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Weyl expansion of a circle billiard in a magnetic field
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Abstract. We compute the high orders of the Weyl expansion for the heat kernel of a circle billiard
in the presence of a uniform and perpendicular magnetic field. It is shown, in accordance with
a conjecture made in Narevichet al (1998J. Phys. A: Math. Gen.31 4277), that some terms of
this expansion can be identified with those of the Weyl expansion of a semi-infinite cylinder. The
boundary correction to the Landau diamagnetic susceptibility of a non-degenerate electron gas in
the billiard is determined.

Consider a spinless particle of charge−e (e > 0) and massm constrained by a hard wall to
move inside a disc of radiusa. A uniform magnetic fieldEB is applied perpendicularly to the
disc. Letω = e‖ EB‖/mc, lB =

√
h̄/mω andR = √2a/lB =

√
2ma2ω/h̄ be respectively

the cyclotron frequency, the magnetic length and the dimensionless radius. In the symmetric
gaugeEA = 1

2
EB × Ex, the Hamiltonian of the particle is:
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where(r, θ) are the dimensionless polar coordinates defined byr = √2‖Ex‖/lB ; θ is the angle
betweenEx and a fixed vectorEex parallel to the plane of the disc, counted positively if the
triad (Eex, Ex, EB) is right-handed. The eigenfunctionsψn(r, θ) of H are required to be finite
asr → 0 and to satisfy the Dirichlet boundary conditionψn(R, θ) = 0, 0 6 θ < 2π . In
this letter, we describe an algorithm to compute the Weyl asymptotic expansion of the heat
kernelP(t) = tr e−(t/h̄)H for this system. This also determines the Weyl expansions of other
simply related spectral quantities, like e.g. the density of states [3]. The first few terms of the
asymptotic expansion ofP(t) asτ = ωt → 0 are:
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The Weyl expansion in the zero field is obtained by keeping only the first term in each
parenthesis and coincides with known results [2, 3]. The terms proportional toR2 (first
parenthesis) give the Weyl expansion of the heat kernelP∞(t) associated with the Landau
spectrum (infinite plane geometry), whose full asymptotic expansion can be easily calculated
[3, 1]. The terms proportional toR (second parenthesis) coincide with the first terms of the
Weyl expansion ofPper(t)−P∞(t), herePper(t) is the heat kernel of a semi-infinite cylinder of
radiusa in a uniform magnetic field [1]. This result is in agreement with a conjecture made in
[1], according to which each term of the Weyl expansion of a billiard with a smooth boundary
in zero field becomes multiplied by a universal billiard-independent function ofτ = ωt if
a uniform magnetic field is applied perpendicularly. The first two functions, multiplying
respectively the area term(R2/4)τ−1 and the perimeter term−(√πR/4)τ−1/2, have been
found in [1] to be(τ/2)/sinh(τ/2) and
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wherec > 0 andD−ε−1/2,ψ are respectively the parabolic cylinder and the digamma functions.
We use this opportunity to correct an error made in the Weyl expansion ofPper(t) in [1], formula
(29): the correct power of 2 in the denominator of the term of orderτ 11/2 should be 19 as in
(2), instead of 20.

SinceP(t) for t = h̄β is the canonical partition function, one can determine from (2) the
magnetic susceptibilityχ of an ideal non-degenerate gas in the disc at inverse temperatureβ.
If N is the number of particles per unit area andλT =

√
πh̄2β/2m� N−1/2 is the de Broglie

thermal length, we obtain an expansion ofχ in powers ofλT /a which begins as follows:
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whereχ∞ = −Nβe2h̄2/12m2c2 is the Landau susceptibility. We have found that at each
order inλT /a up to the fifth order, the corrections to the Landau diamagnetic susceptibility
are paramagnetic.

To show (2), we use a Green function approach [1–3]. The Green function
G(E; r, θ; r ′, θ ′) is given by:

(H +E)G(E; r, θ; r ′, θ ′) = 2

rl2B
δ(r − r ′)δ(θ − θ ′) (4)

(note the + sign in front of the energyE). It satisfies the boundary condition:
G(E;R, θ; r ′, θ ′) = G(E; r, θ;R, θ ′) = 0, and we require moreover that it be finite asr → 0
andr ′ → 0. One defines similarly the ‘infinite plane’ Green functionG∞(E; r, θ; r ′, θ ′)which
satisfies the same equation, is finite at the origin, and is such thatr 7→ rG∞(E; r, θ; r ′, θ ′)
andr ′ 7→ r ′G∞(E; r, θ; r ′, θ ′) be integrable onR+. Setε = E/h̄ω and letf ±l (ε, r) be two
independent solutions of(
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The conditions on these functions are that limr→0 f
−
l (ε, r) < ∞ and thatr 7→ rf +

l (ε, r) be
integrable on [c,∞[ for anyc > 0. We are interested in solutions of (5) of the following form:

f ±l (ε, r) = (rql(ε, r))−
1
2 e±i

∫ r
r0

dr ′ ql(ε,r ′) (6)

wherer0 > 0 and the imaginary parts of the complex functionsql(ε, r) tend to +∞ asr →∞
or r → 0. Using (1) and expanding the Green functions as Fourier series inθ − θ ′, one gets:

G∞(E; r, θ; r ′, θ ′) = − m

πh̄2

∞∑
l=−∞

eil(θ−θ ′)

Wl(ε)
f −l (ε,min{r, r ′})f +

l (ε,max{r, r ′})

G(E; r, θ; r ′, θ ′) = G∞(E; r, θ; r ′, θ ′) +
m

πh̄2

∞∑
l=−∞

eil(θ−θ ′)f +
l (ε, R)

Wl(ε)f
−
l (ε, R)

f −l (ε, r)f
−
l (ε, r

′).
(7)

The WronskianWl = rf −l ∂rf
+
l − rf +

l ∂rf
−
l in the denominator is independent ofr. The

Laplace transform1g(E) of 1P(t) = P(t) − P∞(t) is related toG(E; r, θ; r ′, θ) and
G∞(E; r, θ; r ′, θ) by [2]:

1g(E) =
∫ ∞

0
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h̄
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= l2B

2
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r dr
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dθ (G(E; r, θ; r, θ)−G∞(E; r, θ; r, θ)). (8)

Manipulating equation (5) in a standard way one shows that∫ R

0
r dr f −l (ε, r)

2 = R(f −l ∂R∂εf −l − (∂Rf −l )(∂εf −l ))(ε, R). (9)

Using (6)–(9) and the Poisson summation formula, one obtains after some algebra:
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The smallt expansion of1P(t) can easily be found from the largeE expansion of1g(E)
and the reciprocal of Watson’s lemma [4]. In order to determine this largeE expansion, we
setyl(ε, r) = r1/2fl(ε, r) in (5), and solve asymptotically the resulting equation by means of
an improved version of the Wentzel–Kramers–Brillouin (WKB) method due to Fröman and
Fröman [5] (the calculation has also been done using the WKB method, with the same results).
The functionsql(ε, r) in (6) are expanded as follows:

ql(ε, R) = Ql(ε, R)

∞∑
n=0

Y
(2n)
l (ε, R) (11)

with Y (0)l (ε, R) = 1. TheY (2n)l ’s can be calculated recursively by replacing (11) and (6) in (5),
giving (see [5]):
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if n > 1. The asymptotic expansion of1g(E) is obtained by keeping only the termν = 0 in
(10). Letu = l/R + R/4 and setZ(2n)(ε, u, R) = Y (2n)l (ε, R) andz(ε, u) = −iQl(ε, R) =
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√
ε + u2. Making this change of variables in (10), we obtain:
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with ∂ = (−u/R + 1
2)∂u + ∂R. The integrand in the right-hand side is expanded in the form∑

06i6j−2 di,j (R)u
iz−j , giving by a simple integration and change of indices:
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The two first terms in (13) give contributions todi,j (R) for j even and the three last terms
contribute todi,j (R) for oddj . The firstZ(2n), found by performing the change of variables
(ε, l, R)→ (ε, u, R) in (12), are, for example, given by:
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We calculated the coefficientsd2p,j (R)with theMathematica computing system (version 3.0).
The Weyl expansion that we have derived here could be valuable in calculating various

spectral quantities for cavities in a magnetic field. Recently, non-congruent planar regions were
constructed that have identical spectra [6, 7]. Turning on the magnetic field, one can expect
from a perturbation theory argument that these cavities do not remain isospectral. According
to the conjecture in [1], they could however possess identical Weyl series. The circular billiard
also provides an interesting example to study the generalization in the presence of a magnetic
field of a conjecture made by Berry and Howls [3] about the high orders of the Weyl expansion
of billiards in a zero field. This question will be addressed in a future project.
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