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We study the stochastic dynamics of the electromagnetic field in a lossless cavity
interacting with a beam of two-level atoms, given that the atomic states are mea-
sured after they have crossed the cavity. The atoms first interact at the exit of the
cavity with a classical laser fielfl and then enter into a detector which measures
their states. Each measurement disentangles the field and the atoms and changes in
a random way the state/(t)) of the cavity field. For weak atom-field coupling, the
evolution of [(t)) when many atoms cross the cavity and the detector is charac-
terized by a succession of quantum jumps occurring at random times, separated by
guasi-Hamiltonian evolutions, both of which depend on the laser fiekbr £=0,

the dynamics is the same as in the Monte Carlo wave function model of Dalibard
et al.[Phys. Rev. Lett68, 580(1992] and CarmichaelAn Open System Approach

to Quantum OpticsLecture Notes in Physics Vol. 1&pringer, Berlin, 199/. The
density matrix of the quantum field, obtained by averaging the projector

| ()} (t)| over all results of the measurements, is independeétasfd follows

the master equation of the damped harmonic oscillator at finite temperature. We
provide numerical evidence showing that for layean arbitrary initial field state
|4(0)) evolves under the monitoring of the atoms and the measurements toward
squeezed statéa,re?#), moving in thea-complex plane but with almost constant
squeezing parametersand ¢. The values of and ¢ are determined analytically.

On the other hand, fo€=0, the dynamics transforms the initial state into Fock
stategn) with fluctuating numbers of photoms as shown in Kiset al.[J. Opt. B:
Quantum Semiclassical O, 251(1999]. In the last part, we derive the quantum
jump dynamics from the linear quantum jump model proposed in Spehner and
Bellissard[J. Stat. Phys104, 525 (2001)], for arbitrary open quantum systems
having a Lindblad-type evolution. A careful derivation of the infinite jump rates
limit, where the dynamics can be approximated by a diffusion process of the quan-
tum state, is also presented. 02 American Institute of Physics.

[DOI: 10.1063/1.1476392

[. INTRODUCTION

The dissipative dynamics of an open quantum sys&woan be described in two different
ways. The first one consists in coupliggwith a reservoirR and assuming that the total system
S+ R is isolated. Since one is concerned by the dynamicS arfily, one traces out the degrees of
freedom ofR in the equation of motion o8+ R. Within the Markov approximation, the reduced
density matrix ofS follows a first-order differential equation with time-independent coefficients.
In many cases, a separation of time scales between the Hamilt@iadependentand dissipa-
tive (R-dependentevolutions allows one to perform a local averaging in time, which kills non-
resonant term&? The coarse-grained master equation obtained in this way has the Lindblad form.
An alternative approach to this density matrix description has been developed in the last two
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decades in quantum optfc$ (see, e.g., Ref.)9quantum measurement thedfy® quantum and
classical stochastic calculti; ' and electronic transport in solid&-2°This approach is based on
stochastic evolutions of pure states. The system is described by a random wave f(Réton
evolving according to a linear or nonlinestochastic Schidinger equationConsistency with the
density matrix approach requires that the pure state evolution gives the master equation back after
averaging over the dynamical noise. Apart from being intuitively appealing, the RW models
provide quite efficient tools for solving master equations numerically, since Siolger equations
haveN components, whereas master equations i@ componentsN being the dimension of

the Hilbert space 06. However, the RW models are more than simple mathematical or numerical
tools: they describe theeal evolution of single quantum systems under continuous monitoring by
measurement¢photon counting, homodyne or heterodyne detecjioftS In recent years, the
attainment of low temperature and low dissipation regimes, as well as the improvements of
detection techniques, has allowed the investigation of the dynamics of such continuously moni-
tored systems. Remarkable examples of these are singfé amsBose—Einstein condensafdn
electromagnetic traps, probed by laser beams, and electromagnetic fields iQ-uigvities>?
probed by beams of highly excited atoiti®ydberg atoms This new generation of experiments,
combined with the difficulties usually encountered in solving the master equation, has strongly
stimulated the developments of the RW approach in quantum optics.

The aim of this paper is to investigate a specific physical realization, which could be in
principle realizable experimental(glthough this question is not addressed heyka class of RW
models based on quantum jumps. The system we consider is the electromagnetic field of a high
Q-cavity interacting with a beam of two-level atoms, which forms the reservoir of tempeiature
The states of the atoms leaving the cavity are measured by a detector. A laser ifghtaced
between the cavity and the detector. The corresponding master equation, obtained by averaging
over the results of the measurement on the atoms, is, for weak atom-field coupling, the equation of
the damped harmonic oscillator with finite temperature. The same problem has been considered in
Ref. 24 in the reverse situation where one knows exactly the state of each atom before it crosses
the cavity and no measurement is performed on it at the(gsifinal state thus being unknown
It has been shown in this reference that the cavity field evolves at large times to a state which is
completely controlled by the atomic initial states.

We first introduce in Sec. Il the class of quantum jump models studied in this work, for
arbitrary open systems having a Lindblad-type evolution. The experimental scheme is presented in
Sec. Ill, where we also compute the random evolution of the cavity field and its corresponding
average evolution. We focus in Sec. IV on single quantum trajectories, i.e., single realizations of
the measurements. The numerical simulations and analytical results presented in this section show
that for T>0 and large laser field§, the state of the cavity field localizes at large times to
squeezed states with an almost constant squeezing amplitudeh depends only ofi. Section
V is devoted to the derivation, for arbitrary open systems, of the nonlinear quantum jump schemes
from the corresponding linear ones introduced in Ref. 18. Their relation with the so-called quan-
tum state diffusion stochastic Schiinger equationd-1215-1s also established. Our conclusions
are presented in Sec. VI.

II. THE QUANTUM JUMP SCHEMES

Let us first recall briefly a few basic facts about the master equation approach to open
quantum systems. Consider an open sysianteracting with a reservoR. The density matrixr
of the total systenB+R is assumed to follow the Liouville—von Neumann equation of closed
systems. A state db is specified by the reduced density mafixdefined as the partial trace of
over the reservoir’s Hilbert space. By tracing out the degrees of freedéhirothe Liouville—von
Neumann equation, one obtains an integro-differential equationpfdiNakajima—Zwanzig
equation.?® Using a Born—Markov approximation and a local time averaging on a time scale
much larger than the inverse Bohr frequenciesSpthis equation is transformed into a simpler
first-order linear differential equation, called thvaster equatio?® This coarse-grained equation
has in most cases the Lindblad fofm:
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d 1
d_’:=—i[H,p]+§% ([Lmp, i1+ Lol 5. (1)

H is the Hamiltonian ofS (including the energy shifts due to the coupling with the reseyvaird
L, are some operators acting on the Hilbert spac8.ofhe sum over the discrete indicescan
be finite or infinite, depending on the nature of the problem.

We now describe the random wave function approach of Dalibard, Castin, and Mainuer
CarmichaeP This approach, called in the former reference the Monte Carlo wave function
method, has been introduced independently by several other afithiiis.is based on quantum
jumps, i.e., on discontinuous random evolutions of the wave functida of

At some random times, quantum jum(3J occur as a result of some continuous measure-
ment on the systerS (e.g., a detection of a photon emitted by a system constituted by an.atom
If a jump occurs, the wave functio) of S is modified discontinuously as follows:

. Ll )

Jump 2= L T3] @
wherelL ,, are the Lindblad operators appearing1n. The probability of occurrence of a jump of
type m in the time intervalt,t+ ét] is

5pm(t):”|—m| w(t)>||25t 3

One must choosét small enough so thadp,(t)<1 for any|y) and allm’s (this is fulfilled if
st~ 1 is much bigger than the damping constaptsappearing in the master equation, contained
in the operatord ;). If no jump occurs betweenandt+ 6t, the wave function evolves between
these two times according to Schinger’s equation with an effective Hamiltonidh+ K, and is
then normalized at+ 6t:

lo(t+ o))
At 0= T an

§ (4)
l(t+ o)) =e TH (1)),

K can be computed in special cases by first determining perturbatively the wave function of the
total systemS+R and then projecting it onto the subspace corresponding to the no-jump
measuremert® An easier(though less fundamenjalay to compute is to ask directly that the
averageM| ¢(t) ){y(t)| satisfies the master equati¢h (see the following This gived

1 T
K=K055§ LIl (5)

Note thatK, is not self-adjoint. Hence the norm of the wave function is not conserved by the
evolution operatoe™'®(H*Ko) This can be interpreted by invoking the gain of information on the
system provided by the measurement, namely, by the knowledge that no jump occurred thetween
andt+ &t. For instance, in the case of an atom coupled to the quantized electromagnetic field, we
may infer from a no-photon detection that the atom has not emitted spontaneously a photon.

Since the wave function is normalized at each sten (2) and(4), the random dynamics is
norm-preserving on the time resolutigit. These normalizations make the stochastic quantum
evolution nonlinear. We will see in Sec. V that it is possible to define an equivalent linear model,
in which the random wave function is not normalizZ&d? The mapt e [0,[ (1)) for a given
outcome of the jumps is calledquantum trajectory

Let us consider the average density magr{x) = M| ¢(t) ){y(t)|, whereM is the average over
all realizations of the jumps. It can be easily shéwimat p(t) obeys the master equatidh) to
lowest order in|L|?5t. Actually, takingH =0 for simplicity, one has
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p(t+0t) =My sl p(t+ 0t) ) (t+ o))

- e o] (1)) y(1)] € X0 L oD (o(D)IL,

=M | 1= 2 9pn(®) |~y * 2 PO I )P
This equation is simplified by taking

1/2
ei‘“Koz(l—ét§ L;Lm) . (6)
Then, by(3):
1/2 1/2
p(t+at>=(1—6t2 LLLm) p(t)(l—a‘tZ Libm| +0t> Lyp(H)L. (7)

Expanding the square roots and keeping only terms of order oég ione obtaing1) andK is
given by (5). Note that, for an arbitrary time intervalt between consecutive measurements,
p(t+ 6t) is notgiven by integratind1) fromt to t+ &t (a different result is already obtained at the
next orderst?). This should be kept in mind when dealing with real or numerical experiments,
where 6t is always finite.

Consider a transformatioh,,—L/, on the operatord.,, which does not changél). The
qguantum jumps and the effective Hamiltoniérmay be modified by this replacement. This leads
to a different stochastic dynamics, which unravels the same master equation. A particular trans-
formation leaving(1) invariant i€®

’ ’ 1 * T 1t
Lm— L/ =Ln+Am, H—H =H+§§ N L= ApLhy=H'T, (8)

where\,’'s are complex numbers. This invariance of the Lindblad equation is not related to a
particular symmetry of the system or its coupling with the reservoir. It simply expresses that the
separation between the Hamiltonian paiit[ H,p] and the remaining dissipative part(ib) is not
unigue. The transformatio8) generates a whole family of distinct QJ models depending on the
set of numbers.,,. The modification of the wave function at a jumpis now given by

. Wil ¢
jump m: |¢>—>W ©)

with the jump operator§V,, proportional to L, +A,):

Win= ¥ AL+ ). (10
The new generalized Hamiltonidt+ K is obtained by replacing, by L, in (5) and adding to
it H —H:

1
K=E% (L Lt 20 L+ Nl (11)

The last term in the sum, proportional to the identity operator, is written only for convenience: it
is irrelevant because of the normalization in Ed) giving the evolution between jumps. The
probability of occurrence of a jump of typa becomes

SPm(t) = [(Lint N [ (1)) ]2 8t = St (Wi g(1))]|%. (12

Note that it increases liki |2 for large\ .
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FIG. 1. The two-level atoms of the beam cross one by one a cavity containing the studied quantaefisétond cavity
containing a laser field, and a detector measuring their states.

lll. FIELD MODE IN A CAVITY

It is shown in this section that the QJ schemes described in Sec. Il can be physically realized
by an atomic beam crossing a cavity with perfectly reflecting walls and interacting with the
guantum field inside, which forms the syst&nThe measurements are performed on the outgoing
atoms, after they have interacted with a classical laser figithced between the cavity and the
measuring apparatus.

A. Experimental scheme

Let us consider one mode of the quantized electromagnetic field of a lossless cavity coupled
to its environment. The environment is a beam of atoms prepared in one of two Rydberdgstates
(“ground state” and|e) (“excited state”) in resonance with the frequeney of the mode. The
fluxesry andr, of atoms crossing the cavity, prepared, respectively, in statesnd |e), are
assumed to be such that at most one atom is in the cavity at any time. The time interval between
the crossing of two consecutive atoms in the cavitytis (r 4+ ro) 1. To simplify, all the atoms
of the beam are supposed to have the same speed. They thus spend the sarmedtirirethe
cavity, interacting with the field mode. The atom-mode interaction Hamiltonian is in the interac-
tion picture(rotating-wave approximatiort-?

Hin=—1 (\*|g)(el a’~\|e)(g| @), (13

wherea' anda are the creation and annihilation operators of a photon. The coupling constant
is equal too2w/2e,V age«?, where ﬁge is the matrix element of the atomic dipolé, the
polarization vector of the field modg,the charge of the electron, aithe volume of the cavity.

At the exit of the cavity, the atoms enter into a second cavity, identical to the first but
containing a classical laser fief(Fig. 1). They spend a time < &t there, interacting with the
laser field. Under the dipolar and rotating-wave approximations, the atom-laser interaction Hamil-
tonian is in the interaction picture?

i
Hi=—5(Q*[g)(el ~Qle)al), (14

whereQ) =i 699-5 is the Rabi frequency. The Hamiltoni&i4) describes the atom-laser interaction
for a laser field in resonance with the atomic transition. The more general situation of nonzero
detuning of the laser frequency will be discussed in the following.

Finally, the state of each atom at the exit of the second cavity is measured by a detector, telling
us if it is in its “ground” or in its “excited” state. The corresponding experimental scheme is
presented in Fig. 1. It has been considered in Ref. 27 without the lase€fi€hk flight times of
the atoms between the two cavities and between the second cavity and the detector are taken
sufficiently small so that spontaneous emission of photons by the atoms can be neglected.
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B. Stochastic dynamics of the field mode

Let us compute the evolution of the state of the field mode in the first cavity, for a given result
of the measurements. If one looks at it with a time resolution equal or bigger than theéttime
separating the entrance of consecutive atoms, the field mode is continuously monitored by the
measurements on the atorfntinuous measuremeniThe coupling constark, the Rabi fre-
quency(), and the interaction times, 7, are assumed to satisfy

N7<1, Q|7 <1 (15

Let us first determine the change of the wave functigft)) of the field mode when one
atom, initially in statgi), i=g or e, crosses the two cavities and the detector. At the tijusst
prior to the entrance of the atom in the first cavity, the wave fundtib(t)) of the total system
“atom+field mode” is a tensor product staft (t)) =|i)|(t)) (the atom and the field did not yet
interac). Since the two fields are in separated cavities, the atom interacts with the quantum field
beforeinteracting with the classical fielfl The total wave function at the exit of the second cavity
(before the measuremens thus, in the interaction picture,

[Wepp=e"" tHue™ ™Mini)|y(t)). (16)

Note that the evolution would be different if the laser field was placed in the first camitis

case, the product of exponentials must be replaced by the exponenitig),©H,). Because of

their interaction, the quantum field and the atom are now entangled,¥.g,) is not a product

state. After the measurement on the atom has been performed, the field and the atom again become
disentangled and the wave function of the total system is

(Ve
K% end]”

with j=g if the atom is detected in its ground state gnle if it is detected in its excited state.

We have assumed for simplicity that the measurement is performed at a timg.<t+ ot
earlier than the entrance of the next atom in the first cavity. Since we work in the interaction
picture,| W (t+ 7o) is then equal tgW (t+ 6t)). The wave function(t+ ot)) of the mode at

the timet+ 6t is thus well-defined and given by

| p(t+ 1))
SN PR

[W(t+at)=[i)e(t+ot)), |g(t+dD)) 7

. . (18)
l(t+8t))y=(jle " e ™Mim|i)|y(t)).

The probability that the atom is detected in stige given that it enters in the cavity in stdie,
is

Pi— = I Wend* =l o(t+ 8) ]2 (19

A straightforward computation leads to

o]
e_iTHim: E
p=0

]

(—[\[2r%)P
(2p)!
(—IN[272)P
sz (2p+1)!

(lg){gl nP+|e)(e| (n+1)P)

(Nle)(glan®—* rlg)(e| nPal),

wheren=a'a is the number operator. Denoting I'? its square root, this formula can be
rewritten in a more compact form:
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e~ ™Min=|g)(g| cog|\|n*?) + |e)(e| cog|\| r(n+1)*?)
+\7e)(g| asind|\|mnY?) —\* 7|g)(e| sina|\| n¥?) &' (20)

with sinc(u) = (sinu)/u. Similarly,

, Q Q Q Q* Q
e'THL:cos(| n +%|e}(g|sinc{| 2|TL>— 2TL|g)<e|sin(<| 2|TL).

2
Let us introduce the operator

@=asind|\|n'?) (22)
and the complex humbers

Q tan|Q|7./2)
n= )\7', €= W (22)
Four cases must be considered.
(1) The atom enters the first cavity in its ground state and is detected in the same state:
i=j=g. Then,

le(t+ 1)) =(1+]|nel®) ™ *3(cod|7In*)) | n|?e* D) (D) =(1-i 6t Kg) (D). (23

(2) The atom enters the first cavity in its ground state and is detected in its excited state:
i=g, j=e. Then,

|@(t+80))=7 (1+|nel)” PW_|g(t)), W_=%+ecog|nn"?). (24

(3) The atom enters the first cavity in its excited state and is detected in its ground state:
i=e, j=g. Then,

l@(t+8t)=—7* (1+|nel®) ™ PW.[y(t)), W,=a"+e*cog|n|(n+1)*). (25

(4) The atom enters the first cavity in its excited state and is detected in the same state:
i=j=e. Then,

|@(t+ 80 =(1+| nel2)™ Y(cod| pl(n+1)¥2) — | pl2eah) | p(t))=(1—i 8t K| (1)) o0

Casegq2) and(3) correspond, respectively, to the absorption and the emission of a photon of
the cavity mode or of the laser field by the atom. In order to have quantum jumps separated by
“continuous” Hamiltonian evolutions on time scales bigger thén the probabilities of these
events must be very small. The probabildp _(t) of case(2) is equal topg_.. multiplied by the
probabilityr ; 6t that the atom enters in the first cavity in stage. With the help of(19) and(24),
one gets

rg&|77|2

op-(H)= mzHWJ Y(O)P=rg 8t(|| sin(| 7In*?)] (1)) [>+ O(7e)). (27)

The probabilitysp ., (t) of case(3) is given by a similar formula, replacing by r,, W_ by W, ,
andn by n+1. The probabilities of casgd) and (4) are, respectively;; 6t—p_(t) andr, ot
—8p . (t). We see thadp. (t) is small if| 7| =|\|7<1 and| ne|=|Q| 7 /2<1, provided that also

(|| pInY2—km) 2 (1)) =O(5%, q=1,2,..., (29
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with k a non-negative integer. This condition is met ket O if the maximal number of photons in

the cavity is much smaller thafy| 2 (of order|#| ™! or smalley. This corresponds to the
perturbative regime. If the condition is met fioe 1, the atom makes almokit2 Rabi oscillations

in the cavity and leaves it, with a high probability, nearly in the same state as it entered it. Indeed,
neglecting terms of ordes? and 7*¢€?, it follows from (22), (23), and(26):

2
StK y= %("a*m 2(—Dke*a+]el?),

, (29)
StK o= %(EEH 2(—1)kea+]e|?),

up to an irrelevant additional phaker. When the atom is measured in the same state as its initial
state[caseq1) and(4)], the normalized wave function of the mode is thus modified, up to a sign,
by an amount of ordelry| + | 7°%|. In the opposite casdg) and(3), the mode wave function is
modified by an amount of order 1. It suffers a quantum jump:

W |y(1))
5t e
A 200 R Ty %0
with the jump operators
W_=3+(—1)e,
(31)

W, =3+ (—1)ke*.
The signs— and + correspond to cas@) (absorption of a photgrand casd3) (emission of a
photon, respectively. The probability that a jump occurs is of ordef 7| +|7%?%€| +| 7e|?, see
(27) and (28). It is given approximately by
8p-- (1) =y StIW.| ()%, (32)

where we have introduced the damping rates:

y=rlnP=rgn e,

(33
yi=Te| m|?=re|\[?7.
The operato@ is given, up to terms of ordep®?, by
a if k=0
3= 1)kq [7In™2—ka _(7In™=—km? o (34

km (km)?

If |4(t))=|n) is a Fock state witm=(k/|7|)? photons, the crossing of the atom of initial state
li) has no effect on the field if=g (sinced@|(t))=0), and a small effect if=e and|7|<1.

If condition (28) is not met, the atom strongly modifies the state of the field mode in all cases
(1)—(4). Hence there is no “continuous-like” Hamiltonian evolution changing weakly the state of
the mode, separated by unlikely jumps. k&0, the evolutions for=g [Eq. (23)] andi =e [Eq.

(26)] have the form(6) (the jump operator§V. are proportional t@&' anda, respectively, and
cog(|7nY?) =1—|5|?a"8, cod(|7(n+1)¥?)=1—|5|?&&"). Although there isa priori no concep-

tual difficulty in treating this case, the corresponding dynamics becomes cumbersome when many
atoms cross the cavities. We thus restrict ourself in what follows to the simpler situation in which
conditions(15) and (28) are fulfilled.
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Let us determine the change of the wave function of the field mode when many atoms cross
the cavities. LefAt be such that the numb@ert/ 6t of atoms crossing the cavities in a time interval
[t,t+ At] is large but much smaller than the inverse of the coupling strelngth

At
1< — <[l |7l " I mel 2. (39

Assuming that 4 andr . are of the same order of magnitude, the numbers of atoms entering in the
first cavity in statdg) and|e) betweert andt+ At are large and approximately equalrtpdt and

r.At, respectively. Since the probabilitiép.. (t) of occurrence of jumps when one atom crosses
the cavities are assumed to be as smallas-| %% + | 7€|?, the probability of occurrence of
two or more jumps betweenandt+ At is negligible. Suppose first that no jump occur between
these two times, i.e., that only casds and (4) occur for all atoms. Then,

lp(t+At))=+(1—i 8tKg) (1~ 8tKg) (11 8tKg) | ¢h(t)). (36)

There are At factors (1-i6tK,) andr At factors (1-itK). Let us expand the products and
neglect terms of orderAt/ 6t)?| »4*™"2eM, m=0,...,4,which are small by(35). We find:

lo(t+At))

A AD= oeranl

: 37
lo(t+AD))=(1-iAtK)[y(1)),

with K=r46tK +r.6tK,. Note that the changep(t+At))—|¢(t)) is proportional toAt. The
effective HamiltoniarK is the average of the operatdfs, which describe the evolution of the
guantum field as ongivenatom crosses the cavities without absorbing or emitting a photon, over

its (unknown) initial state|i) (i=g with probability r,ét, andi=e with probability r.6t). This
averaging is related to our assumption that many atoms cross the cavities be@vedn At; it

is an average over the initial states of the atoms, and must be distinguished from the average over
the results of the measurements. Equati®® gives

K= %(wﬁfm 2(- 1)*e*a+|el) + v, (a8 +2(— 1)kea’+|el?). (38)

If a jump = occurs betweeh andt+ At, the change of the wave function is approximately

W[ 4(1))
W ()]

Actually, the change due to atoms crossing the cavities without modifying their Htaisss(1)
and(4)] betweent andt+ At is of order At/8t)(| | +|7%%€|). It can be neglected with respect
to the change due to an atom having emitted or absorbed a photon, of order 1. Similarly, the
probability Ap..(t) of occurrence of a jumpt in the time interval[t,t+ At] is obtained by
replacingst by At in (32).

The above coarse-grained stochastic dynamics coincideg,feirr .= 0 with that considered
by Wiseman and Milburhfor a damped mode monitored by homodyne detection. In the Schro
dinger picture, the mode wave functigig(t+ At)) is given by(39), in which W-. is replaced by
WS (t)=e ™MW, e if a jump = occurs betweenhandt+ At. In the oppositdand much more
probableé case, it is given by37), with K replaced byH + K«(t), Kg(t)=e ""MKe'"". HereH
=w(a'a+1/2) is the free Hamiltonian of the field mode, and we have assumkd<1. The
jump operators in the Schiinger picture are, up to irrelevant phase factovg (t)=2a
+(—1)kee 't andWS (t)=a"+ (—1)ke* €' . Like the HamiltoniarH,,, W.. depends on time
in the Schrdinger picture and is time-independent in the interaction picture. The dynamics in the

[ ib(t+At))= (39
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Schralinger picture is the same as in the interaction picture providedélimtreplaced by an
oscillating field e(t)=ee™'“!. This is also true for the dynamics between jumigs(t) being
obtained from(38) by the same rule.

For e=0, the random evolution dfi#s(t)) coincides with the random evolution in the model
of Dalibard et al.* in agreement with the results of Ref. 27. Fet0, it coincides with the QJ
evolution of Sec. Il with the two Lindblad operators =+/y_a andL, =y, a", and with\ _
:\/I(_l)keefiwt, )\Jr:\/Z(_l)ke*eiwt_

All the results of this section are actually valid for an arbitrary Hamiltorilgr—describing
the interaction of the two-level atoms with an arbitrary external field placed between the
first cavity and the detector—such thaffH |7, <1. In fact, if we define €
=(ele”'"HL|g)/\r(ele ' HL]e), the only change in the calculation is the replacement of the
prefactor (1| 7e|?) "2 by (gle 'Ht|g) in (23) and(25) and by(e|e ' "L|e) in (24) and(26).
In particular, the stochastic dynamics is not modified if the laser frequency is detuned from the
atomic frequency byy=w, — w, with | 8|7 <1. This is because is independent of in leading
order in||H |7, i.e., the interaction time_is too short for the atoms to feel the frequency shift
from the atomic transition.

C. Average dynamics of the field mode

In order to relate the random wave function dynamics with the familiar density matrix ap-
proach, let us compute the master equation satisfied by the field mode density matrix:

p(t)=M[ (1)) (u(t)], (40)

whereM denotes the mean value over the results of the measurements on theiaqroser all
guantum trajectorigs

As is well known, averaging the projectpp(t) ){(t)| over all results of the measurements
is the same as not performing any measurement. One may therefore equivalently determine the
differential equation for the reduced density maft) of the photon mode, in the same experi-
mental scheme as in Fig. 1 bwithout the detectorThe reduced density matrix(t) is defined
as the partial trace over the atomic Hilbert spaces of the density ma(t)xof the total system
“atoms+field mode” (see Sec. )t

D) =tr(o(t)). (41)
A

In order to justify the above-mentioned statement, let us show that the changég @ind
‘p(1) when one atom crosses the cavities are the same. The atom arrives in the first cavity in state
li), i=g ori=e. Before it enters in the cavity, the total density matwift) is a tensor product
li)(i|®p(t). We assume thgi(t) = p(t) =M]|(t))((t)|. It follows from the second equality in
(17), from (19), and from the fact that the measurements on the atoms are independent:

p(t+8t) =My o (t+ 80 (Y(t+ 80| = tr(M| W eng(Wend), (42)
A

where| W, is given by(16). Thus,

p(t+ 6t)=tr(e”""Hie 1 ™in]i)(i| p(t) e Hine! LHL) =P (1 + 6t) =tr(e ™' Hing (1) i), (43)
A A

Hence the changes ¢f(t) andp(t) are identical as one atom crosses the cavities. The two
exponentials oH, in (43) disappear by cyclicity of the trace, showing thgt + 6t) = p(t+ 6t)

does not depend on the laser fi€ldThis last point is actually clear, since if no measurement on
the atoms is performed, their interaction with the laser field in the second cavity has no effect on
the field in the first cavity.
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Since they have the same time evolution, we identify in what follgflg and’p(t) and
compute the master equation for the usual density médiix Two cases must be distinguished.
(1) The atom enters in the first cavity in its ground stateg. By replacing(20) into (43),

p(t+t)=(1—|7|%a"8) Yp(t) (1 - [ n|?a"a) ">+ | 7| %Ep(A'=(1+ StLyp(1),  (44)

wherea is given by(21).
(2) The atom enters in the first cavity in its excited statee. Then,

p(t+6t)=(1—|7|%8@") (1) (1—| p|?aa") ">+ [ 9|?aTp(t)a= (1+ StLe)p(t).  (49)

For a given initial state of the atom, the evolution4) and(45) has the general forrt¥). Under
the conditiong15) and (28), one has

StLy(p)=|n*(Apa" - 3{a"a,p}),
(46)
StLe(p)=|n|*(a'pa— 3{@a",p}),

where the curly brackets denote the anticommutffqgB} =AB+ BA.
Let us determine the coarse-grained evolutiop(@) on the time scalédt satisfying(35). By
the same arguments as in Sec. Il B,

P+ At =" (14 8tLy) (14 StLe) (14 StLy) (1),

with r At factors (14 6tLy) andreAt factors (1+ 6tL,). One can retain only the terms of order
one inAt in the expansion of the product:

p(t+ A ={1+At(rgdtLy+10tLe)}p(t). (47)

The superoperator inside the parentheses is the average of the superofemiter the initial
atomic stategi), i=e or g. Writing Ap/At=dp/dt, the coarse-grained master equation in the
interaction picture is therefore

dp oot 1 e ot e 1

= v-@p(a'=3{a"%,p(0)}) + v, (@' p(E- 3{EE",p(D}). (48)
Not surprisingly, this is the equation of the damped harmonic oscillator with finite tempefature
HereT is the temperature of the atomic beam:

w
N kT
wherekg is the Boltzmann constant. Equatio#8) has the general forrfil), with two Lindblad
operatord _=\/y_& andL, = \/y,a". Recall tha@ coincides with the usual annihilation opera-
tor a only if k=0 (perturbative regime
In conclusion, ifA| 7<1 and conditior(28) holds, i.e., if each atom modifies weakly the state
of the field, the average density matri#0) satisfies the master equatigd8). Although the
quantum trajectories of the mode dependéptthe corresponding master equation is the same for
all laser fields, in accordance with the general results of Sec. Il.

e v+

_rg_ 7—, (49)

IV. SINGLE QUANTUM TRAJECTORIES OF THE FIELD MODE

We focus in this section on single quantum trajectories of the field mode, corresponding to
specific realizations of the measurements. The main question addressed in the following concerns
the localization properties of the random dynamics at large times, for different lasediétdthe
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casef=0, i.e, for the “standard” Monte Carlo wave function dynamics, it has been shown in Ref.
27 that the field wave function evolves at large times toward Fock staféy) [with a time
fluctuating number of photon¥(t) ]. Note that it is straightforward to prove that Fock states form
an invariant family of states under the stochastic dynamics. In faet=id, the jump operators

W.. transform|n) into [n=1) (up to multiplicative constantsand|n) is an eigenvector oH
+Ko=w(n+1/2)—i(y_sir(|7n'?) + y_siré(|7|(n+ 1)) /(2| 5|?). The localization property is
much more difficult to prove. For nonzero laser fields, Fock states do no longer form an invariant
family and the localization is of different nature. In the case of zero temperajure Q), it has

been shown in Ref. 8 that the field mode has a diffusive dynamics in thedimit, given by a
stochastic Schidinger equation with real Wiener processes; we will prove in Sec. V that this
remains true at any temperature. Such kind of dynamics has been widely studied in the
literature!121526.28 js expected that localization occurs toward coherent or squeezed states if
the Lindblad operators are linear combinationsaainda’. However, this has only been proved

in the casd_(a+a') as far as we are awaféHere we present numerical results indicating that
for T>0 and large enough the mode wave functiohy(t)) evolves toward squeezed states after
some timeAr of the order of the thermalization time in the absence of measurements. At large
times, the squeezing amplitudét) of the squeezed states is found to fluctuate slightly around a
mean valuer, and the squeezing angig(t) evolves linearly in timeg(t) = ¢o— wt. Interest-

ingly, T and ¢, are independent of the realization and of the initial state, being, respectively,
functions of the temperatufeand the laser field only. By lettinge— <, writing the correspond-

ing quantum state diffusion equatigwhich is derived in the general case in Seg¢, &hd using a
result due to Rigo and Gisftf,we obtain in Sec. IV B analytic expressions foand ¢, in good
agreement with the numerical simulations.

A. Numerical results

Let us first look at the HusimQ-function for the mode wave function in the interaction
picture,

FIG. 2. Q(a,t)+1 for e=0 andy, /y_=3/4, at four different timesy_t=0 (top left), y_t=5 (top right, y_t=20
(bottom lefy, andy_t=60 (bottom righ.
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FIG. 3. Q(a,t) +1 for e=50 andy, /y_=3/4, at the same times as in Fig. 2.

1
Q(a,t)= ;|(C¥|l//(t)>|2, aeC,

The simulations of single quantum trajectories #r0 and e=50 give the results plotted in
Figs. 2 and 3, respectively. Recall that for Fock statge=|n), Q(«) is equal to
|| 2" exp(—|a|?)/7n!, and for squeezed stateg)=|ay,£) with éeR, [¢]=r,

) 1 XF{ B 2R(a—ap)®  23(a— ag)?

_wcosr(r)e 1+e @ 14+e”
(see Ref. 28 This asymmetric paraboloid becomes symmetric for a coherent |gkate| ay),
which corresponds to=0 in the above-mentioned formula. It is seen in Fig. 2 that in the case
€=0, the initial coherent stafex= 2+ 2i) is transformed into states which are close to Fock states
at timest;=20/y_ (n#0) andt,=60/y_ (n=0). This is in agreement with the results of Ref.
27. On the other hand, far=50, Fig. 3 shows that the same initial coherent state is transformed
into states which are close to squeezed stdtesre'?). The squeezed states af
andt, have approximately the same squeezing parametarsd ¢=0, but they have different
centersa.

In order to study more precisely the localization toward squeezed states at large vaiues of
us follow the time evolution of the mean square deviations for a given quantum trajectory

t—[y(t)):
AXG(0) = (s XG (1)) = ()| X | (1)),
(50)
Ay5() = (D] Y5 (1)) = (DY g (1))

X4 andY, are the usual field quadrature operators rotated by an ahgle
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FIG. 4. Ax?(t) (solid, dashed, and dotted linendAx?(t)Ay?(t) [(+), (), and(V)] vs y_t for three different quantum
trajectories with initial coherent state. The values of the parameters=a2€ andy, /y_=3/4. The dotted line and the

triangles correspond to the exact dynamics using the nonperturbative for(@8ja26) for Ky, W.., andK,, with
[N|7=0.93x 10 2.

ae 94+ afe® ae 'v—ale®
Xg= g Y= Xy = (51)

We denote by¢.,i(t) the angle for WhichAxf/)(t) iS minimum. The minimum mean square
deviationAxﬁ)mm(t)(t) is denoted byAx?(t) and, similarly,Ayf,,mm(t)(t) is denoted byAy?(t). Ob-
viously, Ax?(t) and Ay?(t) remain unchanged if the wave functidig(t)) in the Schrdinger
picture is replaced i50) by the wave functiony(t)) in the interaction picture. This replacement
leads to an increase @f,,(t) by wt.

The time evolutions ofAx?(t) and Ax?(t)Ay?(t) are shown in Figs. 4 and 5, for different
quantum trajectories starting from the same coherent gt¢t&))=|a). Note that the time scale
is of order of the thermalization time of the density mafwit). Figure 4 corresponds te=20
and Fig. 5 toe=100. One sees in both Figs. 4 and 5 thaf(t) begins to fluctuate around a mean

0.25 ‘
0.062855
0.2 -~ e .
0.062853
0.03873 [\
0.15 WA /f ANIANNN
AA N AN
N AN
RN
0.1} 0.03868 _
39.998 40
TN o
1/16 \ % \/,,
0.05- \_ =7
0 ‘ : . ‘
0 20 40 60 80 100

FIG. 5. Same as in Fig. 4 but with= 100 (the nonperturbative results are not shown but look similarthe upper square,
Ax?(t) andAx?(t)Ay?(t) are shown on a finer time scale, on which discontinuous quantum jumps can be seen separately.
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FIG. 6. Time averageﬁ (plain line) and Ax?Ay? (<) for different values oflie (shown in the horizontal axisand
Je=0. Inset: same for different values of argshown in degrees in the horizontal gxand fixed moduluse =50. The
time average is taken on the interyalo/y_,100/y_] andy, /y_=3/4.

value Ax? after some transient tim&7=10/y_ . The comparison of the numerical results for the
different trajectories shows thatx?> does not depend upon the specific realization. The fluctua-
tions are considerably reduced in the casel00 (Fig. 5 with respect to the case=20 (Fig. 4).
Moreover, in the former case, the produck?(t)Ay?(t) is much closer to the minimum value
1/16 allowed by the Heisenberg uncertainty principle. The variatialwGfandAxAy? with e for
fixed temperaturd=0.288v/kg is presented in Fig. 6. One observes thaf is almost constant
for 50<e<100. Furthermore, the time average/of?(t) Ay?(t) goes closer and closer to 1/16 as
e increases. The result presented in the inset shows moreovexsthand Ax?Ay? are indepen-
dent of argé), up to small fluctuations.

Most numerical simulations were done using the approximati@tsand (38) for the jump
operatorsV.. and forK, together witfd=a. This is justified if the maximum number of photons
Nmax IS small with respect tdy|~2=|\| 72772, and |y 2=|\| 2772, and n32<| 5| %€ %,
nd'2 <|7n|~?|€| (see Sec. Il B. Since we worked in the Fock states basig,, was bounded by
the dimension of the Hilbert spa¢ehich was taken between 75 and 150ne may be worried,
however, that, despite the smallness of the error made at each timétstéye error made after
many steps might be large and could invalidate our results in the long time limit. We checked that
this is actually not the case by integrating numerically the exact dynamics, using fort8las
(26) for the evolution on each time stefi, and the exact possibilities of occurrence of the four
cases. The curve in the dotted line and the triangles in Fig. 4 are the valukz?@f) and
AX2(t)Ay?(t) obtained from a simulation of this nonperturbative dynamics. This means using the
exact formulag23)—(26) for the evolution on each time stefi, and the exact probabilities of
occurrence of the four cases. The total number of atoms crossing the cavity in the whole time
interval is 2< 10°, and| 7| = V(y-+v4)6t=0.0093. The exact results show very similar fluctua-
tions, around the same valuAx® and Ax°Ay?, as the two trajectories obtained using the per-
turbative scheme. No systematic deviation increasing with time is seen. This result, together with
other simulations for different values efand 5,%! shows errors in the considered time range. Note
however that if| 7| is too large(for values in the range 0.06—0.09 or larger in Fig. 4, and
0.02-0.04 or larger in Fig.)5large time fluctuations oAx?(t) and Ax?(t)Ay?(t) are observed
and therefore the localization is of different nature.

In all our simulations, we found thadtx? andAx?Ay? are insensitive to the initial stae(0))
of the field mode. This is illustrated in Fig. 7 f&a=20 and e=20+ 10 (similar results are
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FIG. 7. AX3(t) (lines) and Ax3(t)Ay2(t) [(+), (¢), and(O)] vs y_t for trajectories with different initial stateg(0)).
Left-hand side: in the two shown trajectoriés](0)) is chosen randomly for €n=<20 and vanishes fan>20; |(0))

and the realization of the measurements are different in each trajeetoB0+ 10 andy, /y_=1/2. Right-hand sidg1)
|(0)=|a) with o= /3/2(1+i) [plain line, (O);] (2) id. with a= —1+5i [dashed line(+);] (3) |(0))=|n=5) [dotted

line, (©)]; in all casesg=20 andy, /y_=23/4. The dotted line on the left-hand side and dot-dashed line on the right-hand
side correspond to the theoretical req6i) for e—oo.

obtained fore=100). On the right-hand side of the Fig. 7, it is seen thaf(t) differs noticeably

at smallt’s if |(0)) is a coherent stafegaseg1) and(2)] and if it is a Fock statcase(3); the first
small time values are outside the range of the figine?(0)=2.75]. However, the three curves
are hard to distinguish foy_t=10. In the two trajectories shown on the left-hand side, the two
distinct initial states are chosen by picking randomly the 20 first compoKieht£0)) in the Fock
states basigthe realization of the measurements is also different in the two aBes times
bigger than 10y_, one observes thatx?(t) fluctuates around the same value for both trajecto-
ries.

For the quantum trajectories studied in Figs. 3—5, the apglg(t) + «t is found to be zero at
timest=A r. Nonvanishing angles are obtained if one considers noreiedlhe time dependence
of dmin(t) +wt for e=20+ 10 is presented in Fig. 8 for different initial states. It is seen that it
evolves toward a constant valdg which neither depends dgi(0)) nor on the ratioy, /y_ . As
shown in the inset, we obtaith,=arg(e).

90

/—‘ 4-/
60 E /
3Ly 30 |/ 7
s /
0 ¢ P
30 S
& 60 s Vs i
28 / 7
90 -
0 60 120 180 240 300 360
Arctan{(0.5)
i o
25K soe 1

19 . . . .
0 20 40 60 80 100

FIG. 8. Angle¢mn(t)+ ot (in degreesvs y_t for e=20+ 100 and different initial states and temperaturgs:|(0))=|a)

with @=2-2i; vy, ly_=1/4(A); (2) |¥(0))=(2+2e %) Y2 (|a)+|B)) with a=—3i and B=3; v, |y_=3/4 (®); (3)

|#(0))=|n) with n=10; y, /y_=3/4(+); (4) |#(0)) is chosen randomly as in Fig. %, /y_=1/2 (dashed ling Inset:

time average ofp(t) = dmin(t) + ot as function of arg (both in degreesfor =50 andy, /y_=3/4 (time average as in

Fig. 6). The result is well fitted by the broken linef= arg(e) mod. 180.
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FIG. 9. Time average of the probabilityn|#(t))|? to find n photons fore=50, y, /y_=3/4 (+). The average is taken
over 5000 discrete times in the interJd&,100/_]. The solid line corresponds to the Bose—Einstein distribution.

Bringing together the above-mentioned results, we are led to the following conclusions. For
large|e| and small| 5| smaller than=0.01, the wave functiofi/g(t)) of the field mode evolves,
whatever its initial statég(0)), to some almost minimum uncertainty statdJS) at timest
=A 7, whereAris a transient time. Moreover, >0,

AX2(1)=AX2<1/4,  Pmn(t)=o— wt (52

at large times where bothx? andcfo= arg(e) are independent df/5(0)) and of the realization of
the measurements. Therefore, providie¢ds big enough angly| small enough, the state of the field
mode at times=A 7 is close to a squeezed state:

| (1)) =] a(t),&(1)). (53)

The squeezing amplitude(t) =_|§(t)| fluctuates slightly around a time-independent value
r=—In(4Ax%)/2 and argé(t))=2(— wt). The center(t) of the squeezed state moves around in
the complex plane. Actually, by ergodicity, the time averagg/eft) )(#s(t)| must coincide with

the equilibrium density matrip(®9=Z ! exp(— w(a'a+1/2)/kgT). To check ergodicity, we have
computed numerically the time average |0f|4(t))|? on the interval[ 0,100/ _] for a single
quantum trajectory. It is indeed seen in Fig. 9 that it reproduces well the Bose—Einstein exponen-
tial distribution p'¢9.

B. Analytical results

The above-given numerical results suggest that the dynamics has the localization property
toward squeezed states in the limit of large laser figdls . In particular, the squeezed states
should form an invariant family of states under the stochastic dynamics in this limit. The second
statement can be shown analytically as follows. We restrict our analysis here to the perturbative
regime wherd|<1, | 7€<1 and(28) holds withk=0, so thai=a. As said previously, one can
describe the mode’s dynamics in the linét—x, |5—0, |7€—0 by a stochastic Schdiger
equation with real Wiener process@giantum state diffusignThis is because the probability of
occurrence of jumps grows like|? (for instance, in Figs. 4 and 5, the total number of jumps in
the whole time interval 0,100/ _] is close to Z 10* and 1.75< 10°, respectively. On the other
hand, as is clear front81) and(39), the change of the wave function during a jump is of order 1/
Hence there are infinitely many jumps with an infinitesimal impact on the wave function in the
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limit |e—c°. On a time scale much bigger than the inverse frequencies of jlimipsmall enough
so that|(t)) does not change much on such a time sgdkg(t)) satisfies the following [to
stochastic differential equation in the limit-oo, arge=6:

|dy)=| Vy_ (e "?a—9(e ") dw (1) + 1y, (e'?a’~ (e ’a") ) dw. (1)
+9(ei%aly,| y_e %a+ «y+e”*aT—%ﬂuei%xwt dt—iKodt}lz/x(t». (54)

The notation is as followsK,=(y_a'a+y,aa")/2i, (O)=(y(t)|O|4(t)) is the quantum ex-
pectation at timé and dv.. (t) are the stochastic infinitesimal increments of two independent real
Wiener processes, which have zero mean and satisfy thelte°

dw. (t)dw. (H)=dt, dw_(t)dw,(1)=0, dw. (t)dt=0. (55)

Equation(54) will be derived in Sec. V in the general case. It belongs to the class of stochastic
Schralinger equations studied in Refs. 11 and 12 and has been derived from the QJ dynamics by
Wiseman and Milburh (see also Refs. 5 and) $n the case of a mode in a decaying cavity
(corresponding here tp_ = 0). It can actually be derived directly from the stochastic dynamics of
Sec. Il B, Egs.(23)—(26), with the probabilities(27), in the limit |¢—o, |7—0, |en|=const.,
under assumptiof28) with k=023! A related equation with complex Wiener processes has been
studied in Ref. 10.

Rigo and GisiR® have shown that the stochastic Salinger equatiori54) preserves squeezed
states. Since54) actually differs from the equation considered by these authors by some addi-
tional phase factore™'?, and the explicit solution of the evolution equations for the squeezing
parameters is not given in Ref. 26, we briefly recall here their derivation. We usé tloenitalism
of stochastic differential equatioi$whereas Stratanovich formalism was used in Ref. 26. It is
convenient to characterize squeezed states by the following criterion:

[y =1¢l|a.é=re*’)=(a-Ta’=p)ly)=0, I'=—e?’tanr), B=a-Ta*. (56

The family of the squeezed states is invariant uri@éy if | )+ |dy) remains a squeezed state for
any |)=|a,8), i.e., @—Ta'—dl a’'— B—dB)(|#)+|dy))=0. This is equivalent &

[a—Ta",D(y)]|¢)—(dl a’+dB)D(y)|y)=(d a'+dB)| ), (57)

whereD () is the operator inside the square bracket$54). The left-hand side is found to be

+v_ . ) .
T ; Y~ (a+T ahdt+ R(eal)(y. eldt+y e T dt+ v, dB dw, +y_dBdw.)
+\y, el —a'dgdw, +dw,)+y_e "(—adBdw_+T dw_) || ). (58)

We have thrown away all termsl'diw.. since d’ is proportional to t. This is because, by
inspection of(58), the terms containing the noisew d on the left-hand side of67) are propor-
tional to| ). Multiplying both members of57) by dw.. and using(55) and (58) gives

dBdw, =y et dBdw_=y_e T dt. (59)

Now we use the well-known identit§(— £)D(— a)aD(a)S(¢) =a coshr+T a' coshr +a, where
S(¢)=exp@Ea?2— £a'?/2) andD(a)=exp(a’—a*a) are, respectively, the squeezing and the
displacement operatofsThe squeezed stale) is equal toD (@) S(€)|0). Let us multiply the two
members of57) by S(— ¢€)D(— ) and substituté58) and (59) into this equation. This leads to
the two coupled stochastic differential equations:
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dl'=—e?(1+e 2T (y, +y_e ?T)dt,
(60)

_+ . ) ) )
ag=—|~ 2y++7,e_2'9F Bdt+ 20 (e%a*)(y, e+ y e 1Tt

+\y,edw, ++/y_e I dw._ .

These equations are equivalent(&7) and have a solution. Hence the squeezed statésform
an invariant family under the quantum state diffusion dynamics, @arahd ¢ evolve in time
according to(60).

We now obtain the squeezing amplitudgd) and angles#(t) of the squeezed states by
solving (60). They are determined by the first equation:

(y— =7yt
) e +C .
L(t)= " gy g =~ tanftr (1), (61

wherec is an arbitrary complex constant. Thuét) and ¢(t) are deterministic, unlikex(t),
which is given by the second equation. Going back to the Sithger picture, one has for
t(y-—vys)>1

tanir(t))= %=ex;{ - %)
B

62
P(t)=0— wt. (2

It is worth noticing that perfect squeezing(t) —oc] is obtained in thehigh temperature limit
ksT>w. The rate /_—y.) ! of convergence of tant{t) to tanir=exp(— w/kgT) also tends to
infinity in this limit. Since the number of photons in the cavity becomes very large at very high
temperatures and long times, the perturbative approxima#i8nshould however break down at
some point. This can put a limitation on the attainment of very lafge A more detailed study
of this apparently surprising result is the object in a separate Work.

As stated previously, the second equation(62) agrees quite well with the results of the
numerical simulations of Fig. 8. Using the minimum mean square deviatioh=e /4 of
squeezed statéyields the time averagAx?:

Y-—7+

Ax2=—— T
4(y-+vyy)

(63
In the particular case of an initial coherent sta€0)) = | «), the constant is equal to— 1y, , so
that (62) is exact at all time$=0 and

Y-—7+

2 f—
A= 2y A—2e Ty

(64)

This solution is compared in Fig. 7 with the numerical resultg & 20. The exact value afx?

is close to the approximated value 1/12 obtained ft68) for v, /y_=1/2 (left-hand side of Fig.

7). It is a bit higher than the theoretical prediction 1#28.0357 fory, /y_=3/4 (right-hand

side). For 50<e<100, one has a better agreement, as seen in Fig. 6. Hence the dynamics of the
mode is well described by the quantum state diffusion equa&fidnfor e=50, at this temperature.

V. STOCHASTIC SCHRODINGER EQUATIONS

In this section we discuss the mathematical link between the quantum jump dynamics of Sec.
Il and various stochastic Schtimger equations found in the literature. The analysis is done for
arbitrary open quantum systems having a Lindblad-type dynamics.
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A. Linear quantum jump dynamics

A linear version of the QJ dynamics of Sec. Il, in which the random wave function is not
normalized at each time stefi, has been introduced in Ref. 18. The unormalized wave function
|o(t)) of the open systers satisfies the following [tstochastic differential equation:

[d)=| =i(H+K)dt+ 2 (Win—1)dNm(1) (1)), (65)
whereH is the Hamiltonian ofS, the jump operatorgV,, are related to the Lindblad operatarg,
by

L= ¥ Win— 1), (66)

and dN,(t)=0,1 are the stochastic increments of independent Poisson prodgssath param-
etersy,,. These increments have mellidN,(t) = ¥, dt and satisfy the [taules:

AN (1) dNp(1) = 8y mdN(1),  dNp(t)dt=0. (67)

Equation(65) has been first considered by Belav’imith some jump operatoi#/,, proportional
to L, [the relation with the jump operato(§6) is given by the transformatio(8)]. It has also
been considered independently in Ref. 16. It is easy to show{tpt M| ¢o(t) ){¢(t)| obeys the
Lindblad equation(1) if K is appropriately chosen. In fact, g5) and (67),

dp=M(|de){e|+|@)(de|+|de)(de|)

=—i[H,pldt—iKpdt+ipK dt+ >, ym((Wpn—1)p+p(W' —1)+(Wy,—1)p(WE—1))dt.
m
Replacing(66) into this equation yields

) 1
dp=—u[H,p]dt+§ Lol = 5{Lmbm.p} |,

provided that

1 1
K= 5 2 Yn(Wint DW= 1)= 5: 3 (Likm+ 2V ¥l ). 68)

To give a physical meaning to the linear stochastic dynamics, one must choose the jump,rates
equal to the probability per unit time of the corresponding transitions. These are given by the
Fermi golden rule to second order in perturbation theory. For instance, for the field mode con-
sidered in Sec. lll;y. are the damping ratg83) for the absorption and emission of a photon by
the atoms.

Let us write (65) in the “dissipative interaction picturefe(t))=U(t)|¢(t)), whereU(t)
=exp(t(H+K)). It reads |de)==n(Wn(t)—1)dNp(t)|2(t)), with Wy(t)=U(t)W,U(—t).
This implies:

(1)) = Wiy (tp)- - Win, (t2)]£(0)),

where Ost;<---<t,=--- are the jump timegtimes such thak ,dN,(t)=1), t,<t<t,,,, and
m, is the index of the jump occurring at ting (deq(tq)= 1,g9=1,...p). Hence the stochastic
Schralinger equatior(65) admits the solution:

|p(D)y=e  HHIOW, e ilp—tp (. .\ e (14K 6(0)),  ty<t<ty,;. (69

Downloaded 02 Oct 2006 to 152.77.18.70. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 43, No. 7, July 2002 Quantum jump dynamics in cavity QED 3531

In other words, the evolution of the quantum state may be computed as follows.
(1) If there is a jumpm betweent andt+dt, then

|l @(t+dt)) =Wl (1)) (70

This occurs with a probability,,,dt independent of(t)).
(2) If no jump occurs betweenandt+dt, then

le(t+dt))=(1—idt(H+K))|e(1)). (71

If y=Z2p, ym<<o, the time delays—t,,t,—t,_4,....t; and the jump indices,,...,m; in (69)

are independent random variables. The time delays are equally distributed, according to the ex-
ponential lawe™ **ds. Because of the independence of the Poisson proctksethe probability
thatmg=m is y,/7y.

It has been proven in Ref. 18 that, under appropriate hypothes# pand v,,, the wave
function (69) is still well defined(as some limit of the right-hand sigé y=c«, in which case
infinitely many jumps occur between 0 anhdThis result is important for electrons in strongly
disordered solids, whema=(i,j) labels pairs of eigenstatéis,|j) of the electronic Hamiltonian,
andL;; is equal or “close” to \y;;|j)(i|, i.e., W;;=1+]jXi| (locality condition. Then, the
number of jumps in a finite interval becomes infinite in the infinite volume limit, due to the
divergence of the double suB) ; v;; . In this case, the presence of the identity operator inside the
parentheses if66) is necessary for the mathematical definitenesgo(f)).

B. Nonlinear quantum jump dynamics

The nonlinear QJ scheme of Sec. Il can be deduced from the above-mentioned linear QJ
dynamics in the following way. By comparin®) and (4) with (70) and(71), it is clear that, for
a given realization of the jumps, the normalized wave function

le(1))

O T 72
evolves according to the nonlinear QJ scheme Wwith= \/y,,. However, it was argued in Sec. I
that the density matriyp(t) is the mean value dfis(t)){(t)|, whereas it has been seen earlier
thatp(t) =M|¢(t)){¢(t)|. This means that the probabiliy’ attached tdy(t)) is different from
the probabilityP attached td¢(t)), that is, to the Poisson procesd¢s. This change of prob-
ability P— P’ provides the link between the two random evolutions |foft)) and |(t)). We
define it as follows. Let us denote by’ and M the mean values with respect By and P,
respectively. Let~ be an arbitraryoperator-valuedstochastic process such thaft) depends
only upon the realizations of the jump times up to timeSuchF is said to beadaptedto the
filtration of the Poisson processBk,.>® We ask that

M’ (F(1)=M(F(Dle(t)]?) (73

for any such process. Taking F(t)=|#(t)){(t)|, this implies in particular

(1) =M"[4(0) (D) =Me(t))(e(1)]. 74
Let us compute the probability of occurrence of a jumgetween times andt + 6t for the new
probability P':
8pm(t) =M' (SN (D] (1)). (75

The right-hand side is the condition@hean expectation ofSN,(t) given |(t)), for the prob-
ability P’. Indeed, the P') probability of a jump betweeh andt+ 6t depends upon the wave
function|(t)) at timet. Let F(t) be an arbitrary stochastic force adapted to the filtration of the
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N.'s. ThenF(t) SN, (t) depends upon the realizations of tNg’s until time t+ St [recall that
SN (1) =N (t+ 6t) — N, (t)]. Therefore, replacingdr(t) by F(t) SNy (t) in (73),

M’ (F (1) SNm(t)) = M(F (1) SNm() [ @(t+ 8D)II?) = M(F () SN (D[ Wil 0(£))]]?).

Formula(70) together with the fact thaN,(t)=0,1 have been used in the second line. By the
independence of the forward incremeiN ,(t) andF(t)||W|¢(t))]?, one gets

M’ (F (1) SNip(t)) = M(SN (1)) M(F (1) [Win| @(£))]17) = yimtM’ (F (1) [ Wy @(t)>||2||¢(t)||_22%6)

But F(t) is arbitrary, thug76) implies the identity of the conditional expectations:

SPm(t) =M (SN0 (1)) = ymtM’ ([Wenl @ (D)l (D)2 4(1)) = it W tl/(t)>||2,(77)

in accordance wit{12). As a result, the stochastic evolution of the normalized wave function
|4(t)) with probability P’ coincides with that described in Sec. Il faf,= \yn. It is moreover
given by the nonlinear stochastic Sctirger equatiort®

H+K+%(KT—K>t dN(t) || (1)), (78)

dt+ S (—_W;"__l
m <Wme>t

with (O)=(#(t)|O|(t)). This equation is readily obtained by computing(t+dt)) from (70)
and(71).

C. Linear quantum state diffusion

It has been shown by Carmichael and Wiseman and Miftftimat the nonlinear QJ dynamics
of the quantum field considered in Sec. lIl, with. =0, is well described in limite—c~ by a
guantum state diffusiofQSD) stochastic equation involving real Wiener procegsdste noise.
The linear version of QSD is obtained in this section in the more general setting of arbitrary
Markovian quantum open systems, by taking the limit of infinite jump ratgs>o° in the linear
QJ dynamics of Sec. VA.

Following Wiseman and Milburfi,we introduce a small dimensionless parametef that
will tend to zero. Our goal is to increase up to infinity the raggsof the jumps in the linear QJ
dynamics, without modifying the master equation giving the average dynamics. Hence the Lind-
blad operatord. ,, are here considered éiged i.e., independent of. So are the damping rates
contained in the master equation, given by sarvirdependent rateg,,>0. The jump ratesy,,
are assumed to go to infinity like *:

Ym= 8_47m- (79

The magnitude of the negative power ofis chosen for future convenience. Let(t)) be the
solution of the linear QJ stochastic equati@®). We are interested in the variation jaf(t)) on
a time intervalAt>y,.! such that infinitely many jumps occur betweeandt+ At in the limit
£—0. On the other hand, we want to be small enough so that the charjger) =|¢(t+At))
—|e(t)) of the wave function goes to zero as-0. A possibleAt realizing these two conditions
is

At=g3y 1, (80)
wherey=2 ., v, is the sum of the fixed damping rates. Indeed, fri@®),

Wn=1+¢%y,. YL ,. (81)
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Since thel ,, are e-independent, the impact of each jump fgn is of orders?. Moreover, the
number of jumpsn betweert andt+ At is of ordery,,At=¢~1v,,/. This means that the impact
of the jumps betweeh andt+ At is of ordere "*X e?=¢, which is indeed small for smadl.

Let ANy(t) be the number of jumpsn in the time interval[t,t+At]. By dividing this
interval into smaller interval§r,,7,. 1] of length yr;l, AN, (t) can be written as a sum of
ymAt=0O(e 1) independent random variabIb,([ 7, 7n+1]) (number of jumps between, and
Th+1), Which have mean and variance 1. Therefore, by the central limit theorem,

_ANm— vmAt

V¥

can be approximated for smalby a Gaussian random variable of zero mean and varian¢the
convergence as—0 actually holds for a fixe@-independeni\t; for At given by(80), one gets

an infinitesimal incrementz]]. Shiftingt by At or changingm leads to independent increments
AN, and Az, . It follows that Az, are the infinitesimal increments of some independent real
Wiener processes, in the limit e—0. Indeed, a Wiener procegsis by definition a stochastic
process with independent incremetts=z(t+ At) — z(t) distributed according to a Gaussian law
of varianceAt. The convergence ofN,— ymt)/Vym to @ Wiener process can be shown more
rigorously by using a theorem proven in Ref. 32.

The next step consists in evaluating both the mean and the fluctuating pg¥ts) 66 leading
order ine. Let p=2,,ANy(t) be the total number of jumps betweeandt+ At. We denote by
Sq=tq+1—tg, d=1,...p—1, the time delays between consecutive jumps andgget; —t and
sp=t+At—t,. By (79 and(80), p ands, have mean valuegAt andy~* of orders ! ande*,
respectively. The generalized Hamiltoni€s8) can be decomposed into two parts:

Az, (82

K=Ky—ie °R, (83
whereKy andR are e-independent:
1 1
KO=E§ LILm, R=% V¥l (84)

Let us set\/q=7r;:’2Lmq if g=1,...,p andV,=0. With the help 0169), (81), and(83), one obtains

0
1
|A(p>=[ I1 {(1—8—2qu+ Se *siR?—isq(H+Kq) +0O(e)

AL 5 (1+82vq)}—1]|<p(t)>,

(89

where the product is taken in decreasing ordeq.ifThe terms of ordet in the expansion of the
product are

p
|A¢>“’=q§O (—& 25,R+82V) (1)

=§ <—s—ZAtV%2+sZANmum”z)Lmlqo(t»=; Az (DLle(h).  (86)

These are the leading order fluctuating for¢eszero meah Since fluctuating terms of higher
order should not contribute in the limit—-0, we may replace the product(&5) by its mean value

in computing the terms of order” and more. This simplifies greatly the computation, because the
order of the operators in the product then becomes of no importance. In fact, by the remark
following (71), the random variables, ..., s,, my,...,m, are independent, so that the mean of the
product is the product of the means. Moreowdl/ =X ( ym/y)Vr;]l’ZLm: R/. Therefore, one
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can commute all operators in the product when computing the mean value. It is easy to show that
the terms of ordes? cancel on average. The terms of ordérare found to be proportional tit:

|A@)D=M|A@)=—i(H+KgAt(1+O(e)). (87)

This is the drift contribution tdA¢).

The previous computation shows that the QJ dynamics is transformed:8sif one looks at
it with the time resolutiomt=""'¢3, to a diffusive dynamics given by the linear Istochastic
differential equatiort?>’

|de)= —i<H+Ko>dt+§ Lmdzen(t) || 0(1)). (89

Here K0=EmLIan/2i and d,(t) are the infinitesimal increments of independessl Wiener
processeg,,, which have zero mean and satisfy the ftdes:

AZyn(1)dZn(t) = Sy mlt,  dzp(t)dt=0. (89)

D. Nonlinear quantum state diffusion

We have so far determined the linear stochastic Stthger equation fof¢(t)). The corre-
sponding nonlinear equation for the normalized wave fundtig(t) ) is obtained by means of the
above-mentioned change of probabilRy— P’. This derivation of the nonlinear QSD equation
from the linear one is actually well-knowd:8 It is slightly more complicated than for the QJ
dynamics, becausely) is to be expressed in terms of Wiener processes for the new probability
P’. This can be done by using Girsanov’s theorf@mjhich states that a Wiener differentialvg)
for P’ is obtained by adding an appropriate drift differential i3,d For the change of probability
defined by(73), the conditionalmean expectation of 8'/dP given|¢(t)) is [ ¢(t)[|?. The drift
differential is then— | ¢(t)||~2d|| ¢||?dz,, (for more details, see Refs. 12,)2&rom (88) and(89),
one gets

d||<p||2=2||<p<t>||2§ (L) dZp, (90)

which implies that|¢(t)||? is a local martingale. Thus,
AW (t) = dz(t) — 20(L ) dt. (91

According to 1fds formula® one has

de)  d(\Tell?4))

el el

diel® di¢l*dlel?
2l 8ol

The multiplication of both members byzg leads, with the help of88)—(90), to dz.,|di)= (L,
—R(Lm)y)|#)dt. Going back to the original equation, it follows:

| )+ |dy)
el

= oy +|

|dy)= ).

i 3
—i(H+Kg)dt+ >, ﬂ%(Lm)t( —Ln+ EER(Lm)t
m

dt+ > (L= (L)) 2
m
The nonlinear QDS equation is obtained by repladi@g into this equatiort:121°

1 s
I-m_ §m<|-m>t

dt+ % (Lm— m<|—m>t)dwm(t)} [(1)).
(92

|d¢>:[_i(H+Ko)dt+z R(Lm)t
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Linear QJ model infinite jump | { jnear QSD model
rates limit
Unormalized WF | ¢ > Unormalized WF | ¢>

probability P probability P

N

TS

Change of probability P <> P’

Non-linear infinite jump Non-linear
requencies
QJ model Jreq QSD model
Norm . WF |y, proba P’ NormWF [W>, proba P’

FIG. 10. The links between the different stochastic Sdimger equations.

Let us come back to the mode dynamics of Sec. lll. If one sticks to the norm-preserving
QJ dynamics, the jump operatoW. in (31) are defined up to a multiplicative constant. If
k=0, @a=a, they can be obtained, up to such a constant, from the Lindblad opelators
=\[y.a" andL_=\/y_a by means of formul66), provided that the transition rates are replaced
by some effective rateg. =7.|e|?> andL. are multiplied by the phase factoes'’, 9=arge.
Thus the above-presented analysis can be used to compute the QSD equation for the normalized
mode wave functiony(t)) in the limit of large laser fieldg]—o. The introduction of the phase
factorse™'? in (92) leads to the QSD equatid4).

E. Links between the stochastic Schro “dinger equations

The summary of the results of this section is given in Fig. 10. The stochastic diuieo
equations in ltdorm for the linear and nonlinear QJ models are, respectively, ®§sand(78),
and those for the linear and nonlinear QSD models are, respectively(@jand (92).

VI. CONCLUSION

We have shown that the nonlinear quantum jutop Monte Carlo wave functionmodel
applied to a simple optical systefdamped harmonic oscillator at finite temperatiitecan be
generalized to describe the evolution of the quantum field in a cavity monitored by an atomic
beam of two level atoms. These atoms cross one by one the cavity and interact at its exit first with
a classical laser fieldl, and then with a detector measuring their states. This kind of monitoring by
measurements is similar to that obtained by homodyne measurement of the field in a decaying
cavity>® the photon counting on the output field being replaced by the measurements on the
atoms. Actually, if all atoms are sent in their ground state=Q), the stochastic evolution of the
wave function of the quantum fieldquantum trajectorigsis the same for the two kinds of
monitoring. If the atoms form a beam of randomly prepared atoms with tempergtu@e they
may also emit photons in the cavity and thus a new kind of quantum jump comes into play
(creation of a photon This has notable effects on the quantum trajectories. The effect of the laser
field £ is to modify the two jump operators. In fact, the measured atomic transitions can be driven
by this field as well as by the interaction with the studied quantum field in the cavity. As a result,
£ also modifies the generalized Hamiltonian that rules the evolution between jumps. The average
over all realizations of the measurements leads tE-amdependent dynamics, described by a
density matrix satisfying the master equation of the damped harmonic oscillator with temperature
T. Whereas the density matrix converges at large times to the Bose—Einstein equilibrium, the
individual quantum trajectories for given realizations experience localization toward squeezed
states at large€. The squeezing parameters evolve to some almost constant values, up to small
fluctuations going to zero in the infinite laser intensity limit. This localization occurs at large
enough times, for any initial state of the quantum field. The centers of the squeezed states move
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randomly in the complex plane, in such a way that the time averages of the quantum probabilities
to find n-photons are distributed according to Bose—Einstengodicity). The squeezing ampli-
tuder and phasep are controlled, respectively, by the temperatlirand the laser field. r is

found to increase witi, which means that the squeezing is enhanced by increasing the tempera-
ture of the atomic beam; however, the waiting time beforeaches its almost stationary value is
also temperature increasing. On the other hand, no squeezing is obtaine® aand localization
toward Fock states occurs §=0. As in the case of the homodyne measurement, the quantum
trajectories are given in the infinitelimit by a so-called quantum state diffusi¢QSD) stochastic
Schralinger equation, involving real white noi3&!'12A precise mathematical derivation of this
equation from the quantum jump dynamics was performed in Sec. V for arbitrary open quantum
systems having a Lindblad-type dynamics. More precisely, this derivation starts from a linear
version of the QJ dynamics proposed in Ref. 18, in which the wave function is not normalized at
each step, which is proven to be related to the nonlinear QJ model by a simple change of
probability.
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