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Outlines

o Open quantum systems
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Examples of Open Quantum Systems

1. Atom coupled to the electromagnetic field.

E.
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2. Macroscopic body coupled to its environment
— decoherence effects: quantum — classical.

G

3. Electrons in solids coupled to phonons
— (energy) dissipation and decoherence in electronic transport.
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Examples of Open Quantum Systems (2)

4. Electromagnetic field in an optical cavity crossed by an atomic beam
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Micromaser experiments in Walther’'s and Haroche’s groups
(Munich, Paris)

* Rydberg atoms enter one by one the cavity in excited state |¢)

¢ an atomic transition e — ¢ is in resonance with one mode of the
field in the cavity = two-level atoms with states |g), |e)

¢ a detector measures the state of each atom leaving the cavity.
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System coupled to a bath
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BATH

Evolution operator of the total system ‘S+B’:

U(t) — ¢~ W(Hs+Hp+Hin)

Initial density matrix: psyp = ps @ pp  (no coupling at ¢ < 0)

Reduced density matrix of ‘S": pg(t) = (UT( )ps+e U(1))

Usip) = 0)@|¢) — UMD[Tsin) =) cilt)|vy) @ ¢;)

J
\ . 7
TV

entangled state

ps = |V) (Y| — ps(t) :Z [c; ()17 ;) (5]

~

impure state
Center for Nonlinear Phenomena and Complex Systems, Bruxelles, July 2005 — p. 6



Properties of the bath

e contains infinitely many particles (thermodynamic limit)

e initially at thermal equilibrium with temperature 7' = 1/4:

< : > = lim tr(pB : ) ., PB = Zéle_ﬁHB

N —o0

o Hiyt=AS B = system-bath interaction Hamiltonian.
The (auto)correlation function

g(T) — <6i7-HB Be—z’THB B> . <B>2
satisfies |g(7)| < C e~/ with a correlation time 7. > 13
o the central limit theorem applies for the sum B = > B,:

(") = exp(—%<Bz> :1:2) (here (B) = 0 for simplicity)

All these properties are satisfied for the free boson bath.

Center for Nonlinear Phenomena and Complex Systems, Bruxelles, July 2005 —p. 7



Times scales

Hs Hamiltonian of the system, eigenenergies Fy < ... < E; < ...

Hint = A S B interaction Hamiltonian
S|s) = sls)

TIME SCALES

1. 7. correlation time of the bath

2. s ~ h(E;11 — E;)~! Heisenberg time of the system
= time scale of the dynamics of the uncoupled system:

ng) (t) — e—itHs 05 eitHs

3. Trel < A? inverse damping rate
= time scale of evolution of the diagonal elements (s|ps(t)|s)
of the density matrix pg(t) in the interaction picture w.r.t. Hg.

4. 14ec decoherence time = time scale of the evolution of the
off-diagonal elements (s|ps(t)|s’)
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Outlines

e Open quantum systems
e Dynamics and asymptotic states
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Dynamics at small times: ¢t < 7., 75
System-bath interaction Hamiltonian: Hjy = A S B
Evolution operator of 'S+B’:

U(t) _ e—z’t(Hs—l—HB—l—)\SB)

—t*X\[Hs+Hp,SB]/2+...

7

—itASBe—itHs e—itHB

p— (& g

~

~1

(sps(t)ls") (s tr(U(t)ps ® ps U'(t))]s")

12

(s] tBr(e—itAsBe—z’tHspS citHs 0B eit,\s’B) ')

—1 s—s’ 0
= (e7METNDBY (51 (1)]s)

los(t) = exp(— g )G OW) o=

(Strunz, Haake & Braun '01)
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Decoherence

(slps(t)]s’) =~ eXp(_%><3|pgo)(t)|S,> » tdec = A\/U%?Z — 5|

Assume Schrodinger cat pure state att = 0:
ps = (afs| +a'(s]) (als) + a'|s"))

with macroscopically distinct states |s) and |s), i.e., |s — '| > 1.

ldec K Tey TS, Trel

decoherence is the fastest process for large enough |s — s'|.
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Dynamics at long times: markovian master equations

e Born-Markov approximation: A7, < 1, 7. < t
Redfield equation:

d
% = —i|Hg, ps] +>\2<[Tps, ST +1[s, pSTTD

T = / dr g(—7) e "THs SetmHs
0
2" perturbation theory + neglect memory effects.

e Adiabatic (or Rotating Wave) approximation: 7g << Tyel

The coarse-grained dynamics on intermediate scale 0t,
Tg < 0t < T, is given by a Lindbad equation

6t
e.g., for the damped harmonic oscillator at finite temperature:
L_=\ya , Li=+ePvyal.
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Quantum trajectories

< = Hg @/‘i\
Hint

BATH MEASUREMENT
APARATUS

SYSTEM

(1) Betweent = 0 and ét, 'S’ and 'B’ interact and get entangled:

Tsip) =) ®|0) — [Tent) = Y _¢;[1h)) @ [0))

J

state of ‘S’ modified

(2) Att = dt,measurementon‘B’ = _
'S’and ‘B’ disentangled

Went) — |9) ® |¢;) , 7 = result of the measurement

Evolution of the wavefunction of ’'S’,

Ys(t)), by repeating (1) & (2)
GIVEN a sequence of measurement results = QUANTUM TRAJECTORY.
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Quantum jump model
(Dalibard-Castin-Mglmer, Carmichael '93)

Idea: describe the system by a random wavefunction [¢(t)) instead
of a density matrix pg.

Random time evolution:

 Ll¥)
[Zonld)]

result of measurements. Proba of a jump m between ¢t and ¢ + Jt:
0pm (t) = | L [1(2))]1% 62

e If no jump between ¢t and ¢t + 6t, [Y(t + dt)) =

occur at random times as

e Quantum jumps |¥)

e_iét(HS+K)|w(t)>
I

K= (29"t LI L, isnot self-adjoint!
p(t) = M|y(t))(1p(t)] , M = mean over the measurement results

— if 0p,,(t) < 1, then p(t) satisfies the Lindblad master equation:

0
512 . S7p + = Z( mpSaLT +[LM7IOSL1TJ>
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Asymptotic states for large t

e The total system ‘S+B’ is isolated:

— the state of ‘S+B’ converges to equilibrium

1
S —6(Hs+HB+Him)>
= rs(t) ZtBl:(e

e The system is driven by some external force:
the state of 'S’ converges to a non equilibrium steady state

with a nonzero (energy, charge,...) current.

e The system is driven by continuous measurements on the
bath:
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Outlines

e Open quantum systems
e Dynamics and asymptotic states
e Quantum trajectories in optical cavities
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Modifi ed micromaser experiment
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e The atoms enter one by one the cavity in either state |g) or |e),

with fluxes 7, and 7., = e_h‘*’/kTrg (1" = temperature of the atoms)

e Each atom interacts during time 7y with the field via the coupling:

Hint = —iA(|g)(e| a’ — |e)(g| a)

e Each atom leaving the cavity first interacts
with a laser field, e.g. via measurement
: « In a
Hy, = —i(Qg){e| — Q*le)g]) /2
rotated basis

then its state is measured by a detector.
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One atom crosses the cavity

State of the total system (‘atom + field’) at the exit of the cavity:
‘\Ijent> — e tTLiL e_iTintHint|¢ﬁ eld> R ‘Z>

[Usielg  initial state of the field
) initial state of the atom

Hy, 71, atom-laser Hamiltonian and interaction time.
State of the total system after the measurement:

‘\Ij/> — |37D]£I eld> & ‘]Z ; |¢1£| eld> —

atom and fi eld disantangled

([ Went)
11 Went) |

17) measured state of the atom.
The atom enters the cavity in |7) and is measured |j) with probability

Pimj = 1i(rg +7e) [ Wen) ||*.
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One atom crosses the cavity (2)

Dimensionless parameters of the problem:

Q Q|7
N = ATint ; e:n_lﬁtan(‘ ‘2L>

(2 = Rabi frequency of the laser.

One must distinguish the 4 cases 7, j = g, €.

Non-perturbative solution:
e.g., for 1 = g, 7 = e (absorption of a photon),

|¢fi/e|d> x e ! (54‘ € COS(W\/%)) Vel , a=a SinC(W\/m)

Weak coupling limit:  |n[y/{aTa) <1 , |¢f>1 |, [ne =1
— the crossing of one atom perturbs weakly the field

iead o (L4+Wooo)|[tsied » Wyoe=€¢ 'a———a'a.
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Many atoms cross the cavity

Weak coupling limit  |n|y/{aTa) <1 , |ef>1 , |nel =1
Coarse-grained field dynamics with time resolution At,

(re +1g) " < At < nTYP(re +rg) 7!

\ 7
"~

time between consecutive atoms

|¢ﬁ eld(t -+ At)> X (1 + ANg_ﬂg Wg—>e + 3 other terms) |¢ﬁ eld(t)>

AN,_. : t atoms entering the cavity in |g) detected in |e) during At.

Quantum state diffusion (It0)

A = [\/ﬂ(ew al — Re(ewaT>t) dwy + ﬁ(e_ie a — Re(e_iQCL)t) dw_

+Re(eal), (fy+ eal +y_e a — 1= _; ks Re(ewaT>t)dt

1

-5 (7 Laat + aTa) dt] [Vt eld())

0 =arge , v+ =rTe4|n|? , dws =real Wiener processes.
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Outlines

Open quantum systems

Dynamics and asymptotic states
Quantum trajectories in optical cavities
Localization towards squeezed states
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Squeezing

()- REPRESENTATION (HUSIMI) Q-REPRESENTATION (HUSIMYI)
initial field state = coherent 5000 atoms crossed the cavity:
state: Ax = Ap field state = squeezed state
Azr < Ap

Squeezed state: |a, &) = exp(aa’ — a*a) exp(—ga2T + %aQ) 0)

N [\ 7

displacement squeezing
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The squeezing is hon-random!

Squeezed states |(t)) = |a(t),£(t)) are special solutions of the
stochastic Schrddinger eq. for the coarse-grained dynamics, with

a(t) random

Rigo & Gisin, '96
£(t)  deterministic (Rig )

At large times, argé&(t) — 260 , tanh|g(t)] — 15 = e Mw/kT

Y—
Localization effect: consider trajectories with initial states |¢) # |a;, &)
o Az? and Az2Ap? vs t

for trajectories with
different initial states

o1 e = 20,1 ~ 0.006,
116 | dessiiiis
0.05 ., ’}/+/’}/_ = 3/4

0 20 40 60 80 100 120 140 160
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The squeezing is hon-random!

Squeezed states |(t)) = |a(t),£(t)) are special solutions of the
stochastic Schrddinger eq. for the coarse-grained dynamics, with

{Oz(t) random

Rigo & Gisin, '96
£(t)  deterministic (Rig )

At large times, argé&(t) — 260 , tanh|g(t)] — 15 = e Mw/kT

Y—

Localization effect: consider trajectories with initial states |¢) # |a;, &)
o Az? and Az2Ap? vs t
0.2 for trajectories with

different initial states

e = 100,n7 ~ 0.01

1/ 16 4os
0.05} -

V4/7- =3/4

0] 2‘0 4‘0 6‘0 8‘0 160 1é0 14‘10 léO
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Trajectories with different temperatures

a
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The fi nal squeezing depends only on T

Averaging over the results of the measurements
< remove the detector (no measurement)
— thermalization of the field

o

1

predt) =M () (D] = p7 = = 3 e DI ) (]
Photon number statistics: e
Pu(t) = [(nlo(t))]
ERGODICITY .
Jlim MP,(t) = Jim i dt’ P, (t") \

Forn > 1, |(n|a,&)|” ~ fnllél, ) cos” 24 (€], @) \(tanh|£\)i

Ve -~

rational function of n oscillations exponential decay

(1)) ~ |a(t),£(t)), &£(t) non-random = tanh |£(t)] — e /kBT
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Conclusions

N = (ry+17.)t > 1 atoms cross the cavity and the detector

weak atom-field coupling: |n|\/(afa) < 1
large atom-laser coupling: e¢> 1, [ne| =1 (|27 finite).

MAIN RESULTS:

e The field evolves to a squeezed state indep. of the initial state
NZn™? = [§t) =|a(t),&(t))

e The squeezing amplitude |£(¢)| and phase arg&(t) are
Independent of the results of the measurements
«—— «(t) wanders randomly in the complex plane around 0.

e The squeezing increases with the temperature 7' of the atoms.

Our theory predicts Ax — 0 as T — oo but for very small Ax one
leaves the weak coupling regime — smallest reachable Ax.
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