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Abstract: We consider a random walk on the support of an ergodic stationary simple
point process on R

d , d ≥ 2, which satisfies a mixing condition w.r.t. the translations or
has a strictly positive density uniformly on large enough cubes. Furthermore the point
process is furnished with independent random bounded energy marks. The transition
rates of the random walk decay exponentially in the jump distances and depend on
the energies through a factor of the Boltzmann-type. This is an effective model for the
phonon-induced hopping of electrons in disordered solids within the regime of strong
Anderson localization. We show that the rescaled random walk converges to a Brownian
motion whose diffusion coefficient is bounded below by Mott’s law for the variable
range hopping conductivity at zero frequency. The proof of the lower bound involves
estimates for the supercritical regime of an associated site percolation problem.

1. Introduction

1.1. Main Result. Let us directly describe the model and the main results of this work,
deferring a discussion of the underlying physics to the next section. Suppose given an
infinite countable set of random points {xj } ⊂ R

d distributed according to some ergo-
dic stationary simple point process. One can identify this set with the simple counting
measure ξ̂ = ∑j δxj having {xj } as its support, and then write x ∈ ξ̂ if x ∈ {xj }. The

σ -algebra B(N̂ ) on the space N̂ of counting measures on R
d is generated by the family

of subsets {ξ̂ ∈ N̂ : ξ̂ (B) = n}, where B ⊂ R
d is Borel and n ∈ N. The distribution

P̂ of the point process is a probability on the measure space (N̂ ,B(N̂ )). It is stationary
and ergodic w.r.t. the translations x �→ x + y of R

d . In the sequel, we need to impose
boundedness of some κth moment defined by

ρκ := EP̂
(
ξ̂ (C1)

κ
)
, (1)

where C1 = [− 1
2 ,

1
2 ]d and EP̂ is the expectation w.r.t. P̂ . Then ρ = ρ1 is the so–called

intensity of the process.
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To each xj is associated a random energy markExj ∈ [−1, 1]. These marks are drawn
independently and identically according to a probability measure ν. Again, {(xj , Exj )}
is naturally identified with an element ξ of the space N of counting measures on R

d ×
[−1, 1], and the distribution P of the marked process is a measure on (N ,B(N )) (with
B(N ) defined similarly to B(N̂ )). The distribution P is said to be the ν–randomiza-
tion of P̂ [Kal]. It is stationary and ergodic w.r.t. R

d–translations. In order to assure
that {xj } contains the origin, we consider the measurable subset N0 = {ξ ∈ N :
ξ({0} × [−1, 1]) = 1} furnished with the σ -algebra B(N0) = {A ∩N0 : A ∈ B(N )}.
The random environment is given by a configuration ξ ∈ N0 randomly chosen along the
Palm distribution P0 associated to P . Roughly, one can think of P0 as the probability on
(N0,B(N0)) obtained by conditioning P to the event N0 (see Sect. 2). Note that almost
each environment is a simple counting measure, and therefore it can be identified with
its support as we will do in what follows.

For a fixed environment ξ ≡ {(xj , Exj )} ∈ N0 let us consider a continuous-time
random walk over the points {xj } starting at the origin x = 0 with transition rates from
x ∈ ξ̂ to y ∈ ξ̂ given by

cx,y(ξ) := exp
(− |x − y| − β(|Ex − Ey | + |Ex | + |Ey |)

)
, x �= y , (2)

where β > 0 is the inverse temperature. More precisely, let �ξ = D([0,∞), supp(ξ̂ ))
be the space of right-continuous paths on the support of ξ̂ having left limits, endowed
with the Skorohod topology [Bil]. Let us write (Xξt )t≥0 for a generic element of�ξ . If Pξ0
denotes the distribution on (�ξ ,B(�ξ )) of the above random walk starting at the origin,

then the set of stationary transition probabilities pξt (y|x) := Pξ0(X
ξ
s+t = y|Xξs = x),

x, y ∈ ξ̂ , t ≥ 0, s > 0 satisfy the following conditions for small values of t [Bre]:

(C1) pξt (y|x) = cx,y(ξ) t + o(t) if x �= y;

(C2)pξt (x|x) = 1−λx(ξ) t+o(t)withλx(ξ) := ∑
y∈ξ̂ cx,y(ξ), where cx,x(ξ) := 0.

It is verified in Appendix A that, provided that ρ2 < ∞, no explosions occur and thus
the random walk is well-defined for P0–almost all ξ .

Our main interest concerns the long time asymptotics of the random walk and the
diffusion matrix D defined by

(a ·Da) = lim
t→∞

1

t
EP0

(
EPξ0

(
(X

ξ
t · a)2

))
, a ∈ R

d , (3)

where (a · b) denotes the scalar product of the vectors a and b in R
d . The main results

of the work are (i) the existence of the limit (3) in any dimension d ≥ 1 as well as
the convergence of the (diffusively rescaled) random walk to a Brownian motion with
finite covariance matrixD ≥ 0; (ii) a quantitative lower bound onD in dimension d ≥ 2
under given assumptions on the energy distribution ν and either one of the following two
technical hypotheses. Let 
 denote the Lebesgue measure and CN = [−N/2, N/2]d .
Given A ⊂ R

d , let FA be the σ–subalgebra in B(N̂ ) generated by the random variables
ξ̂ (B) with B ⊂ A and B ∈ B(Rd).

(H1) P̂ admits a lower bound ρ′ > 0 on the point density:

ξ̂ (CN) ≥ ρ′ 
(CN), ∀ N ≥ N0 , P̂-a.s. , (4)

with ρ′ and N0 independent on ξ̂ .
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(H2) P̂ satisfies the following mixing condition: there exists a functionh : R+ → R+
with h(r) ≤ c(1+ r2d+7+δ)−1 for some c, δ > 0 such that for any r2 ≥ r1 > 1,
∣
∣
∣P̂(A|FRd\Cr2 ) − P̂(A)

∣
∣
∣ ≤ rd1 r

d−1
2 h(r2 − r1) , ∀ A ∈ FCr1 , P̂-a.s. (5)

We feel that Hypotheses (H1) and (H2) cover nearly all interesting examples see
however Example 2 below. The uniform lower bound (H1) holds in the case of random
and quasiperiodic tilings and, more generally, the so-called Delone sets [BHZ]. The type
of mixing condition (H2) is inspired by decorrelation estimates holding for Gibbs mea-
sures of spin systems in a high temperature phase [Mar]. It is satisfied for a stationary
Poisson point process as well as for point processes with finite range correlations. Due
to the stationarity of P̂ , (H2) implies that P̂ is a mixing, and, in particular, ergodic point
process (see [DV, Chap. 10]). We can now state more precisely the above-mentioned
results.

Theorem 1. Let P̂ be the distribution of an ergodic stationary simple point process on
R
d , let P be the distribution of its ν–randomization with a probability measure ν on

[−1, 1], and let P0 be the Palm distribution associated to P . Assume that ρ12 <∞ and
that

ξ =
∑

j

δ(xj ,Ej ) ⇒ ξ �= Sxξ :=
∑

j

δ(xj−x,Ej ) ∀ x ∈ R
d \ {0}, P a.s. (6)

Condition (6) is automatically satisfied if ν is not a Dirac measure. Then:

(i) The limit in (3) exists and the rescaled process Y ξ,ε = (εX
ξ

tε−2)t≥0 defined on

(�ξ ,Pξ0) converges weakly in P0-probability as ε → 0 to a Brownian motion WD
with covariance matrix D. Namely, for any bounded continuous function F on the
path space D([0,∞),Rd) endowed with the Skorohod topology,

EPξ0

(
F
(
Y ξ,ε

)) → E
(
F
(
WD

))
in P0-probability .

(ii) Suppose d ≥ 2 and let either (H1) or (H2) be satisfied. Furthermore, suppose that
there are some positive constants α, c0 such that, for any 0 < E ≤ 1,

ν([−E,E]) ≥ c0 E
1+α . (7)

Then

D ≥ c1 β
− d(α+1)
α+1+d exp

(
−c2 β

α+1
α+1+d

)
1d , (8)

where 1d is the d × d identity matrix and c1 and c2 are some positive β-independent
constants.

The important factor in the lower bound (8) is the exponential factor and not the
power law in front of it (on which we comment below though). Based on the following
heuristics due to Mott [Mot, SE], we expect that the expression in the exponential in
(8) captures the good asymptotic behavior of lnD in the low temperature limit β ↑ ∞
if ν([−E,E]) ∼ c0E

1+α as E ↓ 0. Indeed, as β becomes larger, the rates (2) fluctu-
ate widely with (x, y) because of the exponential energy factor. The low temperature
limit effectively selects only jumps between points with energies in a small interval
[−E(β),E(β)] shrinking to zero as β ↑ ∞. Assuming that D is determined by those



24 A. Faggionato, H. Schulz-Baldes, D. Spehner

jumps with the largest rate, one obtains directly the characteristic exponential factor
on the r.h.s. of (8) by maximizing these rates for a fixed temperature under the con-
straint that the mean density of points xj with energies in [−E(β),E(β)] is equal
to ρ ν([−E(β),E(β)]) ∼ c0ρE(β)

1+α . One speaks of variable range hopping since
the characteristic mean distance |x − y| between sites with optimal jump rates varies
heavily with the temperature. A crucial (and physically reasonable, as discussed below)
element of this argument is the independence of the energies Ex . The selection of the
points {xj } with energies in the window [−E(β),E(β)] then corresponds mathemat-
ically to a p-thinning with p = ν([−E(β),E(β)]). It is a well-known fact (see e.g.
[Kal, Theorem 16.19]) that an adequate rescaling of the p-thinning of a stationary point
process converges in the limit p ↓ 0 (corresponding here to β ↑ ∞) to a stationary
Poisson point process (PPP). Hence one might call the stationary PPP the normal form
of a model leading Mott’s law, namely the exponential factor on the r.h.s. of (8), and
we believe that proving the upper bound corresponding to (8) should therefore be most
simple for the PPP. In dimension d = 1, a different behavior ofD is expected [LB] and
this will not be considered here. Note that statement (i) does not necessarily imply that
the motion of the particle is diffusive at large time, since it could happen that D = 0.

The preexponential factor in (8) can be improved to β
(α+1)(2−d)
(1+α+d) by means of formal

scaling arguments on the formulas in Sects. 4 to 6. As we are not sure that this is optimal
and we do not control the constant c2 in (8) anyway, we choose not to develop this
improvement in detail.

1.2. Physical discussion. Our main motivation for studying the above model comes
from its importance for phonon-assisted hopping conduction [SE] in disordered solids
in which the Fermi level (set equal to 0 above) lies in a region of strong Anderson local-
ization. This means that the electron Hamiltonian has exponentially localized quantum
eigenstates with localization centers xj if the corresponding energiesExj are close to the
Fermi level. The DC conductivity of such materials would vanish if it were not for the
lattice vibrations (phonons) at nonzero temperature. They induce transitions between
the localized eigenstates, the rate of which can be calculated from first principle by
means of the Fermi golden rule [MA, SE]. In the variable range hopping regime at low
temperature, the Markov and adiabatic (or rotating wave) approximations can be used to
treat quantum mechanically the electron-phonon coupling [Spe]. Coherences between
electronic eigenstates with different energies decay very rapidly under the resulting dis-
sipative electronic dynamics and one can show that the hopping DC conductivity of the
disordered solid coincides with the conductivity associated with a Markov jump process
on the set of localization centers {xj }, hence justifying the use of a model of classical
mechanics [BRSW]. Because Pauli blocking due to Fermi statistics of the electrons has
to be taken into account, this leads to a rather complicated exclusion process (e.g. [Qua,
FM]). If, however, the blocking is treated in an effective medium (or mean field) approx-
imation, one obtains a family of independent random walks with rates which are given
by (2) in the limit β ↑ ∞ [MA, AHL].

Let us discuss the remaining aspects of the model. The stationarity of the underlying
simple point process {xj } simply reflects that the material is homogeneous, while the
independence of the energy marks is compatible with Poisson level statistics, which is
a general rough indicator for the localization regime and has been proven to hold for an
Anderson model [Min]. The exponent α allows to model a possible Coulomb pseudogap
in the density of states [SE].
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Having in mind the Einstein relation between the conductivity and the diffusion
coefficient (which can be stated as a theorem for a number of models [Spo]), the lower
bound (8) gives a lower bound on the hopping DC condutivity. In the above materials, the
DC conductivity shows experimentally Mott’s law, namely a low-temperature behavior
which is well approximated by the exponential factor in the r.h.s. of (8) with α = 0, as
predicted by Mott [Mot] based on the optimization argument discussed above. In certain
materials having a Coulomb pseudogap in the density of state, Mott’s law with α = d−1
is observed, as predicted by Efros and Shklovskii [EF]. A first convincing justification
of Mott’s argument was given by Ambegoakar, Halperin and Langer [AHL], who first
reduced the hopping model to a related random resistor network, in a manner similar
to the work of Miller and Abrahams [MA], and then pointed out that the constant c2 in
(8) can be estimated using percolation theory [SE]. Our proof of the lower bound (8)
is inspired by this work. Let us also mention that the low frequency AC conductivity
(response to an oscillating electric field) in disordered solids has recently been studied
within a quantum-mechanical one-body approximation in [KLP]. Here the energy nec-
essary for a jump between localized states comes from a resonance at the frequency of
the external electric field rather than a phonon. It leads to another well-known formula
for the conductivity which is also due to Mott.

1.3. Overview. Let us develop the main ideas of the proof of Theorem 1, leaving precise
statements and their proofs to the following sections. The model described above is a
random walk in a random environment. A main tool used in this work is the contribution
of De Masi, Ferrari, Goldstein and Wick [DFGW] which is based on prior work by
Kipnis and Varadhan [KV]. They construct a new Markov process, called the environ-
ment viewed from the particle, which allows to translate the homogeneity of the medium
into properties of the random walk. In Sect. 3, we argue that Xξt has finite moments
w.r.t.

∫
P0(dξ)P

ξ
0 (Proposition 1) and study the generator of the process environment

viewed from the particle when the initial environment is chosen according to the Palm
distribution P0 (Propositions 2 and 3), thus allowing to apply the general Theorem 2.2
of [DFGW] to deduce the existence of the limit (3). The convergence to a Brownian
motion stated in Theorem 1 also follows, but this could have been obtained (avoiding
an analysis of the infinitesimal generator) by applying Theorem 17.1 of [Bil] and The-
orem 2.1 of [DFGW]. The results of [DFGW] also lead to a variational formula for the
diffusion matrix D (Theorem 2 below). The main virtue of this formula is that it allows
to bound D from below through bounds on the transition rates.

The first step in proving Theorem 1(ii) is to define a new random walk with transition
rates bounded above by the rates (2). This is done in Sect. 4 in the following way. For a
fixed configuration ξ ∈ N0 of the environment, consider the set {xcj } = {xj : |Exj | ≤
Ec} of all random points having energies inside a given energy window [−Ec,Ec] with
0 < Ec ≤ 1. The distribution P̂c of these points is obtained from P by a δc-thinning
with δc = ν([−Ec,Ec]). Given a cut-off distance rc > 0, consider the random walk on
supp(ξ̂ )with the transition rates ĉx,y(ξ) = χ(|x−y| ≤ rc)χ(|Ex | ≤ Ec)χ(|Ey | ≤ Ec),
where χ is the characteristic function. Since we want this random walk to have a strictly
positive diffusion coefficient in the limitEc → 0, one must choose rc such that the mean
number of points xj with energies in [−Ec,Ec] inside a ball of radius rc is larger than
an Ec-independent constant c3 > 0. This mean number is equal to c4δcr

d
c and is larger

than c5E
1+α
c rdc by assumption (7), where c4 and c5 are constants depending on ρ and d

only. Hence rc = c6 E
−(1+α)/d
c . It is shown in Proposition 5 that the diffusion matrix of
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the new random walk is equal to δc D(rc, Ec), where D(rc, Ec) is the diffusion matrix
of a random walk on {xcj } with energy-independent transition rates χ(|x − y| ≤ rc). By
the monotonicity ofD in the jump rates and since cx,y(ξ) ≥ exp(−rc − 4βEc) ĉx,y(ξ),
one gets using also assumption (7) and the constant c0 therein:

D ≥ c0 E
1+α
c e−rc−4βEc D(rc, Ec) . (9)

In Sect. 5, a lower bound on D(rc, Ec) is obtained by considering periodic approx-
imants (in the limit of large periods) as in [DFGW]. The diffusion coefficient of these
approximants can be computed as the resistance of a random resistor network. The resis-
tance of the random resistor network is bounded by invoking estimates from percolation
theory in Sect. 6, hence showing that, if rc is large enough, D(rc, Ec) > c7 1d , where
c7 > 0 is independent onEc, β. Recalling that rc = c6 E

−(1+α)/d
c , an optimization w.r.t.

Ec of the right member of (9) then yieldsEc = c8β
− d

1+α+d and thus the lower bound (8).
Let us note that this optimization is the same as in the Mott argument discussed above
and that Ec ↓ 0 and rc ↑ ∞ as β ↑ ∞. Moreover, our optimized lower bound results
from a critical resistor network roughly approximating the one appearing in [AHL].

The paper is organized as follows. In Sect. 2 we recall some definitions and results
about point processes and state some technical results needed later on. The statements
(i) and (ii) of Theorem 1 are proven in Sect. 3 and in Sects. 4 to 6, respectively. In
Appendix A we show that the continuous-time random walk in the random environment
is well defined by verifying the absence of explosion phenomena. Appendix B contains
some technical proofs about the Palm measure. Appendix C is devoted to the proof of
Proposition 1.

2. The Random Environment

In this section, we recall some properties of point processes (for more details, see [DV,
FKAS, MKM, Kal, Tho]). In the sequel, given a topological space X, B(X) will denote
the σ -algebra of Borel subsets ofX. Given a setA, |A|will denote its cardinality. More-
over, given a probability measure µ, we write Eµ for the corresponding expectation.

2.1. Stationary simple marked point processes. Given a bounded complete separable
metric space K , consider the space N := N (Rd × K) of all counting measures ξ on
R
d × K , i.e. integer-valued measures such that ξ(B × K) < ∞ for any bounded set

B ∈ B(Rd). One can show that ξ ∈ N if and only if ξ = ∑
j δ(xj ,kj ) where δ is the

Dirac measure and {(xj , kj )} is a countable family of (not necessarily distinct) points
in R

d × K with at most finitely many points in any bounded set. Then kj is called the
mark at xj . Given ξ ∈ N , we write ξ̂ ∈ N (Rd) for the counting measure on R

d defined
by ξ̂ (B) = ξ(B × K) for any B ∈ B(Rd). Given x ∈ R

d , we write x ∈ ξ̂ whenever
x ∈ supp(ξ̂ ). If ξ̂ ({x}) ≤ 1 for any x ∈ R

d , we say that ξ ∈ N is simple and write
kxj := kj for any xj ∈ ξ̂ .

A metric on N can be defined in the following way [MKM, Sect. 1.15]. Fix an element
k∗ ∈ K . Denote by Br(x, k) and Br the open balls in R

d × K of radius r > 0 centred
on (x, k) and on (0, k∗), respectively. Let ξ = ∑i∈I δ(xi ,ki ) and ξ ′ = ∑j∈J δ(x′j ,k′j ) be

elements of N , where I , J are countable sets. Then ξ and ξ ′ are close to each other if
any point (xi, ki) contained in Bn is close to a point (x′j , k

′
j ) for arbitrary large n, up
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to “boundary effects”. More precisely, given a positive integer n, let dn(ξ, ξ ′) be the
infimum over all ε > 0 such that there is a one-to-one map f from a (possibly empty)
subset D of I into a subset of J with the properties:

(i) supp(ξ) ∩ Bn−ε ⊂ {(xi, ki) : i ∈ D};
(ii) supp(ξ ′) ∩ Bn−ε ⊂ {(x′j , k′j ) : j ∈ f (D)};

(iii) (x′f (i), k
′
f (i)) ∈ Bε(xi, ki) for i ∈ D.

One can show that dN (ξ, ξ ′) =
∑∞
n=1 2−ndn(ξ, ξ ′) is a bounded metric on N and for

this metric N is complete and separable. Moreover, the sets {ξ ∈ N : ξ(B) = n},
B ∈ B(Rd × K), n ∈ N, generate the Borel σ -algebra B(N ) and dN generates the
coarsest topology such that ξ ∈ N �→ ∫

ξ(dx, dk) f (x, k) is continuous for any con-
tinuous function f ≥ 0 on R

d ×K with bounded support. Finally, by choosing different
reference points k∗ one obtains equivalent metrics.

A marked point process on R
d with marks in K is then a measurable map � from

a probability space into N . We denote by P its distribution (a probability measure on
(N ,B(N ))). We say that the process is simple if P-almost all ξ ∈ N are simple. The
translations on R

d extend naturally to R
d × K by Sx : (y, k) �→ (x + y, k). This

induces an action S of the translation group R
d on N by (Sxξ)(B) = ξ(SxB), where

B ∈ B(Rd ×K) and x ∈ R
d . For simple counting measures,

Sxξ =
∑

y∈ξ̂
δ(y−x,ky) .

A marked point process is said to be stationary if P(A) = P(SxA) for all x ∈ R
d ,

A ∈ B(N ), and (space) ergodic if the σ -algebra of translation invariant sets is trivial,
i.e., if A ∈ B(N ) satisfies SxA = A for all x ∈ R

d then P(A) ∈ {0, 1}. Due to [DV,
Prop. 10.1.IV], if P is stationary and gives no weight to the trivial measure without any
point (which will be assumed here), then

P
(
ξ ∈ N :

∣
∣ supp(ξ̂ )

∣
∣ = ∞ ) = 1 . (10)

The marked point processes studied in this work are obtained by the procedure of ran-
domization, which we recall now together with the related notion of thinning (see [Kal]).
Let �̂ be a stationary simple point process (SSPP) on R

d , ν be a probability measure
on [−1, 1] and p ∈ [0, 1]. The ν–randomization of �̂ is the stationary simple marked
point process (SSMPP) �ν obtained by assigning to each realization ξ̂ = ∑

i∈I δxi of
�̂ the measure ξ =∑i∈I δ(xi ,Ei), where {Ei}i∈I are independent identically distributed
random variables having distribution ν. Finally, the p–thinning �̂p of �̂ is the SSPP on
R
d obtained by assigning to each realization ξ̂ the measure

∑
i∈I Pi δxi , where {Pi}i∈I

are independent Bernoulli variables with Prob(Pi = 1) = p and Prob(Pi = 0) = 1−p.
Both the point processes �ν and �̂p are examples of stationary cluster processes, also
called homogeneous cluster fields (see [DV, Chap. 8] and [MKM, Chap. 10]). In partic-
ular, ergodicity is conserved by ν–randomization and p–thinning ([DV, Prop. 10.3.IX]
and [MKM, Prop. 11.1.4]). To conclude, let us give a few examples.

Example 1. A Poisson point process (PPP) appears, as already discussed, naturally as
limit distribution of thinnings. Given a measure µ on X, with X equal to R

d or R
d ×

[−1, 1], the PPP on X with intensity measure µ is defined by the two conditions (i) for
any B ∈ B(X), ξ(B) is a Poisson random variable with expectation µ(B); (ii) for any
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disjoint sets B1, . . . , Bn ∈ B(X), ξ(B1), . . . , ξ(Bn) are independent. A PPP on R
d is

stationary if and only if its intensity measure µ is proportional to the Lebesgue measure,
µ = ρ dx. In such a case it is an ergodic process satisfying the hypothesis (H2) of
Theorem 1 and all moments ρκ , κ > 0 in (1) are finite. Its p–thinning is the PPP on R

d

with intensity pρ while its ν–randomization is the PPP on R
d × [−1, 1] with intensity

measure ρ dx ⊗ ν.

Example 2. Let us associate to the uniformly distributed random variable y in the unit
cube C1 the point measure ξ̂ = ∑

z∈Zd δz+y . The corresponding point process is an
ergodic SSPP satisfying ρκ = 1 for any κ > 0. Although this process satisfies (H1), the
SSMPP obtained from it via p-thinning and ν-randomization does not and does also not
satisfy (H2). However, Theorem 1(ii) is still valid for this SSMPP, as can be checked
by restricting the analysis of Sect. 6 to regions which are unions of boxes of the form
z+ [0, 1)d , z ∈ Z

dand using the independence of ξ̂ (A) and ξ̂ (B)whenA,B are disjoint
unions of such boxes.

Other examples of ergodic SSMPP can be obtained by means of SSPP with short–
range correlations (see [DV, Exercise 10.3.4]). Of particular relevance for solid state
physics are point processes associated to random or quasiperiodic tilings [BHZ], which
satisfy the hypothesis (H1) of Theorem 1.

2.2. The Palm distribution. In what follows, it will always be assumed that P̂ and P
are defined as in Theorem 1 and that (6) is satisfied if ν is a Dirac measure. In order to
shorten notations, we will write N and N̂ for N (Rd×[−1, 1]) and N (Rd), respectively.
We would like now to “pick up at random” a point among {xj } and take it as the origin.
One thus looks at the following borelian subset of N :

N0 :=
{
ξ ∈ N : 0 ∈ ξ̂

}
.

Since N0 is closed, it defines a bounded complete separable metric space. Note that
x ∈ ξ̂ if and only if Sxξ ∈ N0. The Palm distribution P0 on N0 associated to P is now
defined as follows. Consider the measurable map G from N into N (Rd ×N0) given by
ξ �→ ξ∗ = ∑

x∈ξ̂ δ(x,Sxξ). Let P∗ = G∗P be the distribution of the marked point pro-

cess on R
d×N0 with mark space N0, namely P∗ is the image under G of the probability

measure P on N . It is easy to show that G◦Sx = S∗x ◦G for x ∈ R
d , where S∗x is the action

on R
d ×N0 of the translations given by (y, ξ) �→ (y+ x, ξ). As a result, P∗ is also sta-

tionary. Then, for any fixedA ∈ B(N0), the measureµA(B) =
∫

P∗(dξ∗) ξ∗(B×A) on
R
d is translation invariant and thus proportional to the Lebesgue measure. This implies

that, for any N > 0 and any A ∈ B(N0),

CP (A) :=
∫

N (Rd×N0)

P∗(dξ∗) ξ∗(C1 × A) = 1

Nd

∫

N (Rd×N0)

P∗(dξ∗) ξ∗(CN × A).

The Palm distribution associated to P is the probability measure P0 on N0 obtained
from CP by normalization, namely, P0 = ρ−1CP , where ρ is defined in (1). Thus, for
any N > 0,

P0(A) := 1

ρ

1

Nd

∫

N
P(dξ)

∫

CN

ξ̂ (dx) χA(Sxξ) , (11)
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where χA is the characteristic function on the Borel set A ⊂ N0. One can show [FKAS,
Theorem 1.2.8] that for any nonnegative measurable function f on R

d ×N0,
∫

Rd
dx

∫

N0

P0(dξ) f (x, ξ) = 1

ρ

∫

N
P(dξ)

∫

Rd
ξ̂ (dx) f (x, Sxξ) , (12)

which is used in [DV] as the definition of P0. Similarly, there is a Palm distribution P̂0

on N̂0 := {ξ̂ ∈ N̂ : 0 ∈ ξ̂} associated to the distribution P̂ of a SSPP on R
d .

It is known that the Palm distribution of a stationary PPP on R
d with distribution

P̂ (Example 1 above) is the convolution P̂0 = P̂ ∗ δδ0 of P̂ with the Dirac measure at
ξ̂ = δ0 (i.e. P̂0 is simply obtained by adding a point at the origin). The Palm distribution
of a PPP on R

d×[−1, 1] with intensity measure ρ dx⊗ν is the convolution P0 = P ∗ζ ,
where ζ is the distribution of a marked point process obtained by ν–randomization of
δδ0 . The Palm distribution associated to the SSPP in Example 2 is P̂0 = δ∑

x∈Zd
δx . Its

ν–randomization is the Palm distribution of the ν–randomization of Example 2.
We collect in the lemma below a number of results on the Palm distribution which

will be needed in the sequel. Their proofs are given in Appendix B.

Lemma 1. (i) Let k : N0×N0 → R be a measurable function such that
∫
ξ̂ (dx) |k(ξ,

Sxξ)| and
∫
ξ̂ (dx) |k(Sxξ, ξ)| are in L1(N0,P0). Then

∫

P0(dξ)

∫

ξ̂ (dx) k(ξ, Sxξ) =
∫

P0(dξ)

∫

ξ̂ (dx) k(Sxξ, ξ) .

(ii) Let � ∈ B(N ) be such that Sx� = � for all x ∈ R
d . Then P(�) = 1 if and only if

P0(�0) = 1 with �0 = � ∩N0.
(iii) Let P be ergodic and A,B ∈ B(N0) be such that B ⊂ A, P0(A \ B) = 0 and

Sxξ ∈ A for any ξ ∈ B and any x ∈ ξ̂ . Then P0(A) ∈ {0, 1}.
(iv) Let Aj ∈ B(Rd) for j = 1, . . . , n. Then

EP0




n∏

j=1

ξ̂ (Aj )



 ≤ c

ρ
EP
(
ξ̂ (C1)

n+1 ) + c

ρ

n∑

j=1

EP
(
ξ̂ (Ãj )

n+1 ) , (13)

where Ãj := ∪x∈C1

(
Aj + x

)
and c is a positive constant depending on n.

Remark 1. Here we point out a simple geometric property of point measures ξ within
the set

W := {
ξ ∈ N0 : Sxξ �= ξ ∀x ∈ R

d \ {0} }, (14)

which will be fundamental in order to apply the methods developed in [KV] and [DFGW].
Let us consider a sequence {xn}n≥0 of elements in supp(ξ̂ ) with x0 = 0 and set ξn :=
Sxnξ . The ξn can be thought of as the environment viewed from the point xn. Due to the
definition of W , {xn}n≥0 can be recovered from {ξn}n∈N by means of the identities

xn+1 − xn = �(ξn, ξn+1), n ∈ N ,

where the function � : W ×N0 → R
d is defined as

�(ξ ′, ξ ′′) :=
{
x if ξ ′′ = Sxξ ′ ,
0 otherwise .

(15)

Note that, by Lemma 1(ii), condition (6) is equivalent to P0(W) = 1.
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3. Variational Formula

The main object of this section is to show the following result, implying Theorem 1(i).

Theorem 2. Let P satisfy the assumptions of Theorem 1(i). Then the limit (3) exists and
D is given by the variational formula

(a ·D a)= inf
f∈L∞(N0,P0)

∫

P0(dξ)

∫

ξ̂ (dx)c0,x(ξ)
(
a · x+∇xf (ξ)

)2
, a∈R

d ,(16)

with

∇xf (ξ) := f (Sxξ)− f (ξ) . (17)

Moreover, the rescaled process Y ξ,ε := (εX
ξ

tε−2)t≥0 defined on (�ξ ,Pξ0) converges
weakly in P0–probability as ε→ 0 to a Brownian motion WD with covariance matrix
D.

The proof is based on the theory of Ref. [KV] and [DFGW] and, in particular, The-
orem 2.2 of [DFGW]. Because of the geometric disorder and the possibility of jumps
between any of the random points, the application of this general theorem to our model is
technically considerably more involved than in the case of the lattice model with jumps
to nearest neighbors studied in [DFGW, Sect. 4]. As a preamble, let us state a result on
the process Xξt proven in Appendix C which will be used several times below.

Proposition 1. Let P satisfy ρκ < ∞ for some integer κ > 3. Then, given t > 0 and
0 < γ < κ − 3,

EP0 EPξ0

(
|Xξt |γ

)
< ∞ .

Remark 2. From the variational formula of the diffusion matrix D given in Theorem 2
one can easily prove (see e.g. [DFGW]) that D is a multiple of the identity whenever
P is isotropic (i.e., it is invariant under all rotations by π/2 in a coordinate plane). In
this case, the arguments leading to a lower bound on D are slightly simpler (and can be
easily adapted to the general case). Therefore, in order to simplify the discussion and
without loss of generality, in the last Sects. 5 and 6 we will assume P to be isotropic.

3.1. The result of De Masi, Ferrari, Goldstein and Wick. A main idea in [DFGW] is
to study the process (S

X
ξ
t
ξ )t≥0 with values in the space N0 of the environment con-

figurations, instead of the random walk (Xξt )t≥0. This process is called the process
environment viewed from the particle. It is defined on the probability space (�ξ ,Pξ0),
with �ξ = D([0,∞), supp(ξ̂ )). Let Pξ be its distribution on the path space � :=
D([0,∞),N0) (endowed as usual with the Skorohod topology). A generic element of
� will be denoted by ξ = (ξt )t≥0. Let us set P := ∫ P0(dξ)Pξ . The environment pro-
cess is the process (ξt )t≥0 defined on the probability space (�,P) with distribution P.
This is a continuous–time jump Markov process with initial measure P0 and transition
probabilities

P(ξs+t = ξ ′ | ξs = ξ) = Pξ (ξt = ξ ′) =: pt (ξ
′|ξ) ∀ s, t ≥ 0
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with, for any ξ ∈W ,

pt (ξ
′|ξ) =

{
p
ξ
t (x|0) if ξ ′ = Sxξ for some x ∈ ξ̂ ,

0 otherwise .
(18)

For any time t ≥ 0, let us introduce the random variable Xt : �→ R
d defined by

Xt(ξ) :=
∑

s∈[0,t]

�s(ξ) , (19)

where

�s(ξ) :=
{
x if ξs = Sxξs−

0 otherwise

and the sum runs over all jump times s for which �s(ξ) �= 0. Note that {X[s,t] :=
Xt − Xs : t > s ≥ 0} defines an antisymmetric additive covariant family of random
variables as defined in [DFGW], andXt has paths inD([0,∞),Rd). The crucial link to
the dynamics of a particle in a fixed environment is now the following: due to Remark
1, for any ξ ∈W , the distribution of the process (Xt )t≥0 defined on (�,Pξ ) is equal to

the distribution Pξ0 of the random walk on supp(ξ̂ ) (naturally embedded in R
d ) starting

at the origin. Recalling that P = ∫ P0(dξ)Pξ , this implies

EP0

(
EPξ0

(
(X

ξ
t · a)2

))
= EP

(
(Xt · a)2

)
, (20)

which gives a way to calculate the diffusion matrix D from the distribution P on �.
In order to apply Theorem 2.2 of [DFGW], it is enough to verify the following

hypothesis:

(a) the environment process is reversible and ergodic;
(b) the random variables X[s,t], 0 ≤ s < t are in L1(�,P);
(c) the mean forward velocity exists:

ϕ(ξ) := L2−lim
t↓0

1

t
EPξ (Xt ) . (21)

(d) the martingale Xt −
∫ t

0 ds ϕ(ξs) is in L2(�,P).

Let us assume ρ12 < ∞. Then, statement (a) will be proved in Proposition 2, Sub-
sect. 3.3. The statement (b) follows from Proposition 1. The L2-convergence in (c) will
be proved in Subsect. 3.4 (Proposition 4), where we also show the L2-convergence in
the following formula defining the mean square displacement matrix ψ(ξ):

(a · ψ(ξ)a) := L2−lim
t↓0

1

t
EPξ

(
(a ·Xt)2

)
. (22)

The last point (d) is a consequence of Proposition 1 assuring that Xt ∈ L2(�,P) and
the fact that

∫ t
0 ds ϕ(ξs) ∈ L2(N0,P0), which can be proved by means of the Cau-

chy–Schwarz inequality, the stationarity of P following from (a), and the property ϕ ∈
L2(N ,P0).



32 A. Faggionato, H. Schulz-Baldes, D. Spehner

Once hypotheses (a)-(d) have been verified, one can invoke [DFGW, Theorem 2.2
and Remark 4, p. 802] to conclude that limit (3) exists and that the rescaled random walk
Y ξ,ε converges weakly in P0–probability to the Brownian motion WD with covariance
matrix D given by (3), and that D is moreover given by

(a ·Da) = EP0

(
(a · ψa) )− 2

∫ ∞

0
dt
〈
ϕ · a , etL ϕ · a

〉

P0
, (23)

where L is the generator of the environment process and the integral on the r.h.s. is
finite. Formula (16) can be deduced from the expressions of L, ϕ and ψ established in
the following subsections (Propositions 3 and 4) by using a known general result on
self-adjoint operators stated in (47) below.

3.2. Preliminaries. Before starting to prove the above-mentioned statements (a)-(d), let
us fix some notations and recall some general facts about jump Markov processes. In
what follows, given a complete separable metric space Z we denote by F(Z) the family
of bounded Borel functions on Z and, given a (not necessarily finite) interval I ⊂ R,
we denote by D(I, Z) the space of right continuous paths z = (zt )t∈I , zt ∈ Z, having
left limits. The path spaceD(I, Z) is endowed with the Skorohod topology [Bil] which
is the natural choice for the study of jump Markov processes. For a time s ≥ 0, the time
translation τs is defined as

τs : D([0,∞), Z)→ D([0,∞), Z), (τsz)t := zt+s .

Moreover, given 0 ≤ a < b, we denote by R[a,b] the function

R[a,b] : D([0,∞), Z)→ D([a, b], Z), (R[a,b]z)t := lim
δ↓0

za+b−t−δ .

R[a,b]z is the time–reflection of (zt )t∈[a,b] w.r.t. the middle point of [a, b], and it can
naturally be extended to paths on [0, a + b].

A continuous–time Markov process with path in D([0,∞), Z) and distribution p is
called stationary if Ep(F ) = Ep(F ◦τs) for all s ≥ 0 and for any bounded Borel function
F on D([0,∞), Z). It is called reversible if Ep(F ) = Ep(F ◦R[a,b]) for all b > a ≥ 0
and any bounded Borel function F on D([0,∞), Z) such that F(z) depends only on
(zt )t∈[a,b]. Thanks to the Markov property, one can show that stationarity is equivalent
to

Ep
(
f (z0)

) = Ep
(
f (zs)

)
, ∀ s ≥ 0 , ∀ f ∈ F(Z), (24)

while reversibility is equivalent to

Ep
(
f (z0)g(zs)

) = Ep
(
g(z0)f (zs)

)
, ∀ s ≥ 0 , ∀ f, g ∈ F(Z) . (25)

In particular, stationarity follows from reversibility. Finally, the Markov process is called
(time) ergodic if p(A) ∈ {0, 1} whenever A ∈ B

(
D([0,∞), Z)) is time-shift invariant,

i.e. A = τsA for all s ≥ 0. Recall that if the Markov process is stationary then it can be
extended to a Markov process with path spaceD(R, Z) and the resulting distribution is
univocally determined (this follows from Kolmogorov’s extension theorem and the reg-
ularity of paths). Now stationarity, reversibility and ergodicity of the extended process
are defined as above by means of τs , s ∈ R, and R[a,b], −∞ < a < b <∞. Then one
can check that these properties are preserved by extension (for what concerns ergodicity,
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see in particular [Ros, Chapter 15, p. 96–97]). Therefore our definitions coincide with
those in [DFGW].

All the above definitions and remarks can be extended in a natural way to discrete–time
Markov processes (with path space ZN). Moreover, in the discrete case, stationarity and
reversibility are equivalent respectively to (24) and (25) with s = 1.

We conclude this section recalling the standard construction of the continuous–time
random walk satisfying conditions (C1) and (C2) in the Introduction. We first note that
these conditions are meaningful for P0–almost all ξ if EP0(λ0) <∞. In fact, due to the
bound λx(ξ) ≤ e4β e|x| λ0(ξ), one can infer from EP0(λ0) < ∞ that λx(ξ) < ∞ for
any x ∈ ξ̂ , P0 a.s. We note that the condition EP0(λ0) < ∞ is equivalent to ρ2 < ∞
due to the following lemma:

Lemma 2. For any positive integer k, EP0(λ
k
0) <∞ if and only if ρk+1 <∞.

Proof. Note that for suitable positive constants c1, c2 one has

c1

∑

z∈Zd
ξ̂ (C1 + z)e−|z| ≤ λ0(ξ) ≤ c2

∑

z∈Zd
ξ̂ (C1 + z)e−|z| , P0-a.s.

Next let us expand the kth power of these inequalities. By applying Lemma 1(iv) and
using the stationarity of P , one gets that EP0(λ

k
0) <∞ if ρk+1 <∞. Suppose now that

EP0(λ
k
0) <∞. Then the above expansion in kth power implies that EP0(ξ̂ (C1)

k) <∞.
Since due to (11),

EP0(ξ̂ (C1)
k) = 2d

ρ

∫

N
P(dξ)

∫

C1/2

ξ̂ (dx) ξ̂ (C1 + x)k ≥ 2d

ρ
EP (ξ̂ (C1/2)

k+1) ,

one concludes that EP (ξ̂ (C1/2)
k+1) <∞, which is equivalent to ρk+1 <∞. ��

The construction of the continuous–time random walk follows standard references
(e.g. [Bre, Chap. 15] and [Kal, Chap. 12]) and can be described roughly as follows: After
arriving at site y ∈ ξ̂ , the particle waits an exponential time with parameter λy(ξ) and
then jumps to another site z ∈ ξ̂ with probability

pξ (z|y) := cy,z(ξ)

λy(ξ)
. (26)

More precisely, consider ξ ∈ N0 such that 0 < λz(ξ) < ∞ for any z ∈ ξ̂ and set

�̃ξ := ( supp(ξ̂ )
)N. A generic path in �̃ξ is denoted by

(
X̃
ξ
n

)
n≥0. Given x ∈ ξ̂ , let P̃ξx

be the distribution on �̃ξ of a discrete–time random walk on supp(ξ̂ ) starting in x and
having transition probabilities pξ (z|y). Let

(
�,Q

)
be another probability space where

the random variables T ξn,z, z ∈ ξ̂ , n ∈ N, are independent and exponentially distributed
with parameter λz(ξ), namely Q

(
T
ξ
z,n > t ) = exp

(−λz(ξ)t
)
. On the probability space

(�̃ξ ×�, P̃ξx ⊗Q) define the following functions:

R
ξ
0 := 0 ; R

ξ
n := T ξ

0,X̃ξ0
+ T ξ

1,X̃ξ1
+ · · · + T ξ

n−1,X̃ξn−1

if n ≥ 1 ,

n
ξ
∗(t) := n if R

ξ
n ≤ t < R

ξ
n+1 .
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Note that nξ∗(t) is well posed for any t ≥ 0 only if limn↑∞ Rξn = ∞. If

P̃ξx ⊗Q
(

lim
n↑∞

Rξn = ∞
)
= 1 , (27)

then, due to [Bre, Theorem 15.37], the random walk ( X̃ξ
n
ξ
∗(t)

)t≥0, defined P̃ξx⊗Q–almost

everywhere, is a jump Markov process whose distribution satisfies the infinitesimal con-
ditions (C1) and (C2). The condition limn↑∞ Rξn = ∞ assures that no explosion phe-
nomenon takes place, notably only finitely many jumps can occur in finite time intervals.
In Appendix A we prove that (27) is verified if ρ2 <∞.

3.3. The environment viewed from the particle. The process environment viewed from
the particle and the environment process have been introduced in Sect. 3.1. Given t > 0,
we write n∗(t) for the function on the path space � = D ([0,∞),N0) associating to
each ξ ∈ � the corresponding number of jumps in the time interval [0, t]. Motivated
by further applications, it is convenient to consider also the discrete–time versions of
the above processes. Consider the discrete-time Markov process

(
S
X̃
ξ
n
ξ
)
n≥0 defined on

(
�̃ξ , P̃ξ0

)
, call P̃ξ its distribution on the path space �̃ := N N

0 and denote a generic path
in �̃ by (ξn)n≥0. Such a Markov process can be thought of as the environment viewed
from the particle performing the discrete–time random walk with distribution P̃ξ0 . Let
us point out a few properties of the distribution P̃ξ . First, we remark that due to the
covariant relations

cz,y(Sxξ) = cz+x,y+x(ξ) , λy(Sxξ) = λy+x(ξ), (28)

the process
(
λ
X̃
ξ
n
(ξ)
)
n∈N defined on (�̃ξ , P̃ξ0) and the process (λ0(ξn))n∈N defined on

(�̃, P̃ξ ) have the same distribution. Moreover, due to Remark 1, if ξ ∈ W , then the
process (ζn)n∈N defined on (�̃, P̃ξ ) by ζ0 = 0 and

ζn =
n−1∑

k=0

�(ξk, ξk+1) ,∀ n ≥ 1 ,

where �(ξ, ξ ′) is given by (15), has paths in �̃ξ with distribution P̃ξ0 . Finally, it is con-
venient to consider a suitable average of the distributions P̃ξ . To this aim, let Q0 be the
probability measure on N0 defined as

Q0(dξ) := λ0(ξ)

EP0(λ0)
P0(dξ) ,

and set P̃ := ∫ Q0(dξ)P̃ξ . If ξ ∈W , the transition probabilities are

p(ξ ′|ξ) := P̃
(
ξn+1 = ξ ′ |ξn = ξ

) =
{
λ−1

0 (ξ)c0,x(ξ) if ξ ′ = Sxξ ,
0 otherwise .

Note that, due to (28) and the symmetry of the jump rates (2), λ0(ξ)p(ξ
′|ξ)

=λ0(ξ
′)p(ξ |ξ ′).
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Proposition 2. Let ρ2 < ∞. Then the process (ξt )t≥0 defined on (�,P) is reversible,
i.e.

EP
(
f (ξ0)g(ξt )

) = EP
(
g(ξ0)f (ξt )

) ∀ f, g ∈ F(N0) , ∀ t > 0 , (29)

and is (time) ergodic if P is ergodic. Similarly, the discrete-time Markov process (ξn)n≥0

defined on (�̃, P̃) is reversible and is (time) ergodic.

Having at our disposal Lemma 1, the proof follows modifying arguments of e.g.
[DFGW].

Proof. We give the proof for the continuous–time process, the discrete–time case being
similar. We first verify the symmetric property pt (ξ ′|ξ) = pt (ξ |ξ ′). Actually, thanks to
the construction of the dynamics given in Sect. 3.2, one can show that for any positive
integer n and any ξ = ξ (0), ξ (1), . . . , ξ (n−1), ξ (n) = ξ ′ ∈ N0,

Pξ
(
n∗(t) = n, ξR1=ξ (1), . . . , ξRn=ξ (n)

)=Pξ ′
(
n∗(t)=n, ξR1 = ξ (n−1), . . . , ξRn=ξ (0)

)
,

where, given ξ ∈ �, R1(ξ) < R2(ξ) < . . . denote the jump times of the path ξ . Next,
given f, g ∈ F(N0) one gets by applying Lemma 1(i) and using pt (ξ ′|ξ) = pt (ξ |ξ ′)
that

∫

P0(dξ)

∫

ξ̂ (dx) pt (Sxξ |ξ) f (ξ)g(Sxξ)

=
∫

P0(dξ)

∫

ξ̂ (dx) pt (Sxξ |ξ) f (Sxξ)g(ξ), (30)

which is equivalent to (29). Hence P is reversible. Due to Corollary 5 in [Ros, Chap. IV],
in order to prove ergodicity it is enough to show that P0(A) ∈ {0, 1} if A ∈ B(N0) has
the following property: Pξ (ξt ∈ A) = χA(ξ) for P0–almost all ξ . Given such a set A,
then there exists a Borel subset B ⊂ A such that P0(A\B) = 0 and Pξ (ξt ∈ A) = 1 for
any ξ ∈ B. Fix ξ ∈ B and x ∈ ξ̂ , then Pξ (ξt = Sxξ, ξt ∈ A) = Pξ (ξt = Sxξ) > 0 (the
last bound follows from the positivity of the jump rates). Hence Sxξ ∈ A. Lemma 1(iii)
implies that P0(A) ∈ {0, 1}, thus allowing to conclude the proof. ��

Let P fulfill the assumption of Proposition 2. Then,

(Tt f )(ξ) := EPξ
(
f (ξt )

) =
∫

ξ̂ (dx) pt (Sxξ |ξ) f (Sxξ) , P0 a.s. (31)

defines a strongly continuous contraction semigroup on L2(N0,P0) (Markov semi-
group). Actually, (i) Tt : L2(N0,P0) → L2(N0,P0) is self-adjoint by (29) and is a
contraction by the Cauchy-Schwarz inequality and the stationarity of P; (ii) Tt+s = TtTs
follows from the Markov nature of the process; (iii) the continuity follows from the fol-
lowing argument: first observe that it is enough to prove the continuity of Tt f at t = 0
for f ∈ L∞(N0,P0), which is obtained from the dominated convergence theorem and
the estimate |(Tt f − f )(ξ)| ≤ 2‖f ‖∞(1− pξt (0|0)).

Let us denote by L the generator of the Markov semigroup (Tt )t≥0 and by D(L) ⊂
L2(N0,P0) its domain.
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Proposition 3. Let P satisfy ρ4 <∞. Then L is nonpositive and self–adjoint with core
L∞(N0,P0). For any f ∈ L∞(N0,P0), one has

(Lf )(ξ) =
∫

ξ̂ (dx) c0,x(ξ) ∇xf (ξ) , for P0-a.e. ξ , (32)

where ∇xf is defined in (17), and, moreover,

〈f, (−L)f 〉P0
= 1

2

∫

P0(dξ)

∫

ξ̂ (dx) c0,x(ξ) (∇xf (ξ))2 . (33)

Proof. The self-adjointness of L follows from [RS, Vol.2, Theorem X.1]. Actually, (i) L
is closed as a generator of a strongly continuous semigroup [RS, Vol.2, Chap. X.8]; (ii)
L is symmetric because Tt is self-adjoint; (iii) the spectrum of L is included in (−∞, 0]
by contractivity of the semigroup. Note that (iii) also implies that L is non-positive.

We use the abbreviation Lp for Lp = Lp(N0,P0), p = 2 or∞. For any f ∈ L∞,
denote by�f the function defined by the r.h.s. of (32). Due to Lemma 2, EP0(λ

2
0) <∞

and in particular
∫

P0(dξ)
∣
∣(�f )(ξ)

∣
∣2 ≤ 4 ‖f ‖2

∞ EP0

(
λ2

0

)
<∞ ,

thus implying that � : L∞ → L2 is a well-defined operator. We claim that

L2 − lim
t↓0

Tt f − f
t

= �f , ∀ f ∈ L∞ . (34)

Note that (34) implies that L∞ ⊂ D(L) and Lf = �f for all f ∈ L∞. Since moreover
Tt is a contraction and Tt L∞ ⊂ L∞, it then follows from [RS, Vol.2, Theorem X.49]
that L∞ is a core for L and L is the closure of�. Finally, using (30) in the limit t → 0,
by straightforward computations (33) can be derived from (32).

Let us now prove (34). We assume ξ ∈W and we set, for ξ ′ �= ξ ,

pt,1(ξ
′|ξ) := Pξ (ξt = ξ ′, n∗(t) = 1) = pt (ξ

′|ξ)− Pξ (ξt = ξ ′, n∗(t) ≥ 2) .

Thanks to the construction of the dynamics described in Sect. 3.2 and due to the estimate
1− e−u ≤ u, u ≥ 0, one has for any x ∈ ξ̂ and x �= 0,

pt,1(Sxξ |ξ) ≤ P̃ξ0 ⊗Q(X̃ξ1 = x, T ξ0,0 ≤ t) = pξ (x|0)(1− e−λ0(ξ)t ) ≤ c0,x(ξ) t .(35)

Let f ∈ L∞. In view also of (31) and
∫
ξ̂ (dx) pt (Sxξ |ξ) = 1,

∣
∣
∣
(
Tt f − f − t �f

)
(ξ)

∣
∣
∣ =

∣
∣
∣
∣

∫

ξ̂ (dx)
(
f (Sxξ)− f (ξ)

)(
pt (Sxξ |ξ)− c0,x(ξ) t

)
∣
∣
∣
∣

≤ 2 ‖f ‖∞
(∫

{x �=0}
ξ̂ (dx)

(
pt (Sxξ |ξ)− pt,1(Sxξ |ξ)

)

+
∫

{x �=0}
ξ̂ (dx)

(−pt,1(Sxξ |ξ)+ c0,x(ξ) t
)
)

.

The first integral in the second line can be bounded by Pξ (n∗(t) ≥ 2). The second
integral equals

−Pξ ( n∗(t) = 1 )+ λ0(ξ) t = −1+ e−λ0(ξ)t + λ0(ξ) t + Pξ (n∗(t) ≥ 2) .
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By collecting the above estimates, we get

1

t2
EP0

[(
Tt f − f − t�f

)2] ≤ 32 ‖f ‖2∞
t2

EP0

(
P2
ξ (n∗(t) ≥ 2)

)

+8‖f ‖2∞
t2

EP0

( (−1+ e−λ0 t + λ0 t
)2
)
. (36)

By using the estimate (e−u − 1+ u)2 ≤ u3/2 for u ≥ 0 and the finiteness of EP0(λ
3
0),

it is easy to check that the second term in the r.h.s. tends to zero as t → 0. In order to
bound the first term, we observe that

Pξ
(
n∗(t) ≥ 2

) ≤ P̃ξ0 ⊗Q(T ξ0,0 ≤ t, T ξ1,X̃ξ1 ≤ t)

= (1− e−λ0(ξ)t
)
∫

ξ̂ (dx) p(Sxξ |ξ)
(
1− e−λ0(Sxξ)t

)
.

Due to the estimate 1− e−u ≤ u, this implies the bound

Pξ (n∗(t) ≥ 2) ≤ t2 λ0(ξ)

∫

ξ̂ (dx) p(Sxξ |ξ)λ0(Sxξ) = t2 λ0(ξ)EP̃ξ

(
λ0(ξ1)

)
.(37)

Due also to the estimate 1− e−u ≤ 1, it is also true that

Pξ (n∗(t) ≥ 2) ≤ t EP̃ξ

(
λ0(ξ1)

)
. (38)

By multiplying the last two inequalities, and using the stationarity of P̃, one obtains

1

t2
EP0

(
P2
ξ (n∗(t) ≥ 2)

) ≤ t EP0

(
λ0(ξ)

[
EP̃ξ

(
λ0(ξ1)

)]2)

≤ t EP0

(
λ0(ξ)EP̃ξ

(
λ2

0(ξ1)
))

= t EP0

(
λ3

0

)
,

thus implying that the first term on the r.h.s. of (36) goes to 0 as t → 0. ��

3.4. Mean forward velocity and infinitesimal square displacement.

Proposition 4. Let P satisfy ρ12 < ∞ and let ϕ be the R
d -valued function on N0 and

ψ be the function on N0 with values in the real symmetric d × d matrices, respectively
defined by

ϕ(ξ) =
∫

ξ̂ (dx) c0,x(ξ) x , (a · ψ(ξ)a) =
∫

ξ̂ (dx) c0,x(ξ) (a · x)2 . (39)

(i) ϕ(ξ) is in L2(N0,P0) and is equal to the mean forward velocity given by the con-
vergent L2-strong limit (21).

(ii) (a ·ψ(ξ)a) is in L2(N0,P0) and is equal to the infinitesimal mean square displace-
ment given by the convergent L2-strong limit (22).

We point out that ϕ(ξ) and ψ(ξ) are well defined for P0 almost all ξ since ρ2 <∞
(see for example the proof of Lemma 2).



38 A. Faggionato, H. Schulz-Baldes, D. Spehner

Proof. (i) One has

1

t2

∫

P0(dξ)
∣
∣EPξ (Xt )− t ϕ(ξ)

∣
∣2 ≤ 2

t2

∫

P0(dξ)
∣
∣EPξ

(
Xt χ

(
n∗(t) = 1

))− t ϕ(ξ)∣∣2

+ 2

t2

∫

P0(dξ)
∣
∣EPξ

(
Xt χ

(
n∗(t) ≥ 2

))∣
∣2 . (40)

We first show that the first term on the r.h.s. vanishes as t → 0. Using the same notation
as in the proof of Proposition 3 and invoking (35),

EP0

(∣
∣
∣EPξ

(
Xt χ

(
n∗(t)=1

))−t ϕ(ξ)
∣
∣
∣
2)

= EP0

(∣
∣
∣
∣

∫

{x �=0}
ξ̂ (dx)

(
pt,1(Sxξ |ξ)−t c0,x(ξ)

)
x

∣
∣
∣
∣

2)

is bounded according to the Cauchy-Schwarz inequality by

EP0

(∫

{x �=0}
ξ̂ (dx)

(−pt,1(Sxξ |ξ)+ t c0,x(ξ)
)

∫

{y �=0}
ξ̂ (dy)

(−pt,1(Syξ |ξ)+ t c0,y(ξ)
)|y|2

)

. (41)

Let us denote by I1(ξ) and I2(ξ) the (non negative) integrals over ξ̂ (dx) and ξ̂ (dy)
respectively. Using the identities of the proof of Proposition 3, the inequality 0 ≤ −1+
e−u + u ≤ u2, u ≥ 0, and (37), we deduce

I1(ξ)=−1+ e−tλ0(ξ) + tλ0(ξ)+ Pξ (n∗(t) ≥ 2) ≤ t2λ0(ξ)
2 + t2λ0(ξ) EP̃ξ

(λ0(ξ1)).

Moreover, I2(ξ) ≤ t
∫
ξ̂ (dy)c0,y(ξ)|y|2. Hence (41) is bounded by

t3
(

EP0

(

λ2
0(ξ)

∫

ξ̂ (dy) c0,y(ξ)|y|2
)

+EP0

(

λ0(ξ)EP̃ξ
(λ0(ξ1))

∫

ξ̂ (dy) c0,y(ξ)|y|2
))

.

As long as ρ4 <∞, the first expression can be bounded by applying Lemma 1(iv) (see
the argument leading to Lemma 2). A short calculation shows that the second expression
equals

∫

P0(dξ)

∫

ξ̂ (dx) c0,x(ξ)

∫

ξ̂ (dz) cx,z(ξ)

∫

ξ̂ (dy) c0,y(ξ) |y|2

and is therefore bounded if ρ4 < ∞ (again by means of Lemma 1(iv)). Resuming the
results obtained so far, one gets

1

t2

∫

P0(dξ)
∣
∣EPξ

(
Xt χ

(
n∗(t) = 1

))− t ϕ(ξ)∣∣2 = O(t) . (42)

We now turn to the second term in (40). By Proposition 1, EP0(EPξ (|Xt |γ )) <∞ as
long as 0 < γ < κ − 3 whenever ρκ <∞ for κ integer. By applying twice the Hölder
inequality, if γ > 2,

EP0

(∣
∣EPξ

(
Xt χ

(
n∗(t) ≥ 2

))∣
∣2
)
≤
(

EP0

(
EPξ

(∣
∣Xt

∣
∣γ
))) 2

γ
(

EP0

(
Pξ
(
n∗(t) ≥ 2

) 2γ−2
γ−2

))1− 2
γ .
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Let us take (38) to the power γ /(γ − 2), multiply the result by (37). This yields

EP0

(
Pξ
(
n∗(t) ≥ 2

) 2γ−2
γ−2

)
≤ t

3γ−4
γ−2 EP0

(
λ0(ξ)EP̃ξ

(
λ

2γ−2
γ−2

0 (ξ1)
))
= t

3γ−4
γ−2 EP0

(
λ

3γ−4
γ−2

0

)
.

Hence, by Lemma 2, if ρκ < ∞ is satisfied for integer κ > (4γ − 6)/(γ − 2) and
γ < k − 3, there is a finite constant C > 0 such that

EP0

(∣
∣EPξ

(
Xt χ

(
n∗(t) ≥ 2

))∣
∣2
)
≤ C t 3γ−4

γ . (43)

One concludes the proof by choosing γ > 4 and by combining (40), (42) and (43), as
long as κ > 7.
(ii) One follows the same strategy. The first term in the equation corresponding to (40)
can be dealt with in exactly the same way. In the argument for the second term, |Xt | is
replaced by |Xt |2 so that one needs 2γ < κ − 3, hence κ > 11. ��

3.5. Proof of Theorem 2. Since all conditions (a)-(d) of Subsect. 3.1 have been checked
in the preceding subsections, as already pointed out, one can invoke [DFGW, Theorem
2.2] to conclude that the limit (3) exists and that the rescaled random walkY ξ,ε converges
weakly in P0–probability to the Brownian motionWD . We can now also derive the var-
iational formula (16) from the general expression (23). Let us first quote some general
results concerning self–adjoint operators. Let (�,µ)be a probability space and denote by
〈 . , . 〉µ and by ‖.‖µ the scalar product and the norm on H = L2(�,µ). Let L : D(L)→
H be a nonpositive self–adjoint operator with (dense) domain D(L) ⊂ H and assume
C ⊂ D(L) is a core of L. The space H1 is the completion of D(|L|1/2) ∩ (Ker(L))⊥
under the norm ‖f ‖1 := ∥

∥|L|1/2f ∥∥
µ

for f ∈ D(|L|1/2), while the dual H−1 of H1

under 〈 . , . 〉µ can be identified with the completion of D(|L|−1/2) = Ran(|L|1/2)
under the ‖.‖−1-norm defined as ‖ϕ‖−1 := ∥

∥|L|−1/2ϕ
∥
∥
µ

for ϕ ∈ D(|L|−1/2). Given
ϕ ∈ H ∩H−1, the dual norm ‖ϕ‖−1 admits several useful characterizations:

‖ϕ‖2
−1 = sup

f∈H1∩H
|〈ϕ, f 〉µ|2
‖f ‖2

1

= sup
f∈C∩(Ker(L))⊥

|〈ϕ, f 〉µ|2
‖f ‖2

1

, (44)

where the last identity results from the fact that C is a core for L. Moreover, the identity

‖ϕ‖2
−1 = sup

f∈C

(
2 〈ϕ, f 〉µ − 〈f, (−L)f 〉µ

)
(45)

is obtained by using the nonlinearity in f of the expression in the r.h.s. of (45) and
observing that ϕ ∈ (Ker(L))⊥. Finally, it follows from spectral calculus that

‖ϕ‖2
−1 =

∫ ∞

0
dt 〈ϕ, etLϕ〉µ . (46)

In what follows, we extend the definition of ‖ · ‖−1 to the whole space H by setting
‖ϕ‖−1 := ∞whenever ϕ ∈ H and ϕ �∈ H−1. Thanks to this choice, identities (44), (45)
and (46) are true for all ϕ ∈ H.

Invoking (45) and (46), one obtains
∫ ∞

0
dt
〈
ϕ · a , etL ϕ · a

〉

P0
= sup
f∈L∞(N0,P0)

(
2 〈ϕ · a , f 〉P0 − 〈f, (−L)f 〉P0

)
.

(47)

Using (33), (39) and Lemma 1(i), a short calculation starting from (23) yields (16). ��
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4. Bound by Cut-off on the Transition Rates

This section and the next ones are devoted to the proof of Theorem 1(ii). In particular,
we assume that P̂ , P and ν satisfy the conditions of Theorem 1(ii) although many partial
results are true under much weaker conditions. The variational formula (16) is partic-
ularly suited in order to derive bounds on the diffusion matrix D. For example, due to
the monotonicity of the jump rates cx,y(ξ) in the inverse temperature β, one deduces
that the diffusion matrix is a non-increasing function of β. The aim of this section is to
obtain more quantitative bounds.

Given an energy 0 ≤ Ec ≤ 1, we define the map �c : N → N̂ := N (Rd) as
follows:

(
�c(ξ)

)
(A) := ξ(A× [−Ec,Ec]) , A ∈ B(Rd) . (48)

Note that P̂c := P ◦�−1
c is the distribution of a point process on R

d with finite intensity
ρc := EP̂c ( ξ̂ (C1) ) ≤ EP ( ξ̂ (C1) ) = ρ, and in general

EP̂c ( ξ̂ (C1)
κ ) ≤ ρκ , ∀ κ > 0 . (49)

In what follows, we assume that ρc > 0. It can readily be checked that P̂c is an ergodic
SSPP on R

d . We write P̂c
0 for the Palm distribution associated to P̂c. Note that the distri-

bution P̂c is obtained from P̂ by δc–thinning with δc := ν([−Ec,Ec]). Thus, ρc = δc ρ.
The relation between the Palm distributions P0 and P̂c

0 is described in the following
lemma.

Lemma 3. For any Borel set A ∈ B(N̂0) one has P̂c
0(A) = ρ ρ−1

c P0( |E0| ≤ Ec,

�c(ξ) ∈ A ).
Proof. The assertion is proven by comparing the two following identities obtained from
(11):

P̂c
0(A) =

1

ρc

∫

N̂
P̂c(dξ̂ )

∫

C1

ξ̂ (dx)χA(Sxξ̂ ) ,

P0( |E0| ≤ Ec, �c(ξ) ∈ A ) = 1

ρ

∫

N
P(dξ)

∫

C1

ξ̂ (dx) χ(|Ex | ≤ Ec) χA(�c(Sxξ))

= 1

ρ

∫

N
P(dξ)

∫

C1

(
�c(ξ)

)
(dx) χA

(
Sx(�c(ξ))

)
.

��
Proposition 5. Fix a distance rc > 0 and an energy 0 ≤ Ec ≤ 1 and let P̂c

0 be as above.
Moreover, define

ϕc(ξ̂ ) :=
∫

ξ̂ (dx) ĉ0,x x , (a · ψc(ξ̂ )a) :=
∫

ξ̂ (dx) ĉ0,x (a · x)2 (50)

as functions on N̂0, where ĉ0,x := χ(|x| ≤ rc). Then the diffusion matrix D for the
process (Xξt )t≥0 in Theorem 2 admits the following lower bound

D ≥ ρc

ρ
e−rc−4β Ec Dc(rc, Ec) ,
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where

(a ·Dc(rc, Ec) a) := EP̂c
0

(
(a · ψca)

)
− 2

∫ ∞

0
dt

〈
ϕc · a , etLc ϕc · a

〉

P̂c
0

, (51)

and Lc is the unique self–adjoint operator on L2(N̂0, P̂c
0) such that

(Lcf )(ξ̂ ) =
∫

ξ̂ (dx) ĉ0,x∇xf (ξ̂ ) , ∀ f ∈ L∞(N̂0, P̂c
0) . (52)

One can prove by the same arguments used in the proof of Proposition 3 that Lc is
well-defined and self–adjoint. Let P̂c and P̂c

ξ̂
be the probability measures on the path

space �̂ := D( [0,∞), N̂0 ) associated to the Markov process with generator Lc and
initial distribution P̂c

0 and δ
ξ̂
, respectively, with ξ̂ ∈ N̂0. One can prove that these Mar-

kov processes are well–defined (in particular, P̂c
ξ̂

is well–defined for P̂c
0–almost all ξ̂ )

and exhibit a realization as jump processes by means of the same arguments used in Sect.
3.2 (note that, for a suitable positive constant c,

∫
ξ̂ (dx)ĉ0,x ≤ c λ0(ξ) for any ξ ∈ N0,

thus allowing to exclude explosion phenomena from the results of Appendix A). Finally,
given ξ̂ ∈ �̂, Xt(ξ̂ ) is defined as in (19).

Proof. Note that

c0,x(ξ) ≥ e−rc−4β Ec c̃0,x(ξ) ,

where

c̃x,y(ξ) := χ
(|Ex | ≤ Ec, |Ey | ≤ Ec, |x − y| ≤ rc) , x, y ∈ ξ̂ .

Then (16) implies that (a ·Da) ≥ e−rc−4β Ec g(a), where

g(a) := inf
f∈L∞(N0,P0)

∫

P0(dξ)

∫

ξ̂ (dx) c̃0,x(ξ)
(
a · x + ∇xf (ξ)

)2 ≥ 0 .

By the same arguments used in the proof of Proposition 3 one can show that there is a
unique self–adjoint operator L̃ on L2(N0,P0) such that

(L̃f )(ξ) :=
∫

ξ̂ (dx) c̃0,x(ξ) ∇xf (ξ) , ∀ f ∈ L∞(N0,P0).

Moreover, L∞(N0,P0) is a core of L̃ and

〈f, (−L̃)f 〉P0
= 1

2

∫

P0(dξ)

∫

ξ̂ (dx)c̃0,x(ξ) (∇xf (ξ))2 , ∀f ∈ L∞(N0,P0).(53)

Next let us introduce the functions

ϕ̃(ξ) =
∫

ξ̂ (dx) c̃0,x(ξ) x , (a · ψ̃(ξ)a) =
∫

ξ̂ (dx) c̃0,x(ξ) (a · x)2 .
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Then we obtain by means of straightforward computations and the identities (45), (46)
and (53) that

g(a) = EP0

(
(a · ψ̃a)

)
− 2 supf∈L∞(N0,P0)

(
2 〈ϕ̃ · a, f 〉P0

− 〈f, (−L̃)f 〉P0

)

= EP0

(
(a · ψ̃a)

)
− 2

∫∞
0 dt

〈
ϕ̃ · a , etL̃ ϕ̃ · a

〉

P0
.

At this point, in order to get (51), it is enough to show that

EP0

(
(a · ψ̃a)

)
= δc EP̂c

0

(
(a · ψca)

)
,

and
〈
ϕ̃ · a , etL̃ ϕ̃ · a

〉

P0
= δc

〈
ϕc · a , etLc ϕc · a

〉

P̂c
0

.

This can be derived from Lemma 3 and the following identities, where�c is defined by
(48):

ψ̃ = χ(|E0| ≤ Ec)ψc ◦�c ,
ϕ̃ = χ(|E0| ≤ Ec) ϕc ◦�c ,

L̃(f ◦�c) = χ(|E0| ≤ Ec) (Lcf ) ◦�c .
��

5. Periodic Approximants and Resistor Networks

In this section, we compareDc(rc, Ec) to the diffusion coefficient of adequately defined
periodic approximants, which then in turn can be calculated as the conductance of a
random resistor network as in [DFGW]. There have been numerous works on periodic
approximants; a recent one containing further references is [Owh].

5.1. Random walk on a periodized medium. Let us choose a given direction in R
d , say,

the direction parallel to the axis of the first coordinate. Given a fixed configuration ξ̂ ∈ N̂
and N > rc, we define the following subsets of R

d

Q
ξ̂
N : = supp(ξ̂ ) ∩ Č2N, �±N :=Z

d ∩ {x : x(1)=±N, |x(j)|<N for j = 2, . . . , d},
V ξ̂N : = Qξ̂

N ∪ �+N ∪ �−N, B
ξ̂±
N := Q

ξ̂
N ∩ B±N ,

where Č2N := (−N,N)d , B−N := {x ∈ Č2N : x(1) ∈ (−N,−N + rc]} and B+N :=
{x ∈ Č2N : x(1) ∈ [N − rc, N)}.

Next let us introduce a graph (V ξ̂N , E
ξ̂

N ) with set of vertices V ξ̂N and set of edges E ξ̂N .

Two vertices x, y ∈ Qξ̂
N are connected by a non-oriented edge {x, y} ∈ E ξ̂N if and only

if |x − y| ≤ rc; moreover, all vertices x ∈ Bξ̂+N (respectively x ∈ Bξ̂−N ) are connected

to all y ∈ �+N (respectively y ∈ �−N ) by an edge {x, y} ∈ E ξ̂N and the points of �±N are
not connected between themselves.
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We now define another graph (V ξ̂N , E
ξ̂
N ) obtained from (V ξ̂N , E

ξ̂

N ) by identifying the
vertices

x− = (−N, x(2), . . . , x(d)) and x+ = (N, x(2), . . . , x(d)) .

Let us write π : V ξ̂N → V ξ̂N for the identification map on the sets of vertices. Hence

π(�−N) = π(�+N) and π restricted to Qξ̂
N is the identity map. The set V ξ̂N = π(V ξ̂N )

represents the medium periodized along the first coordinate. A vertex y ∈ π(�−N) is

connected to all vertices x ∈ Bξ̂+N ∪ Bξ̂−N by an edge of E ξ̂N .

Now a continuous–time random walk with state space V ξ̂N and infinitesimal generator

Lξ̂N is given by

(
Lξ̂Nf

)
(x) =

∑

y∈V ξ̂N : {x,y}∈E ξ̂N

c({x, y})( f (y)− f (x) ) , ∀ x ∈ V ξ̂N ,

where the bond-dependent transition rates c({x, y}) are defined for any {x, y} ∈ E ξ̂N by

c({x, y}) =





1 if x, y ∈ Qξ̂
N ,

1
|�−N |

if x ∈ π(�−N) or y ∈ π(�−N) .
(54)

Clearly the generator Lξ̂N is symmetric w.r.t. the uniform distributionmξ̂N on V ξ̂N given by

m
ξ̂
N =

1
∣
∣V ξ̂N

∣
∣

∑

x∈V ξ̂N

δx .

Hence the Markov process with generator Lξ̂N and initial distribution mξ̂N is reversible.
Note that it is not ergodic, however, if there are more than one cluster (equivalence class
of edges). In the latter case, the ergodic measures are the uniform distributions on a given
cluster and this is sufficient for the present purposes.

We write Pξ̂N (respectively Pξ̂N,x) for the probability on the path space�ξ̂N =D
(
[0,∞),

V ξ̂N
)

associated to the random walk with initial distribution mξ̂N (respectively δx) and

generator Lξ̂N .

Let us introduce an antisymmetric function d1(x, y) on V ξ̂N such that

d1(x, y) =






y(1) − x(1) if x, y ∈ Qξ̂
N ,

y(1) +N if y ∈ Qξ̂
N, y

(1) < 0, x ∈ π(�−N) ,
y(1) −N if y ∈ Qξ̂

N, y
(1) > 0, x ∈ π(�−N) .

Finally, given t ≥ 0, we define the random variable

X
(1)ξ̂
N,t (ω) =

∑

s∈[0,t] :ωs �=ωs−
d1(ωs−, ωs) ,
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where (ωs)s≥0 ∈ �ξ̂N . It is the sum of position increments along the first coordinate

axis for all jumps occurring in the time interval [0, t]. Clearly, X(1)ξ̂N,t gives rise to a
time-covariant and antisymmetric family so that, as in Sect. 3, [DFGW, Theorem 2.2]
can be used in order to deduce the following result.

Proposition 6. Given N ∈ N, N > rc, and ξ̂ ∈ N̂ ,

lim
t↑∞

1

t
E

Pξ̂N

(
(X

(1)ξ̂
N,t )

2) = D
ξ̂
N ,

where the diffusion coefficient Dξ̂N is finite and given by

D
ξ̂
N = m

ξ̂
N

(
ψ
ξ̂
N

) − 2
∫ ∞

0
dt 〈ϕξ̂N , etL

ξ̂
N ϕ

ξ̂
N 〉mξ̂N , (55)

with ψξ̂N , ϕξ̂N (scalar) functions on V ξ̂N defined as

ψ
ξ̂
N(x)=

∑

y : {y,x}∈E ξ̂N

c({x, y}) d1(x, y)
2, ϕ

ξ̂
N (x)=

∑

y : {y,x}∈E ξ̂N

c({x, y}) d1(x, y). (56)

5.2. Link to periodized medium. Here we show that the diffusion matrix (51) can be
bounded from below in terms of the average of the diffusion coefficient associated to
the periodized random media. Our proof follows the arguments of [DFGW, Prop. 4.13],
but additional technical problems are related to the randomness of geometry (absence of
any lattice structure) and possible (albeit integrable) singularities of the mean forward
velocity and infinitesimal mean square displacement.

Proposition 7. Suppose that for 1 ≤ p ≤ 8

lim
N↑∞

ρc 
(C2N)

ξ̂ (C2N)+ a2N
= 1 in Lp( N̂ , P̂c) , (57)

where ρc := EP̂c (ξ̂ (C1)) and a2N := |�±N | = (2N − 1)d−1. Then, for any t > 0,

lim
N↑∞

EP̂c

(
m
ξ̂
N

(
ψ
ξ̂
N

)) = EP̂c
0

(
ψ(11)
c

)
, (58)

lim
N↑∞

EP̂c

(

〈ϕξ̂N , etL
ξ̂
N ϕ

ξ̂
N 〉mξ̂N

)

=
〈
ϕ(1)c , etLc ϕ(1)c

〉

P̂c
0

, (59)

where ψ(11)
c and ϕ(1)c are the first diagonal matrix element of the matrix ψc and the first

component of the vector ϕc introduced in (50), respectively.

SinceDc(rc, Ec) is given by (51) and is a multiple of the identity (cf. Remark 2), the
identities (58) and (59) combined with Fatou’s Lemma immediately imply:

Corollary 1. Under the same hypothesis as above,

Dc(rc, Ec) ≥
(

lim sup
N↑∞

EP̂c

(
D
ξ̂
N

)
)

1d , (60)

where 1d is the d × d identity matrix.
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Before giving the proof, let us comment on its assumptions. In Sect. 6 we will show
that condition (57) is always satisfied. Due to (49), ρp <∞ implies EP̂c ( ξ̂ (C1)

p ) <∞
for anyp > 0.As P̂c is ergodic, this implies the following ergodic theorem, an extension
of [DV, Theorem 10.2]. We recall that a convex averaging sequence of sets {An} in R

d

is a sequence of convex sets such that An ⊂ An+1 and An contains a ball of radius rn
with rn→∞ as n→∞.

Lemma 4. Suppose that ρp <∞, p ≥ 1. Then, given a convex averaging sequence of
Borel sets {An} in R

d ,

ξ̂ (An)

ρc 
(An)
→ 1 in Lp( N̂ , P̂c) , and

ξ̂ (An)

ρc 
(An)
→ 1 P̂c-a.s.

We will also need a bound on EP̂c ((ξ̂ (An)/
(An))
p), uniformly in n, for a sequence

of sets that does not satisfy the assumptions of Lemma 4. To this aim we note that, given
a Borel set B ⊂ R

d which is a union of k non-overlapping cubes of side 1, one has

EP̂c

( (
ξ̂ (B)/k

)p ) ≤ EP̂c

(
ξ̂ (C1)

p
) ≤ ρp , ∀ p ≥ 1 . (61)

This follows from the stationarity of P̂c and the convexity of the function f (x) = xp,
x ≥ 0.

Proof of Proposition 7. Without loss of generality, we assume rc = 1. Note that, since
P̂ is stationary with finite intensity ρ1, one has P-a.s. ξ̂ (∂Ck) = 0 for all k ∈ N. In what
follows we hence may assume ξ to be as such, thus allowing to simplify notation since
C2N ∩ supp(ξ̂ ) = Č2N ∩ supp(ξ̂ ). A key observation in order to prove (58) and (59) is
the following identity, valid for any nonnegative measurable function h defined on N̂0.
It follows easily from (12):

EP̂c

(∫

B

ξ̂(dx)h(Sxξ̂ )

)

= ρc 
(B)EP̂c
0
(h), ∀ B ∈ B(Rd). (62)

From this identity we can deduce for any h ∈ L2(N0, P̂c
0) that

lim
N↑∞

EP̂c

(
1

ξ̂ (C2N)+ a2N

∫

C2N−2

ξ̂ (dx)h(Sxξ̂ )

)

= EP̂c
0
(h) . (63)

In fact, due to (62), it is enough to show that

EP̂c

(( 1

ξ̂ (C2N)+a2N
− 1

ρc
(C2N−2)

) ∫

C2N−2

ξ̂ (dx)h(Sxξ̂ )

)

↓ 0 , as N ↑ ∞.
(64)

By applying twice the Cauchy-Schwarz inequality and by invoking (62), we obtain
(

l.h.s. of (64)
)2

≤ EP̂c

(
( ρc 
(C2N−2)

ξ̂ (C2N)+ a2N
− 1

)2 ξ̂ (C2N−2)

ρ2
c 
(C2N−2)2

)

EP̂c

(
1

ξ̂ (C2N−2)

(∫

C2N−2

ξ̂ (dx)h(Sxξ̂ )
)2
)

≤ EP̂c

(
( ρc 
(C2N−2)

ξ̂ (C2N)+ a2N
− 1

)2 ξ̂ (C2N−2)

ρc 
(C2N−2)

)

EP̂c
0
(h2) .
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At this point, (64) follows by applying the Cauchy-Schwarz inequality to the first
expectation above and then applying (61) and the limit (57) for p = 4.

Let now h
ξ̂
N be a function on V ξ̂N such that for some constant c > 0 independent of

N ,

|hξ̂N (x)| ≤ c






ξ̂ (B1(x)) if x ∈ Qξ̂
N,

|Bξ̂N |
a2N

otherwise ,

where Bξ̂N = Bξ̂−N ∪ Bξ̂+N and B1(x) is the closed unit ball centered in x. Note that ψξ̂N
and ϕξ̂N satisfy this inequality. We claim that the mean boundary contribution vanishes
in the limit:

lim
N↑∞

EP̂c

(
1

ξ̂ (C2N)+ a2N

∑

x∈V ξ̂N\Qξ̂N−1

|hξ̂N (x)|p
)

= 0 , for 1 ≤ p ≤ 4. (65)

In fact, the sum in (65) can be bounded by

cp a2N
|Bξ̂N |p
a
p
2N

+ cp
∑

x∈Qξ̂N\Qξ̂N−1

(
ξ̂ (B1(x))

)p
. (66)

By the Cauchy-Schwarz inequality

EP̂c

(
a2N

ξ̂(C2N)+ a2N

|Bξ̂N |p
a
p
2N

)

≤ E
1
2

P̂c

(
a2

2N

(ξ̂ (C2N)+ a2N)2

)

E
1
2

P̂c

( |Bξ̂N |2p
a

2p
2N

)

.

The first factor on the r.h.s. is negligible as N ↑ ∞ because of the limit (57) for p = 2,
while the second factor is bounded, uniformly inN , because of (61). For the second sum-
mand in (66), we use twice the Cauchy-Schwarz inequality and invoke (62) to deduce

EP̂c

(
1

ξ̂ (C2N)+ a2N

∑

x∈Qξ̂N\Qξ̂N−1

(
ξ̂
(
B1(x)

))p
)

≤ E
1
2

P̂c

(
ξ̂ (C2N \ C2N−2)

(ξ̂ (C2N)+ a2N)2

)

×E
1
2

P̂c

(
1

ξ̂ (C2N \ C2N−2)

( ∑

x∈Qξ̂N\Qξ̂N−1

(
ξ̂
(
B1(x)

))p)2
)

≤
(

ρc 
(C2N \ C2N−2)EP̂c

(
ξ̂ (C2N \ C2N−2)

(ξ̂ (C2N)+ a2N)2

)) 1
2

E
1
2

P̂c
0

((
ξ̂
(
B1(0)

))2p
)

.

The last factor is bounded by hypothesis, the first one converges to 0 asN ↑ ∞ because
of Lemma 4 and (57).

In order to prove (58) observe that ψ(11)
c (Sx ξ̂ ) = ψξ̂N(x) if x ∈ Qξ̂

N−1. Therefore we
can write

m
ξ̂
N(ψ

ξ̂
N)=

1

ξ̂ (C2N)+a2N

∫

C2N−2

ξ̂ (dx)ψ(11)
c (Sx ξ̂ )+ 1

ξ̂ (C2N)+a2N

∑

x∈V ξ̂N\C2N−2

ψ
ξ̂
N(x) .
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Now (58) follows easily from (63) and (65) with hξ̂N := ψ
ξ̂
N . Note that by the same

arguments one can prove

lim
N↑∞

EP̂c

{
m
ξ̂
N

[ |ϕξ̂N (x)|p
]} = EP̂c

0
(|ϕ(1)c |p) < ∞ , 1 ≤ p ≤ 4 , (67)

which will be useful below.
In order to prove (59), we fix 0 < α < 1 and set M = 2N − 2[Nα], where [Nα]

denotes the integer part of Nα . Moreover, we define the hitting times

τ
ξ̂
N (ω) = inf {s ≥ 0 : ωs �∈ C2N−2} , ω = (ωs)s≥0 ∈ �ξ̂N = D([0,∞),V ξ̂N ).(68)

Recall the definitions of the distribution P̂c
ξ̂
, Pξ̂N,x and Pξ̂N given in Sects. 4 and 5.1.

Thanks to the identity (etL
ξ̂
N ϕ

ξ̂
N )(x) = E

Pξ̂N,x

(
ϕ
ξ̂
N (ωt )

)
, we can write

EP̂c

(
〈ϕξ̂N , etL

ξ̂
N ϕ

ξ̂
N 〉mξ̂N

)
= EP̂c

(
A
ξ̂
1,N + Aξ̂2,N + Aξ̂3,N

)
,

where

A
ξ̂
1,N = mξ̂N

(
χ(x �∈ CM) ϕξ̂N (x)E

Pξ̂N,x

(
ϕ
ξ̂
N (ωt )

))
,

A
ξ̂
2,N = mξ̂N

(
χ(x ∈ CM) ϕξ̂N (x)E

Pξ̂N,x

(
χ(τ

ξ̂
N ≤ t) ϕξ̂N (ωt )

))
,

A
ξ̂
3,N = mξ̂N

(
χ(x ∈ CM) ϕξ̂N (x)E

Pξ̂N,x

(
χ(τ

ξ̂
N > t) ϕ

ξ̂
N (ωt )

))
.

Then (59) follows from

lim
N↑∞

EP̂c

(
A
ξ̂
1,N

) = 0,

lim
N↑∞

EP̂c

(
A
ξ̂
2,N

) = 0,

lim
N↑∞

EP̂c

(
A
ξ̂
3,N

) = 〈ϕ(1)c , etLc ϕ(1)c 〉P̂c
0
. (69)

Let us first prove the first limit in (69). By several applications of Cauchy-Schwarz

inequality and due to the identity Pξ̂N =
∫
m
ξ̂
N(dx)P

ξ̂
N,x , we get

∣
∣EP̂c

(
A
ξ̂
1,N

)∣
∣ ≤ E

1
2

P̂c

{
m
ξ̂
N

(
V ξ̂N \ CM

)}
E

1
2

P̂c

{
m
ξ̂
N

[
ϕ
ξ̂
N (x)

2E
Pξ̂N,x

(
ϕ
ξ̂
N (ωt )

2) ]
}

≤ E
1
2

P̂c

{
m
ξ̂
N

(
V ξ̂N \ CM

)}
E

1
4

P̂c

{
m
ξ̂
N

[
ϕ
ξ̂
N (x)

4 ]
}

E
1
4

P̂c

{
E

Pξ̂N

(
ϕ
ξ̂
N (ωt )

4) ]
}

= E
1
2

P̂c

{
m
ξ̂
N

(
V ξ̂N \ CM

)}
E

1
2

P̂c

{
m
ξ̂
N

[
ϕ
ξ̂
N (x)

4 ]
}
,

where the last identity follows from the stationarity of Lξ̂N w.r.t. mξ̂N . Due to the domi-
nated convergence theorem, the first expectation on the r.h.s. goes to 0, while the second
expectation is bounded due to (67).
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In order to prove the second limit in (69), we apply twice the Cauchy-Schwarz

inequality in order to obtain the bound EP̂c

(
A
ξ̂
2,N

)
by

E
1
2

P̂c

{
m
ξ̂
N

[
ϕ
ξ̂
N (x)

2 ]
}

E
1
4

P̂c

{
E

Pξ̂N

[
ϕ
ξ̂
N (ωt )

4]
}

E
1
4

P̂c

{
m
ξ̂
N

[
χ(x ∈ CM)Pξ̂N,x(τ ξ̂N ≤ t)

]}

(70)

Again, because of stationarity and (67), the first two factors on the r.h.s. are bounded
while the last one converges to 0 due to Lemma 5 below.

Finally we prove the last limit in (69). To this aim, given ξ̂ ∈ �̂ = D([0,∞), N̂0)

and x ∈ CM , we set

τN,x(ξ̂ ) = inf
{
s ≥ 0 : x +Xs(ξ̂ ) �∈ C2N−2

}
, (71)

where Xs(ξ̂ ) is defined as in (19). Note that for x ∈ CM ∩ supp(ξ̂ ),

ϕ
ξ̂
N (x) = ϕ(1)c (Sx ξ̂ ), E

Pξ̂N,x

(
χ(τ

ξ̂
N > t) ϕ

ξ̂
N (ωt )

) = EP̂c
Sx ξ̂

(
χ(τN,x > t) ϕ(1)c (ξ̂t )

)
.

Therefore

EP̂c

(
A
ξ̂
3,N

) = EP̂c

{
m
ξ̂
N

[
χ(x ∈ CM) ϕ(1)c (Sx ξ̂ )EP̂c

Sx ξ̂

(
χ(τN,x > t) ϕ(1)c (ξ̂t )

)]}
.

On the other hand, by applying the Cauchy-Schwarz inequality as in (70) and due to
Lemma 5, we obtain

lim
N↑∞

EP̂c

{
m
ξ̂
N

[
χ(x ∈ CM) |ϕ(1)c (Sx ξ̂ )|EP̂c

Sx ξ̂

(
χ(τN,x ≤ t) |ϕ(1)c (ξ̂t )|

)]} = 0 .

The last two identities imply

lim
N↑∞

EP̂c

(
A
ξ̂
3,N

) = lim
N↑∞

EP̂c

{
m
ξ̂
N

[
χ(x ∈ CM) ϕ(1)c (Sx ξ̂ )EP̂c

Sx ξ̂

(
ϕ(1)c (ξ̂t )

)]}
.

(72)

Observe now that (63) remains valid if the integral is performed on CM in place of
C2N−2 (the arguments used in the proof there work also in this case) and the function
h(ξ̂ ) is defined as

h(ξ̂ ) = ϕ(1)c (ξ̂ )EP̂c
ξ̂

(
ϕ(1)c (ξ̂t )

) = ϕ(1)c (ξ̂ )
(
etLcϕ(1)c

)
(ξ̂ ) .

Note that h ∈ L2(N̂0, P̂c
0). Therefore we can conclude that the r.h.s. of (72) is equal to

〈ϕ(1)c , etLc ϕ(1)c 〉P̂c
0
. ��

Lemma 5. Let τ ξ̂N and τN,x be defined as in (68) and (71), and let M = 2N − 2[Nα].
Then

lim
N↑∞

EP̂c

{
m
ξ̂
N

[
χ(x ∈ CM)Pξ̂N,x

(
τ
ξ̂
N ≤ t

)]} = 0, (73)

lim
N↑∞

EP̂c

{
m
ξ̂
N

[
χ(x ∈ CM) P̂c

Sx ξ̂

(
τN,x ≤ t

)]} = 0. (74)
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Proof. One can check by a coupling argument that the two expectations in (73) and (74)
coincide: for each N ∈ N+, ξ̂ ∈ N̂ and x ∈ CM ∩ supp(ξ̂ ), one can define a probability

measure µ on �ξ̂N × �̂ such that

µ(A× �̂) = Pξ̂N,x(A), µ(�
ξ̂
N × B) = P̂c

Sx ξ̂
(B), ∀A ∈ B(�ξ̂N),∀B ∈ B(�̂),

and such that,µ almost surely, τ ξ̂N (ω) = τN,x(ξ̂ ) andωs = x+Xs(ξ̂ ) for any 0 ≤ s < τ
ξ̂
N .

Such a coupling µ implies P̂c
Sx ξ̂

(
τN,x ≤ t

) = Pξ̂N,x
(
τ
ξ̂
N ≤ t

)
. Thus we need to prove

only (73). Moreover, without loss of generality, we assume rc = 1.
To this aim let us cover C2N−2 \ CM by disjoint cubes C1,i of side 1, i ∈ I , so that

C2N−2 \CM = ∪i∈IC1,i (the boundaries of these cubes are suitably chosen for them to
be disjoint). Finally, given a positive integer n, we set

In∗ = {(l1, . . . , ln) ∈ In : lj �= lk if j �= k}.

For paths ω such that τ ξ̂N (ω) < ∞, let us define k = k(ω) as the number of different

cubes C1,i , i ∈ I , visited by the particle in the time interval [0, τ ξ̂N (ω) ) and more-

over we define by induction (i1, . . . , ik) ∈ I k∗ , (x1, . . . , xk) ∈
(
C2N−2 \ CM

)k with
xj ∈ C1,ij ∀j : 1 ≤ j ≤ k, and (t1, . . . , tk) as follows: Let x1 be the first point
reached in C2N−2 \ CM and t1 be the time spent in x1 before jumping away. The index
i1 is characterized by the requirement that x1 ∈ C1,i1 . Suppose now that i1, . . . , ij ,
x1, . . . , xj and t1, . . . , tj have been defined and that j < k. Then xj+1 is the first point

in C2N−2 \
(
CM ∪ C1,i1 ∪ · · · ∪ C1,ij

)
visited during the time interval [0, τ ξ̂N (ω) ) and

tj+1 is the time spent at xj+1 during such a first visit. Moreover, ij+1 is such that
xj+1 ∈ C1,ij+1 .

Now let T ξ̂i , i ∈ I and ξ̂ ∈ N̂ , be a family of independent exponential random vari-

ables (all independent from the above random objects) and such that T ξ̂i has parameter
ξ̂
(
C̃1,i ), where

C̃1,i = {y ∈ R
d : dist(y, C1,i ) ≤ 1 }.

Since, given ξ̂ , k and (x1, . . . , xk), tj (1 ≤ j ≤ k) are independent exponential variables
and tj has parameter not larger than ξ̂

(
C̃1,ij

)
and since k ≥ kmin := [Nα] − 1, we

obtain

EP̂c

{
m
ξ̂
N

[
χ(x ∈ CM)Pξ̂N,x

(
τ
ξ̂
N ≤ t

)]}

=
|I |∑

n=kmin

∑

l∈In∗
EP̂c

{
m
ξ̂
N

[
χ(x∈CM)

∑

y∈∏n
j=1C1,lj ∩V

ξ̂
N

Pξ̂N,x
(
τ
ξ̂
N ≤ t, k=n, xl=yl, 1≤ l≤n)

]}

≤
|I |∑

n=kmin

∑

l∈In∗
EP̂c

{
m
ξ̂
N

[
χ(x ∈ CM)Pξ̂N,x

(
k = n, i1 = l1, . . . , in = ln

)]
(75)

× Prob
(
T
ξ̂
l1
+ · · · + T ξ̂ln ≤ t

)}
,
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where the last inequality follows from the bound

Pξ̂N,x
(
τ
ξ̂
N ≤ t | k = n, x1 = y1, . . . , xn = yn

) ≤ Prob
(
T
ξ̂
l1
+ · · · + T ξ̂ln ≤ t

)
.

In order to estimate the probability in the r.h.s., we use an argument similar to that
of the proof of Proposition 1 in Appendix C. Let us define m := EP̂c

(
ξ̂ (C̃1)

)
, where

C̃1 = {y ∈ R
d : dist(y, C1) ≤ 1}. Given κ > 0 and l ∈ In∗ as above, we define

A = A(κ, l) as follows

A =
{
ξ̂ ∈ N̂ :

∣
∣
{
j : 1 ≤ j ≤ n and ξ̂

(
C̃1,lj

)
> κ m

}∣
∣ >

n

2

}
.

Then, by the Chebyshev inequality and the stationarity of P̂c,

P̂c
(
A
)≤ 2

n
EP̂c

(∣
∣
{
j : 1≤j≤n and ξ̂

(
C̃1,lj

)
> κ m

}∣
∣
)
≤ 2 P̂c

(
ξ̂ (C̃1)>κ m

)→ 0,

as κ →∞. Note that the complement Ac of A can be written as

Ac =
{
ξ̂ ∈ N̂ :

∣
∣
{
j : 1 ≤ j ≤ n and ξ̂

(
C̃1,lj

) ≤ κ m }∣∣ ≥ [ n
2

]
∗
}
,

where [n/2]∗ is defined as n/2 for n even and as (n+ 1)/2 for n odd. If ξ̂ ∈ Ac then at

least
[
n
2

]
∗ of the exponential variables T ξ̂l1 , . . . ,T ξ̂ln have parameter not larger than κ m.

Then, by a coupling argument (e.g. Appendix C), we get for all ξ̂ ∈ Ac,

Prob
(
T
ξ̂
l1
+ · · · + T ξ̂ln ≤ t

) ≤ e−κ mt
∞∑

r=[n/2]∗

(κ m t)r

r!
=: φ(κ, n) .

Due to the above estimates and since n ≥ kmin = [Nα]− 1, we get

r.h.s. of (75) ≤ 2 P̂c
(
ξ̂ (C̃1) > κ m

) + φ(κ,Nα) .

The lemma follows by taking first the limit N ↑ ∞ and then the limit κ ↑ ∞. ��

5.3. Random resistor networks. We conclude this section by pointing out that the diffu-

sion coefficientDξ̂N of the periodized medium can be expressed in terms of the effective

conductance of the graph (V ξ̂N , E
ξ̂

N ) when assigning suitable bond conductances. More

precisely, consider the electrical network given by the graph (V ξ̂N , E
ξ̂

N ), where the bond

{x, y} ∈ E ξ̂N has conductivity c({π(x), π(y)}) with c({·, ·}) defined in (54). Then, the

effective conductance Gξ̂N of this network is defined as the current flowing from �−N to
�+N when a unit potential difference between �−N to �+N is imposed. It can be calculated
from Ohm’s law and the Kirchhoff rule as follows. Let the electrical potential V (x)
vanish on the left border �−N , be equal to 1 on the right border �+N , and satisfy:

∑

y : {y,x}∈E ξ̂N

c({π(x), π(y)}) (V (y)− V (x)) = 0 for any x ∈ Qξ̂
N .
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Then the effective conductance is given by the current flowing through the surfaces
{x ∈ [−N,N ]d : x(1) = ±N}:

G
ξ̂
N =

∑

x∈Bξ̂−N

V (x) =
∑

x∈Bξ̂+N

(
1− V (x)) . (76)

By a well-known analogy it is linked to the diffusion coefficient Dξ̂N (see e.g. [DFGW,
Prop. 4.15] for a similar proof):

Proposition 8. One has

D
ξ̂
N =

8N2

|V ξ̂N |
G
ξ̂
N . (77)

6. Percolation Estimates

Let us set Fr := FRd\Cr and recall that ρc = ρ δc with δc = ν([−Ec,Ec]).

6.1. Point density estimates. Here we show how the ergodic properties of Lemma 4
combined with the hypothesis (H1) or (H2) imply (57).

Proposition 9. Suppose that ρ8 < ∞ and that the hypothesis (H1) or (H2) holds. For
1 ≤ p ≤ 8,

lim
N↑∞

ρc 
(CN)

ξ̂ (CN)+ aN
= 1 in Lp( N̂ , P̂c) , (78)

where aN = (N − 1)d−1.

We will first prove the following criterion.

Lemma 6. Property (78) holds if one has, for some 0 < ρ′ < ρ,

lim
N↑∞

Np P̂
(
ξ̂ (CN) ≤ ρ′Nd

)
= 0 . (79)

Proof. We first check that (79) implies that, for some 0 < ρ′′ < ρ′δc,

lim
N↑∞

Np P̂c
(
ξ̂ (CN) ≤ ρ′′Nd

)
= 0 . (80)

If δc = 1, this is clearly true so let us suppose that 0 < δc < 1. Set δ̃c = 1 − δc. If Ckj
denotes the binomial coefficient, we have
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P̂c
(
ξ̂ (CN) ≤ ρ′′Nd

)
=

[ρ′′Nd ]∑

k=0

P̂(ξ̂ (CN) = k)

+
∞∑

k=[ρ′′Nd ]+1

P̂(ξ̂ (CN) = k)
k∑

j=k−[ρ′′Nd ]

Ckj δ̃
j
c δ
k−j
c

≤
[ρ′Nd ]∑

k=0

P̂(ξ̂ (CN) = k)+ sup
k>[ρ′Nd ]

k∑

j=k−[ρ′′Nd ]

Ckj δ̃
j
c δ
k−j
c

≤ P̂
(
ξ̂ (CN) ≤ ρ′Nd

)
+exp(−c[ρ′Nd ](δc − ρ′′/ρ′)2),

where the last inequality, given ρ′′ < δcρ
′, follows from a standard large deviation type

estimate for Bernoulli variables with some c > 0. Multiplying byNp, (79) thus implies
(80).

Now set AN = {ξ̂ : ξ̂ (CN) ≤ ρ′′Nd}. Then, for some c′ > 0 independent of N ,

fN(ξ̂ ) :=
∣
∣
∣
∣
ρc 
(CN)

ξ̂ (CN)+ aN
− 1

∣
∣
∣
∣

p

≤ c′ ρpc Np χAN (ξ̂ ) + fN(ξ̂ ) χAcN
(ξ̂ ) .

Integrating w.r.t. P̂c, the first term vanishes in the limit N ↑ ∞ because of (80). For
the second, let us first note that Lemma 4 implies that limN↑0 fNχAcN

= 0 holds P̂c-a.s.
Furthermore, |fNχAcN | ≤ c′′ < ∞ uniformly in N so that the dominated convergence
theorem assures that limN↑0 EP̂c (fNχAcN

) = 0. ��

Proof of Proposition 9. Due to Lemma 6 we only need to show that (79) is satisfied for
some ρ′ < ρ. This is trivially true if (H1) holds. Hence let us consider the case where
(H2) holds. This implies

∣
∣EP̂ (f |Fr2)− EP̂ (f )

∣
∣ ≤ ‖f ‖∞ rd1 rd−1

2 h(r2 − r1) , P̂-a.s. , (81)

where f is a bounded FCr1 –measurable function.

Let Ci1 denote the unit cube centered at i ∈ Z
d and Či1 be the interior of Ci1. Let

IN ⊂ Z
d be such that CN = ∪i∈INCi1 and Či1 ∩ Čj1 = ∅ if i �= j . Hence |IN | = Nd .

Given M > 0, set Ỹi (ξ̂ ) = min{ξ̂ (Či1), M2 } and Yi = Ỹi − EP̂ (Ỹi). Note that Yi
is centered, FCi1 –measurable and ‖Yi‖∞ ≤ M . We choose M large enough so that

ρ̃ := EP̂ (Ỹi) > ρ′ which is possible because limM↑∞ EP̂ (Ỹi) = ρ > ρ′. Now

{
ξ̂ (CN) ≤ ρ′Nd

}
⊂





∑

i∈IN
Ỹi(ξ̂ ) ≤ ρ′Nd





⊂





∣
∣
∑

i∈IN
Yi(ξ̂ )

∣
∣ ≥ (ρ̃ − ρ′)Nd





.

Hence it is sufficient to show that, for a > 0,

lim
N↑∞

Np P̂




∣
∣
∑

i∈IN
Yi
∣
∣ ≥ aNd



 = 0 . (82)
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By the Chebyshev inequality, one has for any even q ∈ N:

P̂




∣
∣
∑

i∈IN
Yi
∣
∣ ≥ aNd



 ≤ 1

aq Ndq

∑

i1,... ,iq∈IN
EP̂

(
Yi1 · · ·Yiq

)
. (83)

We will now bound the sum in the r.h.s. of (83). Let us define the norm‖x‖ = max{|x(k)| :
1 ≤ k ≤ d} on R

d (recall that x(k) is the kth component of x) and introduce the notation
i = (i1, . . . , iq), IN = (IN)q , and rj (i) = min{‖ij − ik‖ : k = 1, . . . , q, k �= j}. If
r1(i) = · · · = rN(i) = 0, i.e., if each point appears at least twice in (i1, . . . , iq), then
use the bound EP̂ (Yi1 · · ·Yiq ) ≤ Mq . The number of i ∈ IN satisfying this property is
at most cNdq/2 (here and below c is a varying constant depending only on d and on q).

Suppose now that, say, r1(i) = r ≥ 1. Then the open cubes Či21 , . . . , Č
iq
1 are contained

in A := R
d − Ci12r−1 and thus Yi2 , . . . , Yiq are FA-measurable. Using the conditional

expectation, (81) and the fact that Yi1 is centered and ‖Yij ‖∞ ≤ M ,

EP̂ (Yi1 · · ·Yiq ) ≤ Mq−1 EP̂
(∣
∣EP̂ (Yi1 |FA)

∣
∣
) ≤ Mq h(2r − 2) (2r − 1)d−1 .

Note that EP̂ (Yi1 · · ·Yiq ) is invariant under permutations of the indices i1, . . . , iq . Hence

∑

i∈IN
EP̂ (Yi1 · · ·Yiq ) ≤ c

N∑

r=0

∑

i∈KN(r)
EP̂ (Yi1 · · ·Yiq )

≤ cMqNdq/2 + cMq
N∑

r=1

h(2r − 2) (2r − 1)d−1 |KN(r)| ,

where KN(r) = {i ∈ IN : r1(i) = r, r2(i) ≤ r, . . . , rq(i) ≤ r}. One has

|KN(r)| ≤ c Ndq/2rdq/2−1 . (84)

In fact, on the set of points i1, . . . , iq (treated as distinguishable) let us define a graph
structure by connecting two points i ∼ j with a bond whenever ‖i − j‖ ≤ r . We call
G(i) the resulting graph. Note that each connected component of G(i) has cardinality at
least 2 whenever i ∈ KN(r), therefore G(i) has at most q/2 connected components. We
claim that, given 1 ≤ l ≤ q/2,

∣
∣{i ∈ KN(r) : G(i) has l connected components}∣∣ ≤ c(N/r)dlrdq−1 . (85)

In order to prove (85), suppose that the connected component containing i1 has car-
dinality k1, while the other components have cardinality k2, . . . , kl respectively. Each
component can be built by first choosing one of its points in IN (there are Nd possible
choices), then its neighboring points w.r.t. ∼ (for each such neighboring point there are
at most crd possible choices) and then iteratively adding neighboring points w.r.t. ∼.
Therefore, the j th component can be built in at most cNdrd(kj−1) ways. If j = 1, since
i1 has a neighboring point at distance exactly r , the upper bound can be improved by
cNdrd−1+d(k1−2). Summing over all possible k1, . . . , kl such that k1 + · · · + kl = q,
one gets (85). Since r ≤ N , (85) implies

|KN(r)| ≤
q/2∑

l=1

c(N/r)dlrdq−1 ≤ c(N/r)dq/2rdq−1 ,
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thus concluding the proof of (84). It implies

∑

i∈IN
EP̂ (Yi1 · · ·Yiq ) ≤ MqNdq/2

(

1+ c′
∞∑

r=1

h(2r − 2) rdq/2+d−2

)

. (86)

Provided that dq > 2p and the sum over r converges, that is, if dq/2 − d ≤ 8, we
get the result (79) by combining (82), (83), and (86). Choosing for q the smallest even
integer larger than 16/d, (79) is true for 1 ≤ p ≤ 8 and dq/2− d ≤ 8 as required. ��

6.2. Domination. Due to Proposition 9, we may apply the results of Sect. 5 so that
combining with Proposition 3,

D ≥ ν([−Ec,Ec]) e−rc−4βEc lim sup
N→∞

EP̂c



8N2

|V ξ̂N |
G
ξ̂
N



 . (87)

In order to bound the conductance Gξ̂N for N  rc from below, we will discretize the
space R

d using cubes of appropriate size and spacing. Given r2 ≥ r1 > 0, let us then
consider the following functions on N̂ :

σj (ξ̂ ) := χ
(
ξ̂ (Cr1 + r2 j) > 0

)
, j ∈ Z

d . (88)

They form a random field� = (σj )j∈Zd on the probability space (N̂ , P̂c). If P̂ is a PPP,
the σj are independent random variables. For a process with finite range correlations,
this independence can also be assured by an adequate choice of r1 and r2, but in general
the σj are correlated. The side length r1 and spacing r2 are going to be chosen of order
O(rc) in such a way that all points of neighboring cubes have an euclidean distance less

than rc and they are thus connected by an edge of the graph (V ξ̂N , E
ξ̂

N ).
Next note that the σj take values in {0, 1}. We shall consider the associated site per-

colation problem with bonds between nearest neighbors only [Gri]. For this purpose,
we shall compare� with a random field Zp = (zpj )j∈Zd of independent and identically

distributed random variables with Prob(zpj = 1) = p and Prob(zpj = 0) = 1−p. In this
independent case, it is well-known that there is a critical probability pc(d) ∈ (0, 1) such
that, if p > pc(d), there is almost surely a unique infinite cluster, while for p < pc(d)

there is almost surely none [Gri]. We will need somewhat finer estimates for the super-
critical regime. Let |.| denote the Euclidean norm in R

d . A left-right crossing (LR-cross-
ing) with length k−1 ofC2N of a configuration (zpj )j∈Zd is a sequence of distinct points

y1, . . . , yk in C2N ∩Z
d such that |yi − yi+1| = 1 for 1 ≤ i < k, zpyi = 1 for 1 ≤ i ≤ k,

y
(1)
1 = −N , y(1)k = N , −N < y

(1)
i < N for 1 < i < k, and finally y(s)i = y(s)j for any

s ≥ 3 and for 1 ≤ i < j ≤ k. Two crossings are called disjoint if all the involved yj ’s are
distinct. In the same way, one defines disjoint LR-crossings for (σj )j∈Zd . Note that this
definition of LR-crossings for d ≥ 3 uses LR-crossings in 2-dimensional slices only.
For the random field Zp, the techniques of [Gri, Sect. 2.6 and 11.3] transposed to site
percolation imply that, if p > pc(2), there are positive constants a = a(p), b = b(p),
and c = c(p) such that for all N ∈ N+,

Prob
(
Zp has less than bNd−1 disjoint LR–crossings in C2N

) ≤ c e−a N . (89)
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In order to transpose this result on Zp to one for �, we will use the concept of
stochastic dominance [Gri, Sect. 7.4]. One writes � ≥st Z

p whenever

EP̂c (f (�)) ≥ EProb(f (Z
p)) , (90)

for any bounded, increasing, measurable function f : {0, 1}Zd → R (recall that a
function is increasing if f ((zj )j∈Zd ) ≥ f ((z′j )j∈Zd ) whenever zj ≥ z′j for all j ∈ Z

d ).
As the event on the l.h.s. of (89) is decreasing, � ≥st Z

p with p > pc(2) implies that
for all N ∈ N+,

P̂c
(
(σj )j∈Zd has less than bNd−1 disjoint LR–crossings in C2N

) ≤ c e−a N . (91)

Moreover, let us call the configurations ξ̂ in the set on the l.h.s. N -bad, those in the
complementary setN -good. For everyN–good configuration ξ̂ , let us fix a set of at least
bNd−1 disjoint LR–crossings in C2N for

(
σj (ξ̂ )

)
j∈Zd and denote it CN(ξ̂ ). Given an

LR–crossing γ in C2N , we write L(γ ) for its length. Note that, since the LR–crossings
are self–avoiding, L(γ ) = |supp(γ )| − 1 for all γ ∈ CN(ξ̂ ). Moreover, since paths in
CN(ξ̂ ) are disjoint and have support in C2N ∩ Z

d ,
∑
γ∈CN(ξ̂ ) |supp(γ )| ≤ (2N + 1)d .

The above estimates imply that
∑
γ∈CN(ξ̂ ) L(γ ) ≤ (2N + 1)d ≤ (4N)d . In particular,

due to the Jensen inequality, for any N–good configuration ξ̂ ,

∑

γ∈CN(ξ̂ )

1

L(γ )
≥ |CN(ξ̂ )|2

∑
γ∈CN(ξ̂ ) L(γ )

≥ b2Nd−2

4d
. (92)

This will allow us to prove a lower bound on (87). Hence we need the following criterion
for domination.

Lemma 7. � ≥st Z
p holds with r1 = r , r2 = 2r if P̂ and r > 0 satisfy the following:

There exists ρ′ > 0 such that

rd ν([−Ec,Ec]) ≥ − ln(p/2)

ρ′
, (93)

and

P̂
(
ξ̂ (Cr) < ρ′rd

∣
∣F2 r

)
≤ 1 − 3p

2
, P̂–a.s. (94)

Proof. The proof is based on the following criterion [Gri, Sect. 7.4]: if for any finite sub-
set J of Z

d , i ∈ Z
d \ J and zj ∈ {0, 1} for j ∈ J satisfying P̂c(σj = zj ∀j ∈ J ) > 0,

one has

P̂c(σi = 1 | σj = zj ∀ j ∈ J ) ≥ p , (95)

then � ≥st Z
p. Hence let J, i, zj be as above and set δ̃c := 1− δc and J0 := {j ∈ J :

zj = 0} as well as J1 := {j ∈ J : zj = 1}. Moreover, given k ∈ N
J0 and s ∈ N

J1+ , let

W(k, s) := { ξ̂ ∈ N̂ : ξ̂ (Cr + 2rj) = kj∀j ∈ J0, ξ̂ (Cr + 2rj) = sj∀j ∈ J1
}
.
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Then

P̂c(σi = 0 | σj = zj∀j ∈ J )

=
∑
k∈NJ0

∑

s∈NJ1+

∑
n∈N P̂(ξ̂ (Cr + 2ri) = n , W(k, s)) δ̃nc

∏
j∈J0

δ̃
kj
c

∏
j∈J1

(1− δ̃sjc )
∑
k∈NJ0

∑

s∈NJ1+
P̂(W(k, s)) ∏j∈J0

δ̃
kj
c

∏
j∈J1

(1− δ̃sjc )
.

Within this, we can, moreover, replace

P̂
(
ξ̂ (Cr + 2ri) = n , W(k, s)) = P̂

(
ξ̂ (Cr + 2ri) = n |W(k, s)) P̂

(
W(k, s)

)
.

Finally, note thatW(k, s) ∈ FA, where A = R
d \ (C2r + 2ri

)
. As δ̃c ≤ e−δc , we obtain

the following bound

∑

n∈N
P̂
(
ξ̂ (Cr + 2ri)=n |W(k, s))δ̃nc ≤ P̂

(
ξ̂ (Cr + 2ri) < ρ′rd |W(k, s)) + e−δcρ

′rd .

Due to the stationarity of P̂ , (93) and (94) imply (95). ��

6.3. Proof of Theorem 1(ii). We fix p > pc(2) and ρ′ < ρ. Then, given Ec, we choose
rc such that (93) is satisfied, i.e. rc = c(Eα+1

c )−1/d for some constant c. As rc ↑ ∞ in
the limit of low temperature, we can next check that the condition (94) also holds. This
is trivial for a process with a uniform lower bound (4) on the point density. For a mixing
point process satisfying (5), one has

P̂
(
ξ̂ (Cr) < ρ′rd

∣
∣F2r

)
≤ P̂

(
ξ̂ (Cr) < ρ′rd

)
+ rd (2r)d−1 h(r) , P̂ − a.s.

Due to the hypothesis on h, the second term converges to 0 in the limit r ↑ ∞. If ρ′ < ρ,
the first one can be bounded by the Chebychev inequality:

P̂(ξ̂ (Cr) ≤ ρ′ rd) ≤ P̂
(∣
∣
∣
∣
∣

ξ̂ (Cr)


(Cr)
− ρ

∣
∣
∣
∣
∣
> ρ − ρ′

)

≤ 1

ρ − ρ′
∫

P̂(dξ)
∣
∣
∣
∣
∣

ξ̂ (Cr)


(Cr)
− ρ

∣
∣
∣
∣
∣
.

By Lemma 4, the expression on the r.h.s. can be made arbitrarily small by choosing r
sufficiently large, thus implying that (94) is satisfied for r sufficiently large. In conclu-
sion, due to Lemma 7, (91) holds for r large enough, i.e. temperature low enough. We
fix such a value r satisfying (91) and call it rp.

Consider the variables (σj )j∈Zd defined for r1 = rp, r2 = 2rp and choose rc =
(d+8)

1
2 rp. This assures that, if neighboring sites j and j ′ in Z

d haveσj (ξ̂ ) = σj ′(ξ̂ ) = 1,
thenCrp+2jrp andCrp+2j ′rp contain each a point and these points are separated by a

distance less than rc. Two neighboring sites j and j ′ in Z
d such that σj (ξ̂ ) = σj ′(ξ̂ ) = 1

define a bond of the site percolation problem. To such a bond one can associate (at least)
two points x ∈ supp ξ̂ ∩ (Crp + 2jrp) and y ∈ supp ξ̂ ∩ (Crp + 2j ′rp) separated by a
distance less than rc. Given N integer, we define

N̂ := max
{
n ∈ N : Crp + 2rpj ⊂ C2[rpN ], ∀j ∈ C2n ∩ Z

d
}
.
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Note that N̂ = O(N). If j, j ′ ∈ C2N̂ ∩Z
d , then the above associated points x and y are

linked by an edge of the graph (V ξ̂[rpN ], E
ξ̂

[rpN ]) defined in Sect. 5.1. Each LR-crossing
of C2N̂ for the site percolation problem gives in a natural way a connected path of edges

of the graph (V ξ̂[rpN ], E
ξ̂

[rpN ]) which connects the boundary faces �±N .

For a N̂–good configuration ξ̂ , we now bound the conductanceGξ̂[rpN ] from below. For

this purpose, let us consider the random resistor network with verticesQξ̂
[rpN ]∪{�̂+N, �̂−N },

where unit conductances are put on all edges in E ξ̂[rpN ] with vertices inQξ̂
[rpN ] as well as

between the two added boundary points �̂±N and all points of Bξ̂±[rpN ]. This new network
is obtained from the one of Sect. 5.1 upon placing superconducting wires between all
vertices of �+[rpN ] and �−[rpN ] so that they can be identified with a single point �̂+N and

�̂−N . The conductance gξ̂N of this new network (defined as the current flowing from �̂−N
to �̂+N when a unit potential difference is imposed between these two points) is precisely

equal toGξ̂[rpN ] because all points of �±[rpN ] have the same potential (0 or 1 respectively)

and each has links to all points of Bξ̂±[rpN ] with equal conductances summing up to 1.

In order to bound gξ̂N from below, we now invoke Rayleigh’s monotonicity law which
states that eliminating links (i.e. conductances) from the network always lowers its con-
ductance.

For a given N̂ -good configuration ξ̂ , we cut all links but those belonging to the family
of disjoint paths associated to C

N̂
(ξ̂ ). Each of these paths γ connecting �̂+N and �̂−N is

self-avoiding and hence has a conductance bounded below by 1/L(γ ). As all the paths

of C
N̂
(ξ̂ ) are disjoint and they are connecting �̂+N and �̂−N in parallel, gξ̂N is the sum of

the conductances of all paths and it follows from (92) that gξ̂N ≥ c(b)Nd−2 for some
positive constant c(b) depending on b. We therefore deduce that

EP̂c






[rpN ]2

|V ξ̂[rpN ]|
G
ξ̂
[rpN ]




 ≥ c(b) EP̂c






[rpN ]2

|V ξ̂[rpN ]|
Nd−2χ(ξ̂ is N̂–good )




 .

Due to (91) and Proposition 9 the r.h.s. converges to a positive value.
Combining this with the estimate (87) we obtain

D ≥ C ν([−Ec,Ec]) e−rc−4βEc ≥ C′ E1+α
c exp(−cE−

α+1
d

c − 4βEc) ,

whereC andC′ are positive constants. Optimizing the exponent leads toEc = c′ β−
d

α+1+d
which completes the proof. ��

A. Proof that the Random Walk is Well-Defined

Proposition 10. Let P be ergodic with ρ2 <∞. Then for P0–almost all ξ ∈ N0 and for
all x ∈ ξ̂ , there exists a unique probability measure Pξx on�ξ = D([0,∞), supp(ξ̂ )) of



58 A. Faggionato, H. Schulz-Baldes, D. Spehner

a continuous–time random walk starting at x whose transition probabilities pξt (y|x) :=
Pξx(X

ξ
s+t = y|Xξs = x), x, y ∈ ξ̂ , t ≥ 0, s ≥ 0 satisfy the infinitesimal conditions (C1)

and (C2).

Proof. The uniqueness follows from [Bre, Chap. 15]. In order to prove existence, due
to the construction described in Sect. 3.2, we only need to prove (27) for P0–almost all
ξ and for any x ∈ ξ̂ . According to [Bre, Prop. 15.43], condition (27) is implied by the
following one:

P̃ξx
( ∞∑

n=0

1

λ
X̃
ξ
n
(ξ)
= ∞

)
= 1 . (96)

Due to the identity

P̃ξ0
( ∞∑

n=1

1

λ
X̃
ξ
n
(ξ)
= ∞ ∣

∣ X̃
ξ
1 = x

)
= P̃ξx

( ∞∑

n=0

1

λ
X̃
ξ
n
(ξ)
= ∞

)
, ∀ x ∈ ξ̂ ,

the proof will be completed if we can show (96) for x = 0 and P0–almost all ξ and, in
particular, if we can show

P̃
( ∞∑

n=0

1

λ0(ξn)
= ∞) =

∫

Q0(dξ) P̃ξ0
( ∞∑

n=0

1

λ
X̃
ξ
n
(ξ)
= ∞

)
= 1 ,

where the distributions P̃, P̃ξ0 , and Q0 are defined in Sect. 3.3. Due to Proposition 2, P̃
is ergodic and therefore, according to ergodic theory (see [Ros, Chap. IV]),

lim
N↑∞

1

N

N∑

n=0

1

λ0(ξn)
= EQ0

( 1

λ0

)
= 1

EP0(λ0)
, P̃-almost surely,

thus allowing to conclude the proof. ��
Remark 3. Explosions are excluded if sup

x∈ξ̂ λx(ξ) <∞ (in such a case (96) is always
true), but this simple criterion is typically not satisfied in our case. For instance, for a
PPP

sup
x∈ξ̂

λx(ξ) ≥ e−4β sup
x∈ξ̂

∑

y∈ξ̂ ,|y−x|≤1

e−|x−y| ≥ e−4β−1 sup
x∈ξ̂

ξ̂ (C1 + x) = ∞, P0-a.s.

B. Proof of Lemma 1

Note that the statements (ii) and (iii) of Lemma 1 are proved in [FKAS, Corollary 1.2.11
and Theorem 1.3.9] in dimension d = 1. The proof below is valid for any dimension d.

Proof of Lemma 1. (i) Let h(ξ, ξ ′) := k(ξ, ξ ′)− k(ξ ′, ξ). By the definition (11) of the
Palm distribution P0, ∀N > 0, ∀A ∈ B(Rd) and for any non negative measurable
function f ,
∫

P0(dξ)

∫

A

ξ̂(dx)f (ξ, Sxξ)= 1

ρNd

∫

P(dξ)
∫

CN

ξ̂ (dy)

∫

A+y
ξ̂ (dx)f (Syξ, Sxξ) .

(97)
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The antisymmetry of h(ξ, ξ ′) and the identity above imply
∫

P0(dξ)

∫

Rd
ξ̂ (dx) h(ξ, Sxξ)= 1

ρNd

∫

P(dξ)
∫

CN

ξ̂ (dy)

∫

Rd\CN
ξ̂ (dx)h(Syξ, Sxξ).(98)

Let us split the last integral into two integrals over R
d \CN+√N and over CN+√N \CN .

Using (97) again,

1

ρNd

∣
∣
∣
∣
∣

∫

P(dξ)
∫

CN

ξ̂ (dy)

∫

Rd\C
N+√N

ξ̂ (dx)h(Syξ, Sxξ)

∣
∣
∣
∣
∣

≤
∫

P0(dξ)

∫

Rd\C√
N

ξ̂ (dx)
(|k(ξ, Sxξ)| + |k(Sxξ, ξ)|

)
,

which converges to zero as N →∞ by the dominated convergence theorem. The same
holds for

1

ρNd

∣
∣
∣
∣
∣

∫

P(dξ)
∫

CN

ξ̂ (dy)

∫

C
N+√N\CN

ξ̂ (dx) h(Syξ, Sxξ)

∣
∣
∣
∣
∣
,

since, due to (97), it can be bounded by

1

ρNd

∫

P(dξ)
∫

C
N+√N\CN

ξ̂ (dx)

∫

Rd
ξ̂ (dy)

(|k(Syξ, Sxξ)| + |k(Sxξ, Syξ)|
)

= (N +√N)d −Nd

Nd

∫

P0(dξ)

∫

Rd
ξ̂ (dy)

(|k(Syξ, ξ)| + |k(ξ, Syξ)|
)
.

Letting N →∞ in (98) leads to the result. (ii) Since � ∈ B(N ) is translation invariant,
one has χ�0(Sxξ) = χ�(ξ) for all ξ ∈ N and x ∈ ξ̂ . The above remark together with
(11) gives

P0(�0) = 1

ρ

∫

P(dξ)
∫

C1

ξ̂ (dx)χ�0(Sxξ) =
1

ρ

∫

�

P(dξ) ξ̂ (C1) .

Comparing with (1), this yields P0(�0) = 1 if P(�) = 1. Reciprocally, always due to
(1), if P0(�0) = 1, one gets ξ̂ (C1) = 0 for P–almost all ξ ∈ N \ �, and by translation
invariance ξ = 0 for P–almost all ξ ∈ N \ �, thus implying that P(�) = 1. (iii) Let us
suppose that P0(A) = P0(B) > 0 and set� :=⋃x∈Rd SxB. This is a translation-invari-
ant Borel subset of N (see Lemma 8) andB ⊂ �∩N0 ⊂ A. In particular, P(�) ∈ {0, 1}
by the ergodicity of P . Since χB(Syξ) ≤ χ�(ξ) for all ξ ∈ N and y ∈ R

d , it follows
from (11) that

P0(B) = 1

ρ

∫

N
P(dξ)

∫

C1

ξ̂ (dy) χB(Syξ) ≤ 1

ρ

∫

�

P(ξ)ξ̂ (C1) .

Therefore, P(�) = 0 would imply that P0(B) = 0, in contradiction with our assump-
tion. Thus P(�) = 1. But � ∩N0 ⊂ A, therefore the statement follows from (ii). (iv)
The thesis follows by observing that (11) implies

EP0

( k∏

j=1

ξ̂ (Aj )
)=1

ρ

∫

N
P(dξ)

∫

C1

ξ̂ (dx)

k∏

j=1

ξ̂ (Aj+x)≤ 1

ρ

∫

N
P(dξ)ξ̂ (C1)

k∏

j=1

ξ̂ (Ãj )
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and by applying the estimate a1 · · · ak+1 ≤ c(k+1) (ak+1
1 +· · ·+ak+1

k+1), a1, . . . , ak+1 ≥
0. ��
Lemma 8. Let A ∈ B(N0). Then

⋃
x∈Rd SxA ∈ B(N ).

Proof. Let us introduce the following lexicographic ordering on R
d : x ≺ y if and only

if either |x| < |y| or |x| = |y| and there is k, 1 ≤ k ≤ d, such that x(k) < y(k) and
x(l) = y(l) for l < k (here x(k) is the kth component of the vector x). Given ξ̂ ∈ N̂ , one
can then order the support of ξ̂ according to ≺:

supp(ξ̂ ) =
{
{y1(ξ̂ ), y2(ξ̂ ), . . . , yN(ξ̂ )} if N := ξ̂ (Rd) <∞ ,

{yj (ξ̂ )}j∈N+ otherwise ,

where yj ≺ yk whenever j < k. For any n ∈ N, let xn : N̂ → R
d then be defined as

xn(ξ̂ ) =
{
yn(ξ̂ ) if n ≤ ξ̂ (Rd) ,
yN(ξ̂ ) if n > N := ξ̂ (Rd) .

Using an adequate family of finite disjoint covers of R
d and the fact that ξ̂ ∈ N̂ �→ ξ̂ (B)

is a Borel function for every Borel set B ⊂ R
d , one can verify that xn is a Borel function

for each n. Moreover, supp(ξ̂ ) = {xn(ξ̂ ) : n ∈ N} for all ξ̂ ∈ N̂ .
Due to the definition of the Borel sets in N and N̂ , the map π : N → N̂ given by

π(ξ) = ξ̂ is Borel, and by [MKM, Sect. 6.1] the function F : R
d ×N → N given by

F(x, ξ) = Sxξ is even continuous. Hence we conclude that

Hn : N → N0 , Hn(ξ) := F
(
xn(ξ̂ ), ξ

) = S
xn(ξ̂ )

ξ ,

is a Borel function. Its restriction Ĥn : N0 → N0 is then also a Borel function. Now
given a Borel subset A of N0, we conclude that �(A) := ⋃∞

n=1 Ĥ
−1
n (A) is a Borel

subset in N0. One can check that

�(A) = {ξ : ξ = Sxη for some η ∈ A and x ∈ η̂ }.
Since N0 is a Borel subset of N , it follows that �(A) is a Borel subset of N as is
H−1

1

(
�(A)

)
since H1 is a Borel function. The identity

H−1
1

(
�(A)

) =
⋃

x∈Rd
SxA ,

now completes the proof. ��

C. Proof of Proposition 1

Proof of Proposition 1. Due to the construction of the dynamics given in Sect. 3.2,

EP0 EPξ0

(
|Xξt |γ

)
= EP0 EP̃ξ0⊗Q

( |X̃ξ
n
ξ
∗(t)
|γ ) .
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Let p, q > 1 be such that 1/p + 1/q = 1. Due to the Hölder inequality,

EP0 EP̃ξ0⊗Q

(|X̃ξ
n
ξ
∗(t)
|γ ) =

∞∑

n=1

EP0 EP̃ξ0⊗Q

(
|X̃ξn|γ χ

(
n
ξ
∗(t) ≥ 1

)
χ
(
n
ξ
∗(t) = n

))

≤
∞∑

n=1

(

EP0 EP̃ξ0⊗Q

(
|X̃ξn|γ qχ

(
n
ξ
∗(t) ≥ 1

))
) 1
q
(

EP0

(
P̃ξ0 ⊗Q (n

ξ
∗(t) = n)

)
) 1
p

.

Clearly, nξ∗(t) ≥ 1 means T ξ
0,X̃ξ0

≤ t . It then follows from the estimate 1 − e−u ≤ u,

u ≥ 0, that

EP̃ξ0⊗Q

(|X̃ξn|γ q χ
(
n
ξ
∗(t) ≥ 1

)) = (1− e−λ0(ξ)t
)
EP̃ξ0

(|X̃ξn|γ q
)≤λ0(ξ)t EP̃ξ0

(|X̃ξn|γ q
)
.

(99)

We then obtain

EP0 EPξ0

(|Xξt |γ
)≤C

∞∑

n=1

(∫

Q0(dξ)EP̃ξ0

(
|X̃ξn|γ q

))1/q

(∫

P0(dξ)P̃
ξ
0 ⊗Q

(
n
ξ
∗(t)=n

))1/p

, (100)

with C = [t EP0(λ0)]1/q . We claim that there is a (time-independent) constant C′ > 0
such that

∫

Q0(dξ)EP̃ξ0

(|X̃ξn|γ q
) ≤ C′ nγ q . (101)

To show this, let us note first that, given X̃ξ0 = 0, by another application of the Hölder
inequality,

∣
∣X̃ξn

∣
∣γ q =

∣
∣
∣
∣

n−1∑

m=0

(
X̃
ξ
m+1 − X̃ξm

)
∣
∣
∣
∣

γ q

≤ nγ q−1
n−1∑

m=0

∣
∣X̃

ξ
m+1 − X̃ξm

∣
∣γ q ,

where it has been assumed that γ q > 1. One can derive from the stationarity of P̃ and
Remark 1 that

∫

Q0(dξ)EP̃ξ0

(∣
∣X̃

ξ
n+1 − X̃ξn

∣
∣γ q

) =
∫

Q0(dξ)EP̃ξ0

(∣
∣X̃

ξ
1

∣
∣γ q

)
:= C′

for any n ∈ N. One concludes the proof of (101) by checking that C′ is finite. Actually,
by (26), EP0(λ0) C

′ is equal to
∫

P0(dξ)

∫

ξ̂ (dx) c0,x(ξ)|x|γ q ≤ c

∫

P0(dξ)

∫

ξ̂ (dx) e−
|x|
2 ,

for a suitable constant c. The r.h.s. can be bounded by means of Lemma 1(iv) and the
same argument leading to Lemma 2.

In view of (100) and (101), the proposition will be proved if we can show that the
expectation EP0(P̃

ξ
0 ⊗Q(nξ∗(t) = n)) converges to zero more rapidly than n−(γ+1)p as
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n→∞. Let us fix 0 < α < 1. We will show that, if l > 0 is such that EP0(λ
l+1
0 ) <∞,

then

EP0

(
P̃ξ0 ⊗Q

(
n
ξ
∗(t) = n

)) = O(n−αl) . (102)

To this end, let us first make a general observation. Let λ > 0 and let T1, . . . , Tk be
independent exponential variables on some probability space (�,µ), with parameters
λ1, . . . , λk ≤ λ. Define the random variables T ′j := (λj /λ)Tj , j = 1, . . . , k. These are
independent identically distributed exponential variables with parameter λ. As T ′j ≤ Tj ,
this shows that

µ
(
T1 + · · · + Tk ≤ t

) ≤ µ
(
T ′1 + · · · + T ′k ≤ t

) = e−λt
∞∑

j=0

(λt)j+k

(j + k)! ≤
(λt)k

k!
.

(103)

In order to proceed, for all ξ ∈ N0, let us set Bξn := {x ∈ ξ̂ : λx(ξ) ≤ nα
}

as well
as

Aξn :=
{(
X̃
ξ
k )k≥0 ∈ �̃ξ : ∃ J ⊂ In , |J | > n

2
, X̃

ξ
j ∈ Bξn ∀ j ∈ J

}
,

where In := {0, . . . , n − 1} and |J | is the cardinality of J . We write P̃ξ0 ⊗ Q
(
n
ξ
∗(t) =

n
) = gn(ξ)+ hn(ξ) with

gn(ξ) := P̃ξ0 ⊗Q
({
n
ξ
∗(t) = n

} ∩ Aξn
)
, hn(ξ) := P̃ξ0 ⊗Q

({
n
ξ
∗(t) = n

} ∩ (Aξn)c
)
.

We first estimate gn. Obviously {nξ∗(t) = n} is contained in {∑j∈J T
ξ

j,X̃
ξ
j

≤ t}. As a

result,

gn(ξ) ≤
∑

J⊂In,|J |>n/2

∑

x0,... ,xn−1∈ξ̂
χ
(
xj ∈ Bξn ∀ j ∈ J

)
χ
(
xi /∈ Bξn ∀ i ∈ In \ J

)

P̃ξ0
(
X̃
ξ
0 = x0, . . . , X̃

ξ
n−1 = xn−1

)
Q
(∑

j∈J
T
ξ
j,xj
≤ t

)

≤ max
k=[n/2]+1,... ,n−1

{ (nα t)k

k!

}
.

Thanks to the Stirling formula k! ∼ kke−k√2πk as k→∞, the last expression can
be bounded by a constant times (2 e t)n/2 n−n(1−α)/2 and is thus exponentially small.
We now turn to EP0(hn), n ≥ 1. Clearly,

P̃ξ0
((
Aξn
)c
)
≤2

n
EP̃ξ0

(
χ
(
X̃
ξ
0 /∈ Bξn

)+· · ·+χ(X̃ξn−1 /∈ Bξn
))=2

n

n−1∑

m=0

EP̃ξ

(
λ0(ξm) > nα

)
.
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By Proposition 2 and invoking Chebyshev’s inequality, one obtains for any l > 0,

EP0

(
hn
) ≤

∫

P0(dξ)P̃
ξ
0 ⊗Q

({
n
ξ
∗(t) ≥ 1

} ∩ (Aξn
)c
)
≤ t

∫

P0(dξ) λ0(ξ)P̃
ξ
0

((
Aξn
)c
)

≤ 2t

n

n−1∑

m=0

∫

P0(dξ) λ0(ξ)EP̃ξ

(
λ0(ξm) > nα

) = 2t EP0

(
λ0 χ(λ0 > nα)

)

≤ 2t

nαl
EP0

(
λl+1

0

)
,

where the second inequality follows from the same argument leading to (99) and the
equality follows from the stationarity of P̃. This proves (102). We may now choose
p = α−1 > 1 arbitrarily close to 1 so that γ q > 1 and such that one may take for l the
smallest integer strictly greater than γ + 1. For such a choice the sum (100) converges.
We can now invoke Lemma 2 to get the result. ��
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