Lecture 2: Bipartite systems coupled to two baths: Time-evolution of Entanglement

Dominique Spehner

Institut Fourier & Laboratoire de Physique et Modélisation des Milieux Condensés, Grenoble, France

Ex. of 2-qubit separable and classical states

 \diamond 2-qubit states with max. disordered marginals $\rho_{A/B}=\frac{1}{2}$ can be written (up to conjugation by a local unitary $U_A\otimes U_B$) as

$$\rho = \frac{1}{4} \left(1 \otimes 1 + \sum_{m=1}^{3} c_m \sigma_m \otimes \sigma_m \right)$$

 $\vec{c} \in \mathcal{T}$ tetrahedron with vertices

$$F_{\pm} = (\pm 1, \mp 1, 1), G_{\pm} = (\pm 1, \pm 1, -1)$$

 \diamond ρ separable \Leftrightarrow $\vec{c} \in$ octahedron IJKLMN

Quantum discords

[Luo, PRA '08] [DS & Orszag, '13]

$$\delta_A(\rho) = \sum_{\nu=0}^{3} p_{\nu} \ln p_{\nu} + \ln 4 - \frac{1 - |c|}{2} \ln(1 - |c|) - \frac{1 + |c|}{2} \ln(1 + |c|)$$

$$D_A(\rho) = 2\left(1 - \sqrt{\frac{1+b_+ + b_-}{2}}\right), \ b_{\pm} = \frac{1}{2}\sqrt{(1\pm c_1)^2 - (c_2 \mp c_3)^2}$$

if $|c| = \max_m |c_m| = |c_1|$ (else circular permut. of (c_1, c_2, c_3))

 $p_{\nu} = \text{euclidean distance of the origin } O \text{ to the faces of } \mathcal{T}$

Outlines

- Evolution of the concurrence and quantum discord for the 2 spin-boson model
- Average concurrence for quantum trajectories
- Protecting entanglement with quantum trajectories
- Qubits coupled to a common bath
- Conclusions & Perspectives

Joint work with: Sylvain Vogelsberger

The 2 spin-boson model

[Yu and Eberly ('04)]; Merkli et al. ('10); Merkli ('11), ...]

• Consider two spins A and B coupled to two independent free-boson reservoirs R_A and R_B . There are no interactions between A & B. The total Hamiltonian is:

$$H_{\text{tot}} = H_A + H_B + H_{R_A} + H_{R_B} + \lambda H_{\text{int}}$$

$$H_{A} = \omega_{A}\sigma_{z}^{A} , \ H_{B} = \omega_{B}\sigma_{z}^{B}$$

$$H_{R_{A}} = \sum_{k} \mu_{k} a_{k}^{\dagger} a_{k}$$

$$H_{R_{B}} = \sum_{k} \nu_{k} b_{k}^{\dagger} b_{k}$$

$$H_{R_{B}} = \sum_{k} \nu_{k} b_{k}^{\dagger} b_{k}$$

$$H_{R_{B}} = \sum_{k} \mu_{k} a_{k}^{\dagger} a_{k}$$

$$H_{R_{B}} = \sum_{k} \mu_{k} b_{k}^{\dagger} b_{k}$$

$$H_{R_{B}} = \sum_{k} \mu_{k} b_{k}^{\dagger} b_{k}$$

- Initial state: $\rho_{\mathrm{tot}}(0) = \underbrace{\rho_{AB}(0)}_{\mathrm{ENTANGLED}} \otimes \rho_{R_A} \otimes \rho_{R_B}$
- MODEL 1: spin-boson coupling given by Jaynes-Cummings:

$$H_{\text{int}} = \sum_{k} (g_k \sigma_+^A \otimes a_k + f_k \sigma_+^B \otimes b_k + \text{h.c.})$$

Summer School on Open Quantum Systems, Autrans, July 2013 - p. 4/22

The 2 spin-boson model (2)

- ρ_{R_k} Gibbs states with inverse temperatures $\beta_k < \infty$
 - ⇒ the 2-spin state converges at large times to

$$ho_{AB}(\infty)=Z^{-1}e^{-eta_A\omega_A\sigma_z^A}\otimes e^{-eta_B\omega_B\sigma_z^B}$$
 product state

• $ho_{AB}(\infty)$ is in the *interior of the set of separable states* \mathcal{S} .

Reason: $ho_{AB} \in \partial \mathcal{S} \Leftrightarrow
ho_{AB}^{T_B}$ has at least one zero eigenvalue (by the Peres-Horodecki criterium).

The 2 spin-boson model (2)

- ρ_{R_k} Gibbs states with inverse temperatures $\beta_k < \infty$
 - ⇒ the 2-spin state converges at large times to

$$ho_{AB}(\infty)=Z^{-1}e^{-eta_A\omega_A\sigma_z^A}\otimes e^{-eta_B\omega_B\sigma_z^B}$$
 product state

- $ho_{AB}(\infty)$ is in the *interior of the set of separable states* \mathcal{S} .

 Reason: $ho_{AB} \in \partial \mathcal{S} \Leftrightarrow
 ho_{AB}^{T_B}$ has at least one zero eigenvalue (by the Peres-Horodecki criterium).
- By continuity of $t \mapsto \rho_{AB}(t)$, the 2-spin state

$$\rho_{AB}(t) = \operatorname{tr}_{R_A, R_B}(e^{-itH_{\text{tot}}}\rho_{\text{tot}}(0)e^{itH_{\text{tot}}})$$

become **separable** (cross ∂S) after a finite time t_{ESD} .

The 2 spin-boson model (2)

- ρ_{R_k} Gibbs states with inverse temperatures $\beta_k < \infty$
 - ⇒ the 2-spin state converges at large times to

$$ho_{AB}(\infty)=Z^{-1}e^{-eta_A\omega_A\sigma_z^A}\otimes e^{-eta_B\omega_B\sigma_z^B}$$
 product state

- $ho_{AB}(\infty)$ is in the *interior of the set of separable states* \mathcal{S} .

 Reason: $ho_{AB} \in \partial \mathcal{S} \Leftrightarrow
 ho_{AB}^{T_B}$ has at least one zero eigenvalue (by the Peres-Horodecki criterium).
- By continuity of $t \mapsto \rho_{AB}(t)$, the 2-spin state

$$\rho_{AB}(t) = \operatorname{tr}_{R_A, R_B}(e^{-itH_{\text{tot}}}\rho_{\text{tot}}(0)e^{itH_{\text{tot}}})$$

become **separable** (cross ∂S) **after a finite time** t_{ESD} .

 \hookrightarrow can be checked by computing the concurrence of $\rho_{AB}(t)$ in the weak coupling limit [Yu and Eberly ('04),...], or by using the resonance perturbation theory [Merkli et al. ('10)].

2 spin-boson model: pure phase dephasing

MODEL 2:

$$H_{\mathrm{int}} = \sum_{k} \left(g_{k} \sigma_{z}^{A} \otimes (a_{k} + a_{k}^{\dagger}) + f_{k} \sigma_{z}^{B} \otimes (b_{k} + b_{k}^{\dagger}) \right)$$

Weak coupling limit (but not necessary)

$$\frac{d}{dt}\rho_{AB} = \gamma_z^A (\sigma_z^A \rho_{AB}(t)\sigma_z^A - \rho_{AB}(t)) + (A \leftrightarrow B)$$

 \rightarrow no convergence to a NESS.

2 spin-boson model: pure phase dephasing

MODEL 2:

$$H_{\mathrm{int}} = \sum_{k} \left(g_{k} \sigma_{z}^{A} \otimes (a_{k} + a_{k}^{\dagger}) + f_{k} \sigma_{z}^{B} \otimes (b_{k} + b_{k}^{\dagger}) \right)$$

Weak coupling limit (but not necessary)

$$\frac{d}{dt}\rho_{AB} = \gamma_z^A \left(\sigma_z^A \rho_{AB}(t)\sigma_z^A - \rho_{AB}(t)\right) + (A \leftrightarrow B)$$

 \rightarrow no convergence to a NESS.

Initial 2-spin state with maximally mixed marginals

$$\rho_{AB}(0) = \frac{1}{4} \left(1 \otimes 1 + \sum_{m=1}^{3} c_m \sigma_m \otimes \sigma_m \right), \ \vec{c} \in \mathcal{T}$$

 \hookrightarrow remains of this form at all times $t \geq 0$, with

$$c_1(t) = e^{-2\gamma t}c_1$$
, $c_2(t) = e^{-2\gamma t}c_2$ and $c_3(t) = c_3$
 $\gamma = \gamma_z^A + \gamma_z^B$.

2 spin-boson model: pure phase dephasing

Concurrence:

$$C[\rho_{AB}(t)] = \frac{1}{2} \max\{0, |c_1 \pm c_2|e^{-2\gamma t} - 1 \mp c_3\}$$

Initial state entangled $\Leftrightarrow |c_1 \pm c_2| > 1 \pm c_3 \ \ (+ \text{ or } -).$

• For $c_3=\mp 1$ (e.g. initial Bell state $|\psi_{AB}\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)$), $C[\rho_{AB}(t)]=|c_1\pm c_2|e^{-2\gamma t}$ vanishes asymptotically.

Otherwise entanglement is lost after a finite time

$$t_{ESD} = \frac{1}{2\gamma} \ln \left(\max \left\{ \frac{|c_1 \pm c_2|}{1 \pm c_3} \right\} \right).$$

ullet For $c_1=\pm 1,\,c_2=\mp c_3$ with $|c_3|<1,$ $\delta_A[
ho_{AB}(t)]={
m const.}$ for $0\leq t\leq -rac{\ln|c_3|}{2\gamma}.$

[Mazzola, Piilo & Maniscalco ('10)]

Entanglement sudden death and birth

ENTANGLEMENT TYPICALLY DISAPPEARS BEFORE COHERENCES ARE LOST!

It can disappear after a finite time

- ullet always the case if the qubits relax to a Gibbs state ho_∞ at positive temperature
- otherwise depends on the initial state.

[Diosi '03], [Dodd & Halliwell PRA 69 ('04)], [Yu et Eberly PRL 93 ('04)]

Entanglement sudden death and birth

ENTANGLEMENT TYPICALLY DISAPPEARS BEFORE COHERENCES ARE LOST!

It can disappear after a finite time

- ullet always the case if the qubits relax to a Gibbs state ho_∞ at positive temperature
- otherwise depends on the initial state.

[Diosi '03], [Dodd & Halliwell PRA 69 ('04)], [Yu et Eberly PRL 93 ('04)]

If the two qubits are coupled to a **common bath**, entanglement can also suddently reappear

~→ due to effective (bath-mediated) qubit
 interaction creating entanglement
 [Ficek & Tanás PRA 74 ('06)], [Hernandez &
 Orszag PRA 78 ('08)], [Mazzola et al. PRA ('09)]

Outlines

- Evolution of the concurrence and quantum discord for the 2 spin-boson model
- Average concurrence for quantum trajectories

Quantum trajectories

As a result of continuous measurements on the environment, the bipartite system remains in a pure state $|\psi(t)\rangle$ at all times t>0

$$t \in \mathbb{R}_+ \mapsto |\psi(t)\rangle$$
 quantum trajectory

Reason: each measurement disentangle the system and the environment (by wavepacket reduction).

Quantum trajectories

As a result of continuous measurements on the environment, the bipartite system remains in a pure state $|\psi(t)\rangle$ at all times t>0

$$t \in \mathbb{R}_+ \mapsto |\psi(t)\rangle$$
 quantum trajectory

Reason: each measurement disentangle the system and the environment (by wavepacket reduction).

Averaging over the measurements, one gets the density matrix:

$$\rho(t) = \overline{|\psi(t)\rangle\langle\psi(t)|} = \int dp[\psi] |\psi(t)\rangle\langle\psi(t)|.$$

Quantum trajectories

As a result of continuous measurements on the environment, the bipartite system remains in a pure state $|\psi(t)\rangle$ at all times t>0

$$t \in \mathbb{R}_+ \mapsto |\psi(t)\rangle$$
 quantum trajectory

Reason: each measurement disentangle the system and the environment (by wavepacket reduction).

Averaging over the measurements, one gets the density matrix:

$$\rho(t) = \overline{|\psi(t)\rangle\langle\psi(t)|} = \int dp[\psi] |\psi(t)\rangle\langle\psi(t)|.$$

In general this decomposition is NOT THE OPTIMAL one,

$$\overline{E_{\psi(t)}} \geq E_{
ho(t)}$$
 [Nha & Carmichael PRL 98 ('04)].

But for specific models, one can find measurement schemes with $\overline{C_{\psi(t)}} = C_{\rho(t)} \ \forall \ t \geq 0$ with C = Wootters concurrence for 2 qubits [Carvalho et al. PRL 98 ('07), Viviescas et al. ('10)].

Photon counting

Two 2-level atoms (qubits) initially in state $|\psi\rangle=\sum_{s,s'=0,1}c_{ss'}|s\rangle|s'\rangle$

are coupled to independent modes of the electromagnetic field initially in the vacuum.

Two perfect photon counters make a click when a photon is emitted by the atom i (i = A, B)

Photon counting

Two 2-level atoms (qubits) initially in state $|\psi\rangle=\sum_{s,s'=0,1}c_{ss'}|s\rangle|s'\rangle$

are coupled to independent modes of the electromagnetic field initially in the vacuum.

Two perfect photon counters make a click when a photon is emitted by the atom i (i = A, B)

• If D_i detects a photon between t and $t + \mathrm{d}t$, the qubits suffer a quantum jump [occurs with proba. $\gamma_i \|\sigma_-^i|\psi(t)\rangle\|^2 \mathrm{d}t$]

$$|\psi(t)\rangle \longrightarrow \sigma_-^i |\psi(t)\rangle = |0\rangle_i \otimes |\phi(t)\rangle \quad \rightsquigarrow \text{separable.}$$

Photon counting

Two 2-level atoms (qubits) initially in state $|\psi\rangle=\sum_{s,s'=0,1}c_{ss'}|s\rangle|s'\rangle$ are coupled to independent modes of the electromagnetic

field initially in the vacuum.

Two perfect photon counters make a click when a photon is emitted by the atom i (i = A, B)

• If D_i detects a photon between t and $t+\mathrm{d}t$, the qubits suffer a quantum jump [occurs with proba. $\gamma_i \|\sigma_-^i|\psi(t)\rangle\|^2\mathrm{d}t$]

$$|\psi(t)\rangle \longrightarrow \sigma_-^i |\psi(t)\rangle = |0\rangle_i \otimes |\phi(t)\rangle \quad \rightsquigarrow \text{separable.}$$

• If no click occurs between t_0 and t [proba. $||e^{-itH_{\text{eff}}}|\psi(t_0)\rangle||^2$]

$$|\psi(t)\rangle = \frac{e^{-i(t-t_0)H_{\text{eff}}}|\psi(t_0)\rangle}{\|e^{-itH_{\text{eff}}}|\psi(t_0)\rangle\|}, \ H_{\text{eff}} = H_0 - \frac{i}{2}\sum_{i=A,B}\gamma_i \,\sigma_+^i \sigma_-^i.$$

Concurrence:

$$C_{\psi(t)} = |\langle \psi(t) | \sigma_y \otimes \sigma_y T | \psi(t) \rangle|$$

T =complex conjugation op.

 $\sigma_y = Pauli matrix$

$$\hookrightarrow E_{\psi(t)} = h(C_{\psi(t)}), h \text{ convex } \nearrow$$

- Trajectories with 1 or more jumps between 0 and t have a concurrence $C_{\psi(t)}=0$ (since $|\psi(t)\rangle$ separable after 1 jump).
- If no jump occurs between 0 and t, one finds for $H_0=0$:

$$C_{\text{no jump}}(t) = \mathcal{N}_t^{-2} C_0 e^{-(\gamma_A + \gamma_B)t} \text{ with } \mathcal{N}_t = \|e^{-itH_{\text{eff}}}|\psi\rangle\|.$$

Concurrence:

$$C_{\psi(t)} = |\langle \psi(t) | \sigma_y \otimes \sigma_y T | \psi(t) \rangle|$$

T = complex conjugation op.

 $\sigma_y = Pauli matrix$

$$\hookrightarrow E_{\psi(t)} = h(C_{\psi(t)}), h \text{ convex } \nearrow$$

- Trajectories with 1 or more jumps between 0 and t have a concurrence $C_{\psi(t)}=0$ (since $|\psi(t)\rangle$ separable after 1 jump).
- If no jump occurs between 0 and t, one finds for $H_0 = 0$:

$$C_{\text{no jump}}(t) = \mathcal{N}_t^{-2} C_0 e^{-(\gamma_A + \gamma_B)t} \text{ with } \mathcal{N}_t = \|e^{-itH_{\text{eff}}}|\psi\rangle\|.$$

Average concurrence over all trajectories:

$$\overline{C_{\psi(t)}} = \text{proba (no jump in } [0,t]) \times C_{\text{no jump}}(t)$$

Concurrence:

$$C_{\psi(t)} = |\langle \psi(t) | \sigma_y \otimes \sigma_y T | \psi(t) \rangle|$$

T = complex conjugation op.

 $\sigma_y = \text{Pauli matrix}$

$$\hookrightarrow E_{\psi(t)} = h(C_{\psi(t)}), h \text{ convex } \nearrow$$

- Trajectories with 1 or more jumps between 0 and t have a concurrence $C_{\psi(t)}=0$ (since $|\psi(t)\rangle$ separable after 1 jump).
- If no jump occurs between 0 and t, one finds for $H_0 = 0$:

$$C_{\text{no jump}}(t) = \mathcal{N}_t^{-2} C_0 e^{-(\gamma_A + \gamma_B)t} \text{ with } \mathcal{N}_t = \|e^{-itH_{\text{eff}}}|\psi\rangle\|.$$

Average concurrence over all trajectories:

$$\overline{C_{\psi(t)}} = \text{proba (no jump in } [0,t]) \times C_{\text{no jump}}(t) = C_0 e^{-(\gamma_A + \gamma_B)t}$$
.

Concurrence:

$$C_{\psi(t)} = |\langle \psi(t) | \sigma_y \otimes \sigma_y T | \psi(t) \rangle|$$

T =complex conjugation op.

 $\sigma_y = \text{Pauli matrix}$

$$\hookrightarrow E_{\psi(t)} = h(C_{\psi(t)}), h \text{ convex } \nearrow$$

- Trajectories with 1 or more jumps between 0 and t have a concurrence $C_{\psi(t)}=0$ (since $|\psi(t)\rangle$ separable after 1 jump).
- If no jump occurs between 0 and t, one finds for $H_0=0$:

$$C_{\text{no jump}}(t) = \mathcal{N}_t^{-2} C_0 e^{-(\gamma_A + \gamma_B)t} \text{ with } \mathcal{N}_t = \|e^{-itH_{\text{eff}}}|\psi\rangle\|.$$

Average concurrence over all trajectories:

$$\overline{C_{\psi(t)}} = \text{proba (no jump in } [0,t]) \times C_{\text{no jump}}(t) = C_0 e^{-(\gamma_A + \gamma_B)t}$$
.

 $\hookrightarrow \overline{C_{\psi(t)}}$ vanishes asymptotically \Rightarrow sudden death of entanglement never occurs for quantum trajectories!

General quantum jump dynamics

Consider 2 noninteracting qubits coupled to *independent baths* monitored by means of *local measurements*

- \Rightarrow the jump operators $J=J^A\otimes 1$ or $1_A\otimes J_B$ are *local*.
 - The no-jump trajectories have a non-vanishing concurrence $C_{\rm ni}(t)>0$ at all finite times (if $C_0>0$).

Proof: assume the contrary, i.e. $|\psi_{\rm nj}(t)\rangle$ separable, then $|\psi(0)\rangle \propto e^{itH_{\rm eff}}|\psi_{\rm nj}(t)\rangle$ would be separable since $e^{itH_{\rm eff}}$ is a tensor product of two local operators acting on each qubits.

General quantum jump dynamics

Consider 2 noninteracting qubits coupled to *independent baths* monitored by means of *local measurements*

- \Rightarrow the jump operators $J=J^A\otimes 1$ or $1_A\otimes J_B$ are *local*.
 - The no-jump trajectories have a non-vanishing concurrence $C_{\rm nj}(t)>0$ at all finite times (if $C_0>0$).

Proof: assume the contrary, i.e. $|\psi_{\rm nj}(t)\rangle$ separable, then $|\psi(0)\rangle\propto e^{itH_{\rm eff}}|\psi_{\rm nj}(t)\rangle$ would be separable since $e^{itH_{\rm eff}}$ is a tensor product of two local operators acting on each qubits.

The average concurrence over all trajectories is

$$\overline{C_{\psi(t)}} = C_0 \, e^{-\kappa t}$$

where $\kappa \geq 0$ depends on the measurement scheme only (but not on initial state). [Vogelsberger & D.S, PRA ('10)]

Note: $\overline{E_{\psi(t)}} \geq h(\overline{C_{\psi(t)}})$ by convexity of h.

Quantum state diffusion

• The result $\overline{C_{\psi(t)}} = C_0 \, e^{-\kappa t}$ is not only true for quantum jump dynamics but also for quantum state diffusion, e.g. for trajectories given by the stochastic Schrödinger equation

$$|d\psi\rangle = \left[(-iH_0 - K)dt + \sum_{J \text{ local}} \gamma_J \left(\Re \langle J \rangle_{\psi} J - \frac{1}{2} (\Re \langle J \rangle_{\psi})^2 \right) dt + \sum_{J \text{ local}} \sqrt{\gamma_J} \left(J - \Re \langle J \rangle_{\psi} \right) dw \right] |\psi\rangle$$

which describes homodyne detection.

• The disentanglement rates κ are different for photon-counting, homodyne, and heterodyne detections:

$$\kappa_{\text{QJ}} = \frac{1}{2} \sum_{J} \gamma_{J} \left(\text{tr}(J^{\dagger}J) - 2|\text{det}(J)| \right)$$

$$\kappa_{\text{ho}} = \frac{1}{2} \sum_{J} \gamma_{J} \left(\text{tr}(J^{\dagger}J) - 2\Re \det(J) - (\Im \operatorname{tr}(J))^{2} \right)$$

$$\kappa_{\text{het}} = \frac{1}{2} \sum_{J} \gamma_{J} \left(\text{tr}(J^{\dagger}J) - \frac{1}{2}|\operatorname{tr}(J)| \right).$$

Adjusting the laser phases $J \to e^{-i\theta}J$ yields $\kappa_{ho} \le \kappa_{QJ}, \kappa_{het}$.

Discussion

It is **not possible** to have $\overline{C_{\psi(t)}} = C_{\rho(t)}$ if one measures locally the independent environments of the qubits (since $C_{\rho(t)}$ may vanish at a finite time $t_{\rm ESD}$, whereas $\overline{C_{\psi(t)}} > 0 \ \forall \ t$).

 \hookrightarrow To prepare the separable pure states in the decomp. of ho(t) at time t_{ESD} , one must necessarily perform nonlocal (joint) measurements on the 2 environments!

Discussion

It is **not possible** to have $\overline{C_{\psi(t)}} = C_{\rho(t)}$ if one measures locally the independent environments of the qubits (since $C_{\rho(t)}$ may vanish at a finite time $t_{\rm ESD}$, whereas $\overline{C_{\psi(t)}} > 0 \ \forall \ t$).

- \hookrightarrow To prepare the separable pure states in the decomp. of ho(t) at time t_{ESD} , one must necessarily perform nonlocal (joint) measurements on the 2 environments!
 - * This raises the question: **is ESD observable?**[Almeida et al., Science 316 ('07)].

 * simulation of master eq.

 [Viviescas et al., arXiv:1006.1452].

 * YES with some nonlocal measurements

 * require additional quantum channels...
 - * For A-B entanglement, "ignoring" the environment state is not the same as measuring it without reading the results.

[Mascararenhas et al., arXiv:1006.1233].

Outlines

- Evolution of the concurrence and quantum discord for the 2 spin-boson model
- Average concurrence for quantum trajectories
- Protecting entanglement with quantum trajectories

Entanglement protection

One may use the continuous monitoring by the measurements to protect the qubits against disentanglement.

• For ex., for pure phase dephasing $(J^i = \mathbf{u}_i \cdot \sigma^i, i = A, B)$, $\kappa_{\mathrm{QJ}} = \kappa_{\mathrm{ho}} = \kappa_{\mathrm{het}} = 0$ so that $\overline{C_{\psi(t)}} = C_0 = \mathrm{const.}$

Bell initial state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\uparrow\rangle + e^{-i\varphi}|\downarrow\downarrow\rangle)$$

 $C_0=1\Rightarrow C_{\psi(t)}=1$ for all quantum trajectories and all times

→ perfect entanglement protection!

Entanglement protection (2)

One may use the continuous monitoring by the measurements to protect the qubits against disentanglement.

- For ex., for pure phase dephasing $(J^i = \mathbf{u}_i \cdot \sigma^i, i = A, B)$, $\kappa_{\mathrm{QJ}} = \kappa_{\mathrm{ho}} = \kappa_{\mathrm{het}} = 0$ so that $\overline{C_{\psi(t)}} = C_0 = \mathrm{const.}$
- For two baths at inv. temper. $\beta_i < \infty$, the smallest rate is $\kappa_{\rm QJ} = \sum_{i=A,B} \gamma_+^i (e^{\beta_i \omega_0/2} 1)^2$ (jump op. $J \propto \sqrt{\gamma_-^i} \sigma_-^i + \sqrt{\gamma_+^i} \sigma_+^i$)

Bell initial state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\uparrow\rangle - i|\downarrow\downarrow\rangle)$$

$$\overline{C_{\psi(t)}} = e^{-\kappa t}$$

→ perfect entanglement
protection only possible
at infinite temperature!

Outlines

- Evolution of the concurrence and quantum discord for the 2 spin-boson model
- Average concurrence for quantum trajectories
- Protecting entanglement with quantum trajectories
- Qubits coupled to a common bath

Qubits coupled to a common bath

Two 2-level atoms (qubits) initially in state $|\psi\rangle = \sum_{s,s'=0,1} c_{ss'} |s\rangle |s'\rangle$ are coupled to the **same** modes of the electromagnetic field initially in the vacuum.

$$\overline{C_{\psi(t)}} = \frac{1}{2} \left| c_{-}^{2} - c_{+}^{2} e^{-2\gamma t} + 4c_{11}c_{00} e^{-\gamma t} \right| + 2|c_{11}|^{2} \gamma t e^{-2\gamma t}$$

with $c_{\pm} = c_{11} \pm c_{00}$.

- If $c_{11}=0$ then $\overline{C_{\psi(t)}}=C_{\rho(t)}.$
- If $c_{11} > 0$ then $\overline{C_{\psi(t)}}$ increases at small times.

Outlines

- Evolution of the concurrence and quantum discord for the 2 spin-boson model
- Average concurrence for quantum trajectories
- Protecting entanglement with quantum trajectories
- Qubits coupled to a common bath
- Conclusions & Perspectives

Conclusions & Perspectives

- The mean concurrence $\overline{C(t)}$ of two qubits coupled to **independent baths** monitored by continuous **local measurements** decays exponentially with a rate depending on the measurement scheme only.
- Measuring the baths helps to protect entanglement, sometimes perfectly!
- For two qubits coupled to a **common bath**, the time behavior of the mean concurrence depends strongly on the initial state. One may have $\overline{C(t)} = C_{\rho(t)}$.

Open problems: non-Markov unravelings, multipartite systems,...