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Ex. of 2-qubit separable and classical states
⋄ 2-qubit states with max. disordered marginals ρA/B = 1

2 can

be written (up to conjugation by a local unitary UA ⊗ UB) as
F

G−

G+

−

+F

c

c

c

3

2

1

L J

M

N

K

I

ρ =
1
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(

1⊗ 1 +
3∑

m=1

cmσm ⊗ σm

)

~c ∈ T tetrahedron with vertices

F± = (±1,∓1, 1), G± = (±1,±1,−1)

⋄ ρ separable ⇔ ~c ∈ octahedron

IJKLMN

⋄ Quantum discords [Luo, PRA ’08] [DS & Orszag, ’13]

δA(ρ) =
3∑

ν=0

pν ln pν + ln 4− 1− |c|
2

ln(1− |c|)− 1 + |c|
2

ln(1 + |c|)

DA(ρ) = 2
(

1−
√

1 + b+ + b−

2

)

, b± =
1

2

√

(1± c1)2 − (c2 ∓ c3)2

if |c| = maxm |cm| = |c1| (else circular permut. of (c1, c2, c3))

pν = euclidean distance of the origin O to the faces of T
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Outlines

• Evolution of the concurrence and quantum discord for
the 2 spin-boson model

• Average concurrence for quantum trajectories

• Protecting entanglement with quantum trajectories

• Qubits coupled to a common bath

• Conclusions & Perspectives

Joint work with: Sylvain Vogelsberger
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The 2 spin-boson model
[Yu and Eberly (’04)]; Merkli et al. (’10); Merkli (’11), ...]

• Consider two spins A and B coupled to two independent

free-boson reservoirs RA and RB. There are no interactions

between A & B. The total Hamiltonian is:

Htot = HA +HB +HRA
+HRB

+ λHint

HA = ωAσ
A
z , HB = ωBσ

B
z

HRA
=

∑

k µka
†
kak

HRB
=

∑

k νkb
†
kbk
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• Initial state: ρtot(0) = ρAB(0)
︸ ︷︷ ︸

ENTANGLED

⊗ ρRA
⊗ ρRB

• MODEL 1: spin-boson coupling given by Jaynes-Cummings:

Hint =
∑

k

(
gkσ

A
+ ⊗ ak + fkσ

B
+ ⊗ bk + h.c.

)
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The 2 spin-boson model (2)
• ρRk

Gibbs states with inverse temperatures βk <∞
⇒ the 2-spin state converges at large times to

ρAB(∞) = Z−1e−βAωAσ
A
z ⊗ e−βBωBσ

B
z product state

• ρAB(∞) is in the interior of the set of separable states S.
Reason: ρAB ∈ ∂S ⇔ ρTB

AB has at least one zero eigenvalue

(by the Peres-Horodecki criterium).
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The 2 spin-boson model (2)
• ρRk

Gibbs states with inverse temperatures βk <∞
⇒ the 2-spin state converges at large times to

ρAB(∞) = Z−1e−βAωAσ
A
z ⊗ e−βBωBσ

B
z product state

• ρAB(∞) is in the interior of the set of separable states S.
Reason: ρAB ∈ ∂S ⇔ ρTB

AB has at least one zero eigenvalue

(by the Peres-Horodecki criterium).

• By continuity of t 7→ ρAB(t), the 2-spin state

ρAB(t) = tr
RA,RB

(e−itHtotρtot(0)e
itHtot)

become separable (cross ∂S) after a finite time tESD.
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The 2 spin-boson model (2)
• ρRk

Gibbs states with inverse temperatures βk <∞
⇒ the 2-spin state converges at large times to

ρAB(∞) = Z−1e−βAωAσ
A
z ⊗ e−βBωBσ

B
z product state

• ρAB(∞) is in the interior of the set of separable states S.
Reason: ρAB ∈ ∂S ⇔ ρTB

AB has at least one zero eigenvalue

(by the Peres-Horodecki criterium).

• By continuity of t 7→ ρAB(t), the 2-spin state

ρAB(t) = tr
RA,RB

(e−itHtotρtot(0)e
itHtot)

become separable (cross ∂S) after a finite time tESD.

→֒ can be checked by computing the

concurrence of ρAB(t) in the weak

coupling limit [Yu and Eberly (’04),...],

or by using the resonance pertur-

bation theory [Merkli et al. (’10)]. t

1

C(t)

t
ESD
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2 spin-boson model: pure phase dephasing

• MODEL 2:

Hint =
∑

k

(
gkσ

A
z ⊗ (ak + a

†
k) + fkσ

B
z ⊗ (bk + b

†
k)
)

Weak coupling limit (but not necessary)

d

dt
ρAB = γAz

(
σAz ρAB(t)σ

A
z − ρAB(t)

)
+ (A↔ B)

→ no convergence to a NESS.
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2 spin-boson model: pure phase dephasing

• MODEL 2:

Hint =
∑

k

(
gkσ

A
z ⊗ (ak + a

†
k) + fkσ

B
z ⊗ (bk + b

†
k)
)

Weak coupling limit (but not necessary)

d

dt
ρAB = γAz

(
σAz ρAB(t)σ

A
z − ρAB(t)

)
+ (A↔ B)

→ no convergence to a NESS.

Initial 2-spin state with maximally mixed marginals

ρAB(0) =
1

4

(

1⊗ 1 +

3∑

m=1

cmσm ⊗ σm

)

, ~c ∈ T

→֒ remains of this form at all times t ≥ 0, with

c1(t) = e−2γtc1 , c2(t) = e−2γtc2 and c3(t) = c3

γ = γAz + γBz .
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2 spin-boson model: pure phase dephasing

• Concurrence:

C[ρAB(t)] =
1
2 max{0, |c1 ± c2|e−2γt − 1∓ c3}

Initial state entangled ⇔ |c1 ± c2| > 1± c3 (+ or −).

• For c3 = ∓1 (e.g. initial Bell state |ψAB〉 = 1√
2
(|00〉 − |11〉)),

C[ρAB(t)] = |c1 ± c2|e−2γt vanishes asymptotically .

Otherwise entanglement is lost after a finite time

tESD = 1
2γ ln

(

max{ |c1±c2|
1±c3 }

)

.

• For c1 = ±1, c2 = ∓c3 with |c3| < 1,

δA[ρAB(t)] = const. for

0 ≤ t ≤ − ln |c3|
2γ .

[Mazzola, Piilo & Maniscalco (’10)]
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Entanglement sudden death and birth
ENTANGLEMENT TYPICALLY DISAPPEARS BEFORE COHERENCES ARE LOST!

ρ

ρ0

S
T=0

T>0

ρ

common
bath

It can disappear after a finite time

• always the case if the qubits relax to a

Gibbs state ρ∞ at positive temperature

• otherwise depends on the initial state.

[Diosi ’03], [Dodd & Halliwell PRA 69 (’04)], [Yu et Eberly PRL 93 (’04)]
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Entanglement sudden death and birth
ENTANGLEMENT TYPICALLY DISAPPEARS BEFORE COHERENCES ARE LOST!

ρ

ρ0

S
T=0

T>0

ρ

common
bath

It can disappear after a finite time

• always the case if the qubits relax to a

Gibbs state ρ∞ at positive temperature

• otherwise depends on the initial state.

[Diosi ’03], [Dodd & Halliwell PRA 69 (’04)], [Yu et Eberly PRL 93 (’04)]

If the two qubits are coupled to a

common bath , entanglement can

also suddently reappear

 due to effective (bath-mediated) qubit

interaction creating entanglement

[Ficek & Tanás PRA 74 (’06)], [Hernandez &

Orszag PRA 78 (’08)], [Mazzola et al. PRA (’09)]

t

1

C(t)

t
ESDESD

t
sudden birth
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Outlines

• Evolution of the concurrence and quantum discord for
the 2 spin-boson model

• Average concurrence for quantum trajectories
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Quantum trajectories

As a result of continuous measurements on the environment, the

bipartite system remains in a pure state |ψ(t)〉 at all times t > 0

t ∈ R+ 7→ |ψ(t)〉 quantum trajectory

Reason: each measurement disentangle the system and the

environment (by wavepacket reduction).
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Quantum trajectories

As a result of continuous measurements on the environment, the

bipartite system remains in a pure state |ψ(t)〉 at all times t > 0

t ∈ R+ 7→ |ψ(t)〉 quantum trajectory

Reason: each measurement disentangle the system and the

environment (by wavepacket reduction).

Averaging over the measurements, one gets the density matrix:

ρ(t) = |ψ(t)〉〈ψ(t)| =
∫

dp[ψ] |ψ(t)〉〈ψ(t)| .
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Quantum trajectories

As a result of continuous measurements on the environment, the

bipartite system remains in a pure state |ψ(t)〉 at all times t > 0

t ∈ R+ 7→ |ψ(t)〉 quantum trajectory

Reason: each measurement disentangle the system and the

environment (by wavepacket reduction).

Averaging over the measurements, one gets the density matrix:

ρ(t) = |ψ(t)〉〈ψ(t)| =
∫

dp[ψ] |ψ(t)〉〈ψ(t)| .

In general this decomposition is NOT THE OPTIMAL one,

Eψ(t) ≥ Eρ(t) [Nha & Carmichael PRL 98 (’04)].

But for specific models, one can find measurement schemes with

Cψ(t) = Cρ(t) ∀ t ≥ 0 with C = Wootters concurrence for 2 qubits

[Carvalho et al. PRL 98 (’07), Viviescas et al. (’10)].
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Photon counting
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Qubit A

Qubit B

int,A

int,B

clic!

Detector A

Detector B

E ,B

E ,B

H

H
H

HA

B

Two 2-level atoms (qubits) initially

in state |ψ〉 =
∑

s,s′=0,1

css′|s〉|s′〉

are coupled to independent

modes of the electromagnetic

field initially in the vacuum.

Two perfect photon counters make a click when a photon is

emitted by the atom i (i = A,B)
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int,B
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Detector B
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E ,B

H

H
H

HA
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Two 2-level atoms (qubits) initially

in state |ψ〉 =
∑

s,s′=0,1

css′|s〉|s′〉

are coupled to independent

modes of the electromagnetic

field initially in the vacuum.

Two perfect photon counters make a click when a photon is

emitted by the atom i (i = A,B)

• If Di detects a photon between t and t+ dt, the qubits suffer

a quantum jump [occurs with proba. γi‖σi−|ψ(t)〉‖2dt]
|ψ(t)〉 −→ σi−|ψ(t)〉 = |0〉i ⊗ |φ(t)〉  separable.
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Photon counting
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Qubit A

Qubit B

int,A

int,B

clic!

Detector A

Detector B

E ,B

E ,B

H

H
H

HA

B

Two 2-level atoms (qubits) initially

in state |ψ〉 =
∑

s,s′=0,1

css′|s〉|s′〉

are coupled to independent

modes of the electromagnetic

field initially in the vacuum.

Two perfect photon counters make a click when a photon is

emitted by the atom i (i = A,B)

• If Di detects a photon between t and t+ dt, the qubits suffer

a quantum jump [occurs with proba. γi‖σi−|ψ(t)〉‖2dt]
|ψ(t)〉 −→ σi−|ψ(t)〉 = |0〉i ⊗ |φ(t)〉  separable.

• If no click occurs between t0 and t [proba. ‖e−itHeff |ψ(t0)〉‖2]

|ψ(t)〉 = e−i(t−t0)Heff |ψ(t0)〉
‖e−itHeff |ψ(t0)〉‖

, Heff = H0 −
i

2

∑

i=A,B

γi σ
i
+σ

i
−.
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Photon counting (2)

Concurrence:

Cψ(t) = |〈ψ(t)|σy ⊗ σyT |ψ(t)〉|
T = complex conjugation op.

σy = Pauli matrix

→֒ Eψ(t) = h(Cψ(t)), h convex ր
������������������

����������������

Qubit A

Qubit B

int,A

int,B

clic!

Detector A

Detector B

E ,B

E ,B

H

H
H

HA

B

• Trajectories with 1 or more jumps between 0 and t have

a concurrence Cψ(t) = 0 (since |ψ(t)〉 separable after 1 jump).

• If no jump occurs between 0 and t, one finds for H0 = 0:

Cno jump(t) = N−2
t C0 e

−(γA+γB)t with Nt = ‖e−itHeff |ψ〉‖.
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Photon counting (2)

Concurrence:

Cψ(t) = |〈ψ(t)|σy ⊗ σyT |ψ(t)〉|
T = complex conjugation op.
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clic!
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Detector B
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E ,B

H

H
H

HA

B

• Trajectories with 1 or more jumps between 0 and t have

a concurrence Cψ(t) = 0 (since |ψ(t)〉 separable after 1 jump).

• If no jump occurs between 0 and t, one finds for H0 = 0:

Cno jump(t) = N−2
t C0 e

−(γA+γB)t with Nt = ‖e−itHeff |ψ〉‖.
Average concurrence over all trajectories:

Cψ(t) = proba (no jump in [0, t]) × Cno jump(t)
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Photon counting (2)

Concurrence:

Cψ(t) = |〈ψ(t)|σy ⊗ σyT |ψ(t)〉|
T = complex conjugation op.
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• Trajectories with 1 or more jumps between 0 and t have

a concurrence Cψ(t) = 0 (since |ψ(t)〉 separable after 1 jump).

• If no jump occurs between 0 and t, one finds for H0 = 0:

Cno jump(t) = N−2
t C0 e

−(γA+γB)t with Nt = ‖e−itHeff |ψ〉‖.
Average concurrence over all trajectories:

Cψ(t) = proba (no jump in [0, t]) × Cno jump(t) = C0 e
−(γA+γB)t .
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Photon counting (2)

Concurrence:

Cψ(t) = |〈ψ(t)|σy ⊗ σyT |ψ(t)〉|
T = complex conjugation op.

σy = Pauli matrix

→֒ Eψ(t) = h(Cψ(t)), h convex ր
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����������������
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• Trajectories with 1 or more jumps between 0 and t have

a concurrence Cψ(t) = 0 (since |ψ(t)〉 separable after 1 jump).

• If no jump occurs between 0 and t, one finds for H0 = 0:

Cno jump(t) = N−2
t C0 e

−(γA+γB)t with Nt = ‖e−itHeff |ψ〉‖.
Average concurrence over all trajectories:

Cψ(t) = proba (no jump in [0, t]) × Cno jump(t) = C0 e
−(γA+γB)t .

→֒ Cψ(t) vanishes asymptotically ⇒ sudden death of entan-
glement never occurs for quantum trajectories!

Summer School on Open Quantum Systems, Autrans, July 2013 – p. 12/22



General quantum jump dynamics

Consider 2 noninteracting qubits coupled to independent baths
monitored by means of local measurements

⇒ the jump operators J = JA ⊗ 1 or 1A ⊗ JB are local.

• The no-jump trajectories have a non-vanishing
concurrence Cnj(t) > 0 at all finite times (if C0 > 0).

Proof: assume the contrary, i.e. |ψnj(t)〉 separable, then

|ψ(0)〉 ∝ eitHeff |ψnj(t)〉 would be separable since eitHeff is a

tensor product of two local operators acting on each qubits.
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General quantum jump dynamics

Consider 2 noninteracting qubits coupled to independent baths
monitored by means of local measurements

⇒ the jump operators J = JA ⊗ 1 or 1A ⊗ JB are local.

• The no-jump trajectories have a non-vanishing
concurrence Cnj(t) > 0 at all finite times (if C0 > 0).

Proof: assume the contrary, i.e. |ψnj(t)〉 separable, then

|ψ(0)〉 ∝ eitHeff |ψnj(t)〉 would be separable since eitHeff is a

tensor product of two local operators acting on each qubits.

• The average concurrence over all trajectories is

Cψ(t) = C0 e
−κt

where κ ≥ 0 depends on the measurement scheme
only (but not on initial state). [Vogelsberger & D.S, PRA (’10)]

Note: Eψ(t) ≥ h(Cψ(t)) by convexity of h.
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Quantum state diffusion
• The result Cψ(t) = C0 e

−κt is not only true for quantum jump

dynamics but also for quantum state diffusion, e.g. for

trajectories given by the stochastic Schrödinger equation

|dψ〉 =
[

(−iH0 −K)dt+
∑

J local

γJ

(

ℜ〈J〉ψ J − 1

2
(ℜ〈J〉ψ)2

)

dt

+
∑√

γJ
(
J −ℜ〈J〉ψ

)
dw

]

|ψ〉
which describes homodyne detection .

• The disentanglement rates κ are different for photon-

counting, homodyne, and heterodyne detections:

κQJ =
1

2

∑

J

γJ

(

tr(J†J)− 2|det(J)|
)

κho =
1

2

∑

J

γJ

(

tr(J†J)− 2ℜ det(J)− (ℑ tr(J))2
)

κhet =
1

2

∑

J

γJ

(

tr(J†J)− 1

2
| tr(J)|

)

.

Adjusting the laser phases J → e−iθJ yields κho ≤ κQJ, κhet.
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Discussion
It is not possible to have Cψ(t) = Cρ(t) if one measures locally

the independent environments of the qubits (since Cρ(t) may

vanish at a finite time tESD, whereas Cψ(t) > 0 ∀ t).
→֒ To prepare the separable pure states in the decomp. of

ρ(t) at time tESD, one must necessarily perform

nonlocal (joint) measurements on the 2 environments!
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Discussion
It is not possible to have Cψ(t) = Cρ(t) if one measures locally

the independent environments of the qubits (since Cρ(t) may

vanish at a finite time tESD, whereas Cψ(t) > 0 ∀ t).
→֒ To prepare the separable pure states in the decomp. of

ρ(t) at time tESD, one must necessarily perform

nonlocal (joint) measurements on the 2 environments!

∗ This raises the question: is ESD observable?

[Almeida et al., Science 316 (’07)]. −→ simulation of master eq.

[Viviescas et al., arXiv:1006.1452]. −→ YES with some nonlocal

measurements ⇒ require additional quantum channels...

∗ For A-B entanglement, “ignoring” the environment state is

not the same as measuring it without reading the results.

[Mascararenhas et al., arXiv:1006.1233].
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Outlines

• Evolution of the concurrence and quantum discord for
the 2 spin-boson model

• Average concurrence for quantum trajectories

• Protecting entanglement with quantum trajectories
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Entanglement protection
One may use the continuous monitoring by the measurements to

protect the qubits against disentanglement.

• For ex., for pure phase dephasing (J i = ui · σi, i = A,B),

κQJ = κho = κhet = 0 so that Cψ(t) = C0 = const.

Bell initial state

|ψ〉 = 1√
2
(| ↑↑〉+ e−iϕ| ↓↓〉)

C0 = 1 ⇒ Cψ(t) = 1 for all

quantum trajectories and all

times

→֒ perfect entanglement

protection!
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Entanglement protection (2)
One may use the continuous monitoring by the measurements to

protect the qubits against disentanglement.

•• For ex., for pure phase dephasing (J i = ui · σi, i = A,B),

κQJ = κho = κhet = 0 so that Cψ(t) = C0 = const.

• For two baths at inv. temper. βi <∞, the smallest rate is

κQJ =
∑

i=A,B

γi+(e
βiω0/2 − 1)2 (jump op. J ∝

√

γi−σ
i
− +

√

γi+σ
i
+)

Bell initial state

|ψ〉 = 1√
2
(| ↑↑〉 − i| ↓↓〉)

Cψ(t) = e−κt

→֒ perfect entanglement

protection only possible

at infinite temperature!

Summer School on Open Quantum Systems, Autrans, July 2013 – p. 18/22



Outlines

• Evolution of the concurrence and quantum discord for
the 2 spin-boson model

• Average concurrence for quantum trajectories

• Protecting entanglement with quantum trajectories

• Qubits coupled to a common bath
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Qubits coupled to a common bath
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Qubit A

Qubit B

clic!

E ,B

int,A

int,B

Detector 

H

H

A

B

H

H

Two 2-level atoms (qubits) initially

in state |ψ〉 = ∑

s,s′=0,1 css′ |s〉|s′〉
are coupled to the same modes

of the electromagnetic field

initially in the vacuum.

Cψ(t)=
1

2

∣
∣c2−− c2+e

−2γt+ 4c11c00 e
−γt∣∣+ 2|c11|2γt e−2γt

with c± = c11 ± c00.

• If c11 = 0 then

Cψ(t) = Cρ(t).

• If c11 > 0 then Cψ(t)
increases at small times.
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Outlines

• Evolution of the concurrence and quantum discord for
the 2 spin-boson model

• Average concurrence for quantum trajectories

• Protecting entanglement with quantum trajectories

• Qubits coupled to a common bath

• Conclusions & Perspectives
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Conclusions & Perspectives

• The mean concurrence C(t) of two qubits coupled to

independent baths monitored by continuous local
measurements decays exponentially with a rate

depending on the measurement scheme only.

• Measuring the baths helps to protect entanglement,

sometimes perfectly!

• For two qubits coupled to a common bath , the time

behavior of the mean concurrence depends strongly on the

initial state. One may have C(t) = Cρ(t).

Open problems: non-Markov unravelings, multipartite systems,...
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