Lecture 2:
 Bipartite systems coupled to two baths: Time-evolution of Entanglement

Dominique Spehner

Institut Fourier \& Laboratoire de Physique et Modélisation des Milieux Condensés, Grenoble, France

$\mathfrak{i} \mathfrak{i} \mathfrak{f} \underset{\text { FOURIER }}{\text { INSTIUT }}$

Ex. of 2-qubit separable and classical states

\diamond 2-qubit states with max. disordered marginals $\rho_{A / B}=\frac{1}{2}$ can be written (up to conjugation by a local unitary $U_{A} \otimes U_{B}$) as

$$
\rho=\frac{1}{4}\left(1 \otimes 1+\sum_{m=1}^{3} c_{m} \sigma_{m} \otimes \sigma_{m}\right)
$$

$\vec{c} \in \mathcal{T}$ tetrahedron with vertices
$F_{ \pm}=(\pm 1, \mp 1,1), G_{ \pm}=(\pm 1, \pm 1,-1)$
$\diamond \rho$ separable $\Leftrightarrow \vec{c} \in$ octahedron
IJKLMN
\diamond Quantum discords
[Luo, PRA '08] [DS \& Orszag, '13]

$$
\begin{aligned}
& \delta_{A}(\rho)=\sum_{\nu=0}^{3} p_{\nu} \ln p_{\nu}+\ln 4-\frac{1-|c|}{2} \ln (1-|c|)-\frac{1+|c|}{2} \ln (1+|c|) \\
& D_{A}(\rho)=2\left(1-\sqrt{\frac{1+b_{+}+b_{-}}{2}}\right), b_{ \pm}=\frac{1}{2} \sqrt{\left(1 \pm c_{1}\right)^{2}-\left(c_{2} \mp c_{3}\right)^{2}}
\end{aligned}
$$

if $|c|=\max _{m}\left|c_{m}\right|=\left|c_{1}\right|$ (else circular permut. of $\left.\left(c_{1}, c_{2}, c_{3}\right)\right)$
$p_{\nu}=$ euclidean distance of the origin O to the faces of \mathcal{T}

Outlines

- Evolution of the concurrence and quantum discord for the 2 spin-boson model
- Average concurrence for quantum trajectories
- Protecting entanglement with quantum trajectories
- Qubits coupled to a common bath
- Conclusions \& Perspectives

Joint work with: Sylvain Vogelsberger

The 2 spin-boson model

[Yu and Eberly ('04)]; Merkli et al. ('10); Merkli ('11), ...]

- Consider two spins A and B coupled to two independent free-boson reservoirs R_{A} and R_{B}. There are no interactions between $A \& B$. The total Hamiltonian is:

$$
\begin{aligned}
& H_{\text {tot }}=H_{A}+H_{B}+H_{R_{A}}+H_{R_{B}}+\lambda H_{\text {int }} \\
& H_{A}=\omega_{A} \sigma_{z}^{A}, H_{B}=\omega_{B} \sigma_{z}^{B} \\
& H_{R_{A}}=\sum_{k} \mu_{k} a_{k}^{\dagger} a_{k} \\
& H_{R_{B}}=\sum_{k} \nu_{k} b_{k}^{\dagger} b_{k}
\end{aligned}
$$

- Initial state: $\rho_{\text {tot }}(0)=\underbrace{\rho_{A B}(0)}$
$\otimes \rho_{R_{A}} \otimes \rho_{R_{B}}$
ENTANGLED
- MODEL 1: spin-boson coupling given by Jaynes-Cummings:

$$
H_{\mathrm{int}}=\sum_{k}\left(g_{k} \sigma_{+}^{A} \otimes a_{k}+f_{k} \sigma_{+}^{B} \otimes b_{k}+\text { h.c. }\right)
$$

The 2 spin-boson model (2)

- $\rho_{R_{k}}$ Gibbs states with inverse temperatures $\beta_{k}<\infty$ \Rightarrow the 2-spin state converges at large times to

$$
\rho_{A B}(\infty)=Z^{-1} e^{-\beta_{A} \omega_{A} \sigma_{z}^{A}} \otimes e^{-\beta_{B} \omega_{B} \sigma_{z}^{B}} \text { product state }
$$

- $\rho_{A B}(\infty)$ is in the interior of the set of separable states \mathcal{S}. Reason: $\rho_{A B} \in \partial \mathcal{S} \Leftrightarrow \rho_{A B}^{T_{B}}$ has at least one zero eigenvalue (by the Peres-Horodecki criterium).

The 2 spin-boson model (2)

- $\rho_{R_{k}}$ Gibbs states with inverse temperatures $\beta_{k}<\infty$
\Rightarrow the 2-spin state converges at large times to

$$
\rho_{A B}(\infty)=Z^{-1} e^{-\beta_{A} \omega_{A} \sigma_{z}^{A}} \otimes e^{-\beta_{B} \omega_{B} \sigma_{z}^{B}} \text { product state }
$$

- $\rho_{A B}(\infty)$ is in the interior of the set of separable states \mathcal{S}. Reason: $\rho_{A B} \in \partial \mathcal{S} \Leftrightarrow \rho_{A B}^{T_{B}}$ has at least one zero eigenvalue (by the Peres-Horodecki criterium).
- By continuity of $t \mapsto \rho_{A B}(t)$, the 2-spin state

$$
\rho_{A B}(t)=\operatorname{tr}_{R_{A}, R_{B}}\left(e^{-i t H_{\mathrm{tot}}} \rho_{\mathrm{tot}}(0) e^{i t H_{\mathrm{tot}}}\right)
$$

become separable (cross $\partial \mathcal{S}$) after a finite time $t_{E S D}$.

The 2 spin-boson model (2)

- $\rho_{R_{k}}$ Gibbs states with inverse temperatures $\beta_{k}<\infty$
\Rightarrow the 2-spin state converges at large times to

$$
\rho_{A B}(\infty)=Z^{-1} e^{-\beta_{A} \omega_{A} \sigma_{z}^{A}} \otimes e^{-\beta_{B} \omega_{B} \sigma_{z}^{B}} \text { product state }
$$

- $\rho_{A B}(\infty)$ is in the interior of the set of separable states \mathcal{S}. Reason: $\rho_{A B} \in \partial \mathcal{S} \Leftrightarrow \rho_{A B}^{T_{B}}$ has at least one zero eigenvalue (by the Peres-Horodecki criterium).
- By continuity of $t \mapsto \rho_{A B}(t)$, the 2-spin state

$$
\rho_{A B}(t)=\operatorname{tr}_{R_{A}, R_{B}}\left(e^{-i t H_{\mathrm{tot}}} \rho_{\mathrm{tot}}(0) e^{i t H_{\mathrm{tot}}}\right)
$$

become separable (cross $\partial \mathcal{S}$) after a finite time $t_{E S D}$.
\hookrightarrow can be checked by computing the concurrence of $\rho_{A B}(t)$ in the weak coupling limit [Yu and Eberly ('04),...], or by using the resonance perturbation theory [Merkli et al. ('10)].

2 spin-boson model: pure phase dephasing

- MODEL 2:

$$
H_{\mathrm{int}}=\sum_{k}\left(g_{k} \sigma_{z}^{A} \otimes\left(a_{k}+a_{k}^{\dagger}\right)+f_{k} \sigma_{z}^{B} \otimes\left(b_{k}+b_{k}^{\dagger}\right)\right)
$$

Weak coupling limit (but not necessary)

$$
\frac{d}{d t} \rho_{A B}=\gamma_{z}^{A}\left(\sigma_{z}^{A} \rho_{A B}(t) \sigma_{z}^{A}-\rho_{A B}(t)\right)+(A \leftrightarrow B)
$$

\rightarrow no convergence to a NESS.

2 spin-boson model: pure phase dephasing

- MODEL 2:

$$
H_{\mathrm{int}}=\sum_{k}\left(g_{k} \sigma_{z}^{A} \otimes\left(a_{k}+a_{k}^{\dagger}\right)+f_{k} \sigma_{z}^{B} \otimes\left(b_{k}+b_{k}^{\dagger}\right)\right)
$$

Weak coupling limit (but not necessary)

$$
\frac{d}{d t} \rho_{A B}=\gamma_{z}^{A}\left(\sigma_{z}^{A} \rho_{A B}(t) \sigma_{z}^{A}-\rho_{A B}(t)\right)+(A \leftrightarrow B)
$$

\rightarrow no convergence to a NESS.
Initial 2-spin state with maximally mixed marginals

$$
\rho_{A B}(0)=\frac{1}{4}\left(1 \otimes 1+\sum_{m=1}^{3} c_{m} \sigma_{m} \otimes \sigma_{m}\right), \vec{c} \in \mathcal{T}
$$

\hookrightarrow remains of this form at all times $t \geq 0$, with

$$
\begin{aligned}
& \quad c_{1}(t)=e^{-2 \gamma t} c_{1}, c_{2}(t)=e^{-2 \gamma t} c_{2} \text { and } c_{3}(t)=c_{3} \\
& \gamma=\gamma_{z}^{A}+\gamma_{z}^{B} .
\end{aligned}
$$

2 spin-boson model: pure phase dephasing

- Concurrence:

$$
C\left[\rho_{A B}(t)\right]=\frac{1}{2} \max \left\{0,\left|c_{1} \pm c_{2}\right| e^{-2 \gamma t}-1 \mp c_{3}\right\}
$$

Initial state entangled $\Leftrightarrow\left|c_{1} \pm c_{2}\right|>1 \pm c_{3}$ (+ or -).

- For $c_{3}=\mp 1$ (e.g. initial Bell state $\left.\left|\psi_{A B}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)\right)$, $C\left[\rho_{A B}(t)\right]=\left|c_{1} \pm c_{2}\right| e^{-2 \gamma t}$ vanishes asymptotically.

Otherwise entanglement is lost after a finite time

$$
t_{E S D}=\frac{1}{2 \gamma} \ln \left(\max \left\{\frac{\left|c_{1} \pm c_{2}\right|}{1 \pm c_{3}}\right\}\right)
$$

- For $c_{1}= \pm 1, c_{2}=\mp c_{3}$ with $\left|c_{3}\right|<1$,

$$
\delta_{A}\left[\rho_{A B}(t)\right]=\text { const. for }
$$

$$
0 \leq t \leq-\frac{\ln \left|c_{3}\right|}{2 \gamma} .
$$

[Mazzola, Piilo \& Maniscalco ('10)]

Entanglement sudden death and birth

ENTANGLEMENT TYPICALLY DISAPPEARS BEFORE COHERENCES ARE LOST!

It can disappear after a finite time

- always the case if the qubits relax to a Gibbs state ρ_{∞} at positive temperature
- otherwise depends on the initial state.
[Diosi '03], [Dodd \& Halliwell PRA 69 ('04)], [Yu et Eberly PRL 93 ('04)]

Entanglement sudden death and birth

ENTANGLEMENT TYPICALLY DISAPPEARS BEFORE COHERENCES ARE LOST!

It can disappear after a finite time

- always the case if the qubits relax to a

Gibbs state ρ_{∞} at positive temperature

- otherwise depends on the initial state.
[Diosi '03], [Dodd \& Halliwell PRA 69 ('04)], [Yu et Eberly PRL 93 ('04)]
If the two qubits are coupled to a common bath, entanglement can also suddently reappear
\rightsquigarrow due to effective (bath-mediated) qubit interaction creating entanglement
[Ficek \& Tanás PRA 74 ('06)], [Hernandez \&
 Orszag PRA 78 ('08)], [Mazzola et al. PRA ('09)]

Outlines

- Evolution of the concurrence and quantum discord for the 2 spin-boson model
- Average concurrence for quantum trajectories

Quantum trajectories

As a result of continuous measurements on the environment, the bipartite system remains in a pure state $|\psi(t)\rangle$ at all times $t>0$

$$
t \in \mathbb{R}_{+} \mapsto|\psi(t)\rangle \quad \text { quantum trajectory }
$$

Reason: each measurement disentangle the system and the environment (by wavepacket reduction).

Quantum trajectories

As a result of continuous measurements on the environment, the bipartite system remains in a pure state $|\psi(t)\rangle$ at all times $t>0$

$$
t \in \mathbb{R}_{+} \mapsto|\psi(t)\rangle \quad \text { quantum trajectory }
$$

Reason: each measurement disentangle the system and the environment (by wavepacket reduction).

Averaging over the measurements, one gets the density matrix:

$$
\rho(t)=\overline{|\psi(t)\rangle\langle\psi(t)|}=\int \mathrm{d} p[\psi]|\psi(t)\rangle\langle\psi(t)|
$$

Quantum trajectories

As a result of continuous measurements on the environment, the bipartite system remains in a pure state $|\psi(t)\rangle$ at all times $t>0$

$$
t \in \mathbb{R}_{+} \mapsto|\psi(t)\rangle \quad \text { quantum trajectory }
$$

Reason: each measurement disentangle the system and the environment (by wavepacket reduction).

Averaging over the measurements, one gets the density matrix:

$$
\rho(t)=\overline{|\psi(t)\rangle\langle\psi(t)|}=\int \mathrm{d} p[\psi]|\psi(t)\rangle\langle\psi(t)|
$$

In general this decomposition is NOT THE OPTIMAL one,

$$
\overline{E_{\psi(t)}} \geq E_{\rho(t)} \quad[\text { Nha \& Carmichael PRL } 98 \text { ('04)]. }
$$

But for specific models, one can find measurement schemes with
$\overline{C_{\psi(t)}}=C_{\rho(t)} \forall t \geq 0$ with $C=$ Wootters concurrence for 2 qubits [Carvalho et al. PRL 98 ('07), Viviescas et al. ('10)].

Photon counting

Two 2-level atoms (qubits) initially in state $|\psi\rangle=\sum_{s, s^{\prime}=0,1} c_{s s^{\prime}}|s\rangle\left|s^{\prime}\right\rangle$ are coupled to independent modes of the electromagnetic field initially in the vacuum.

Two perfect photon counters make a click when a photon is emitted by the atom $i(i=A, B)$

Photon counting

Two 2-level atoms (qubits) initially in state $|\psi\rangle=\sum_{s, s^{\prime}=0,1} c_{s s^{\prime}}|s\rangle\left|s^{\prime}\right\rangle$ are coupled to independent modes of the electromagnetic field initially in the vacuum.

Two perfect photon counters make a click when a photon is emitted by the atom $i(i=A, B)$

- If D_{i} detects a photon between t and $t+\mathrm{d} t$, the qubits suffer a quantum jump [occurs with proba. $\gamma_{i} \| \sigma_{-}^{i}|\psi(t)\rangle \|^{2} \mathrm{~d} t$]

$$
|\psi(t)\rangle \longrightarrow \sigma_{-}^{i}|\psi(t)\rangle=|0\rangle_{i} \otimes|\phi(t)\rangle \rightsquigarrow \text { separable. }
$$

Photon counting

Two 2-level atoms (qubits) initially in state $|\psi\rangle=\sum_{s, s^{\prime}=0,1} c_{s s^{\prime}}|s\rangle\left|s^{\prime}\right\rangle$ are coupled to independent modes of the electromagnetic field initially in the vacuum.

Two perfect photon counters make a click when a photon is emitted by the atom $i(i=A, B)$

- If D_{i} detects a photon between t and $t+\mathrm{d} t$, the qubits suffer a quantum jump [occurs with proba. $\gamma_{i} \| \sigma_{-}^{i}|\psi(t)\rangle \|^{2} \mathrm{~d} t$]

$$
|\psi(t)\rangle \longrightarrow \sigma_{-}^{i}|\psi(t)\rangle=|0\rangle_{i} \otimes|\phi(t)\rangle \rightsquigarrow \text { separable. }
$$

- If no click occurs between t_{0} and t [proba. $\| e^{-i t H_{\text {eff }}}\left|\psi\left(t_{0}\right)\right\rangle \|^{2}$]

$$
|\psi(t)\rangle=\frac{e^{-i\left(t-t_{0}\right) H_{\text {eff }}}\left|\psi\left(t_{0}\right)\right\rangle}{\| e^{-i t H_{\text {eff }}}\left|\psi\left(t_{0}\right)\right\rangle \|}, \quad H_{\text {eff }}=H_{0}-\frac{i}{2} \sum_{i=A, B} \gamma_{i} \sigma_{+}^{i} \sigma_{-}^{i} .
$$

Photon counting (2)

Concurrence:

$$
\left.C_{\psi(t)}=\left|\langle\psi(t)| \sigma_{y} \otimes \sigma_{y} T\right| \psi(t)\right\rangle \mid
$$

$T=$ complex conjugation op.
$\sigma_{y}=$ Pauli matrix
$\hookrightarrow E_{\psi(t)}=h\left(C_{\psi(t)}\right), h$ convex

- Trajectories with 1 or more jumps between 0 and t have a concurrence $C_{\psi(t)}=0$ (since $|\psi(t)\rangle$ separable after 1 jump).
- If no jump occurs between 0 and t, one finds for $H_{0}=0$: $C_{\text {no jump }}(t)=\mathcal{N}_{t}^{-2} C_{0} e^{-\left(\gamma_{A}+\gamma_{B}\right) t}$ with $\mathcal{N}_{t}=\| e^{-i t H_{\text {eff }}}|\psi\rangle \|$.

Photon counting (2)

Concurrence:

$$
\left.C_{\psi(t)}=\left|\langle\psi(t)| \sigma_{y} \otimes \sigma_{y} T\right| \psi(t)\right\rangle \mid
$$

$T=$ complex conjugation op.
$\sigma_{y}=$ Pauli matrix
$\hookrightarrow E_{\psi(t)}=h\left(C_{\psi(t)}\right), h$ convex

- Trajectories with 1 or more jumps between 0 and t have a concurrence $C_{\psi(t)}=0$ (since $|\psi(t)\rangle$ separable after 1 jump).
- If no jump occurs between 0 and t, one finds for $H_{0}=0$: $C_{\text {no jump }}(t)=\mathcal{N}_{t}^{-2} C_{0} e^{-\left(\gamma_{A}+\gamma_{B}\right) t}$ with $\mathcal{N}_{t}=\| e^{-i t H_{\text {eff }}}|\psi\rangle \|$.

Average concurrence over all trajectories:
$\overline{C_{\psi(t)}}=$ proba (no jump in $\left.[0, t]\right) \times C_{\mathrm{no} \text { jump }}(t)$

Photon counting (2)

Concurrence:

$$
\left.C_{\psi(t)}=\left|\langle\psi(t)| \sigma_{y} \otimes \sigma_{y} T\right| \psi(t)\right\rangle \mid
$$

$T=$ complex conjugation op.
$\sigma_{y}=$ Pauli matrix
$\hookrightarrow E_{\psi(t)}=h\left(C_{\psi(t)}\right), h$ convex

- Trajectories with 1 or more jumps between 0 and t have a concurrence $C_{\psi(t)}=0$ (since $|\psi(t)\rangle$ separable after 1 jump).
- If no jump occurs between 0 and t, one finds for $H_{0}=0$: $C_{\text {no jump }}(t)=\mathcal{N}_{t}^{-2} C_{0} e^{-\left(\gamma_{A}+\gamma_{B}\right) t}$ with $\mathcal{N}_{t}=\| e^{-i t H_{\text {eff }}}|\psi\rangle \|$.

Average concurrence over all trajectories:
$\overline{C_{\psi(t)}}=$ proba (no jump in $\left.[0, t]\right) \times C_{\text {no jump }}(t)=C_{0} e^{-\left(\gamma_{A}+\gamma_{B}\right) t}$.

Photon counting (2)

Concurrence:

$$
\left.C_{\psi(t)}=\left|\langle\psi(t)| \sigma_{y} \otimes \sigma_{y} T\right| \psi(t)\right\rangle \mid
$$

$T=$ complex conjugation op.
$\sigma_{y}=$ Pauli matrix
$\hookrightarrow E_{\psi(t)}=h\left(C_{\psi(t)}\right), h$ convex

- Trajectories with 1 or more jumps between 0 and t have a concurrence $C_{\psi(t)}=0$ (since $|\psi(t)\rangle$ separable after 1 jump).
- If no jump occurs between 0 and t, one finds for $H_{0}=0$: $C_{\text {no jump }}(t)=\mathcal{N}_{t}^{-2} C_{0} e^{-\left(\gamma_{A}+\gamma_{B}\right) t}$ with $\mathcal{N}_{t}=\| e^{-i t H_{\text {eff }}}|\psi\rangle \|$.

Average concurrence over all trajectories:
$\overline{C_{\psi(t)}}=$ proba (no jump in $\left.[0, t]\right) \times C_{\text {no jump }}(t)=C_{0} e^{-\left(\gamma_{A}+\gamma_{B}\right) t}$.
$\hookrightarrow \overline{C_{\psi(t)}}$ vanishes asymptotically \Rightarrow sudden death of entanglement never occurs for quantum trajectories!

General quantum jump dynamics

Consider 2 noninteracting qubits coupled to independent baths monitored by means of local measurements
\Rightarrow the jump operators $J=J^{A} \otimes 1$ or $1_{A} \otimes J_{B}$ are local.

- The no-jump trajectories have a non-vanishing concurrence $C_{\mathrm{nj}}(t)>0$ at all finite times (if $C_{0}>0$).
Proof: assume the contrary, i.e. $\left|\psi_{\mathrm{nj}}(t)\right\rangle$ separable, then $|\psi(0)\rangle \propto e^{i t H_{\text {eff }}}\left|\psi_{\mathrm{nj}}(t)\right\rangle$ would be separable since $e^{i t H_{\text {eff }}}$ is a tensor product of two local operators acting on each qubits.

General quantum jump dynamics

Consider 2 noninteracting qubits coupled to independent baths monitored by means of local measurements
\Rightarrow the jump operators $J=J^{A} \otimes 1$ or $1_{A} \otimes J_{B}$ are local.

- The no-jump trajectories have a non-vanishing concurrence $C_{\mathrm{nj}}(t)>0$ at all finite times (if $C_{0}>0$).
Proof: assume the contrary, i.e. $\left|\psi_{\mathrm{nj}}(t)\right\rangle$ separable, then $|\psi(0)\rangle \propto e^{i t H_{\text {eff }}}\left|\psi_{\mathrm{nj}}(t)\right\rangle$ would be separable since $e^{i t H_{\text {eff }}}$ is a tensor product of two local operators acting on each qubits.
- The average concurrence over all trajectories is

$$
\overline{C_{\psi(t)}}=C_{0} e^{-\kappa t}
$$

where $\kappa \geq 0$ depends on the measurement scheme only (but not on initial state). [Vogelsberger \& D.S, PRA ('10)]

Note: $\overline{E_{\psi(t)}} \geq h\left(\overline{C_{\psi(t)}}\right)$ by convexity of h.

Quantum state diffusion

- The result $\overline{C_{\psi(t)}}=C_{0} e^{-\kappa t}$ is not only true for quantum jump dynamics but also for quantum state diffusion, e.g. for trajectories given by the stochastic Schrödinger equation

$$
\begin{aligned}
|\mathrm{d} \psi\rangle= & {\left[\left(-i H_{0}-K\right) \mathrm{d} t+\sum_{J \text { local }} \gamma_{J}\left(\Re\langle J\rangle_{\psi} J-\frac{1}{2}\left(\Re\langle J\rangle_{\psi}\right)^{2}\right) \mathrm{d} t\right.} \\
& \left.+\sum \sqrt{\gamma_{J}}\left(J-\Re\langle J\rangle_{\psi}\right) \mathrm{d} w\right]|\psi\rangle
\end{aligned}
$$

which describes homodyne detection.

- The disentanglement rates κ are different for photoncounting, homodyne, and heterodyne detections:

$$
\begin{aligned}
\kappa_{\mathrm{QJ}} & =\frac{1}{2} \sum_{J} \gamma_{J}\left(\operatorname{tr}\left(J^{\dagger} J\right)-2|\operatorname{det}(J)|\right) \\
\kappa_{\mathrm{ho}} & =\frac{1}{2} \sum_{J} \gamma_{J}\left(\operatorname{tr}\left(J^{\dagger} J\right)-2 \Re \operatorname{det}(J)-(\Im \operatorname{tr}(J))^{2}\right) \\
\kappa_{\text {het }} & =\frac{1}{2} \sum_{J} \gamma_{J}\left(\operatorname{tr}\left(J^{\dagger} J\right)-\frac{1}{2}|\operatorname{tr}(J)|\right) .
\end{aligned}
$$

Adjusting the laser phases $J \rightarrow e^{-i \theta} J$ yields $\kappa_{\text {ho }} \leq \kappa_{Q J}, \kappa_{\text {het }}$.

Discussion

It is not possible to have $\overline{C_{\psi(t)}}=C_{\rho(t)}$ if one measures locally the independent environments of the qubits (since $C_{\rho(t)}$ may vanish at a finite time $t_{\text {ESD }}$, whereas $\left.\overline{C_{\psi(t)}}>0 \forall t\right)$.
\hookrightarrow To prepare the separable pure states in the decomp. of $\rho(t)$ at time t_{ESD}, one must necessarily perform nonlocal (joint) measurements on the 2 environments!

Discussion

It is not possible to have $\overline{C_{\psi(t)}}=C_{\rho(t)}$ if one measures locally the independent environments of the qubits (since $C_{\rho(t)}$ may vanish at a finite time $t_{\text {ESD }}$, whereas $\left.\overline{C_{\psi(t)}}>0 \forall t\right)$.
\hookrightarrow To prepare the separable pure states in the decomp. of $\rho(t)$ at time $t_{\text {ESD }}$, one must necessarily perform nonlocal (joint) measurements on the 2 environments!

* This raises the question: is ESD observable?
[Almeida et al., Science 316 ('07)]. \longrightarrow simulation of master eq. [Viviescas et al., arXiv:1006.1452]. \longrightarrow YES with some nonlocal measurements \Rightarrow require additional quantum channels...
* For $A-B$ entanglement, "ignoring" the environment state is not the same as measuring it without reading the results. [Mascararenhas et al., arXiv:1006.1233].

Outlines

- Evolution of the concurrence and quantum discord for the 2 spin-boson model
- Average concurrence for quantum trajectories
- Protecting entanglement with quantum trajectories

Entanglement protection

One may use the continuous monitoring by the measurements to protect the qubits against disentanglement.

- For ex., for pure phase dephasing ($\left.J^{i}=\mathbf{u}_{i} \cdot \sigma^{i}, i=A, B\right)$, $\kappa_{\mathrm{QJ}}=\kappa_{\text {ho }}=\kappa_{\text {het }}=0$ so that $\overline{C_{\psi(t)}}=C_{0}=$ const.

Bell initial state
$|\psi\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow \uparrow\rangle+e^{-i \varphi}|\downarrow \downarrow\rangle\right)$
$C_{0}=1 \Rightarrow C_{\psi(t)}=1$ for all quantum trajectories and all times
\hookrightarrow perfect entanglement protection!

Entanglement protection (2)

One may use the continuous monitoring by the measurements to protect the qubits against disentanglement.

- For ex., for pure phase dephasing ($\left.J^{i}=\mathbf{u}_{i} \cdot \sigma^{i}, i=A, B\right)$, $\kappa_{\mathrm{QJ}}=\kappa_{\mathrm{ho}}=\kappa_{\text {het }}=0$ so that $\overline{C_{\psi(t)}}=C_{0}=$ const.
- For two baths at inv. temper. $\beta_{i}<\infty$, the smallest rate is

$$
\kappa_{\mathrm{QJ}}=\sum_{i=A, B} \gamma_{+}^{i}\left(e^{\beta_{i} \omega_{0} / 2}-1\right)^{2}\left(\text { jump op. } J \propto \sqrt{\gamma_{-}^{i}} \sigma_{-}^{i}+\sqrt{\gamma_{+}^{i}} \sigma_{+}^{i}\right)
$$

Bell initial state

$$
\begin{gathered}
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \uparrow\rangle-i|\downarrow \downarrow\rangle) \\
\overline{C_{\psi(t)}}=e^{-\kappa t}
\end{gathered}
$$

\hookrightarrow perfect entanglement protection only possible at infinite temperature!

Outlines

- Evolution of the concurrence and quantum discord for the 2 spin-boson model
- Average concurrence for quantum trajectories
- Protecting entanglement with quantum trajectories
- Qubits coupled to a common bath

Qubits coupled to a common bath

Two 2-level atoms (qubits) initially in state $|\psi\rangle=\sum_{s, s^{\prime}=0,1} c_{s s^{\prime}}|s\rangle\left|s^{\prime}\right\rangle$ are coupled to the same modes of the electromagnetic field initially in the vacuum.

$$
\overline{C_{\psi(t)}}=\frac{1}{2}\left|c_{-}^{2}-c_{+}^{2} e^{-2 \gamma t}+4 c_{11} c_{00} e^{-\gamma t}\right|+2\left|c_{11}\right|^{2} \gamma t e^{-2 \gamma t}
$$

with $c_{ \pm}=c_{11} \pm c_{00}$.

- If $c_{11}=0$ then

$$
\overline{C_{\psi(t)}}=C_{\rho(t)} .
$$

- If $c_{11}>0$ then $\overline{C_{\psi(t)}}$ increases at small times.

Outlines

- Evolution of the concurrence and quantum discord for the 2 spin-boson model
- Average concurrence for quantum trajectories
- Protecting entanglement with quantum trajectories
- Qubits coupled to a common bath
- Conclusions \& Perspectives

Conclusions \& Perspectives

- The mean concurrence $\overline{C(t)}$ of two qubits coupled to independent baths monitored by continuous local measurements decays exponentially with a rate depending on the measurement scheme only.
- Measuring the baths helps to protect entanglement, sometimes perfectly!
- For two qubits coupled to a common bath, the time behavior of the mean concurrence depends strongly on the initial state. One may have $\overline{C(t)}=C_{\rho(t)}$.

Open problems: non-Markov unravelings, multipartite systems,...

