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Abstract – We study the generation of entanglement between two species of bosons living on
a ring lattice, where each group of particles can be described by a d-dimensional Hilbert space
(qudit). Gauge fields are exploited to create an entangled state between the pair of qudits. Maxi-
mally entangled eigenstates are found for well-defined values of the Aharonov-Bohm phase, which
are zero-energy eigenstates of both the kinetic and interacting parts of the Bose-Hubbard Hamil-
tonian, making them quite exceptional and robust. We propose a protocol to reach the maximally
entangled state (MES) by starting from an initially prepared ground state. Also, an indirect
method to detect the MES by measuring the current of the particles is proposed.

editor’s  choice Copyright c© EPLA, 2014

Introduction. – Entanglement is one of the most im-
portant and unique features of quantum mechanics leading
to many applications such as teleportation and quantum
cryptography [1]. It may also be exploited for quantum
metrology applications such as enhancing the precision of
atomic interferometers used for time measurements and
ultra-small signal detection [2]. Entanglement is a key
ingredient in quantum information processing where the
fundamental units are the so-called quantum bits (qubits),
corresponding to simple two-level systems. Generaliza-
tions of this concept to systems with d-dimensional Hilbert
spaces (qudits) have been the subject of great interest
in recent years. For instance, it has been demonstrated
that maximally entangled states among a pair of qudits
violate local realism theories stronger than qubits [3].
Entanglement is a delicate quantum feature so its genera-
tion, protection, propagation, and distribution have been
the subject of intense research over the last decades [4].
In particular, it is well known (see, e.g., [5]) that entan-
gled states are much more fragile than uncorrelated states,
making their use in applications difficult. Consequently,
it remains a major challenge to generate robust entan-
gled states. Engineering experimental setups to observe
quantum correlations requires high coherence and a pre-
cise control on the Hamiltonian.

Recent experimental advances in the manipulation of
ultracold atoms in optical lattices make them one of the
most promising candidates due to the controllability of the

system dimension [6] and precise tunability of the inter-
action among particles [7]. In particular, ultracold atom
systems have proven to be ideal devices for high preci-
sion interferometry [8]. For instance, entangling atoms in
an optical lattice can reduce the noise in a clock mea-
surement [9]. In addition, current developments have
demonstrated that Raman-assisted tunneling can be used
to implement synthetic magnetic fields for neutral atoms
in optical lattices [10–15]. The atoms in the lattice can
therefore acummulate a non-adiabatic Berry phase as they
hop from site to site, usually referred to as the Peierls
phase [16]. Similarly, such a phase can be engineered by
applying a suitable periodic force [17]. These experimen-
tal tools open new routes for the observation of striking
physics such as the quantum Hall effect [18,19] and novel
topological phenomena [15].

In the present work we demonstrate the existence
of maximally entangled eigenstates (MES) in a one-
dimensional Bose-Hubbard system with a Peierls phase.
We study the entanglement between two distinct inter-
acting species of bosons moving on a ring-shaped lattice,
where each species has a fixed particle number and con-
stitutes a qudit. Furthermore, we develop a protocol by
which the MES can be prepared through an adequate time
variation of the Peierls phase. Such a scenario could be
realized experimentally by using ultracold atoms in an op-
tical lattice with a tunable synthetic gauge field. We also
propose a way to estimate the amount of entanglement
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between the two groups of bosons by looking at the par-
ticle current in the ring.

The model. – Consider two species of interacting
bosons moving along a ring. In its simplest form, the
dynamics of the system is governed by a Bose-Hubbard
Hamiltonian,

Ĥ = K̂A + K̂B + Ĥint. (1)

As mentioned before, the inclusion of a gauge field results
in an acquired quantum-mechanical phase by the particles
as they hop from site to site. Then, the kinetic part for
each species D = A,B is written as

K̂D = −J
L∑

j=1

(eiφD d̂†
j d̂j+1 + e−iφD d̂†

j+1d̂j), (2)

where J is the tunneling strength, φD is the Peierls phase
for species D, L is the number of sites and d̂†

j (d̂ = â, b̂) is
the particle creation operator at site j. Since the particles
live on a ring they obey the periodic boundary condition
j + L = j, so that d̂†

L+1 = d̂†
1. The interaction part of the

Hamiltonian is given by

Hint =
UA

2

L∑
j=1

n̂2
Aj +

UB

2

L∑
j=1

n̂2
Bj − V

L∑
j=1

n̂Aj n̂Bj , (3)

where n̂Dj = d̂†
j d̂j is the particle number operator for

speciesD (see fig. 1). Since we consider fixed particle num-
bers for both species, the linear terms in the interaction
Hamiltonian have been omitted as they only contribute to
a constant energy shift.

This setting may be accomplished with ultracold atoms
in an optical lattice, either by using the same isotope with
different internal states [20] or by using two kinds of atoms,
such as 87Rb and 41K [21]. Interactions can be accurately
tuned experimentally via Feschbach resonances [7,21] and
synthetic magnetic fields can be engineered to include the
Peierls phase [10–15].

We will now demonstrate that, for a suitable choice
of the interactions, maximally entangled eigenstates are
found at zero energy for specific values of the Peierls
phase φ. Consider a fixed number N of bosons for each
species, such that both Hilbert spaces for the particles A
and B have dimension

d =

(
N + L− 1

N

)
.

The two groups of particles (A and B) living on the ring
are the parts of a bi-partite system. A maximally entan-
gled state (MES) of such a system has the form [22]

|MES〉 =
d∑

q=1

eiθq |q〉A|q〉B, (4)

J exp(−i   )φ
AU

BU

V
A

B

J exp( i    )φ

Fig. 1: (Color online) Schematic picture of particles moving on
a ring-shaped lattice. Two different species are represented by
red (A) and white (B) circles. As they hop to neighboring sites
a Peierls phase φ is accumulated. Curly lines indicate different
types of interactions among particles (see eq. (3)).

with arbitrary phases θq, where {|q〉D} is an orthonormal
basis for species D. In fact, it is easy to check that the
reduced density matrix of ρ̂AB = |MES〉〈MES| becomes
proportional to the identity:

ρ̂A = TrB(ρ̂AB) =
1
d

d∑
q=1

|q〉AA〈q| ≡ 1/d, (5)

implying that A and B are maximally entangled.
Now, let us consider the Fock states |q〉A|q〉B =

|n1, . . . , nL〉A|n1, . . . , nL〉B where nj is the number of par-
ticles on site j. This state is an eigenstate of the interac-
tion Hamiltonian with eigenvalue

Eint(n1, . . . , nL) =
(
UA + UB

2
− V

) L∑
j=1

n2
j .

We choose 2V = UA + UB in order to achieve a de-
generacy in the interaction energy for these states, i.e.
Eint(n1, . . . , nL) = 0 for any {nj}.

Let us analyze now what happens when the kinetic part
of the Hamiltonian acts on |MES〉. Notice that in general
the MES is not an eigenstate of K̂ = K̂A + K̂B, since
d̂†

j d̂j+1|q〉A|q〉B does not belong to the subspace spanned
by the states |q〉A|q〉B. Nevertheless, it is still possible to
have K̂|MES〉 = 0, that is, the MES can be a zero-energy
eigenstate. Let us start by considering a more general
state of the form

|ψ〉 =
∑

�n

c{n1,...,nL}|n1, . . . , nL〉A|n1, . . . , nL〉B,

where the sum is over all �n = {n1, . . . , nL} such that∑
j nj = N . Assuming φA = φB = φ, it is straightforward
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Fig. 2: (Color online) (a) Spectrum of the system for L = 3, N = 2 and J = U/10 = V/10 for a range of values of φ.
Energy E is shown in units of J . The inset illustrates the energies in the subspace spanned by |n1, n2, n3〉A|n1, n2, n3〉B,
with Eint(n1, n2, n3) = 0. (b) Continuous lines show families of maximally entangled states for L = 3, with zero energy at
(φ̃A + φ̃B)/2 = (2l − 1)π/6 (l integer). Dashed line corresponds to φA = φB .

to show that

K̂|ψ〉 = −J
L∑

j=1

∑
�n

(eiφc{...,nj ,nj+1,...}

+ e−iφc{...,nj+1,nj+1−1,...})
√
nj+1

√
nj + 1

× (| . . . , nj + 1, nj+1 − 1, . . .〉A| . . . , nj, nj+1, . . .〉B

+ | . . . , nj , nj+1, . . .〉A| . . . , nj + 1, nj+1 − 1, . . .〉B),

which implies that in order to have K̂|ψ〉 = 0 the coeffi-
cients must fulfill

eiφ̃c{...,nj ,nj+1,...} + e−iφ̃c{...,nj+1,nj+1−1,...} = 0

for all �n, all j = 1, . . . , L, and a certain φ̃. Furthermore,
taking into account the periodic boundary conditions, we
find

φ̃ = m
π

L
− π

2
, (6)

where m is an integer. The fact that |ψm〉 is a zero-energy
eigenstate of the kinetic Hamiltonian K̂ is a consequence
of a destructive interference effect between the hopping of
one particle of the species A from site j to site j+1 and the
hopping of one particle of the species B in the opposite di-
rection from j+1 to j. In conclusion, when 2V = UA + UB

and the phases φA = φB = φ̃ in the Hamiltonian fulfill (6),
there exists a zero-energy eigenstate of the form

|ψm〉= 1√
d

∑
�n

ei 2πm
L p{n1,...,nL} |n1, . . . , nL〉A|n1, . . . , nL〉B ,

where

p{...,nj+1,nj+1−1,...} = p{...,nj ,nj+1,...} + 1.

Notice that not only |ψm〉 is a zero-energy eigenstate of
both the kinetic and interacting parts of the Hamilto-
nian [23], but it is also a maximally entangled state of the
form (4). Furthermore, the energy of this state remains
constant for any value of the hopping parameter. Thus,

an arbitrary time dependence of J(t) cannot influence the
dynamics of this MES, making it quite exceptional since
even strong fluctuations of the tunneling rate have no ef-
fect over it.

In what follows we consider the special case of a three-
site ring (L = 3) and UA = UB = U = V . As
shown in fig. 2(a), zero-energy eigenstates are observed
for φ̃ = (2l− 1)π/6 (l integer), in agreement with eq. (6).
In fig. 2(b) it is observed that for different phases φA and
φB of the two species, there are families of zero-energy
MES along the lines (φ̃A + φ̃B)/2 = (2l − 1)π/6. This
can be justified by generalizing the above calculation to
the case φ̃A �= φ̃B . Further exploration of the entangle-
ment in the (U, V ) parameter space for fixed φ̃ = π/2 re-
veals that maximally entangled eigenstates are found only
when V = U as displayed in fig. 4(a). Interestingly, other
fringes of high entanglement are observed for V � 0.55U
and V � 0.25U .

State preparation. – In general, bipartite entangle-
ment of qudits is not easy to generate, and even once it
is generated, it can be easily destroyed by noise, spon-
taneous emission, atomic collisions, etc. Nevertheless, as
discussed above, in our proposed setup robust MESs exist
for certain values of the Peierls phase. As evidenced on
fig. 2(a) the MES is not the ground state of the system.
Thus, the natural question that arises is how to prepare
the system in such state. To this aim we propose a pro-
tocol that takes advantage of the navigation through the
spectrum as the phase φ, which can be varied continu-
ously in experiments [17], is changed in time. First, let us
observe in fig. 3(a) what happens to the spectrum when
choosing J = U . Note that if initially we set φi = 0, we
could easily prepare the system in its ground state, since
it is well separated from the first excited state. Now, let
us consider a linear variation in time of the Peierls phase,
φ(t) = αt. According to the adiabatic theorem, for a
slow variation of φ the system stays in the corresponding
eigenstate (black curve in fig. 3(a)). In contrast, for large
enough α there is a transition to an excited state (red curve
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(a) (b)

Fig. 3: (Color online) (a) Energy spectrum E in units of J vs. φ for L = 3, N = 2 and J = U = V . The two bands involved
in the state preparation process are highlighted in black and in red. The blue arrows indicate the path followed to reach the
zero-energy MES located at φ = π/2. (b) Fidelity F as a function of the velocity parameter α. Dotted and dashed lines for
J = 8U and J = 4U , respectively. Diamond and square mark the maximum fidelity in each case. The time dependence of the
entanglement (Schmidt number (7)) during the preparation process for the values of α and U corresponding to the diamond
and square marks is shown in the inset. The right panel displays the optimal fidelity as a function of the interspecies interaction
V in units of J . The squares (�) and circles (◦) correspond to N = 2 and N = 4 particles per species, respectively.
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Fig. 4: (Color online) (a) Entanglement (K) of the eigenstate with the highest entanglement as a function of the interaction
parameters U and V . (b) Renormalized current (J̃ ) of the same eigenstate as in (a). In both plots φ = π/2 and the dashed
line corresponds to U = V . On this line, the diamond (�) marks the point J = 8U , whereas the square (�) indicates J = 4U .

in fig. 3(a)) as one passes through the avoided crossing lo-
cated at φc � π/3. The probability of finding the system
in the excited state after going through the avoided cross-
ing is given approximately by the Landau-Zener probabil-
ity PLZ = e− 2πΔ2

α� [24] where Δ is the gap at the avoided
crossing. Thus, for α � 2πΔ2/� the transition probability
is PLZ � 1 and after passing through the avoided crossing
the wave function of the system will overlap strongly with
the excited state. As a result, if the velocity α is set to
zero when φ(t) = π/2, the final state |ψf 〉 will be very sim-
ilar to the desired MES (see fig. 3(a)). A good measure of
the quality of the preparation of the target state (MES) is
provided by the fidelity F = |〈MES|ψf 〉|2. The velocity
parameter α can be tuned to maximize F . For instance,
choosing J = 8U an optimal value of F � 0.9 is reached
for α � 0.02J/�, as shown in fig. 3(b).

To track the evolution of the degree of entangle-
ment during the preparation process we use the so-called
Schmidt number K0 = 1/T rB(ρ2

B), where ρB is the re-
duced density matrix for subsystem B [25,26]. For conve-
nience, we define the normalized Schmidt number

K = (K0 − 1)/(d− 1), 0 ≤ K ≤ 1, (7)

so that the maximum degree of entanglement is found at
K = 1. As shown in fig. 3(b) an appropriate choice of
parameters leads to high levels of entanglement of the or-
der of K � 0.95. Such optimal value of the fidelity in-
creases as the interaction V/J is decreased (right panel
in fig. 3(b)). Nevertheless, as the interspecies interac-
tion is lowered, longer preparation times are required to
reach high entanglement. This correlation between low
interactions and long preparation times is expected since
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the interspecies interaction is responsible for the entangle-
ment formation. Furthermore, it can be inferred from our
numerical simulations that the preparation time becomes
inversely proportional to the interaction (tprep ∼ 1/V ).
The right panel in fig. 3(b)) also shows that the fidelity
decreases with the particle number. This is a result of
the increasing number of avoided crossings between en-
ergy bands, which also scales rapidly with the size L of
the ring. In this regard, the trimer with few particles ap-
pears to be the best choice for experimental observation
of a MES using the above protocol.

Entanglement detection. – The amount of entan-
glement is not a directly observable quantity. In this re-
gard it has been recently shown in a similar setup that
high entanglement can be linked to a low current of
particles [27]. The current operator for particles in the
ring is Ĵ = ĴA ⊗ 1̂B + 1̂A ⊗ ĴB, where ĴA,B are the
respective current operators for each species, defined as
ĴD = − iJ

�L

∑L
j=1(e

iφd̂†
j d̂j+1−e−iφd̂†

j+1d̂j) [28]. In fig. 4(b)
we plot the renormalized current J̃ = 1 − J �/J cor-
responding to the eigenstate with the highest entangle-
ment as a function of the interaction parameters U and V .
Namely, a state with low current has J̃ � 1. Comparison
with fig. 4(a) shows a remarkable correlation between high
entanglement and low current regions. In fact, the inten-
sity plot for J̃ displays a fringe pattern very similar to the
one observed for the entanglement in fig. 4(a). Notably, at
2V = UA +UB the current vanishes for the corresponding
MES. Furthermore, from fig. 4 it can be concluded that
to detect highly entangled states the precision of the cur-
rent measurement should be ΔJ � 10−2J/�. It is worth
mentioning that to enhance the signal in an experimental
setup it could be necessary to replicate the system many
times. In this regard, time of flight techniques [29] could
be used to estimate the entanglement between two species
of ultracold atoms in an array of rings, as suggested in [27].

Conclusions. – We have demonstrated analytically
the existence of non-trivial maximally entangled eigen-
states between two species of bosons living on a lattice
ring with a Peierls phase. It is remarkable to find an ex-
act eigenstate of such a strongly interacting system, which
could potentially belong to a more general class of models
with similar quantum states. Moreover, our results show
that gauge fields can be exploited to create a pair of max-
imally entangled qudits as inter-species and intra-species
interactions and the Peierls phase are appropriately tuned.
These states exhibit vanishing current and are zero-energy
eigenstates of both the kinetic and interacting parts of the
Hamiltonian, making them quite exceptional and robust.
Moreover, we have proposed a protocol to reach the MES
based on an appropriate manipulation of the Peierls phase.
Finally, an indirect detection method of the MES is pro-
posed by measuring the current of the particles.

It is worth mentioning that recent studies in Jaynes-
Cummings ring lattices have implemented synthetic gauge

fields within a Bose-Hubbard framework [30]. Further-
more, a theoretical proposal has shown that similar
physics could be observed by considering two coupled
rings [31].
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P., Rev. Mod. Phys., 83 (2011) 1523.
[12] Aidelsburger M. et al., Phys. Rev. Lett., 107 (2011)

255301.
[13] Lin Y.-J. et al., Nature, 462 (2009) 628.
[14] Goldman N. et al., Phys. Rev. Lett., 103 (2009) 035301.
[15] Goldman N. et al., Phys. Rev. Lett., 105 (2010) 255302.
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