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Examples of Open Quantum Systems

1. Atom coupled to the electromagnetic field.
E

γ

E0

1

2. Macroscopic body coupled to its environment
↪→ decoherence effects: quantum→ classical.

|ψ(x) |

∆x =O(h0)

3. Electrons in solids coupled to phonons
↪→ (energy) dissipation and decoherence in electronic transport.
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Examples of Open Quantum Systems (2)

4. Electromagnetic field in an optical cavity crossed by an atomic beam

Micromaser experiments in Walther’s and Haroche’s groups
(Munich, Paris)

• Rydberg atoms enter one by one the cavity in excited state |e〉

• an atomic transition e→ g is in resonance with one mode of the
field in the cavity ⇒ two-level atoms with states |g〉, |e〉

• a detector measures the state of each atom leaving the cavity.
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System coupled to a bath

int

SYSTEM

H

BATH

HBHS

Evolution operator of the total system ‘S+B’:

U(t) = e−it(HS+HB+Hint)

Initial density matrix: ρS+B = ρS ⊗ ρB (no coupling at t < 0)

Reduced density matrix of ‘S’: ρS(t) = tr
B

(
U †(t)ρS+B U(t)

)

|ΨS+B〉 = |ψ〉 ⊗ |φ〉 −→ U(t)|ΨS+B〉 =
∑

j

cj(t) |ψj〉 ⊗ |φj〉
︸ ︷︷ ︸

entangled state

ρS = |ψ〉〈ψ| −→ ρS(t) =
∑

j

|cj(t)|2 |ψj〉〈ψj |
︸ ︷︷ ︸

impure state
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Properties of the bath

• contains infinitely many particles (thermodynamic limit)

• initially at thermal equilibrium with temperature T = 1/β:
〈
·
〉

= lim
N→∞

tr
(
ρB ·

)
, ρB = Z−1

B e−βHB

• Hint = λS B = system-bath interaction Hamiltonian.

The (auto)correlation function

g(τ) = 〈eiτHB B e−iτHB B〉 − 〈B〉2

satisfies |g(τ)| ≤ C e−τ/τc with a correlation time τc ≥ ~β

• the central limit theorem applies for the sum B =
∑

nBn:

〈
eiBx

〉
= exp

(
−1

2

〈
B2

〉
x2

)
(here 〈B〉 = 0 for simplicity)

All these properties are satisfied for the free boson bath.
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Times scales

HS Hamiltonian of the system, eigenenergies E0 < ... < Ei < ...

Hint = λS B interaction Hamiltonian

S|s〉 = s|s〉
TIME SCALES

1. τc correlation time of the bath

2. τS ∼ ~(Ei+1 −Ei)
−1 Heisenberg time of the system

= time scale of the dynamics of the uncoupled system:

ρ
(0)
S (t) = e−itHSρS e

itHS

3. τrel ∝ λ2 inverse damping rate

= time scale of evolution of the diagonal elements 〈s|ρ̃S(t)|s〉
of the density matrix ρ̃S(t) in the interaction picture w.r.t. HS .

4. τdec decoherence time = time scale of the evolution of the

off-diagonal elements 〈s|ρS(t)|s′〉
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Dynamics at small times: t� τc, τS

System-bath interaction Hamiltonian: Hint = λS B

Evolution operator of ’S+B’:

U(t) = e−it(HS+HB+λSB)

= e−itλSBe−itHSe−itHB e−t2λ[HS+HB,SB]/2+...
︸ ︷︷ ︸

'1

〈s|ρS(t)|s′〉 = 〈s| tr
B

(
U(t)ρS ⊗ ρB U

†(t)
)
|s′〉

' 〈s| tr
B

(
e−itλsBe−itHSρS e

itHS ⊗ ρB e
itλs′B

)
|s′〉

=
〈
e−itλ(s−s′)B

〉
β
〈s|ρ(0)

S (t)|s′〉

〈s|ρS(t)|s′〉 ' exp
(
− t2

t2dec

)
〈s|ρ(0)

S (t)|s′〉 , tdec =

√
2 ~

λ
√
〈B2〉|s− s′|

(Strunz, Haake & Braun ’01)
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Decoherence

〈s|ρS(t)|s′〉 ' exp
(
− t2

t2dec

)
〈s|ρ(0)

S (t)|s′〉 , tdec =

√
2 ~

λ
√
〈B2〉|s− s′|

Assume Schrödinger cat pure state at t = 0:

ρS =
(
α〈s|+ α′〈s′|

)(
α|s〉+ α′|s′〉

)

with macroscopically distinct states |s〉 and |s′〉, i.e., |s− s′| � 1.

tdec � τc , τS , τrel

decoherence is the fastest process for large enough |s− s′|.
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Dynamics at long times: markovian master equations

• Born-Markov approximation: λτc � 1 , τc � t

Redfield equation:

dρS

dt
= −i

[
HS , ρS

]
+ λ2

([
TρS , S

†
]
+

[
S , ρS T

†
])

T =

∫ ∞

0

dτ g(−τ) e−iτHSSeiτHS

2nd perturbation theory + neglect memory effects.

• Adiabatic (or Rotating Wave) approximation: τS � τrel

The coarse-grained dynamics on intermediate scale δt,

τS � δt� τrel is given by a Lindbad equation

δρ

δt
= −i

[
HS , ρ

]
+

1

2

∑

m

([
Lm ρS , L

†
m

]
+

[
Lm , ρS L

†
m

])

e.g., for the damped harmonic oscillator at finite temperature:

L− =
√
γ a , L+ =

√
e−β ωγ a† .
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Quantum trajectories

SYSTEM

MEASUREMENT

APARATUS

int

H

S

BATH

HB
H

(1) Between t = 0 and δt, ’S’ and ’B’ interact and get entangled:

|ΨS+B〉 = |ψ〉 ⊗ |φ〉 −→ |Ψent〉 =
∑

j

cj |ψj〉 ⊗ |φj〉

(2) At t = δt, measurement on ‘B’⇒
{

state of ‘S’ modified
’S’ and ‘B’ disentangled

|Ψent〉 −→ |ψj〉 ⊗ |φj〉 , j = result of the measurement

Evolution of the wavefunction of ’S’, |ψS(t)〉, by repeating (1) & (2)

GIVEN a sequence of measurement results = QUANTUM TRAJECTORY.
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Quantum jump model
(Dalibard-Castin-Mølmer, Carmichael ’93)

Idea: describe the system by a random wavefunction |ψ(t)〉 instead
of a density matrix ρS .

Random time evolution:

• Quantum jumps |ψ〉 −→ Lm|ψ〉
‖Lm|ψ〉‖

occur at random times as

result of measurements. Proba of a jump m between t and t+ δt:

δpm(t) = ‖Lm|ψ(t)〉‖2 δt

• If no jump between t and t+ δt, |ψ(t+ δt)〉 = e−iδt(HS+K)|ψ(t)〉
‖ · · · ‖

K = (2i)−1
∑

m L†
mLm is not self-adjoint!

ρ(t) = M |ψ(t)〉〈ψ(t)| , M = mean over the measurement results

↪→ if δpm(t)� 1, then ρ(t) satisfies the Lindblad master equation:
δρ

δt
= −i

[
HS , ρ

]
+

1

2

∑

m

([
Lm ρS , L

†
m

]
+

[
Lm , ρS L

†
m

])
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Asymptotic states for large t

• The total system ‘S+B’ is isolated:

↪→ the state of ‘S+B’ converges to equilibrium

⇒ ρS(t)→ 1

Z
tr
B

(
e−β(HS+HB+Hint)

)

• The system is driven by some external force:

the state of ’S’ converges to a non equilibrium steady state

with a nonzero (energy, charge,...) current.

• The system is driven by continuous measurements on the
bath:

?
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Modified micromaser experiment

• The atoms enter one by one the cavity in either state |g〉 or |e〉,
with fluxes rg and re = e−~ω/kT rg (T = temperature of the atoms)

• Each atom interacts during time τint with the field via the coupling:

Hint = −iλ
(
|g〉〈e| a† − |e〉〈g| a

)

• Each atom leaving the cavity first interacts
with a laser field, e.g. via

HL = −i
(
Ω|g〉〈e| − Ω∗|e〉〈g|

)
/2

then its state is measured by a detector.

} measurement

in a

rotated basis
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One atom crosses the cavity

State of the total system (‘atom + field’) at the exit of the cavity:

|Ψent〉 = e−iτLHL e−iτintHint |ψfield〉 ⊗ |i〉

|ψfield〉 initial state of the field

|i〉 initial state of the atom

HL, τL atom-laser Hamiltonian and interaction time.

State of the total system after the measurement:

|Ψ′〉 = |ψ′
field〉 ⊗ |j〉︸ ︷︷ ︸

atom and field disantangled

, |ψ′
field〉 =

〈j|Ψent〉
‖〈j|Ψent〉‖

|j〉 measured state of the atom.

The atom enters the cavity in |i〉 and is measured |j〉 with probability

pi→j = ri(rg + re)
−1‖〈j|Ψent〉‖2.
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One atom crosses the cavity (2)

Dimensionless parameters of the problem:

η = λ τint , ε = η−1 Ω

|Ω| tan
( |Ω| τL

2

)

Ω = Rabi frequency of the laser.

One must distinguish the 4 cases i, j = g, e.

Non-perturbative solution:

e.g., for i = g, j = e (absorption of a photon),

|ψ ′
field〉 ∝ ε−1

(
ã+ ε cos(|η|

√
a†a)

)
|ψfield〉 , ã = a sinc(|η|

√
a†a)

Weak coupling limit: |η|
√
〈a†a〉 � 1 , |ε| � 1 , |η ε| ≈ 1

↪→ the crossing of one atom perturbs weakly the field

|ψ ′
field〉 ∝

(
1 +Wg→e

)
|ψfield〉 , Wg→e = ε−1a− |η|

2

2
a†a .
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Many atoms cross the cavity

Weak coupling limit |η|
√
〈a†a〉 � 1 , |ε| � 1 , |η ε| ≈ 1

Coarse-grained field dynamics with time resolution ∆t,

(re + rg)
−1

︸ ︷︷ ︸
time between consecutive atoms

� ∆t � |η|−1/2(re + rg)
−1

|ψfield(t+ ∆t)〉 ∝
(
1 + ∆Ng→e Wg→e + 3 other terms

)
|ψfield(t)〉

∆Ng→e : ] atoms entering the cavity in |g〉 detected in |e〉 during ∆t.

Quantum state diffusion (Itô)

|dψfield〉 =

[
√
γ+

(
eiθ a† −Re〈eiθa†〉t

)
dw+ +

√
γ−

(
e−iθ a−Re〈e−iθa〉t

)
dw−

+Re〈eiθa†〉t
(
γ+ e

iθa† + γ− e
−iθa− γ− + γ+

2
Re〈eiθa†〉t

)
dt

−1

2

(
γ+ aa

† + γ− a
†a

)
dt

]
|ψfield(t)〉

θ = arg ε , γ± = re,g|η|2 , dw± = real Wiener processes.
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Squeezing

initial field state = coherent

state: ∆x = ∆p

5000 atoms crossed the cavity:

field state = squeezed state
∆x < ∆p

Squeezed state: |α, ξ〉 = exp
(
αa† − α∗a

)
︸ ︷︷ ︸

displacement

exp
(
−ξ

2
a2† +

ξ∗

2
a2

)

︸ ︷︷ ︸
squeezing

|0〉
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The squeezing is non-random!

Squeezed states |ψ(t)〉 = |α(t), ξ(t)〉 are special solutions of the
stochastic Schrödinger eq. for the coarse-grained dynamics, with{

α(t) random
ξ(t) deterministic

(Rigo & Gisin, ’96)

At large times, arg ξ(t)→ 2 θ , tanh |ξ(t)| → γ+

γ−
= e−~ω/kT

Localization effect: consider trajectories with initial states |ψ〉 6= |α, ξ〉

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

1/16

∆x2 and ∆x2∆p2 vs t

for trajectories with

different initial states

ε = 20, η ' 0.06,

γ+/γ− = 3/4
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The squeezing is non-random!

Squeezed states |ψ(t)〉 = |α(t), ξ(t)〉 are special solutions of the
stochastic Schrödinger eq. for the coarse-grained dynamics, with{

α(t) random
ξ(t) deterministic

(Rigo & Gisin, ’96)

At large times, arg ξ(t)→ 2 θ , tanh |ξ(t)| → γ+

γ−
= e−~ω/kT

Localization effect: consider trajectories with initial states |ψ〉 6= |α, ξ〉

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

1/16

∆x2 and ∆x2∆p2 vs t

for trajectories with

different initial states

ε = 100, η ' 0.01

γ+/γ− = 3/4
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Trajectories with different temperatures

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25
a

b

c

d
ee

Values of
re
rg

a : 0 b : 0.25 c : 0.75 d : 0.89 d : 0.99.
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The final squeezing depends only on T

Averaging over the results of the measurements

⇔ remove the detector (no measurement)

↪→ thermalization of the field

ρfield(t) ≡ M |ψ(t)〉〈ψ(t)| → ρeq ≡ 1

Z

∞∑

n=0

e−ω(n+0.5)/kBT |n〉〈n| .

Photon number statistics:

Pn(t) =
∣∣〈n|ψ(t)〉

∣∣2

ERGODICITY

lim
t→∞

MPn(t) = lim
t→∞

1

t

∫ t

0

dt′ Pn(t′)

∝
(
e−ω/kBT

)n

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

For n� 1,
∣∣〈n|α, ξ〉

∣∣2 ∼ fn(|ξ|, α)︸ ︷︷ ︸
rational function of n

cos2 Φn(|ξ|, α)︸ ︷︷ ︸
oscillations

(
tanh |ξ|

)n

︸ ︷︷ ︸
exponential decay

|ψ(t)〉 ' |α(t), ξ(t)〉, ξ(t) non-random ⇒ tanh |ξ(t)| → e−~ω/kBT .
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Conclusions

N = (rg + re) t � 1 atoms cross the cavity and the detector
{

weak atom-field coupling: |η|
√
〈a†a〉 � 1

large atom-laser coupling: ε� 1 , |η ε| ≈ 1 (|Ω|τL finite).

MAIN RESULTS:

• The field evolves to a squeezed state indep. of the initial state

N & η−2 ⇒ |ψ(t)〉 ' |α(t), ξ(t)〉

• The squeezing amplitude |ξ(t)| and phase arg ξ(t) are

independent of the results of the measurements

←→ α(t) wanders randomly in the complex plane around 0.

• The squeezing increases with the temperature T of the atoms.

Our theory predicts ∆x→ 0 as T →∞ but for very small ∆x one

leaves the weak coupling regime ↪→ smallest reachable ∆x.
Center for Nonlinear Phenomena and Complex Systems, Bruxelles, July 2005 – p. 28


	hspace *{3.5cm} Outlines
	hspace *{3.5cm} Outlines
	hspace *{1cm} Examples of Open Quantum Systems
	hspace *{1cm} Examples of Open Quantum Systems (2)
	hspace *{2cm} System coupled to a bath
	hspace *{2cm} Properties of the bath
	hspace *{3cm} Times scales
	hspace *{3.5cm} Outlines
	hspace *{1.5cm} Dynamics at small times: {small $t ll 	au _c, 	au _S$}
	hspace *{2.5cm} Decoherence
	hspace *{0.5cm} Dynamics at long times: markovian master equations
	hspace {2.5cm} Quantum trajectories
	hspace {2.5cm} Quantum jump model
	hspace *{1.5cm} Asymptotic states for large t 
	hspace *{3.5cm} Outlines
	hspace *{1.5cm} Modified micromaser experiment
	hspace {1.5cm} One atom crosses the cavity
	hspace {1.5cm} One atom crosses the cavity (2)
	hspace *{1.5cm} Many atoms cross the cavity
	hspace *{3.5cm} Outlines
	hspace *{3.5cm} Squeezing
	hspace *{1.5cm} The squeezing is non-random!
	hspace *{1.5cm} The squeezing is non-random!
	hspace *{1cm} Trajectories with different temperatures
	hspace *{1cm} The final squeezing depends only on T
	hspace *{3.5cm} Outlines
	hspace *{2.5cm} Conclusions

