentum q ∈ Λ∗ is the value at q of a function
νi : q ∈ T

d �→ νi(q) ∈R+ (dispersion relation of the bath i). We assume that νi is continuous
on T

d , C∞ on T
d \ {0}, and it satisfies

νi(q) > 0 for q �= 0. (8)

The Hilbert space of bath i is the symmetric bosonic Fock space built on hi = �2(Λ∗),

HΛ
B,i = Γs(hi )=C⊕ hi ⊕ (hi ⊗s hi )⊕ · · · (9)

where ⊗s stands for the symmetrized tensor product (see [27] for details and background).
The full bath space is then given by HΛ

B =
⊗

i∈I HΛ
B,i . The boson Hamiltonian HΛ

B , acting
on HΛ

B , is

HΛ
B =

∑

i∈I

∑

q∈Λ∗
νi(q)a∗i,qai,q (10)

where a∗i,q and ai,q are the creation and annihilation operators for bosons with momentum q

in the bath i. We recall that a∗i,q and ai,q are unbounded operators on HΛ
B , acting trivially on

HΛ
B,j with j �= i, which satisfy the canonical commutation relations [ai,q , a

∗
j,q ′ ] = δi,j δq,q ′

and [ai,q , aj,q ′ ] = 0.

2In our finite-volume setup, bosons with zero quasi-momentum q = 0 do not play any role and should be
removed in order that all expressions in this section be well-defined.
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2.3 Coupling Between the Particle and Baths

The particle and baths are coupled via a translation-invariant interaction Hamiltonian acting
on HΛ = HΛ

P ⊗ HΛ
B ,

HΛ
int =

1√|Λ|
∑

i∈I

∑

q∈Λ∗
g0,i (q)Wi ⊗ eiq·X ⊗ (

a∗i,q + ai,−q

)
(11)

where X is the position operator (acting on �2(Λ) as a multiplication by x and acting trivially
on C

N ), Wi is an Hermitian N × N -matrix that models the interaction with the internal
degree of freedom, and g0,i (q) are momentum-dependent coupling constants. Having in
mind the thermodynamical limit which will be considered below, we assume that g0,i (q)

are the values at the quantized momenta q ∈Λ∗ of some continuous functions g0,i : Td �→
C. These functions are called the form factors in the sequel. They must satisfy g0,i (q) =
g0,i (−q), q ∈ T

d , in order that HΛ
int be self-adjoint. Introducing the field operators

ΦΛ
i (ϕ)= |Λ|−1/2

∑

q∈Λ∗

(
ϕ(q)a∗i,q + ϕ(q)ai,q

)
(12)

for ϕ ∈ �2(Λ∗), one may rewrite HΛ
int as

HΛ
int =

∑

i∈I

∑

x∈Λ

Wi ⊗ |x〉〈x| ⊗ΦΛ
i (gx,i ) (13)

where we have set

gx,i(q)= eiq·xg0,i (q). (14)

Up to the freedom in the form factors g0,i (q), the choice of the Hamiltonian (11) is
dictated by the requirement that it must be invariant under space translations and lin-
ear in the creation and annihilation operators of the bosons. Space translations are rep-
resented on the bosonic Fock space of the bath i by unitary operators UΛ

i (x) satisfying
UΛ

i (−x)ai,qU
Λ
i (x)= eiq·xai,q . One easily checks that for any x ∈ Z

d ,

UΛ(−x)HΛ
intU

Λ(x)=HΛ
int (15)

with UΛ(x)= UΛ
P (x)⊗⊗

i∈I UΛ
i (x). For instance, electrons in solids are coupled to low-

energy acoustic phonons via an Hamiltonian of the form (11), see [28, 29].
The total Hamiltonian of the coupled system, acting on HΛ, is

HΛ
tot =

(
λαHΛ

hop + S
)⊗ 1HΛ

B
+ 1HΛ

P
⊗HΛ

B + λHΛ
int (16)

where we have introduced the dimensionless coupling constant λ in front of HΛ
int. Using

νi(q) > 0 and the finiteness of Λ, one can apply the Kato-Rellich theorem to conclude that
HΛ

tot is self-adjoint on the domain of HΛ
B .

2.4 Initial State

We assume that the particle and bosons are in a product state ρΛ
P ⊗ ρΛ

B initially, where ρΛ
P

is the initial density matrix of the particle and ρΛ
B the initial density matrix of the bosons

(i.e., ρΛ
P and ρΛ

B are positive operators on HΛ
P and HΛ

B with trace one). We now specify our
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assumptions on the boson initial density matrix ρΛ
B . To this end, we consider the n-point

correlation functions

tr
(
ρΛ

B a
#1
i1,q1

a
#2
i2,q2

· · ·a#n

in,qn

)
(17)

where a#
i,q stands for ai,q or a∗i,q .

(B1) The bath density matrix ρΛ
B is translation-invariant and stationary with respect to the

free dynamics generated by HΛ
B :

UΛ
i (x)ρΛ

B UΛ
i (−x)= e−itHΛ

B ρΛ
B eitHΛ

B = ρΛ
B (18)

for any x ∈Λ, i ∈ I , and t ∈R.
(B2) ρΛ

B is quasi-free. That is, the correlation functions (17) exist for any q1, . . . , qn ∈Λ∗,
they vanish if the number of creators is distinct from the number of annihilators3 (in
particular, if n is odd) and they satisfy the following Gaussian property (also known
as Wick’s identity): for n even,

tr
(
ρΛ

B a
#1
i1,q1

· · ·a#n

in,qn

)=
∑

parings π of (1,...,n)

n/2∏

m=1

tr
(
ρΛ

B a
#ιm

iιm ,qιm
a

#σm

iσm ,qσm

)
. (19)

The sum in (19) runs over all pairing of (1, . . . , n), that is, over all sets π =
{(ι1, σ1), . . . , (ιn/2, σn/2)} of n/2 pairs of distinct indices such that 1= ι1 < ι2 < · · ·<
ιn/2, ιm < σm for any m = 1, . . . , n/2, and the union {ι1, . . . , ιn/2} ∪ {σ1, . . . , σn/2} is
equal to {1, . . . , n}.

(B3) ρΛ
B =

⊗
i∈I ρΛ

B,i is a product of quasi-free density matrices ρΛ
B,i on HΛ

B,i . In particular,

the two-point correlation function tr(ρΛ
B a

#1
i,q1

a
#2
j,q2

) vanishes if i �= j .

Note that, according to assumptions (B1) and (B2), tr(ρΛ
B a

#1
i,q1

a
#2
j,q2

) also vanishes if q1 �=
q2. Assumption (B3) means that the baths are not correlated initially. Assumptions (B1)–
(B3) imply that ρΛ

B is completely determined by the set {ζΛ
i (q); q ∈ Λ∗} of occupation

numbers ζΛ
i (q)= tr(ρΛ

B a∗i,qai,q) ∈R+ of bosons with momentum q in bath i. In particular,

tr
(
ρΛ

B ΦΛ
i (ϕ1)Φ

Λ
i (ϕ2)

)

= 1

|Λ|
∑

q∈Λ∗

(
ζΛ
i (q)ϕ1(q)ϕ2(q)+ (

1+ ζΛ
i (q)

)
ϕ1(q)ϕ2(q)

)
(20)

for any ϕ1, ϕ2 ∈ �2(Λ∗). When taking the thermodynamic limit we will need the additional
hypothesis:

(B4) ζΛ
i (q) are the values at the quantized momenta q ∈Λ∗ of some continuous function

ζi : Td \ {0}→R+ such that |g0,i |2ζi ∈ L1(Td).

The prime example of an initial state satisfying (B1)–(B3) is

ρΛ
B =

⊗

i∈I

ρΛ
βi ,i

with ρΛ
βi ,i
= e−βiH

Λ
B,i

tr(e−βiH
Λ
B,i )

(21)

3This property is sometimes called gauge invariance since it follows from the invariance of the state under

the gauge transformation ai,q → eiθ ai,q .
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the Gibbs state at inverse temperature βi > 0. This situation corresponds to a particle coupled
to thermal baths (which may have different temperatures). Then ζi(q) = (eβiνi (q) − 1)−1 is
the Bose-Einstein distribution. If the form factors are such that |g0,i |2/νi ∈ L1(Td) then the
last assumption (B4) holds true.

2.5 Thermodynamic Limit

To observe irreversible phenomena, we have to consider the baths at the thermodynamic
limit, that is, send Λ↗ Z

d keeping the boson densities fixed. By Λ ↑ Z
d we mean the limit

L→∞, L being the size of the hypercube Λ; in this limit the motion of the particle takes
place on the infinite lattice Z

d .
Let Hhop be the bounded self-adjoint operator on HP = �2(Zd) ⊗ C

N defined by
〈x|HΛ

hop|y〉 → 〈x|Hhop|y〉 as Λ ↗ Z
d for any x, y ∈ Z

d . This Hamiltonian is given for-
mally by Hhop =∑

x∈Zd UP (−x)hhopUP (x). It describes the hopping of the particle between
the lattice sites in the infinite volume limit. We identify all operators on �2(Λ) ⊗ C

N as
finite-rank operators on �2(Zd) ⊗ C

N . By the finite range condition (A1), 〈x|Hhop|y〉 = 0
for |x − y| > 2R and HΛ

hop → Hhop strongly as Λ ↗ Z
d . Since HΛ

hop (and thus Hhop) are
bounded, it then follows, e.g. by the Duhamel formula, that

e−itHΛ
P → e−itHP strongly as Λ↗ Z

d (22)

with HP = λαHhop + S.
In what follows, we will denote by B(HP ) (respectively B1(HP )) the Banach space of

bounded (trace-class) operators on HP (recall that the norm on B1(HP ) is the trace norm
‖A‖1 = tr(|A|)), and by SP the convex cone of density matrices on B(HP ) (i.e., positive
operators in B1(HP ) with trace one). We must clearly assume that the finite volume initial
state of the particle converges as L→∞ in the trace-norm topology.

(A2) ρΛ
P →

Λ↗Zd
ρP in B1(HP ).

It is easy to show from the commutation relations of the a#
i,q ’s that the field operator (12)

evolves under the Hamiltonian (10) as

eitHΛ
B ΦΛ

i (ϕ)e−itHΛ
B =ΦΛ

i

(
eitνi ϕ

)
. (23)

The following space-and-time bath correlation functions

f Λ
i (x, y; t, s)= tr

(
ρΛ

B ΦΛ
i

(
eitνi gx,i

)
ΦΛ

i

(
eisνi gy,i

))
(24)

will play an important role in what follows. By translation invariance and stationarity of the
bath initial state ρΛ

B (assumption (B1)), f Λ
i (x, y; t, s)= f Λ

i (x − y, t − s) only depends on
the position difference x − y and time difference t − s, where, according to (20),

f Λ
i (x, t)= 1

|Λ|
∑

q∈Λ∗

∣∣g0,i (q)
∣∣2(

ζΛ
i (q)eiq·xeitνi (q) + (

1+ ζΛ
i (q)

)
e−iq·xe−itνi (q)

)
. (25)

By assumption (B4), f Λ
i (x, t) converges as Λ↗ Z

d to

fi(x, t)=
∫

Td

ddq

(2π)d

∣∣g0,i (q)
∣∣2(

ζi(q)eiq·xeitνi (q) + (
1+ ζi(q)

)
e−iq·xe−itνi (q)

)
(26)

uniformly in t (recall that νi is bounded).
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2.6 Reduced Density Matrix of the Particle

The reduced density matrix ρΛ
P (t) of the particle at time t ≥ 0 is the partial trace over HΛ

B of
the time-evolved density matrix of the total “particle + bosons” system,

ρΛ
P (t)= trB

(
e−itHΛ

totρΛ
P ⊗ ρΛ

B eitHΛ
tot

)
. (27)

The following proposition states that it is well defined in the thermodynamic limit under the
assumptions described in the preceding subsections.

Proposition 1 Assume that (A1)–(A2) and (B1)–(B4) are satisfied. Then for each t ≥ 0 and
λ > 0, the reduced density matrix (27) converges as L→∞,

ρΛ
P (t) →

Λ↗Zd
Zt,λ(ρP ) (28)

in the trace-norm topology, where Zt,λ is a completely positive and trace-preserving map
acting on B1(HP ).

This proposition will be proven in Sect. 4.6.

3 Results and Discussion

3.1 The Scaling Limit

To obtain rigorously a kinetic equation for ρP (t)= Zt,λ(ρP ), we perform a van Hove limit
by setting t = λ−2τ and letting λ→ 0 while keeping the rescaled time τ > 0 fixed. In the
interaction picture with respect to the internal Hamiltonian S, the reduced density matrix of
the particle is in the scaling limit

ρsl(τ )= lim
λ→0,t=λ−2τ→∞

eitS Zt,λ(ρP )e−itS (29)

(since we never consider objects on the bath space in this limit we write ρsl(τ ) instead of
ρP,sl(τ )). Note that the infinite volume limit (28) has been taken first, before letting λ→ 0.
Our main result is the existence and characterization of the limit (29). Recall that λ appears
both in front of the interaction Hamiltonian Hint and of the hopping term Hhop in the total
Hamiltonian (16). Hence hopping between the lattice sites goes to zero as λ→ 0 and the
motion induced by the Hamiltonian Hhop becomes effective only at large times t ≈ λ−ατ .
It is then intuitively clear that for α > 2 the hopping will be absent in our scaling limit,
whereas for α = 2 both hopping and dissipative effects due to boson absorptions and emis-
sions should be contained in the kinetic equation for ρsl(τ ).

Before stating the result, let us introduce some notation. In the following, {A,B} =AB+
BA denotes the anticommutator of two operators A and B on HP , {|s〉; s = 1, . . . ,N} is the
orthonormal basis of C

N diagonalizing the internal Hamiltonian S, and Es ∈ σ(S) are the
eigenvalues of S, that is, S|s〉 =Es |s〉. For any Bohr frequency ω ∈ σ([S, ·])= σ(S)−σ(S),
we define the N ×N matrix

Wi,ω =
∑

s,s′=1,...,N

δEs−Es′ ,ω〈s|Wi |s ′〉|s〉〈s ′| (30)
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and the spectrally averaged hopping Hamiltonian

H
�

hop =
∑

s,s′=1,...,N

δEs ,Es′ 〈s|Hhop|s ′〉|s〉〈s ′| (31)

where δa,b is the Kronecker delta symbol (equal to unity if a = b and zero otherwise).
Finally, let us recall that a quantum dynamical semigroup (QDS) on B1(HP ) is a semi-
group (Tτ )τ≥0 of maps Tτ : B1(HP ) → B1(HP ) which are completely positive and trace-
preserving, such that τ ∈ R+ �→ Tτ is ∗-weakly continuous. Lindblad [1] has derived the
general form of the generators of norm-continuous QDS (see also [2] and an extension to
unbounded generators in [30]).

Theorem 1 Let assumptions (A1)–(A2) and (B1)–(B4) be satisfied and let α ≥ 2. Assume
moreover that the infinite-volume correlation functions fi(x, t) satisfy

lim
n→∞

1

n

∫ ∞

0
dt sup

x∈Zd ,i∈I

∣∣fi(x, t)
∣∣e−

|x|
n = 0. (32)

Then for any τ > 0 and any ρP ∈ SP , the limit (29) exists in the trace-norm topology and is
equal to ρsl(τ )= eτ L�

ρP , where (eτ L�
)τ≥0 is a norm-continuous quantum dynamical semi-

group on B1(HP ). If α = 2 the generator L� of this semigroup is given by

L�(ρ) = −i
[
H

�

hop +Υ,ρ
]+

∑

ω∈σ([·,S])

∑

i∈I

( ∑

x,y∈Zd

ci(y − x,ω)Wi,ω ⊗ |x〉〈x|

ρW ∗
i,ω ⊗ |y〉〈y| −

ci(0,ω)

2

{
W ∗

i,ωWi,ω ⊗ 1�2(Zd ), ρ
})

(33)

where

Υ =
∑

ω∈σ([·,S])

∑

i∈I

�
{∫ ∞

0
dt fi(0, t)e−itω

}
W ∗

i,ωWi,ω ⊗ 1�2(Zd ) (34)

and ci(x,ω) is the time Fourier transform of fi(x, t),

ci(x,ω)=
∫

R

dt fi(x, t)e−itω. (35)

If α > 2, L� is given by the same expression as in (33) but without the term −i[H�

hop, ρ].

To see that L� in (33) has the Lindblad form (and thus that (eτ L�
)τ≥0 is a QDS), we first

rewrite

L�(ρ)=−i
[
H

�

hop +Υ,ρ
]+A(ρ)− 1

2

{
A

�(1), ρ
}

(36)

where the map A abbreviates the term involving a sum over x and y in the right-hand side
of (33) and A� is its adjoint with respect to the trace, i.e., tr(A(ρ)A)= tr(ρA∗(A)). We note
that ci(x,ω) is of positive type in the x-variable (this follows from the fact that fi(x, t) is a
correlation function, see (24)) and therefore it is the Fourier transform of a positive measure
ĉi (dq,ω) on T

d :

ci(x,ω)= 1

(2π)d

∫

Td

ĉi (dq,ω) e−iq·x . (37)
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This shows that A has the Kraus form

A(ρ)=
∑

ω∈σ([·,S])

∑

i∈I

∫
ĉi (dq,ω)Vi,ω(q)ρVi,ω(q)∗ (38)

with Vi,ω = (2π)−d/2Wi,ω⊗ eiq·X . Thus A is a completely positive map [31]. Moreover, A is
bounded on B1(HP ) because for any ρ ∈ B(HP ), ρ ≥ 0,

∥∥A(ρ)
∥∥

1
= tr

(
A(ρ)

)≤
∑

ω∈σ([·,S])

∑

i∈I

ci(0,ω)‖Wi,ω‖2 ‖ρ‖1 (39)

and ci(0,ω) is finite by the integrability of the correlation function fi(0, t) (assump-
tion (32)). Since also A∗(1) and Hhop + Υ are bounded operators on HP , it follows that
L� is bounded on B1(HP ). This boundedness and the complete positivity of A imply that
the operator L� in (36) generates a norm-continuous QDS [1].

Another way of phrasing Theorem 1 is to say that the rescaled density matrix ρsl(τ )

satisfies the Bloch-Boltzmann master equation

d

dτ
ρsl(τ )= L�

(
ρsl(τ )

)
.

Note that L� commutes with i[S, ·], a generic fact for generators obtained via a weak cou-
pling limit [3, 7]. The self-adjoint operator Υ in (34) acts trivially on �2(Zd) and commutes
with S; it represents the energy shifts of the particle due to its coupling with the bosons
(Lamb shifts). In the following Sects. 3.2 and 3.3, we unwrap the form of the generator L�

in two different situations and discuss the physical phenomena described by the correspond-
ing master equation.

The major technical assumption of Theorem 1 is the integrability condition (32) on the
boson correlation functions. This assumption should be compared to the analogous condi-
tion for confined systems [3, 7, 8], i.e., the integrability of the correlation function (26) for
x = 0. An explicit computation and the use of a stationary phase argument performed in the
Appendix yields:

Proposition 2 Let us assume that the form factor g0,i has a support contained in the open
ball {q ∈ T

d; |q|< π}, that |g0,i |(q) and ζi(q) depend only on the modulus |q| of q , and that
the bosons of bath i have a linear dispersion relation νi(q)= |q| on the support of g0,i . Fur-
thermore, let the functions ψi,+(|q|)= |g0,i (q)|2ζi(q) and ψi,−(|q|)= |g0,i (q)|2(1+ ζi(q))

belong to C2(]0,π]) and

|q|min{d−3, d−1
2 }ψi,±

(|q|), |q|d−2ψ ′
i,±

(|q|), |q|d−1ψ ′′
i,±

(|q|) (40)

be integrable on [0,π]. Then assumption (32) on the correlation function fi(x, t) is satisfied
in dimension d ≥ 2.

If the bosons are initially at thermal equilibrium, in such a way that ζi(q)= (eβ|q| −1)−1,
then the assumptions on ψi,± in Proposition 2 are satisfied if g0,i (|q|) ∈ C2(]0,π]) and

|q|min{d−4, d−3
2 }|g0,i |2, |q|d−3 d

d|q| |g0,i |2, and |q|d−2 d2

d|q|2 |g0,i |2 (41)

are integrable on [0,π ].
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Remark 1 For most natural models, assumption (32) fails in dimension d = 1; see the
Appendix for an explicit computation.

Remark 2 For physical applications it would be of interest to estimate the error terms in
the convergence to the scaling limit, that is, to have an explicit bound on ‖ρP (λ−2τ) −
e−iλ−2τ [S,·]ρsl(τ )‖1. Due to the repeated use of the dominated convergence theorem, our proof
of Theorem 1 does not exhibit such a bound. One could in principle obtain the error terms by
assuming some explicit decay of the correlation functions fi(x, t) as in [33] (see Appendix B
in this reference).

Remark 3 The choice of the scaling exponent α in the factor λα in front of the hopping
Hamiltonian Hhop in (16) is more dictated by mathematical than by physical motivations.
For α > 2 the hopping Hamiltonian Hhop is absent in the dynamics in the scaling limit and
one has a trivial coupling between the hopping and the internal degrees of freedom in the
Lindbladian L�. For α < 2, as explained in the introduction, the convergence in the weak
coupling limit λ→ 0 is mathematically more involved. It is not clear whether in this case
one can still distill a limiting Lindblad operator.

As already indicated in the introduction, in the case α = 2 our scaling limit incorporates
both features of the singular and weak coupling limits: the translational degrees of freedom
are treated within the singular coupling limit and the internal degree of freedom is treated
within the weak coupling limit. The fact that the Hamiltonian

Hλ = λ2Hhop +HB + λHint (42)

corresponds in the limit λ→ 0 to the singular coupling limit was pointed out by Palmer [11]:
the dynamics generated by (42) at time t can be mapped into the dynamics generated by the
Hamiltonian

H ′
λ =Hhop +H ′

B +Hλ
int
′

(43)

at the (unrescaled) time τ and with an (unrescaled) hopping term Hhop, where H ′
B is a free

boson Hamiltonian as in (10). The new interaction Hamiltonian Hλ
int
′ is not multiplied by

λ and is given by the original interaction Hamiltonian Hint, as given by (13), but with a
rescaled form factor gλ2x(λ

2q) instead of gx(q). The two dynamics generated by (42) and
(43) are exactly the same, in the sense that eitHλ and eiτH ′

λ coincides up to a conjugation
by the unitary operator transforming the field operator Φ(ϕ) of a boson with wavefunc-
tion ϕ ∈ L2(Td) in the initial problem onto the field operator Φ(ϕλ) of a boson in the new
problem, with ϕλ(q)= λϕ(λ2q). In the limit λ→ 0, the rescaled form factor becomes sin-
gular.

Let us mention that a model of a quantum system coupled to a free fermion bath has been
studied in [22] in the singular coupling limit, using the approach of Refs. [7, 8].

3.2 A Jump Process in Momentum Space

Let us choose Hhop = −� according to (4), α = 2, and assume that all baths are initially
in thermal equilibrium with the same temperature β−1

i = β−1. We may then just as well
consider only one bath initially in the Gibbs state ρΛ

B = ρΛ
β .
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This setup is interesting if one sets out to study diffusion and decoherence of the Brown-
ian particle, see [20]. The resulting master equation can be written as

dρsl(τ )

dτ
= −i

[−�+Υ,ρsl(τ )
]+

∑

ω∈σ([S,·])

∫

Td

dq

(2π)d
ĉ(q,ω)

(
Wω ⊗ Tq ρsl(τ )W ∗

ω ⊗ T ∗
q

− 1

2

{
W ∗

ωWω ⊗ 1�2(Zd ) , ρsl(τ )
})

(44)

where Tq = eiq·X is the unitary momentum translation operator on �2(Zd) and we have used
the notation ĉi (dq,ω)= ĉ(q,ω)dq with ĉ(q,ω) the positive distribution which for ω �= 0 is
given by (see (26), (35), and (37))

ĉ(q,ω)= 2π
∣∣g0(q)

∣∣2(
ζ(−q)δ

(
ν(−q)−ω

)+ (
1+ ζ(q)

)
δ
(
ν(q)+ω

))
. (45)

Here ζ(q) = (eβν(q) − 1)−1 is the Bose-Einstein distribution, and we have assumed that
ĉi (dq,ω) defines a bona fide measure, which requires some mild additional conditions on
ν. The first term in the rate (45) corresponds to absorption processes of a boson with mo-
mentum −q and frequency ν(−q) = ω; it is proportional to the mean number ζ(−q) of
bosons with momentum −q . The second term corresponds to spontaneous and stimulated
emission of a boson with momentum q and frequency ν(q) = −ω and is proportional to
1+ ζ(q) (the term 1 comes from spontaneous emission). The delta distributions in (45) ac-
counts for energy conservation (see Fig. 1). Note that we have the detailed balance condition
ĉ(q,ω)= e−βωĉ(−q,−ω).

To appreciate Eq. (44), it is worthwhile to see what it implies for the evolution of diag-
onal elements of the density matrix in the eigenbasis of S and the momentum basis for the
translational degrees of freedom. Let us define the momentum density (assuming that the
sum on the right-hand side is absolutely convergent)

ρsl(τ ; k, s)=
∑

x,x′∈Zd

ei(x−x′)·k〈x, s|ρsl(τ )|x ′, s〉 (46)

with |x, s〉 = |x〉 ⊗ |s〉. Note that
∑N

s=1

∫
Td dk ρsl(τ ; k, s)/(2π)d = 1 for any τ ≥ 0. For

simplicity, let us assume that the spectrum of S is non-degenerate, i.e., all eigenvalues of S

are simple. Then (44) gives

∂

∂τ
ρsl

(
τ ; k′, s ′)=

N∑

s=1

∫

Td

dk
(
γ
(
k′, s ′

∣∣k, s
)
ρsl(τ ; k, s)− γ

(
k, s

∣∣k′, s ′
)
ρsl

(
τ ; k′, s ′))

(47)

where

γ
(
k′, s ′

∣∣k, s
)= (2π)−d ĉ

(
k− k′,Es′ −Es

)∣∣〈s ′|W |s〉∣∣2
. (48)

In formula (47) one recognizes the structure of a forward Markov generator with (singu-
lar) transition rates γ (k′, s ′|k, s), acting on densities of absolutely continuous probability
measures (hence on L1-functions) on T

d × {1, . . . ,N}. Therefore, the master equation (44)
describes the stochastic evolution of a particle with momentum k and internal state s, which
may jump from the state (k, s) to (k′, s ′) by emitting or absorbing a boson of momentum q

and energy ν(q), as represented in Fig. 1. According to (45) and (48), only jumps satisfying
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(a)

(b)

Fig. 1 The processes contributing to the gain term (first term on the right-hand side of (47)). Emission
corresponds to Es > Es′ and absorption to Es < Es′ . (a) The particle makes a transition (k, s)→ (k′, s′)
and emits a boson of momentum q and energy ν(q) with k = k′ + q and Es = ν(q)+Es′ . (b) The particle
makes a transition (k, s)→ (k′, s′) and absorbs a boson of momentum q with k+q = k′ and Es+ν(q)=Es′

energy and momentum conservation ν(q)= |Es′ −Es | and q = sign(Es′ −Es)(k
′ − k) are

allowed (here sign is the sign function). Note that, in the limit λ → 0, the energy of the
particle coincides with its internal energy Es since the hopping energy was assumed to be
of the order of λα with α ≥ 2. This explains why the detailed balance condition

γ
(
k′, s ′

∣∣k, s
)= eβ(Es−Es′ )γ

(
k, s

∣∣k′, s ′
)

(49)

does not involve the kinetic energy but only the internal energy levels Es and Es′ .
Let us recast the master equation (47) in a more explicit form, making some concrete

choices. We assume that N = 2, label the two spin states as s ∈ {−,+}, and choose the two
internal energies E± = ±ε/2. Furthermore, we suppose that on {|q| ≤ ε}, the form factor
g0(q) depends only on |q| and one has a linear dispersion relation ν(q)= |q|. Then

∂

∂τ
ρsl

(
τ ; k′,±)= c

∫

Sd−1(ε)

dq
(
e∓βε/2ρsl

(
τ ; k′ ∓ q,∓)− e±βε/2ρsl

(
τ ; k′,±))

(50)

where Sd−1(ε) is the hypersphere with radius ε, dq is its surface measure, and the prefactor
c is equal to (2π)1−d |〈+|W |−〉|2|g0(|q| = ε)|2eβε/2/(eβε − 1).

In the absence of internal Hamiltonian (i.e., for S = 0), energy and momentum conserva-
tion and the fact that ν(q) �= 0 for q �= 0 imply that, up to second order in λ, the particle can
only emit or absorb zero-momentum bosons and thus cannot change its momentum. Hence
the coupling with the bath has no effect on the translational degrees of freedom in the scaling
limit (29). This features would not change if we consider baths at different temperatures, or
more complicated hopping Hamiltonians.

Given some mild technical conditions, one can show that a particle described by
the Lindblad equation (44) diffuses in position space: more precisely, one shows that∑

x∈Zd |x|2〈x|ρsl(τ )|x〉 ∝ τ as τ →∞, see [20, 21].
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3.3 Ratchet

We now apply our model to ratchets. We refer the reader to the review article [32] for more
details on this subject. For this application, we choose

Hhop =−
∑

x∈Zd

(|x〉〈x + e1| ⊗ |s→〉〈s←|+ |x + e1〉〈x| ⊗ |s←〉〈s→|
)
. (51)

Here, |s→〉 and |s←〉 are two distinguished eigenstates of S and we singled out a spatial
direction by coupling these states to the motion in the direction of the unit vector e1 ∈ Z

d .
We assume that S has four distinct eigenstates labelled by s↑, s↓, s→, and s← satisfying

S|s↑〉 = ε|s↑〉, S|s↓〉 = −ε|s↓〉, and S|s→〉 = S|s←〉 = 0. (52)

For simplicity, we choose equal eigenvalues of S corresponding to the states |s→〉 and |s←〉,
so that Hhop and S commute. We will exploit the fact that we have two reservoirs. Bosons
from the first reservoir couple to the s-variable by

Wi=1 = |s↑〉〈s→|+ |s↓〉〈s←|+ |s→〉〈s↑| + |s←〉〈s↓| (53)

while bosons of the second reservoir couple as

Wi=2 = |s↑〉〈s←|+ |s↓〉〈s→|+ |s←〉〈s↑| + |s→〉〈s↓|. (54)

We choose the initial state of the reservoirs to be ρB = ρ
(1)
β1
⊗ ρ

(2)
β2

, where ρ
(i)
βi

is a Gibbs

(thermal) state at temperature Ti = β−1
i . If the two reservoirs have the same temperature,

then the model does not display any current. However, by preparing the reservoirs at dif-
ferent temperatures T1 �= T2 one breaks the time-reversal symmetry and a current will in
general emerge. To simplify the forthcoming discussion, we choose g0,1 = g0,2 (the form
factors are equal) and

T1 = 0, T2 > 0. (55)

The boson field induces jumps between the internal states |s〉 as represented in Fig. 2. By us-
ing energy conservation (see (45)), one easily convinces oneself that, with the temperatures
chosen as above, the particle can make a transition from |s←〉 to |s→〉 by emitting a boson
of the first reservoir and absorbing one of the second reservoir, whereas it can not make
the reverse transition from |s→〉 to |s←〉 (there are no boson with frequency ε in the first
reservoir at T1 = 0). Since all the jumps between eigenstates of S happen at fixed position,
these transitions do not in themselves induce a current. However, the hopping Hamilto-
nian Hhop allows for transitions between the states |s→〉 and |s←〉. Hence, a current flows
in the e1-direction. The possibility of extracting work from the system is already visible in
Fig. 2, where one sees that the particle can go from |s←〉 to |s→〉 via the upper (respectively
lower) level only clockwise (anticlockwise). Once one has this property (which is excluded
in equilibrium), it is clear that one can devise a scheme to convert this “internal current” into
a spatial current.

4 Proofs

4.1 Preliminaries

Our proof of Theorem 1 follows a similar approach as in some previous works of one of
the authors, in particular [20, 34]. The starting point is a Dyson expansion of the propagator
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Fig. 2 Possible jumps between
internal states of the particle.
Note that the jumps due to the
coupling with the reservoir at
temperature T1 = 0 can take
place only from higher to lower
energies, whereas the jumps due
to coupling with the other
reservoir at positive temperature
can go either way

Zt,λ. We consider the situation in which the particle is coupled to a single bath. Therefore,
we do not write the lower index i and the corresponding sums, which do not play any role
and obscure the notation. The proof for several baths, i.e., |I |> 1, is exactly the same. We
also restrict ourselves to the case of a scaling exponent α = 2. The case α > 2 is simpler and
can be treated similarly.

Let us first fix some notation. For products of operators, we use the conventions

←∏

j=1,...,n

Aj =An . . .A2A1,

→∏

j=1,...,n

Aj =A1A2 . . .An. (56)

The operators acting on B1(HP ) are denoted by calligraphic fonts, e.g. T or L, and we use
their (operator) norms

‖T ‖ = sup
A∈B1(HP )

‖T (A)‖1

‖A‖1
. (57)

We denote by C constants that can depend only on the space dimension d , the inter-
nal space dimension N , the parameter κ in the propagation bound (7), and the correlation
function f (x, t).

4.2 The Dyson Series

Let Z Λ
t,λ be the propagator for the reduced dynamics of the particle at finite volume, defined

by

Z Λ
t,λ

(
ρΛ

P

)= trB
(
e−itHΛ

tot
(
ρΛ

P ⊗ ρΛ
B

)
eitHΛ

tot
)
, ρΛ

P ∈ S
(

HΛ
P

)
. (58)

We will show below that the Dyson expansion with respect to the interaction Hamiltonian
(13) of this propagator converges in norm; this expansion reads

DΛ
t,λ

(
ρΛ

P

) = ρΛ
P +

∑

n≥1

(−iλ)n

∫

0≤t1≤···≤tn≤t

dt1 · · ·dtn
∑

(x1,...,xn)∈Λn

trB
([

V Λ
xn

(tn)⊗ΦΛ
xn

(tn), . . . ,

[
V Λ

x2
(t2)⊗ΦΛ

x2
(t2),

[
V Λ

x1
(t1)⊗ΦΛ

x1
(t1), ρ

Λ
P ⊗ ρΛ

B

]] · · · ]) (59)

where ΦΛ
x (t)=ΦΛ(eitνgx) is the freely-evolved field operator, see (23), and

V Λ
x (t)= eitHΛ

P W ⊗ |x〉〈x|e−itHΛ
P . (60)
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For any x ∈ Z
d , t ≥ 0, and T ∈ B(HΛ

P ), let us set

I Λ(x, t, l)(T ) =
{

V Λ
x (t)T if l = L

−T V Λ
x (t) if l =R.

f Λ(x, t, l) =
{

f Λ(x, t) if l = L

f Λ(x, t) if l =R

(61)

where f Λ(x, t) is the correlation function (25), which satisfies f Λ(x, t)= f Λ(−x,−t). By
using the quasi-freeness assumption (B2), one gets

DΛ
t,λ = 1+

∑

n≥1

∑

pairings π

∑

(x,l)∈Λ2n×{L,R}2n

∫

0≤t1≤···≤t2n≤t

dt V Λ
λ,n(π, t, x, l) (62)

where dt stands for dt1 · · ·dt2n, the second sum runs over all pairings π = {(ι1, σ1), . . . ,

(ιn, σn)} of (1, . . . ,2n), and

V Λ
λ,n(π, t, x, l)= (−λ2

)n
←∏

j=1,...,2n

I Λ(xj , tj , lj )

n∏

m=1

f Λ(xσm − xιm, tσm − tιm , lιm) (63)

if x1, . . . , x2n ∈Λ, and V Λ
λ,n(π, t, x, l)= 0 otherwise. We do not write explicitly the depen-

dence of HΛ
P , V Λ

x , and I Λ on the coupling constant λ to simplify notation, but we keep it in
V Λ

λ,n and DΛ
t,λ because we will later consider the limit λ→ 0 of these quantities.

Already at this point, we can establish the norm-convergence of the series (62). Indeed,
‖I Λ(x, t, l)‖ ≤ ‖W‖ and |f Λ(x, t, l)| ≤ f Λ(0,0), thus the nth term in the series (62) has a
norm bounded by

(
2|Λ|λ‖W‖)2n t2n

(2n)!
(
f Λ(0,0)

)n

[
2−n

(
2n

n

)
n!

]
= ((|Λ|λ‖W‖t)22f Λ(0,0))n

n! (64)

where the term between the square brackets [·] is the number of pairings π of (1, . . . ,2n).
Hence the Dyson series (62) at finite volume converges in norm. One can prove that its sum
is equal to the propagator in the interaction picture,

DΛ
t,λ = eit[HΛ

P
,·]Z Λ

t,λ. (65)

We will consider the Dyson series at infinite volume and we simply drop the superscript
Λ on HP , I, V , and f to denote the corresponding objects for Λ= Z

d . We argue that in the
infinite volume limit Λ ↑ Z

d ,

e−it[HΛ
P

,·] → e−it[HP ,·], I Λ(x, t, l)→ I(x, t, l),

and V Λ
λ,n(π, t, x, l)→ Vλ,n(π, t, x, l) (66)

strongly on B1(HP ). Indeed, recall that given some bounded operators AΛ on a Hilbert space
such that AΛ → 0 and (AΛ)∗ → 0 strongly, then ‖AΛT ‖1 → 0 and ‖T AΛ‖1 → 0 for any
T ∈ B1(HP ). The first limit in (66) follows from this property, the inequality ‖AΛT U‖1 ≤
‖AΛT ‖1 for U unitary, and the strong convergence of e−itHΛ

P on HP , see (22). As V Λ
x (t)→

Vx(t) strongly on HP (again by (22)), the second limit follows from the same property.
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Fig. 3 (a) Crossed diagram,
(b) ladder diagram

Since V Λ
λ,n(π, t, x, l) is a finite product of the I -operators and correlation functions f Λ, the

third limit in (66) then follows from the second one and from the pointwise convergence
f Λ → f (see Sect. 2.5). This implies that term-by-term, the series DΛ

t,λ converges strongly
to the infinite-volume Dyson expansion

Dt,λ =
∑

n

∑

π

∑

x,l

∫

Z2n(t)

dt Vλ,n(π, t, x, l). (67)

The convergence of this series has not been addressed yet, so for the moment we consider
it as a formal series. To prove Proposition 1, we will show that this convergence is in some
way uniform in Λ and apply the dominated convergence theorem. We have made in (67) the
following abbreviations, which will also be in place in the remaining of the paper:

(a) we sum over n= 0,1, . . . , where it is understood that the term corresponding to n= 0
is equal to 1;

(b) the sum over π ranges over all pairings of (1,2, . . . ,2n);
(c) Zn(t) denotes the simplex {t = (t1, . . . , tn) ∈ [0, t]n; t1 ≤ t2 ≤ · · · ≤ tn};
(d) the sum over x and l range over Z

2nd and {L,R}2n, respectively.

4.2.1 Graphical Representation

It is convenient to represent Vλ,n or V Λ
λ,n by a diagram in which all times t1 ≤ t2 ≤ · · · ≤ t2n

are ordered on the real line and pairings are represented by bridges linking two distinct
times. Two examples of diagrams are represented in Fig. 3. Replacing the times by their
indices 1,2, . . . ,2n, the diagrams with 2n points are in one-to-one correspondence with the
pairings of (1,2, . . . ,2n). A diagram containing two pairs (ι, σ ) ∈ π and (ι′, σ ′) ∈ π such
that ι < ι′ and ι′ < σ is called a crossing diagram.4 A non-crossing diagram will be called
a ladder diagram; it corresponds to the pairing π ladder = {(1,2), (3,4), . . . , (2n − 1,2n)}
respecting the order, see Fig. 3.

The strategy of the proof of Theorem 1 consists in showing that in the scaling limit
λ→ 0, t = λ−2τ →∞,

4Traditionally, some of these diagrams are called “nested”, but we call all of them “crossing diagrams” as we
represent them on a single time axis, see Fig. 3.



338 W. De Roeck, D. Spehner

(i) all crossing diagrams in the infinite-volume Dyson series (67) converge to zero;
(ii) the ladder diagram in (67) of order 2n converges to the corresponding diagram of the

Dyson expansion of eiτ [H�
hop,·]eτ L�

, where L� is the Lindblad generator given in (33).

4.3 Plan of the Proof

Below, we give the main steps of the proof of Theorem 1.

4.3.1 Topology

We first introduce a notion of convergence that is particularly useful for the problem. Let
(Tλ)λ be a family of operators on B1(HP ). We associate to Tλ a kernel with values in opera-
tors on the vector space B(CN) of N ×N matrices, defined as follows:

(Tλ)x0,y0;x,y(M)= 〈x|Tλ

(
M ⊗ |x0〉〈y0|

)|y〉, M ∈ B
(
C

N
)
. (68)

We write pt-limλ→0 Tλ = 0 whenever

lim
λ→0

∑

x,y∈Zd

∥∥(Tλ)x0,y0;x,y

∥∥= 0 for any x0, y0 ∈ Z
d ,

where the norm inside the sum is the matrix norm.

Lemma 1 Let Tλ be uniformly bounded operators on B1(HP ). If one has pt-limλ→0 Tλ = 0
then Tλ → 0 strongly, that is, limλ→0 ‖Tλ(T )‖1 → 0 for any T ∈ B1(HP ).

Proof Note first that for any T ∈ B1(HP ),

‖T ‖1 = sup
A∈B(HP )

| tr(T A)|
‖A‖ ≤ sup

A∈B(HP )

∑

x,y∈Zd

trCN

(∣∣〈x|T |y〉∣∣)‖〈y|A|x〉‖‖A‖

≤ N
∑

x,y∈Zd

∥∥〈x|T |y〉∥∥ (69)

where the last inequality follows because tr(|M|) ≤ N‖M‖ for any finite matrix M ∈
B(CN). Let T have finite support in the sense that 〈x0|T |y0〉 is nonzero only for a fi-
nite number of x0, y0 ∈ Z

d . Then, by (69), pt-limλ→0 Tλ = 0 implies ‖Tλ(T )‖1 → 0.
Next, one checks that operators T with finite support are dense in B1(HP ). Actually, let
PΛ = ∑

x∈Λ |x〉〈x| ⊗ 1CN be the finite-rank projector on span{|x〉; x ∈ Λ} ⊗ C
N , with

Λ= Z
d/(2LZ)d as before. Without loss of generality, we may assume that T ≥ 0. If {|ψj 〉}

is an orthonormal basis of HP diagonalizing T and pj ≥ 0 are the eigenvalues of T , then

‖PΛT PΛ − T ‖1 ≤
∑

j

pj

(∥∥PΛ|ψj 〉〈ψj |(PΛ − 1)
∥∥

1
+ ∥∥(PΛ − 1)|ψj 〉〈ψj |

∥∥
1

)

≤ 2
∑

j

pj

∥∥(PΛ − 1)|ψj 〉
∥∥→ 0

as L →∞ by dominated convergence. Hence, for any T ∈ B1(HP ) and ε > 0, one can
choose a decomposition T = T0 + T1 such that T0 has finite support and ‖T1‖1 ≤ ε. Then
‖Tλ(T )‖1 ≤ ‖Tλ(T0)‖1 +Cε by the uniform boundedness of (Tλ)λ. The claim follows. �
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A consequence of Lemma 1 is that in order to prove the strong convergence of Dλ−2τ,λ to
Dτ in the scaling limit, it is enough to show that

pt-lim
λ→0

{Dλ−2τ,λ − Dτ } = 0. (70)

In fact, one has ‖Dt,λ‖ = 1 for any t by the following standard argument. One first notes that
the finite volume propagator Z Λ

t,λ defined in (58) preserves positivity and trace and hence so
does the sum DΛ

t,λ of its Dyson expansion (related to Z Λ
t,λ by (65)) as well as its strong limit

Dt,λ as Λ ↑ Z
d (we assume here that Proposition 1 has been already established). Then the

dual of Dt,λ under the trace, D∗
t,λ, which acts on B(HP ), preserves positivity and satisfies

D∗
t,λ(1)= 1. It follows that ‖D∗

t,λ‖ = 1 (see e.g. [27], Corollary 3.2.6) and thus ‖Dt,λ‖ = 1.

4.3.2 Assumptions

In the remainder of this paper, we always assume (A1)–(A2) and (B1)–(B4) to be valid
without further mentioning it (note that once the Dyson series for Zt,λ is accepted as the
basic object of study, one does no need those assumptions anymore). To prove Theorem 1,
we rely on:

(a) The propagation bound (7), but for Λ = Z
d : by (22) and as the right-hand side of (7)

is independent of Λ, this bound remains valid for Λ= Z
d (alternatively, one can check

this directly by the Combes-Thomas estimate, using the fact that Hhop has a finite range).
(b) Assumption (32) on the infinite volume correlation function f (x, t) or, in most inter-

mediate steps, the weaker requirement that f (x, ·) is integrable for any x ∈ Z
d .

4.3.3 Step I

We first prove that the Dyson series Dλ−2τ,λ, considered as a series in n, x, and l, converges
absolutely and uniformly in λ, in the sense that

∑

n

∑

x,l

∑

π

∑

x,y

sup
λ>0

∫

Z2n(λ−2τ)

dt
∥∥(

Vλ,n(π, t, x, l)
)
x0,y0;x,y

∥∥ <∞ (71)

for any x0, y0 ∈ Z
d (see Proposition 3 below). This bound is the crucial point in the proof,

since it allows us to estimate the perturbation series term by term. It relies heavily on the
assumption (32).

By a similar bound on the finite-volume Dyson series DΛ
t,λ, the fact that this series con-

verges term by term as Λ ↑ Z
d , Lemma 1, and (66), we obtain Proposition 1 with

Zt,λ = e−it[HP ,·]Dt,λ. (72)

Here the integrability of f Λ(x, ·) is not needed, the only requirement is its pointwise con-
vergence as Λ ↑ Z

d (which follows from (B4)).
These results are accomplished in Sects. 4.4 and 4.5.

4.3.4 Step II

We show that every single crossing diagram vanishes in the scaling limit, in the sense that,
for any n≥ 1 and x0, y0, x, y ∈ Z

d ,

lim
λ→0

∫

Z2n(λ−2τ)

dt
∥∥Vλ,n(π, t, x, l)x0,y0;x,y

∥∥= 0 whenever π �= π ladder. (73)
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This step is essentially taken over from the original work [7], but we review it in Sect. 4.7.
To feel why this holds true, note that when t = λ−2τ � 1, the time integration domain of a
crossing diagram of order 2n is much smaller than that of the ladder diagram of the same
order. This is due to the restriction tι ≤ tι′ ≤ tσ associated to the nested pairs (ι, σ ) and
(ι′, σ ′), see Fig. 3.

By dominated convergence and (71), this implies that the contribution of crossing dia-
grams in the Dyson series Dλ−2t,λ vanishes in the limit λ→ 0 in the topology introduced in
Sect. 4.3.1, i.e.,

∑

n

∑

x,l

∑

x,y

∑

π �=π ladder

∫

Z2n(λ−2τ)

dt
∥∥(

Vλ,n(π, t, x, l)
)
x0,y0;x,y

∥∥ →
λ→0

0 (74)

for any x0, y0 ∈ Z
d .

4.3.5 Step III

It remains to evaluate the contribution of ladder diagrams π ladder. Let us denote by K(τ , x, l)

the bounded operators, defined in Proposition 6 below, which yield the limiting QDS
(eτ L�

)τ≥0 upon summing over n, x, l, and τ :

∑

n

∫

Zn(τ)

dτ
∑

x,l

Kn(τ , x, l)= eτ L�

, (75)

where the sums and integrals are absolutely convergent in norm. We will show in Sects. 4.8
and 4.9 that

lim
λ→0

∫

Z2n(λ−2τ)

dt Vλ,n(π ladder, t, x, l)=
∫

Zn(τ)

dτ Kn(τ , x, l) (76)

in norm on B(B1(HP )), which of course implies
∫

Z2n(λ−2τ)

dt
(

Vλ,n(π ladder, t, x, l)
)
x0,y0;x,y

→
∫

Z2n(τ )

dτ
(

Kn(τ , x, l)
)
x0,y0;x,y

. (77)

Dominated convergence allows us to conclude from (71) and (77) that (70) holds true.

4.4 Estimating Each Term of the Dyson Series

Lemma 2 Fix n,π, x0, y0, and t ∈Z2n(t). Then

∥∥(
Vλ,n(π, t, x, l)

)
x0,y0;x,y

∥∥≤ (Cλ)2ne4λ2t

n∏

m=1

hn(tσm − tιm)R
(n)

x0,y0;x,y(x, l) (78)

where

hn = sup
x∈Zd

∣∣f (x, ·)∣∣e− |x|
2n (79)

and R
(n)

x0,y0;x,y(x, l) is independent of λ and Λ and such that

sup
n≥0

{∑

x,l

∑

x,y

R
(n)

x0,y0;x,y(x, l)

}
<∞. (80)

The bound (78) also holds true if one replaces Vn by V Λ
n and hn by maxx∈Λ |f Λ(x, ·)|.
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Fig. 4 Equivalent representations of an n = 8-points diagram: on the right diagram, the times tj with
lj = L are put on the upper axis and the times tk with lk = R on the lower axis. Here |l| = 5,
(j1, j2, j3, j4, j5)= (1,3,4,6,8), and (k1, k2, k3)= (2,5,7)

Proof We first give an explicit formula for Vλ,n(π, t, x, l)(M ⊗ |x0〉〈y0|) in terms of the
operators Vx(t), with M ∈ B(CN) and x0, y0 ∈ Z

d . For a fixed l ∈ {L,R}2n, let |l| denotes
the number of indices j such that lj = L, j = 1, . . . ,2n. We change the labelling of the
indices and coordinates by defining (see Fig. 4)

{j1 < · · ·< j|l|} =
{
j ∈ {1, . . . ,2n}; lj = L

}

{k1 < · · ·< k2n−|l|} =
{
k ∈ {1, . . . ,2n}; lk =R

}

and

x̃0 = x0, x̃1 = xj1 , . . . , x̃|l| = xj|l| ,

ỹ0 = y0, ỹ1 = xk1 , . . . , ỹ2n−|l| = xk2n−|l| .

It follows from (61) and (63) that for any matrix M ∈ B(CN),

Vλ,n(π, t, x, l)
(
M ⊗ |x0〉〈y0|

)

= λ2n(−1)n+|l|Vx̃|l|(tj|l|) · · ·Vx̃1(tj1)M ⊗ |x0〉〈y0|

× Vỹ1(tk1) · · ·Vỹ2n−|l|(tk2n−|l|)
n∏

m=1

f (xσm − xιm, tσm − tιm , lιm). (81)

Note that a similar formula holds at finite volume for V Λ
λ,n(π, t, x, l).

We must bound the norm of the right-hand side of (81). Let us denote by G(t;x, y) =
〈x|e−itHP |y〉 the time-dependent Green function associated to the free motion of the particle
at infinite volume. Using (60) and setting tj0 = tk0 = 0, one gets

〈x|Vx̃|l|(tj|l|) · · ·Vx̃1(tj1)|x0〉

=G(−tj|l| ;x, x̃|l|)
←∏

p=1,...,|l|
WG(tjp − tjp−1; x̃p, x̃p−1) (82)

and

〈y0|Vỹ1(tk1) · · ·Vỹ2n−|l|(tk2n−|l|)|y〉

=
→∏

q=1,...,2n−|l|
G(tkq−1 − tkq ; ỹq−1, ỹq)WG(tk2n−|l| ; ỹ2n−|l|, y). (83)
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Thanks to the propagation bound (7), we have
∥∥(

Vλ,n(π, t, x, l)
)
x0,y0;x,y

∥∥

≤ (‖W‖λ)2n
e4λ2te−|x−x̃|l||−|y−ỹ2n−|l||

|l|∏

p=1

e−|x̃p−x̃p−1|
2n−|l|∏

q=1

e−|ỹq−ỹq−1|

×
n∏

m=1

hn(tσm − tιm) e
|xσm−xιm |

2n . (84)

Next, observe that

|l|∑

p=1

|x̃p − x̃p−1| +
2n−|l|∑

q=1

|ỹq − ỹq−1| ≥ 1

n

n∑

m=1

|xσm − xιm | − |x̃0 − ỹ0|. (85)

Actually, (85) is a consequence of the inequality

2n+1∑

m=0

|zm+1 − zm| ≥max
{|zσ − zι|; ι, σ = 0, . . . ,2n+ 1

}

applied to (z0, . . . , z2n+1) = (x̃|l|, . . . , x̃0, ỹ0, . . . , ỹ2n−|l|) ∈ Z
(2n+2)d . Replacing (85) into

(84), one gets the result with

Rx0,y0;x,y(x, l) =
(

2
∑

z∈Zd

e−
1
2 |z|

)−2n

e−|x−x̃|l||−|y−ỹ2n−|l||e
1
2 |x0−y0|

×
|l|∏

p=1

e−
1
2 |x̃p−x̃p−1|

2n−|l|∏

q=1

e−
1
2 |ỹq−ỹq−1|. (86)

The proof for the finite lattice is the same, since we only used the propagation estimate. �

4.5 Uniform Convergence of the Dyson Series

Proposition 3 Let x0, y0 ∈ Z
d . For fixed λ and t , one has

∑

n

∑

x,l

∑

π

∑

x,y

∫

Z2n(t)

dt sup
Λ⊂Zd

∥∥(
V Λ

λ,n(π, t, x, l)
)
x0,y0;x,y

∥∥ <∞ (87)

where the supremum is taken over Λ= ]−L,L]d ∩Z
d for all finite L > 0. Similarly, assume

that the correlation function f (x, t) satisfies (32) and fix τ ≥ 0, then,

∑

n

∑

x,l

∑

x,y

sup
λ>0

{∑

π

∫

Z2n(λ−2τ)

dt
∥∥(

Vλ,n(π, t, x, l)
)
x0,y0;x,y

∥∥
}

<∞. (88)

Proof We first show the second claim. The proof of the first one follows similar lines. We
bound (88) with the help of Lemma 2 by

Cx0,y0 e4τ
∑

n

sup
λ>0

{
(Cλ)2n

∑

π

∫

Z2n(λ−2τ)

dt

n∏

m=1

hn(tσm − tιm)

}
(89)
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where Cx0,y0 <∞ denotes the supremum in (80). The sum over all pairings π and the time
integrals are conveniently rewritten with the help of

Lemma 3 For any locally integrable function g :R2n →R and 0≤ t0 < t ,

∑

π

∫

t0≤t1≤···≤t2n≤t

dt g(tι1 , tσ1; · · · ; tιn , tσn )

=
∫

t0≤u1≤···≤un≤t

du1 · · ·dun

∫

um≤u′m≤t;m=1,...,n

du′1 · · ·du′n g
(
u1, u

′
1; · · · ;un,u

′
n

)
.

We leave to the reader the proof of this lemma, which is based on change of variables.
Applying Lemma 3 with g(u1, u

′
1; · · · ;un,u

′
n)=

∏
m hn(u

′
m − um) as in (89), bounding

the integrals over the um and u′m by ‖hn‖n
1 = (

∫∞
0 dt hn(t))

n times the volume of the n-
dimensional simplex Zn(λ

−2τ), we conclude that (89) is smaller than

Cx0,y0 e4τ
∑

n≥0

1

n!
(
C2‖hn‖1 τ

)n
. (90)

By Stirling formula n! ∼ (2πn)1/2(n/e)n as n→∞, one finds that the convergence of the
series in (90) is ensured by assumption (32), that is, by the condition ‖hn‖1/n→ 0 as n→
∞. Thus the second claim of Proposition 3 is proven.

To show the first claim, we replace hn by maxx∈Λ |f Λ(x, ·)| (see Lemma 2) in (89). Here
we do not need to assume that this function has a finite L1-norm, we bound it by f Λ(0,0),
see (25). The quantity in (87) is thus smaller than

Cx0,y0 e4λ2t
∑

n≥0

1

n!
(

C2λ2t2 supΛ f Λ(0,0)

2

)n

<∞. (91)

Note that supΛ f Λ(0,0) is finite since f Λ(0,0) converges as Λ ↑ Z
d . This concludes the

proof of Proposition 3. �

4.6 Proof of Proposition 1

One has
∥∥((

V Λ
λ,n − Vλ,n

)
(π, t, x, l)

)
x0,y0;x,y

∥∥−→ 0 as Λ↗ Z
d . (92)

Actually, let us set AΛ = (V Λ
λ,n − Vλ,n)(π, t, x, l). It is sufficient to prove that

‖(AΛ)x0,y0;x,y(M)‖ ≤ ‖(AΛ)x0,y0;x,y(M)‖1 → 0 for any M ∈ B(CN) (recall that (AΛ)x0,y0;x,y

is a finite matrix), so that the convergence (92) follows directly from the last claim in (66).
By Proposition 3, (92), and dominated convergence, for any fixed λ and t we have

pt-lim
Λ↗Zd

{
DΛ

t,λ − Dt,λ

}= 0. (93)

Since Z Λ
t,λ preserves the trace and is completely positive, the same holds true for DΛ

t,λ in (65).
This implies that ‖DΛ

t,λ‖ = 1 for any Λ (see the discussion after (70)). Applying Lemma 1,
we deduce from (93) that

DΛ
t,λ(T )→ Dt,λ(T ) (94)
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for any T ∈ B1(HP ) with finite support on the lattice Z
d . Hence Dt,λ can be extended to

a bounded, trace-preserving and completely positive operator on B1(HP ). From this, we
straightforwardly deduce that, for a convergent sequence ρΛ

P → ρP in B1(HP ),

lim
Λ↑Zd

DΛ
t,λ

(
ρΛ

P

)= Dt,λ(ρP ). (95)

Since e−it[HΛ
P

,·] → e−it[HP ,·] strongly, (95) also holds if we replace DΛ
t,λ by Z Λ

t,λ =
e−it[HΛ

P
,·]DΛ

t,λ and Dt,λ by Zt,λ which is given by (72). Therefore, the limit in Proposition 1
exists and Zt,λ is trace-preserving and completely positive on B1(HP ). �

4.7 Crossing Diagrams Vanish in the van Hove Limit

In this subsection and the following ones, the correlation function f (x, t) does not need to
satisfy the assumption (32) and we only require that

∥∥f (x, ·)∥∥
1
=

∫ ∞

0
dt

∣∣f (x, t)
∣∣ <∞ for any x ∈ Z

d . (96)

As announced in Step II of the plan of the proof, we show:

Proposition 4 Assume the integrability condition (96). If π is a crossing diagram, i.e., π �=
π ladder, then for any fixed n, τ , x, l, and x0, y0, x, y,

lim
λ→0

∫

Z2n(λ−2τ)

dt
∥∥Vλ,n(π, t, x, l)x0,y0;x,y

∥∥= 0. (97)

Proof It is a simple adaptation of the arguments used in [36], Sect. 6.3. Let π =
{(ι1, σ1), . . . , (ιn, σn)} be a crossing diagram. This means that one can find two pairs
(ιμ, σμ) ∈ π and (ιν, σν) ∈ π such that ιμ < ιν (i.e., μ < ν) and ιν < σμ. According to
(84), we need to show that

Jλ(π, τ )= λ2n

∫

Z2n(λ−2τ)

dt

n∏

m=1

∣∣fm(tσm − tιm)
∣∣−→ 0 (98)

as λ→ 0, where we abbreviated f (xσm − xιm, tσm − tιm) by fm(tσm − tιm) (recall that here x

is fixed). One has

Jλ(π, τ ) ≤
n∏

m�=μ,ν

∫

0≤tιm≤tσm≤λ−2τ

dtιm dtσm λ2
∣∣fm(tσm − tιm)

∣∣

×
∫

0≤tιμ≤tιν≤tσμ≤λ−2τ,tιν≤tσν

dtιμ dtσμ dtιν dtσν λ4
∣∣fμ(tσμ − tιμ )

∣∣∣∣fν(tσν − tιν )
∣∣.

The product of integrals in the first line is smaller than (supm ‖fm‖1τ)n−2. To deal with the
integral in the second line, we first bound the integral over tσν by λ4‖fν‖1fμ(tσμ − tιμ ) and
then substitute v = λ2tσμ , w = λ2(tσμ − tιν ), and t ′ = tσμ − tιμ . This gives the bound

‖fν‖1

∫ τ

0
dv

∫ v

0
dw

∫ λ−2v

λ−2w

dt ′
∣∣fμ

(
t ′
)∣∣. (99)



Derivation of Some Translation-Invariant Lindblad Equations 345

For any (v,w) ∈ [0, τ ]2 such that 0 < w < v,
∫ λ−2v

λ−2w
dt ′ |fμ(t ′)| converges to zero as λ→ 0

(because ‖fμ‖1 <∞). This integral is also bounded by ‖fμ‖1, therefore (99) converges to
zero by dominated convergence. �

4.8 Contribution of the Ladder Diagrams

In this subsection, we determine the contribution of the ladder diagrams and accomplish
Step III of the proof. We first introduce the following operators on B1(HP ):

Uλ(t)= e−it[HP ,·] = e−it[λ2Hhop+S,·], U0(t)= e−it[S,·]. (100)

Define the family of operators

A
(
x ′, l′;x, l

)=−
∫ ∞

0
dt f

(
x ′ − x, t, l

)
U0(−t)I

(
x ′,0, l′

)
U0(t)I(x,0, l). (101)

The integral is convergent by the integrability condition (96). Let

Wλ,n(τ , x, l)=
←∏

j=1,...,n

Uλ

(−λ−2τj

)
A(x2j , l2j ;x2j−1, l2j−1)Uλ

(
λ−2τj

)
(102)

for any τ = (τ1, . . . , τn) ∈R
n+. We have

Proposition 5 Assume the integrability condition (96). For any fixed x, t and τ ,

lim
λ→0

∥∥∥∥
∫

Z2n(λ−2τ)

dt Vλ,n(π ladder, t, x, l)−
∫

Zn(τ)

dτ Wλ,n(τ , x, l)

∥∥∥∥= 0. (103)

Proof Let us set, for any δ > 0,

Aλ,δ

(
x ′, l′;x, l

)=−
∫ λ−2δ

0
dt f

(
x ′ − x, t, l

)
Uλ(−t)I

(
x ′,0, l′

)
Uλ(t)I(x,0, l). (104)

Then

lim
λ→0

Aλ,δ

(
x ′, l′;x, l

)= A
(
x ′, l′;x, l

)
in norm (105)

and ‖Aλ,δ(x
′, l′;x, l)‖ ≤ ‖f (x ′−x, ·)‖1‖W‖2 for any x, x ′ ∈ Z

d , and l, l′ ∈ {L,R}. This fol-
lows from the dominated convergence theorem, using (i) the integrability of |f (x ′ − x, ·)|,
(ii) the norm convergence limλ→0 Uλ(t)= U0(t) (which follows directly from the bounded-
ness of Hhop), and (iii) the bounds ‖I(x,0, l)‖ ≤ ‖W‖ and ‖Uλ(t)‖ = 1. Using I(x, t, l)=
Uλ(−t)I(x,0, l)Uλ(t) and setting sj = t2j − t2j−1, we rewrite the (infinite volume version
of) (63) as

Vλ,n(π ladder, t, x, l) = (−λ2
)n

←∏

j=1,...,n

f (x2j − x2j−1, sj , l2j−1)Uλ(−t2j−1)Uλ(−sj )

× I(x2j ,0, l2j )Uλ(sj )I(x2j−1,0, l2j−1)Uλ(t2j−1). (106)
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We now perform the variable substitutions τj = λ2t2j−1, sj = t2j − t2j−1 for j = 1, . . . , n, to
get

∫

Z2n(λ−2τ)

dt Vλ,n(π ladder, t, x, l)−
∫

Zn(τ)

dτ Wλ,n(τ , x, l)

=
∫

Zn(τ)

dτ

{ ←∏

j=1,...,n

Uλ

(
− τj

λ2

)
Aλ,τj+1−τj (x2j , l2j ;x2j−1, l2j−1)Uλ

(
τj

λ2

)

−
←∏

j=1,...,n

Uλ

(
− τj

λ2

)
A(x2j , l2j ;x2j−1, l2j−1)Uλ

(
τj

λ2

)}
. (107)

For any 0 ≤ τ1 < τ2 < · · · < τn, the integrand inside the curly brackets converges in
norm to zero because of (105). This integrand is bounded by 2(maxj=1,...,n ‖f (x2j −
x2j−1, ·)‖1‖W‖2)n. Hence an application of the dominated convergence theorem yields the
result. �

4.9 Spectral Averaging

To end the proof of Theorem 1, we use some standard techniques of “dynamical spectral
averaging”, originally used in Ref. [8] in the same context.

Lemma 4 Let A and B be bounded operators on a Banach space Y such that (etB)t∈R is a
one-parameter group of isometries on Y and the norm limit

A� = lim
t→∞ t−1

∫ t

0
du e−uBAeuB (108)

exists. Let D(·),E(·) be in C 1(R, B(Y)) (continuously differentiable B(Y)-valued func-
tions). Then, for any τ > 0,

(1) limε→0

∫ τ

0 dτ1 D(τ1)e−(τ1/ε)BAe(τ1/ε)BE(τ1)=
∫ τ

0 dτ1 D(τ1)A
�E(τ1)

(2) limε→0 e−(τ/ε)Be(τ/ε)(B+εA) = limε→0 e(τ/ε)(B+εA)e−(τ/ε)B = eτA�
.

Proof To show the claim (1), we put E(τ) = 1 (the general result follows by an obvious
extension of the proof). Let us write D′(τ )= d

dτ
D(τ), then

∫ τ

0
dτ1 D(τ1)e

−(τ1/ε)BAe(τ1/ε)B

=
∫ τ

0
dτ1

(
D(0)+

∫ τ1

0
dτ2 D′(τ2)

)
e−(τ1/ε)BAe(τ1/ε)B

=
∫ τ

0
dτ1 D(0)e−(τ1/ε)BAe(τ1/ε)B +

∫ τ

0
dτ2 D′(τ2)

∫ τ

τ2

dτ1 e−(τ1/ε)BAe(τ1/ε)B

→
ε→0

(
τD(0)+

∫ τ

0
dτ2 (τ − τ2)D

′(τ2)

)
A� =

∫ τ

0
dτ1 D(τ1)A

�. (109)

To get the last line, we used (108) to estimate the integrals over τ1 for all τ2 < τ , together
with the dominated convergence theorem (since D′(·) is norm continuous and etB is an
isometry).
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The claim (2) can be proven from (1) by expanding the two first members as Dyson
series in A (alternatively, see [37], Theorem 5.11, and the review by Dereziński and Fruboes
in [19] for the same result under weaker conditions). �

Let us now apply Lemma 4 to the case at hand. We choose B = i[S, ·], ε = λ2 and
Y = B1(HP ). Then (etB)t∈R is a group of isometries on B1(HP ). Since S has a finite number
of eigenvalues, the existence of the norm limit (108) is automatic. Moreover, for any A ∈
B(B1(HP )) one has

A� =
∑

ω∈σ([S,·])
Pω APω (110)

where Pω are the spectral projectors of [S, ·], i.e.,

Pω(T )=
∑

s,s′=1,...,N

δEs−Es′ ,ω|s〉〈s ′|〈s|T |s ′〉, T ∈ B1(HP ). (111)

We first prove

Proposition 6 Let us define

Kn(τ , x, l)=
←∏

j=1,...,n

U�(−τj )
[

A(x2j , l2j ;x2j−1, l2j−1)
]� U�(τj ) (112)

with U�(τ ) = e−iτ [H�
hop,·], where H

�

hop is given by (31). Then for the norm topology on
B(B1(HP )),

lim
λ→0

∫

Zn(τ)

dτ Wλ,n(τ , x, l)=
∫

Zn(τ)

dτ Kn(τ , x, l). (113)

Proof An explicit calculation yields

[Hhop, ·]� =
[
H

�

hop, ·
]
. (114)

Choosing A= i[Hhop.·], the claim (2) of Lemma 4 yields

lim
λ→0

∥∥U0

(−τ/λ2
)

Uλ

(
τ/λ2

)− U�(τ )
∥∥= lim

λ→0

∥∥Uλ

(
τ/λ2

)
U0

(−τ/λ2
)− U�(τ )

∥∥= 0. (115)

We use the abbreviation Aj = A(x2j , l2j ;x2j−1, l2j−1). Since U0(t) is an isometry, this gives

lim
λ→0

∥∥Uλ

(−τ/λ2
)

Aj Uλ

(
τ/λ2

)− U�(−τ)U0

(−τ/λ2
)

Aj U0

(
τ/λ2

)
U�(τ )

∥∥= 0. (116)

To prove the proposition, we consider first the cases n= 1 and n= 2 and then conclude by
induction.

For n= 1, one has

lim
λ→0

∫

Z1(τ )

dτ W1,λ(τ , x, l) = lim
λ→0

∫ τ

0
dτ1 Uλ

(−τ1/λ
2
)

A1 Uλ

(
τ1/λ

2
)
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= lim
λ→0

∫ τ

0
dτ1 U�(−τ1)U0

(−τ1/λ
2
)

A1 U0
(
τ1/λ

2
)

U�(τ1)

=
∫ τ

0
dτ1 U�(−τ1)A�

1 U�(τ1) (117)

where we used (116) in the second equality, relying also on dominated convergence and the
uniform boundedness of the integrand, and claim (1) of Lemma 4 in the third equality (note
that U�(·) is C1).

For n= 2, one has

lim
λ→0

∫

Z2(τ )

dτ W2,λ(τ , x, l)

= lim
λ→0

∫ τ

0
dτ2

∫ τ2

0
dτ1 Uλ

(−τ2/λ
2
)

A2 Uλ

(
τ2/λ

2
)

Uλ

(−τ1/λ
2
)

A1 Uλ

(
τ1/λ

2
)

= lim
λ→0

∫ τ

0
dτ2 Uλ

(−τ2/λ
2
)

A2 Uλ

(
τ2/λ

2
)∫ τ2

0
dτ1 U�(−τ1)A�

1 U�(τ1)

= lim
λ→0

∫ τ

0
dτ2 U�(−τ2)U0

(−τ2/λ
2
)

A2 U0

(
τ2/λ

2
)

U�(τ2)

×
∫ τ2

0
dτ1 U�(−τ1)A�

1 U�(τ1)

=
∫ τ

0
dτ2 U�(−τ2)A�

2 U�(τ2)

∫ τ2

0
dτ1 U�(−τ1)A�

1 U�(τ1). (118)

The second equality is the case n = 1, the third is (116), and the fourth follows from the
claim (1) of Lemma 4.

The case n > 2 follows by a similar induction step. �

End of the proof of Theorem 1 Collecting Propositions 4, 5, and 6, we have

lim
λ→0

∑

π

∫

Z2n(λ−2τ)

dt
(

Vλ,n(π, t, x, l)
)
x0,y0;x,y

=
∫

Zn(τ)

dτ
(

Kn(τ , x, l)
)
x0,y0;x,y

(119)

for any fixed n, x, l, and x, y, x0, y0. Thanks to the second statement of Proposition 3 and to
the dominated convergence theorem, we obtain in view of (67)

pt-lim
λ→0

Dλ−2τ,λ =
∑

n

∑

x,l

∫

Zn(τ)

dτ Kn(τ , x, l)= eiτ [H�
hop,·]e−iτ [H�

hop,·]+τ A�

(120)

where the last equality comes from a Dyson expansion in powers of A� (the series is con-
vergent in the pt-lim sense by dominated convergence), and

A� =
∑

x,x′,l,l′

[
A

(
x, l;x ′, l′)]�

. (121)

One concludes by invoking Lemma 1 (see also the discussion after this lemma) that

Dλ−2τ,λ → eiτ [H�
hop,·]e−iτ [H�

hop,·]+τ A�

strongly as λ→ 0. (122)
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But eit[S,·] and e−it[HP ,·] are isometries on B1(HP ). Therefore, in view of (29) and (72),

ρsl(τ ) = lim
λ→0

eiλ−2τ [S,·]e−iλ−2τ [λ2Hhop+S,·]Dλ−2τ,λ(ρP )

= e−iτ [H�
hop,·]+τ A�

(ρP ) (123)

in the trace-norm topology, where we have used again Lemma 4 (2).
To establish the agreement with the generator L� given by (33), we check by inspection

that, for any ρP ∈ B1(HP ),

[
A

(
x, l = L;y, l′ =R

)]�
(ρP )

=
∑

ω∈σ([·,S])
c(y − x,ω)Wω ⊗ |x〉〈x|ρP W ∗

ω ⊗ |y〉〈y|, (124)

[
A

(
x, l = L;y, l′ = L

)]�
(ρP )

= iδx,yΥρP + δx,y

∑

ω∈σ([·,S])
c(0,ω)WωW ∗

ω ⊗ |x〉〈x|ρP (125)

and
[

A(x,R;y,L)
]�

(ρP )= ([
A(x,L;y,R)

]�
(ρP )

)∗
[

A(x,R;y,R)
]�

(ρP )= ([
A(x,L;y,L)

]�
(ρP )

)∗
.

(126)

Consequently, we have

A�(ρP )= i[Υ,ρP ] +A(ρP )− 1

2

{
A

�(1), ρP

}
(127)

with A as defined in (36). �
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Appendix: Proof of Proposition 2

We show in this Appendix that the main hypothesis (32) of Theorem 1 concerning the decay
of the bath correlation functions fi(x, t) is satisfied under the following conditions:

(i) d ≥ 2;
(ii) the support of g0,i (q) belongs to the open ball Br = {q ∈ T

d; |q|< r} with 0 < r ≤ π ;
the form factor g0,i (q) and the momentum occupation numbers ζi(q) depend only on
|q| on Br ;

(iii) the bosons have a linear dispersion relation: νi(q)= |q| for q ∈ Br ;
(iv) the non-negative functions

ψi,+
(|q|)= ∣∣g0,i (q)

∣∣2
ζi(q), ψi,−

(|q|)= ∣∣g0,i (q)
∣∣2(

1+ ζi(q)
)

(128)

belong to C2(]0,π ]) and the three functions of |q| below are in L1([0,π]):

|q|min{d−3, d−1
2 }ψi,±

(|q|), |q|d−2ψ ′
i,±

(|q|), |q|d−1ψ ′′
i,±

(|q|). (129)
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For simplicity we omit the index i labelling the baths. Using the notation (128), the
correlation function (26) reads

f (x, t) = f+(x, t)+ f−(x, t)

=
∫

Td

ddq

(2π)d

(
ψ+

(|q|)eiq·xeitν(q) +ψ−
(|q|)e−iq·xe−itν(q)

)
. (130)

We first show that under conditions (i)–(iv), there exists a constant Cd > 0 such that for any
n ∈N

�,
∫ ∞

1
dt sup

x∈Zd ,|x|≥t/2

∣∣f (x, t)
∣∣e−

|x|
n ≤ Cd if d ≥ 3,

∫ ∞

1
dt sup

x∈Zd ,|x|≥t/2

∣∣f (x, t)
∣∣e−

|x|
n ≤ C2

√
n if d = 2.

(131)

Actually, by (130) and (ii)–(iii), f (x, t) can be rewritten as the Fourier transform

f (x, t)= 1

(2π)
d
2 |x| d−2

2

∫ r

−r

dω |ω| d2 ψsign(ω)

(|ω|)J d−2
2

(|ωx|)eitω (132)

where sign(ω) = ±1 for ±ω > 0 and Jm(r) is the Bessel function of order m, Jm(r) =
(r/2)mΓ (m + 1

2 )−1(2/
√

π )
∫ 1

0 du (1 − u2)m− 1
2 cos(ru) (here Γ is the Gamma function).

A standard bound, see e.g. [38], yields C = supr≥0{
√

r|Jm(r)|}<∞. Hence

sup
|x|≥t/2

∣∣f (x, t)
∣∣≤ C

2
1
2 π

d
2 t

d−1
2

∫ r

−r

dω |ω| d−1
2 ψsign(ω)

(|ω|). (133)

The last integral is convergent thanks to assumption (iv). Then (131) follows from

sup
n∈N�

∫ ∞

1
dt t−

d−1
2 e−

t
2n <∞ if d ≥ 3,

sup
n∈N�

1√
n

∫ ∞

1
dt t−

d−1
2 e−

t
2n <∞ if d = 2.

(134)

We now show that there exists a constant C > 0 such that

max
x∈Zd ,|x|<t/2

∣∣f (x, t)
∣∣≤ C

t2
. (135)

Let us set

v(q, x, t)=∇ν(q)+ x

t
(136)

where ∇ is the gradient with respect to q . Note that v(q, x, t) is the gradient of the phase
S(q, x, t)= ν(q)+ q · x/t appearing in the oscillatory integral (130). Assuming |x|< t/2,
one has |v(q, x, t)|> 1/2 (since ∇ν(q)= q/|q| has norm one), thus this phase has no sta-
tionary points. Noting that eitS(q,x,t) = (it)−1(v/|v|2) · ∇eitS(q,x,t) and integrating twice by
part yields

∣∣f±(x, t)
∣∣≤ 1

t2

d∑

k,l=1

∫

Td

ddq

(2π)d

∣∣∣∣∂k

(
vk

|v|2 ∂l

(
vl ψ±
|v|2

))∣∣∣∣ (137)
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where ∂k is the derivative with respect to the kth component of q . Note that the boundary
terms vanish thanks to condition (ii). A simple calculation shows that the integrand in the
right-hand side of (137) is bounded by

c1|q|−2ψ±
(|q|)+ c2|q|−1

∣∣∇ψ±
(|q|)∣∣+ c3 max

k,l=1,...,d

∣∣∂k∂lψ±
(|q|)∣∣ (138)

for some constants c1, c2, and c3 > 0. The last function is integrable by assumption (iv) and
this proves our claim (135).

Collecting the above results and recalling that |f (x, t)| ≤ f (0,0), we conclude that

1

n

∫ ∞

0
dt sup

x∈Zd

∣∣f (x, t)
∣∣e−

|x|
n ≤ 1

n
f (0,0)+ 1

n

∫ ∞

1
dt sup

x,|x|≥t/2

∣∣f (x, t)
∣∣e−

|x|
n

+ 1

n

∫ ∞

1
dt max

x,|x|<t/2

∣∣f (x, t)
∣∣ (139)

converges to zero as n→∞. This proves Proposition 2. �

Let us stress that conditions (i)–(iv) are not optimal for the hypothesis (32) to hold. In
particular, the rotation invariance of g0 and ζ in (ii) and the linear dispersion (iii) have been
chosen to simplify the proof and could be omitted at the expense of using the stationary
phase method to evaluate the integral over the manifold ν(q)= ω in (130), instead of using
(132). In contrast, the first condition d ≥ 2 is crucial: in dimension d = 1, (32) is not ful-
filled. To see this, let us assume that (ii)–(iii) hold and that the baths are initially at thermal
equilibrium, i.e., ζ(q)= (eβ|q| − 1)−1. For d = 1, (130) gives

f (x, t)=
∫ r

−r

dq

2π

∣∣g0(q)
∣∣2 eiq(t+x) + eiq(t−x)

|eβq − 1| . (140)

It is clear that supx∈Z
|f (x, t)| does not decay to zero at large times t . As a result, the integral

in (32) diverges.

References

1. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119
(1976)

2. Kossakowski, A., Gorini, V., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level
systems. J. Math. Phys. 17, 821–825 (1976)

3. Spohn, H.: Kinetic equations for Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53, 569–615
(1980)

4. Lebowitz, J., Spohn, H.: Irreversible thermodynamics for quantum systems weakly coupled to thermal
reservoirs. Adv. Chem. Phys. 39, 109–142 (1978)

5. Alicki, R.: Invitation to quantum dynamical semigroups. In: Garbaczewski, P., Olkiewicz, R. (eds.) Dy-
namics of Dissipation. Lecture Notes in Physics. Springer, Berlin (2002)

6. Hove, L.V.: Quantum-mechanical perturbations giving rise to a statistical transport equation. Physica 21,
517–540 (1955)

7. Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974)
8. Davies, E.B.: Markovian master equations II. Math. Ann. 219, 147–158 (1976)
9. Hepp, K., Lieb, E.H.: Phase transition in reservoir driven open systems with applications to lasers and

superconductors. Helv. Phys. Acta 46, 573–602 (1973)
10. Gorini, V., Kossakowski, A.: N-level system in contact with a singular reservoir. J. Math. Phys. 17,

1298–1305 (1976)
11. Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18, 527–529 (1977)



352 W. De Roeck, D. Spehner

12. Dümcke, R.: The low density limit for an N-level system interacting with a free Bose or Fermi gas.
Commun. Math. Phys. 97, 331–359 (1985)

13. Taj, D.: Van Hove limit for infinite systems. Ann. Henri Poincaré 11(7), 1303–1339 (2010)
14. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford,

New York (2007)
15. Erdös, L.: Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a

phonon field. J. Stat. Phys. 107, 1043–1127 (2002)
16. Adami, R., Erdös, L.: Rate of decoherence for an electron weakly coupled to a phonon gas. J. Stat. Phys.

132(2), 301–328 (2008)
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