Cavity QED: a Quantum Trajectory Point of View

Dominique Spehner

Institut Fourier, Grenoble

- Open quantum systems
- Dynamics and asymptotic states
- Quantum trajectories in optical cavities
- Localization towards squeezed states
- Conclusions

Joint work with M. Orszag

Open quantum systems

Examples of Open Quantum Systems

1. Atom coupled to the electromagnetic field.

- 2. Macroscopic body coupled to its environment
 - \hookrightarrow decoherence effects: *quantum* \rightarrow *classical*.

- 3. Electrons in solids coupled to phonons

Examples of Open Quantum Systems (2)

4. Electromagnetic field in an optical cavity crossed by an atomic beam

Micromaser experiments in Walther's and Haroche's groups (Munich, Paris)

- ullet Rydberg atoms enter one by one the cavity in excited state |e
 angle
- an atomic transition $e \to g$ is in resonance with one mode of the field in the cavity \Rightarrow two-level atoms with states $|g\rangle, |e\rangle$
- a detector measures the state of each atom leaving the cavity.

System coupled to a bath

Evolution operator of the total system 'S+B':

$$U(t) = e^{-it(H_S + H_B + H_{int})}$$

Initial density matrix: $\rho_{S+B} = \rho_S \otimes \rho_B$ (no coupling at t < 0)

Reduced density matrix of 'S': $ho_S(t) = \mathop{\mathrm{tr}}_B ig(U^\dagger(t)
ho_{S+B} \, U(t) ig)$

$$|\Psi_{S+B}\rangle = |\psi\rangle \otimes |\phi\rangle \longrightarrow U(t)|\Psi_{S+B}\rangle = \sum_{j} c_{j}(t) |\psi_{j}\rangle \otimes |\phi_{j}\rangle$$

 $\rho_S = |\psi\rangle\langle\psi| \qquad \longrightarrow \qquad \rho_S(t) = \sum_j |c_j(t)|^2 \, |\psi_j\rangle\langle\psi_j|$

impure state

Properties of the bath

- contains infinitely many particles (thermodynamic limit)
- initially at thermal equilibrium with temperature $T = 1/\beta$:

$$\langle \cdot \rangle = \lim_{N \to \infty} \operatorname{tr}(\rho_B \cdot) \quad , \quad \rho_B = Z_B^{-1} e^{-\beta H_B}$$

• $H_{\text{int}} = \lambda S B = \text{system-bath}$ interaction Hamiltonian. The (auto)correlation function

$$g(\tau) = \langle e^{i\tau H_B} B e^{-i\tau H_B} B \rangle - \langle B \rangle^2$$

satisfies $|g(\tau)| \leq C e^{-\tau/\tau_c}$ with a correlation time $\tau_c \geq \hbar \beta$

• the central limit theorem applies for the sum $B = \sum_n B_n$:

$$\left\langle e^{iBx}\right\rangle = \exp\left(-\frac{1}{2}\left\langle B^2\right\rangle x^2\right)$$
 (here $\left\langle B\right\rangle = 0$ for simplicity)

All these properties are satisfied for the free boson bath.

Times scales

 H_S Hamiltonian of the system, eigenenergies $E_0 < ... < E_i < ...$ $H_{\text{int}} = \lambda \, S \, B$ interaction Hamiltonian

$$S|s\rangle = s|s\rangle$$

TIME SCALES

- 1. τ_c correlation time of the bath
- 2. $\tau_S \sim \hbar (E_{i+1} E_i)^{-1}$ Heisenberg time of the system = time scale of the dynamics of the uncoupled system:

$$\rho_S^{(0)}(t) = e^{-itH_S} \rho_S \, e^{itH_S}$$

- 3. $au_{\rm rel} \propto \lambda^2$ inverse damping rate
 - = time scale of evolution of the diagonal elements $\langle s|\tilde{\rho}_S(t)|s\rangle$ of the density matrix $\tilde{\rho}_S(t)$ in the interaction picture w.r.t. H_S .
- 4. $\tau_{\rm dec}$ decoherence time = time scale of the evolution of the off-diagonal elements $\langle s|\rho_S(t)|s'\rangle$

- Open quantum systems
- Dynamics and asymptotic states

Dynamics at small times: $t \ll \tau_c, \tau_S$

System-bath interaction Hamiltonian: $H_{int} = \lambda S B$

Evolution operator of 'S+B':

$$U(t) = e^{-it(H_S + H_B + \lambda SB)}$$

$$= e^{-it\lambda SB} e^{-itH_S} e^{-itH_B} \underbrace{e^{-t^2\lambda[H_S + H_B, SB]/2 + \dots}}_{\simeq 1}$$

$$\langle s|\rho_{S}(t)|s'\rangle = \langle s|\operatorname{tr}_{B}(U(t)\rho_{S}\otimes\rho_{B}U^{\dagger}(t))|s'\rangle$$

$$\simeq \langle s|\operatorname{tr}_{B}(e^{-it\lambda sB}e^{-itH_{S}}\rho_{S}e^{itH_{S}}\otimes\rho_{B}e^{it\lambda s'B})|s'\rangle$$

$$= \langle e^{-it\lambda(s-s')B}\rangle_{\beta}\langle s|\rho_{S}^{(0)}(t)|s'\rangle$$

$$\langle s|\rho_S(t)|s' \rangle \simeq \exp\Bigl(-rac{t^2}{t_{
m dec}^2}\Bigr) \langle s|
ho_S^{(0)}(t)|s'
angle \quad , \quad t_{
m dec} = rac{\sqrt{2}\,\hbar}{\lambda \sqrt{\langle B^2
angle}|s-s'|}$$

(Strunz, Haake & Braun '01)

Decoherence

$$\langle s|\rho_S(t)|s'\rangle \simeq \exp\Bigl(-\frac{t^2}{t_{\rm dec}^2}\Bigr)\langle s|\rho_S^{(0)}(t)|s'\rangle \quad , \quad t_{\rm dec} = \frac{\sqrt{2}\,\hbar}{\lambda\sqrt{\langle B^2\rangle}|s-s'|}$$

Assume Schrödinger cat pure state at t = 0:

$$\rho_S = (\alpha \langle s| + \alpha' \langle s'|) (\alpha |s\rangle + \alpha' |s'\rangle)$$

with macroscopically distinct states $|s\rangle$ and $|s'\rangle$, i.e., $|s-s'|\gg 1$.

$$t_{
m dec} \ll au_c \;,\; au_S \;,\; au_{
m rel}$$

decoherence is the fastest process for large enough $|s-s^{\prime}|$.

Dynamics at long times: markovian master equations

• Born-Markov approximation: $\lambda \tau_c \ll 1 \; , \; \tau_c \ll t$ Redfield equation:

$$\frac{d\rho_S}{dt} = -i[H_S, \rho_S] + \lambda^2 \left([T\rho_S, S^{\dagger}] + [S, \rho_S T^{\dagger}] \right)$$

$$T = \int_0^\infty d\tau \, g(-\tau) \, e^{-i\tau H_S} S e^{i\tau H_S}$$

 2^{nd} perturbation theory + neglect memory effects.

• Adiabatic (or Rotating Wave) approximation: $\tau_S \ll \tau_{\rm rel}$ The coarse-grained dynamics on intermediate scale δt , $\tau_S \ll \delta t \ll \tau_{\rm rel}$ is given by a Lindbad equation

$$\frac{\delta \rho}{\delta t} = -i \left[H_S, \rho \right] + \frac{1}{2} \sum_{m} \left(\left[L_m \, \rho_S \, , \, L_m^{\dagger} \right] + \left[L_m \, , \, \rho_S \, L_m^{\dagger} \right] \right)$$

e.g., for the damped harmonic oscillator at finite temperature:

$$L_{-} = \sqrt{\gamma} a$$
 , $L_{+} = \sqrt{e^{-\beta \omega} \gamma} a^{\dagger}$.

Quantum trajectories

(1) Between t=0 and δt , 'S' and 'B' interact and **get entangled:**

$$|\Psi_{S+B}\rangle = |\psi\rangle \otimes |\phi\rangle \longrightarrow |\Psi_{\text{ent}}\rangle = \sum_{j} c_{j} |\psi_{j}\rangle \otimes |\phi_{j}\rangle$$

(2) At $t = \delta t$, measurement on 'B' $\Rightarrow \begin{cases} \text{state of 'S' modified} \\ \text{'S' and 'B' disentangled} \end{cases}$ $|\Psi_{\text{ent}}\rangle \longrightarrow |\psi_{j}\rangle \otimes |\phi_{j}\rangle \;,\; j = \text{result of the measurement}$

Evolution of the wavefunction of 'S', $|\psi_S(t)\rangle$, by repeating (1) & (2) GIVEN a sequence of measurement results = QUANTUM TRAJECTORY.

Quantum jump model

(Dalibard-Castin-Mølmer, Carmichael '93)

Idea: describe the system by a **random wavefunction** $|\psi(t)\rangle$ instead of a density matrix ρ_S .

Random time evolution:

• Quantum jumps $|\psi\rangle \longrightarrow \frac{L_m|\psi\rangle}{\|L_m|\psi\rangle\|}$ occur at random times as result of measurements. Proba of a jump m between t and $t+\delta t$:

$$\delta p_m(t) = ||L_m|\psi(t)\rangle||^2 \,\delta t$$

• If no jump between t and $t + \delta t$, $|\psi(t + \delta t)\rangle = \frac{e^{-i\delta t(H_S + K)}|\psi(t)\rangle}{\|\cdot\cdot\cdot\|}$ $K = (2i)^{-1} \sum_m L_m^{\dagger} L_m$ is **not self-adjoint!**

 $\rho(t) = \mathsf{M} \, |\psi(t)\rangle\langle\psi(t)|$, $\mathsf{M} = \mathsf{mean} \; \mathsf{over} \; \mathsf{the} \; \mathsf{measurement} \; \mathsf{results}$

 \hookrightarrow if $\delta p_m(t) \ll 1$, then $\rho(t)$ satisfies the Lindblad master equation:

$$\frac{\delta \rho}{\delta t} = -i \left[H_S, \rho \right] + \frac{1}{2} \sum_{m} \left(\left[L_m \, \rho_S \, , \, L_m^{\dagger} \right] + \left[L_m \, , \, \rho_S \, L_m^{\dagger} \right] \right)$$

Asymptotic states for large t

- The total system 'S+B' is isolated:

$$\Rightarrow \rho_S(t) \to \frac{1}{Z} \operatorname{tr}_B \left(e^{-\beta(H_S + H_B + H_{\text{int}})} \right)$$

- The system is driven by some external force:
 - the state of 'S' converges to a *non equilibrium steady state* with a nonzero (energy, charge,...) current.
- The system is driven by continuous measurements on the bath:

- Open quantum systems
- Dynamics and asymptotic states
- Quantum trajectories in optical cavities

Modifi ed micromaser experiment

- The atoms enter **one by one** the cavity in either state $|g\rangle$ or $|e\rangle$, with fluxes r_g and $r_e=e^{-\hbar\omega/kT}r_g$ (T=temperature of the atoms)
- Each atom interacts during time τ_{int} with the field via the coupling:

$$H_{\mathsf{int}} = -i\lambda \left(|g\rangle\langle e| \, a^{\dagger} - |e\rangle\langle g| \, a \right)$$

Each atom leaving the cavity first interacts
 with a laser field, e.g. via

$$H_L = -i(\Omega|g\rangle\langle e| - \Omega^*|e\rangle\langle g|)/2$$

then its state is measured by a detector.

measurement in a rotated basis

One atom crosses the cavity

State of the total system ('atom + field') at the exit of the cavity:

$$|\Psi_{
m ent}
angle = e^{-i au_L H_L}\,e^{-i au_{
m int} H_{
m int}}|\psi_{
m fi\,eld}
angle\otimes|i
angle$$

- $|\psi_{\mathsf{fi}\;\mathsf{eld}}
 angle$ initial state of the field
- $|i\rangle$ initial state of the atom

 H_L , τ_L atom-laser Hamiltonian and interaction time.

State of the total system after the measurement:

$$|\Psi'
angle = \underbrace{|\psi'_{
m fi\,eld}
angle\otimes|j
angle} \quad , \quad |\psi'_{
m fi\,eld}
angle = rac{\langle j|\Psi_{
m ent}
angle}{\|\langle j|\Psi_{
m ent}
angle\|}$$
 atom and field disantangled

 $|j\rangle$ measured state of the atom.

The atom enters the cavity in $|i\rangle$ and is measured $|j\rangle$ with probability

$$p_{i\to j} = r_i(r_g + r_e)^{-1} ||\langle j|\Psi_{\text{ent}}\rangle||^2.$$

One atom crosses the cavity (2)

Dimensionless parameters of the problem:

$$\eta = \lambda \tau_{\text{int}}$$
, $\epsilon = \eta^{-1} \frac{\Omega}{|\Omega|} \tan\left(\frac{|\Omega| \tau_L}{2}\right)$

 $\Omega = \mathsf{Rabi}$ frequency of the laser.

One must distinguish the **4 cases** i, j = g, e.

Non-perturbative solution:

e.g., for i = g, j = e (absorption of a photon),

$$|\psi_{\rm fi\,eld}'\rangle \, \propto \, \epsilon^{-1} \Big(\widetilde{a} + \epsilon \, \cos(|\eta| \sqrt{a^\dagger a}) \Big) |\psi_{\rm fi\,eld}\rangle \ , \ \widetilde{a} = a \, \operatorname{sinc}(|\eta| \sqrt{a^\dagger a})$$

Weak coupling limit: $|\eta|\sqrt{\langle a^\dagger a\rangle}\ll 1$, $|\epsilon|\gg 1$, $|\eta\,\epsilon|\approx 1$

$$|\psi_{\mathrm{fi}\,\mathrm{eld}}'\rangle \propto \left(1+W_{g\to e}\right)|\psi_{\mathrm{fi}\,\mathrm{eld}}\rangle \quad , \quad W_{g\to e}=\epsilon^{-1}a-\frac{|\eta|^2}{2}a^\dagger a \, .$$

Many atoms cross the cavity

Weak coupling limit
$$|\eta|\sqrt{\langle a^\dagger a \rangle} \ll 1$$
 , $|\epsilon| \gg 1$, $|\eta \, \epsilon| \approx 1$

Coarse-grained field dynamics with time resolution Δt ,

$$(r_e + r_g)^{-1}$$
 $\ll \Delta t \ll |\eta|^{-1/2} (r_e + r_g)^{-1}$

time between consecutive atoms

$$|\psi_{
m fi\,eld}(t+\Delta t)
angle \,\propto\, \Big(1+\Delta N_{g o e}\,W_{g o e}+3\,\,{
m other\,\,terms}\Big)|\psi_{
m fi\,eld}\!(t)
angle$$

 $\Delta N_{g \to e}$: \sharp atoms entering the cavity in $|g\rangle$ detected in $|e\rangle$ during Δt .

Quantum state diffusion (Itô)

$$\begin{split} |\mathrm{d}\psi_{\mathrm{fi\,eld}}\rangle &= \left[\sqrt{\gamma_{+}} \left(e^{i\theta}\,a^{\dagger} - \mathrm{Re}\langle e^{i\theta}a^{\dagger}\rangle_{t}\right) \mathrm{d}w_{+} + \sqrt{\gamma_{-}} \left(e^{-i\theta}\,a - \mathrm{Re}\langle e^{-i\theta}a\rangle_{t}\right) \mathrm{d}w_{-} \right. \\ &+ \mathrm{Re}\langle e^{i\theta}a^{\dagger}\rangle_{t} \left(\gamma_{+}\,e^{i\theta}a^{\dagger} + \gamma_{-}\,e^{-i\theta}a - \frac{\gamma_{-} + \gamma_{+}}{2}\,\mathrm{Re}\langle e^{i\theta}a^{\dagger}\rangle_{t}\right) \mathrm{d}t \\ &\left. - \frac{1}{2} \left(\gamma_{+}\,aa^{\dagger} + \gamma_{-}\,a^{\dagger}a\right) \mathrm{d}t\right] |\psi_{\mathrm{fi\,eld}}(t)\rangle \\ \theta &= \arg\epsilon \quad , \quad \gamma_{\pm} = r_{e,g}|\eta|^{2} \quad , \quad \mathrm{d}w_{\pm} = \mathrm{real\,\,Wiener\,\,processes.} \end{split}$$

- Open quantum systems
- Dynamics and asymptotic states
- Quantum trajectories in optical cavities
- Localization towards squeezed states

Squeezing

Q-REPRESENTATION (HUSIMI)

initial field state = coherent state: $\Delta x = \Delta p$

Q-REPRESENTATION (HUSIMI)

5000 atoms crossed the cavity: **field state = squeezed state** $\Delta x < \Delta p$

Squeezed state:
$$|\alpha, \xi\rangle = \exp\left(\alpha \, a^\dagger - \alpha^* a\right) \exp\left(-\frac{\xi}{2} a^{2^\dagger} + \frac{\xi^*}{2} a^2\right) |0\rangle$$

The squeezing is non-random!

Squeezed states $|\psi(t)\rangle = |\alpha(t), \xi(t)\rangle$ are **special solutions** of the stochastic Schrödinger eq. for the coarse-grained dynamics, with

$$\begin{cases} \alpha(t) & \text{random} \\ \xi(t) & \text{deterministic} \end{cases}$$

(Rigo & Gisin, '96)

At large times, $\arg \xi(t) \to 2\,\theta$, $\tanh |\xi(t)| \to \frac{\gamma_+}{\gamma_-} = e^{-\hbar\omega/kT}$

Localization effect: consider trajectories with initial states $|\psi\rangle \neq |\alpha,\xi\rangle$

 Δx^2 and $\Delta x^2 \Delta p^2$ vs t for trajectories with different initial states

$$\epsilon = 20, \eta \simeq 0.06$$
,

$$\gamma_+/\gamma_- = 3/4$$

The squeezing is non-random!

Squeezed states $|\psi(t)\rangle = |\alpha(t), \xi(t)\rangle$ are **special solutions** of the stochastic Schrödinger eq. for the coarse-grained dynamics, with

$$\begin{cases} \alpha(t) & \text{random} \\ \xi(t) & \text{deterministic} \end{cases}$$

(Rigo & Gisin, '96)

At large times, $\arg \xi(t) \to 2\,\theta$, $\tanh |\xi(t)| \to \frac{\gamma_+}{\gamma_-} = e^{-\hbar\omega/kT}$

Localization effect: consider trajectories with initial states $|\psi\rangle \neq |\alpha,\xi\rangle$

 Δx^2 and $\Delta x^2 \Delta p^2$ vs t for trajectories with different initial states

$$\epsilon = 100, \eta \simeq 0.01$$

$$\gamma_+/\gamma_- = 3/4$$

Trajectories with different temperatures

The final squeezing depends only on T

Averaging over the results of the measurements

⇔ remove the detector (no measurement)

$$\rho_{\,\mathrm{fi}\,\mathrm{eld}}\!(t) \equiv \mathsf{M}\,\,|\psi(t)\rangle\langle\psi(t)| \to \rho^{\mathrm{eq}} \equiv \frac{1}{Z} \sum_{n=0}^{\infty} e^{-\omega(n+0.5)/k_B T} |n\rangle\langle n|\,.$$

Photon number statistics:

$$\mathcal{P}_n(t) = \left| \langle n | \psi(t) \rangle \right|^2$$

ERGODICITY

$$\lim_{t \to \infty} \mathsf{M} \, \mathcal{P}_n(t) = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathrm{d}t' \, \mathcal{P}_n(t')$$

$$\propto \left(e^{-\omega/k_B T} \right)^n$$

For
$$n \gg 1$$
, $\left| \langle n | \alpha, \xi \rangle \right|^2 \sim \underbrace{f_n(|\xi|, \alpha)}_{\text{rational function of } n} \underbrace{\cos^2 \Phi_n(|\xi|, \alpha)}_{\text{oscillations}} \underbrace{\left(\tanh |\xi| \right)^n}_{\text{exponential decay}}$

$$\cos^2 \Phi_n(|\xi|, \alpha)$$
 $\tanh |\xi|$ exponential decay

$$|\psi(t)\rangle \simeq |\alpha(t), \xi(t)\rangle$$
, $\xi(t)$ non-random $\Rightarrow \tanh |\xi(t)| \to e^{-\hbar\omega/k_BT}$.

- Motivations
- Quantum trajectories
- Localization towards squeezed states
- Conclusions

Conclusions

 $N = (r_g + r_e) \, t \, \gg 1 \,$ atoms cross the cavity and the detector

```
 \begin{cases} \text{ weak atom-field coupling: } & |\eta|\sqrt{\langle a^{\dagger}a\rangle}\ll 1 \\ \text{ large atom-laser coupling: } & \epsilon\gg 1 \;,\; |\eta\,\epsilon|\approx 1 \; \text{ (}|\Omega|\tau_L \text{ finite).} \end{cases}
```

MAIN RESULTS:

• The field evolves to a squeezed state indep. of the initial state

$$N \gtrsim \eta^{-2} \Rightarrow |\psi(t)\rangle \simeq |\alpha(t), \xi(t)\rangle$$

- The squeezing amplitude $|\xi(t)|$ and phase $\arg \xi(t)$ are independent of the results of the measurements $\longleftrightarrow \alpha(t)$ wanders randomly in the complex plane around 0.
- The squeezing increases with the temperature T of the atoms. Our theory predicts $\Delta x \to 0$ as $T \to \infty$ but for very small Δx one leaves the weak coupling regime \hookrightarrow smallest reachable Δx .