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Quantum jump dynamics in cavity QED
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We study the stochastic dynamics of the electromagnetic field in a lossless cavity
interacting with a beam of two-level atoms, given that the atomic states are mea-
sured after they have crossed the cavity. The atoms first interact at the exit of the
cavity with a classical laser fieldE and then enter into a detector which measures
their states. Each measurement disentangles the field and the atoms and changes in
a random way the stateuc(t)& of the cavity field. For weak atom-field coupling, the
evolution of uc(t)& when many atoms cross the cavity and the detector is charac-
terized by a succession of quantum jumps occurring at random times, separated by
quasi-Hamiltonian evolutions, both of which depend on the laser fieldE. For E50,
the dynamics is the same as in the Monte Carlo wave function model of Dalibard
et al. @Phys. Rev. Lett.68, 580~1992!# and Carmichael,An Open System Approach
to Quantum Optics, Lecture Notes in Physics Vol. 18~Springer, Berlin, 1991!#. The
density matrix of the quantum field, obtained by averaging the projector
uc(t)&^c(t)u over all results of the measurements, is independent ofE and follows
the master equation of the damped harmonic oscillator at finite temperature. We
provide numerical evidence showing that for largeE, an arbitrary initial field state
uc~0!& evolves under the monitoring of the atoms and the measurements toward
squeezed statesua,re2if&, moving in thea-complex plane but with almost constant
squeezing parametersr andf. The values ofr andf are determined analytically.
On the other hand, forE50, the dynamics transforms the initial state into Fock
statesun& with fluctuating numbers of photonsn, as shown in Kistet al. @J. Opt. B:
Quantum Semiclassical Opt.1, 251~1999!#. In the last part, we derive the quantum
jump dynamics from the linear quantum jump model proposed in Spehner and
Bellissard @J. Stat. Phys.104, 525 ~2001!#, for arbitrary open quantum systems
having a Lindblad-type evolution. A careful derivation of the infinite jump rates
limit, where the dynamics can be approximated by a diffusion process of the quan-
tum state, is also presented. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1476392#

I. INTRODUCTION

The dissipative dynamics of an open quantum systemS can be described in two differen
ways. The first one consists in couplingS with a reservoirR and assuming that the total syste
S1R is isolated. Since one is concerned by the dynamics ofS only, one traces out the degrees
freedom ofR in the equation of motion ofS1R. Within the Markov approximation, the reduce
density matrix ofS follows a first-order differential equation with time-independent coefficie
In many cases, a separation of time scales between the Hamiltonian~R-independent! and dissipa-
tive ~R-dependent! evolutions allows one to perform a local averaging in time, which kills n
resonant terms.1,2 The coarse-grained master equation obtained in this way has the Lindblad f3

An alternative approach to this density matrix description has been developed in the la

a!Present address: Universita¨t Essen, Fachbereich Physik, D-45117 Essen, Germany; electronic mail: spehner@
phys.uni-essen.de
35110022-2488/2002/43(7)/3511/27/$19.00 © 2002 American Institute of Physics
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decades in quantum optics4–8 ~see, e.g., Ref. 9!, quantum measurement theory,10–13 quantum and
classical stochastic calculus,14–17and electronic transport in solids.18–20This approach is based o
stochastic evolutions of pure states. The system is described by a random wave function~RW!
evolving according to a linear or nonlinearstochastic Schro¨dinger equation. Consistency with the
density matrix approach requires that the pure state evolution gives the master equation ba
averaging over the dynamical noise. Apart from being intuitively appealing, the RW mo
provide quite efficient tools for solving master equations numerically, since Schro¨dinger equations
haveN components, whereas master equations haveN3N components,N being the dimension of
the Hilbert space ofS. However, the RW models are more than simple mathematical or nume
tools: they describe thereal evolution of single quantum systems under continuous monitoring
measurements~photon counting, homodyne or heterodyne detections!.5,8,9 In recent years, the
attainment of low temperature and low dissipation regimes, as well as the improveme
detection techniques, has allowed the investigation of the dynamics of such continuously
tored systems. Remarkable examples of these are single ions21 and Bose–Einstein condensates22 in
electromagnetic traps, probed by laser beams, and electromagnetic fields in highQ-cavities,23

probed by beams of highly excited atoms~Rydberg atoms!. This new generation of experiment
combined with the difficulties usually encountered in solving the master equation, has str
stimulated the developments of the RW approach in quantum optics.

The aim of this paper is to investigate a specific physical realization, which could b
principle realizable experimentally~although this question is not addressed here!, of a class of RW
models based on quantum jumps. The system we consider is the electromagnetic field of
Q-cavity interacting with a beam of two-level atoms, which forms the reservoir of temperatuT.
The states of the atoms leaving the cavity are measured by a detector. A laser fieldE is placed
between the cavity and the detector. The corresponding master equation, obtained by av
over the results of the measurement on the atoms, is, for weak atom-field coupling, the equa
the damped harmonic oscillator with finite temperature. The same problem has been consid
Ref. 24 in the reverse situation where one knows exactly the state of each atom before it c
the cavity and no measurement is performed on it at the exit~its final state thus being unknown!.
It has been shown in this reference that the cavity field evolves at large times to a state w
completely controlled by the atomic initial states.

We first introduce in Sec. II the class of quantum jump models studied in this work
arbitrary open systems having a Lindblad-type evolution. The experimental scheme is prese
Sec. III, where we also compute the random evolution of the cavity field and its correspo
average evolution. We focus in Sec. IV on single quantum trajectories, i.e., single realizatio
the measurements. The numerical simulations and analytical results presented in this sectio
that for T.0 and large laser fieldsE, the state of the cavity field localizes at large times
squeezed states with an almost constant squeezing amplituder which depends only onT. Section
V is devoted to the derivation, for arbitrary open systems, of the nonlinear quantum jump sc
from the corresponding linear ones introduced in Ref. 18. Their relation with the so-called
tum state diffusion stochastic Schro¨dinger equations10–12,15–17is also established. Our conclusion
are presented in Sec. VI.

II. THE QUANTUM JUMP SCHEMES

Let us first recall briefly a few basic facts about the master equation approach to
quantum systems. Consider an open systemS interacting with a reservoirR. The density matrixs
of the total systemS1R is assumed to follow the Liouville–von Neumann equation of clos
systems. A state ofS is specified by the reduced density matrixr, defined as the partial trace ofs
over the reservoir’s Hilbert space. By tracing out the degrees of freedom ofR in the Liouville–von
Neumann equation, one obtains an integro-differential equation forr ~Nakajima–Zwanzig
equation!.25 Using a Born–Markov approximation and a local time averaging on a time s
much larger than the inverse Bohr frequencies ofS, this equation is transformed into a simpl
first-order linear differential equation, called themaster equation.1,25 This coarse-grained equatio
has in most cases the Lindblad form:3
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dr

dt
52 i@H,r#1

1

2 (
m

~@Lmr,Lm
† #1@Lm ,rLm

† # !. ~1!

H is the Hamiltonian ofS ~including the energy shifts due to the coupling with the reservoir!, and
Lm are some operators acting on the Hilbert space ofS. The sum over the discrete indicesm can
be finite or infinite, depending on the nature of the problem.

We now describe the random wave function approach of Dalibard, Castin, and Mølme4 and
Carmichael.5 This approach, called in the former reference the Monte Carlo wave func
method, has been introduced independently by several other authors.6,7,13 It is based on quantum
jumps, i.e., on discontinuous random evolutions of the wave function ofS.

At some random times, quantum jumps~QJ! occur as a result of some continuous measu
ment on the systemS ~e.g., a detection of a photon emitted by a system constituted by an a!.
If a jump occurs, the wave functionuc& of S is modified discontinuously as follows:

jump m: uc&→
Lmuc&

iLmuc&i , ~2!

whereLm are the Lindblad operators appearing in~1!. The probability of occurrence of a jump o
type m in the time interval@ t,t1dt# is

dpm~ t !5iLmuc~ t !&i2dt. ~3!

One must choosedt small enough so thatdpm(t)!1 for any uc& and allm’s ~this is fulfilled if
dt21 is much bigger than the damping constantsgm appearing in the master equation, contain
in the operatorsLm!. If no jump occurs betweent and t1dt, the wave function evolves betwee
these two times according to Schro¨dinger’s equation with an effective HamiltonianH1K, and is
then normalized att1dt:

uc~ t1dt !&5
uw~ t1dt !&
iw~ t1dt !i ,

~4!
uw~ t1dt !&5e2 idt(H1K)uc~ t !&.

K can be computed in special cases by first determining perturbatively the wave function
total systemS1R and then projecting it onto the subspace corresponding to the no-
measurement.4,9 An easier~though less fundamental! way to computeK is to ask directly that the
averageMuc(t)&^c(t)u satisfies the master equation~1! ~see the following!. This gives4

K5K0[
1

2i (m Lm
† Lm . ~5!

Note thatK0 is not self-adjoint. Hence the norm of the wave function is not conserved by
evolution operatore2 idt(H1K0). This can be interpreted by invoking the gain of information on
system provided by the measurement, namely, by the knowledge that no jump occurred bet
andt1dt. For instance, in the case of an atom coupled to the quantized electromagnetic fie
may infer from a no-photon detection that the atom has not emitted spontaneously a photo

Since the wave function is normalized at each stepdt in ~2! and~4!, the random dynamics is
norm-preserving on the time resolutiondt. These normalizations make the stochastic quan
evolution nonlinear. We will see in Sec. V that it is possible to define an equivalent linear m
in which the random wave function is not normalized.18,14The maptP@0,̀ @°uc(t)& for a given
outcome of the jumps is called aquantum trajectory.5

Let us consider the average density matrixr(t)5Muc(t)&^c(t)u, whereM is the average ove
all realizations of the jumps. It can be easily shown4 that r(t) obeys the master equation~1! to
lowest order iniLmi2dt. Actually, takingH50 for simplicity, one has
 02 Oct 2006 to 152.77.18.70. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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r~ t1dt !5Mt1dtuc~ t1dt !&^c~ t1dt !u

5MtS S 12(
m

dpm~ t ! D e2 idtK0uc~ t !&^c~ t !ueidtK0
†

ie2 idtK0uc~ t !&i2 1(
m

dpm~ t !
Lmuc~ t !^c~ t !uLm

†

iLmuc~ t !&i2 D .

This equation is simplified by taking

e2 idtK05S 12dt(
m

Lm
† LmD 1/2

. ~6!

Then, by~3!:

r~ t1dt !5S 12dt(
m

Lm
† LmD 1/2

r~ t !S 12dt(
m

Lm
† LmD 1/2

1dt(
m

Lmr~ t !Lm
† . ~7!

Expanding the square roots and keeping only terms of order one indt, one obtains~1! andK0 is
given by ~5!. Note that, for an arbitrary time intervaldt between consecutive measuremen
r(t1dt) is not given by integrating~1! from t to t1dt ~a different result is already obtained at th
next orderdt2!. This should be kept in mind when dealing with real or numerical experime
wheredt is always finite.

Consider a transformationLm→Lm8 on the operatorsLm which does not change~1!. The
quantum jumps and the effective HamiltonianK may be modified by this replacement. This lea
to a different stochastic dynamics, which unravels the same master equation. A particular
formation leaving~1! invariant is26

Lm→Lm8 5Lm1lm , H→H85H1
1

2i (m ~lm* Lm2lmLm
† !5H8†, ~8!

wherelm’s are complex numbers. This invariance of the Lindblad equation is not related
particular symmetry of the system or its coupling with the reservoir. It simply expresses th
separation between the Hamiltonian part2 i @H,r# and the remaining dissipative part in~1! is not
unique. The transformation~8! generates a whole family of distinct QJ models depending on
set of numberslm . The modification of the wave function at a jumpm is now given by

jump m: uc&→
Wmuc&

iWmuc&i ~9!

with the jump operatorsWm proportional to (Lm1lm):

Wm5gm
21/2~Lm1lm!. ~10!

The new generalized HamiltonianH1K is obtained by replacingLm by Lm8 in ~5! and adding to
it H82H:

K5
1

2i (m ~Lm
† Lm12lm* Lm1ulmu2!. ~11!

The last term in the sum, proportional to the identity operator, is written only for convenien
is irrelevant because of the normalization in Eq.~4! giving the evolution between jumps. Th
probability of occurrence of a jump of typem becomes

dpm~ t !5i~Lm1lm!uc~ t !&i2dt5gmdt iWmuc~ t !&i2. ~12!

Note that it increases likeulmu2 for largelm .
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III. FIELD MODE IN A CAVITY

It is shown in this section that the QJ schemes described in Sec. II can be physically re
by an atomic beam crossing a cavity with perfectly reflecting walls and interacting with
quantum field inside, which forms the systemS. The measurements are performed on the outgo
atoms, after they have interacted with a classical laser fieldE placed between the cavity and th
measuring apparatus.

A. Experimental scheme

Let us consider one mode of the quantized electromagnetic field of a lossless cavity co
to its environment. The environment is a beam of atoms prepared in one of two Rydberg staug&
~‘‘ground state’’! and ue& ~‘‘excited state’’! in resonance with the frequencyv of the mode. The
fluxes r g and r e of atoms crossing the cavity, prepared, respectively, in statesug& and ue&, are
assumed to be such that at most one atom is in the cavity at any time. The time interval be
the crossing of two consecutive atoms in the cavity isdt5(r g1r e)

21. To simplify, all the atoms
of the beam are supposed to have the same speed. They thus spend the same timet,dt in the
cavity, interacting with the field mode. The atom-mode interaction Hamiltonian is in the inte
tion picture~rotating-wave approximation!:1,2

H int52 i ~l* ug&^eu a†2lue&^gu a!, ~13!

wherea† anda are the creation and annihilation operators of a photon. The coupling constl

is equal toAq2v/2«0V dW ge"sW , where dW ge is the matrix element of the atomic dipole,sW the
polarization vector of the field mode,q the charge of the electron, andV the volume of the cavity.

At the exit of the cavity, the atoms enter into a second cavity, identical to the first
containing a classical laser fieldEW ~Fig. 1!. They spend a timetL,dt there, interacting with the
laser field. Under the dipolar and rotating-wave approximations, the atom-laser interaction H
tonian is in the interaction picture:1,2

HL52
i

2
~V* ug&^eu 2Vue&^gu!, ~14!

whereV5 i dW ge"EW is the Rabi frequency. The Hamiltonian~14! describes the atom-laser interactio
for a laser field in resonance with the atomic transition. The more general situation of no
detuning of the laser frequency will be discussed in the following.

Finally, the state of each atom at the exit of the second cavity is measured by a detector,
us if it is in its ‘‘ground’’ or in its ‘‘excited’’ state. The corresponding experimental scheme
presented in Fig. 1. It has been considered in Ref. 27 without the laser fieldE. The flight times of
the atoms between the two cavities and between the second cavity and the detector ar
sufficiently small so that spontaneous emission of photons by the atoms can be neglected

FIG. 1. The two-level atoms of the beam cross one by one a cavity containing the studied quantum fielda, a second cavity
containing a laser fieldE, and a detector measuring their states.
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B. Stochastic dynamics of the field mode

Let us compute the evolution of the state of the field mode in the first cavity, for a given r
of the measurements. If one looks at it with a time resolution equal or bigger than the timdt
separating the entrance of consecutive atoms, the field mode is continuously monitored
measurements on the atoms~continuous measurement!. The coupling constantl, the Rabi fre-
quencyV, and the interaction timest, tL are assumed to satisfy

ulut!1, uVutL!1. ~15!

Let us first determine the change of the wave functionuc(t)& of the field mode when one
atom, initially in stateu i &, i 5g or e, crosses the two cavities and the detector. At the timet just
prior to the entrance of the atom in the first cavity, the wave functionuC(t)& of the total system
‘‘atom1field mode’’ is a tensor product stateuC(t)&5u i &uc(t)& ~the atom and the field did not ye
interact!. Since the two fields are in separated cavities, the atom interacts with the quantum
beforeinteracting with the classical fieldE. The total wave function at the exit of the second cav
~before the measurement! is thus, in the interaction picture,

uCent&5e2 i tLHL e2 i tH intu i &uc~ t !&. ~16!

Note that the evolution would be different if the laser field was placed in the first cavity~in this
case, the product of exponentials must be replaced by the exponential ofH int1HL). Because of
their interaction, the quantum field and the atom are now entangled, i.e.,uCent& is not a product
state. After the measurement on the atom has been performed, the field and the atom again
disentangled and the wave function of the total system is

uC~ t1dt !&5u j &uc~ t1dt !&, uc~ t1dt !&5
^ j uCent&

i^ j uCent&i , ~17!

with j 5g if the atom is detected in its ground state andj 5e if it is detected in its excited state
We have assumed for simplicity that the measurement is performed at a timet1tmes,t1dt
earlier than the entrance of the next atom in the first cavity. Since we work in the intera
picture,uC(t1tmes)& is then equal touC(t1dt)&. The wave functionuc(t1dt)& of the mode at
the timet1dt is thus well-defined and given by

uc~ t1dt !&5
uw~ t1dt !&
iw~ t1dt !i ,

~18!
uw~ t1dt !&5^ j ue2 i tLHLe2 i tH intu i &uc~ t !&.

The probability that the atom is detected in stateu j &, given that it enters in the cavity in stateu i &,
is

pi→ j5i^ j uCent&i25iw~ t1dt !i2. ~19!

A straightforward computation leads to

e2 i tH int5 (
p50

`
~2ulu2t2!p

~2p!!
~ ug&^gu np1ue&^eu ~n11!p!

1 (
p50

`
~2ulu2t2!p

~2p11!!
~ltue&^gu a np2l* tug&^eu np a†!,

where n5a†a is the number operator. Denoting byn1/2 its square root, this formula can b
rewritten in a more compact form:
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e2 i tH int5ug&^gu cos~ ulutn1/2!1ue&^eu cos~ ulut~n11!1/2!

1ltue&^gu a sinc~ ulutn1/2!2l* tug&^eu sinc~ ulutn1/2! a† ~20!

with sinc(u)5(sinu)/u. Similarly,

e2 i tHL5cosS uVutL

2 D1
VtL

2
ue&^gu sincS uVutL

2 D2
V* tL

2
ug&^eu sincS uVutL

2 D .

Let us introduce the operator

ã5a sinc~ ulutn1/2! ~21!

and the complex numbers

h5lt, e5
V tan~ uVutL/2!

uVult
. ~22!

Four cases must be considered.
~1! The atom enters the first cavity in its ground state and is detected in the same

i 5 j 5g. Then,

uw~ t1dt !&5~11uheu2!2 1/2~cos~ uhun1/2!2uhu2e* ã!uc~ t !&[~12 idt Kg!uc~ t !&. ~23!

~2! The atom enters the first cavity in its ground state and is detected in its excited
i 5g, j 5e. Then,

uw~ t1dt !&5h ~11uheu2!2 1/2W2uc~ t !&, W2[ã1e cos~ uhun1/2!. ~24!

~3! The atom enters the first cavity in its excited state and is detected in its ground
i 5e, j 5g. Then,

uw~ t1dt !&52h* ~11uheu2!2 1/2W1uc~ t !&, W1[ã†1e* cos~ uhu~n11!1/2!. ~25!

~4! The atom enters the first cavity in its excited state and is detected in the same
i 5 j 5e. Then,

uw~ t1dt !&5~11uheu2!2 1/2~cos~ uhu~n11!1/2!2uhu2e ã†!uc~ t !&[~12 idt Ke!uc~ t !&.
~26!

Cases~2! and~3! correspond, respectively, to the absorption and the emission of a phot
the cavity mode or of the laser field by the atom. In order to have quantum jumps separa
‘‘continuous’’ Hamiltonian evolutions on time scales bigger thandt, the probabilities of these
events must be very small. The probabilitydp2(t) of case~2! is equal topg→e multiplied by the
probability r g dt that the atom enters in the first cavity in stateug&. With the help of~19! and~24!,
one gets

dp2~ t !5
r g dt uhu2

11uheu2 iW2uc~ t !&i25r g dt~ i sin~ uhun1/2!uc~ t !&i21O~he!). ~27!

The probabilitydp1(t) of case~3! is given by a similar formula, replacingr g by r e , W2 by W1 ,
andn by n11. The probabilities of cases~1! and ~4! are, respectively,r g dt2dp2(t) and r e dt
2dp1(t). We see thatdp6(t) is small if uhu5ulut!1 anduheu.uVutL/2!1, provided that also

^c~ t !u~ uhun1/22kp!2quc~ t !&5O~hq!, q51,2,. . . , ~28!
 02 Oct 2006 to 152.77.18.70. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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with k a non-negative integer. This condition is met fork50 if the maximal number of photons in
the cavity is much smaller thanuhu22 ~of order uhu21 or smaller!. This corresponds to the
perturbative regime. If the condition is met fork>1, the atom makes almostk/2 Rabi oscillations
in the cavity and leaves it, with a high probability, nearly in the same state as it entered it. In
neglecting terms of orderh2 andh4e4, it follows from ~22!, ~23!, and~26!:

dtKg.
uhu2

2i
~ ã†ã12~21!ke* ã1ueu2!,

~29!

dtKe.
uhu2

2i
~ ã ã†12~21!ke ã†1ueu2!,

up to an irrelevant additional phasekp. When the atom is measured in the same state as its in
state@cases~1! and~4!#, the normalized wave function of the mode is thus modified, up to a s
by an amount of orderuhu1uh3/2eu. In the opposite cases~2! and~3!, the mode wave function is
modified by an amount of order 1. It suffers a quantum jump:

uc~ t1dt !&5
W6uc~ t !&

iW6uc~ t !&i , ~30!

with the jump operators

W2.ã1~21!ke,
~31!

W1.ã†1~21!ke* .

The signs2 and1 correspond to case~2! ~absorption of a photon! and case~3! ~emission of a
photon!, respectively. The probability that a jump6 occurs is of orderuhu1uh3/2eu1uheu2, see
~27! and ~28!. It is given approximately by

dp6~ t !.g6dtiW6uc~ t !&i2, ~32!

where we have introduced the damping rates:

g25r guhu25r gulu2t2,
~33!

g15r euhu25r eulu2t2.

The operatorã is given, up to terms of orderh1/2, by

ã.H a if k50

~21!k aS uhun1/22kp

kp
2

~ uhun1/22kp!2

~kp!2 D if k>1.
~34!

If uc(t)&5un& is a Fock state withn5(kp/uhu)2 photons, the crossing of the atom of initial sta
u i & has no effect on the field ifi 5g ~sinceãuc(t)&50), and a small effect ifi 5e and uhu!1.

If condition ~28! is not met, the atom strongly modifies the state of the field mode in all c
~1!–~4!. Hence there is no ‘‘continuous-like’’ Hamiltonian evolution changing weakly the stat
the mode, separated by unlikely jumps. Fore50, the evolutions fori 5g @Eq. ~23!# andi 5e @Eq.
~26!# have the form~6! ~the jump operatorsW6 are proportional toã† and ã, respectively, and
cos2(uhun1/2)512uhu2ã†ã, cos2(uhu(n11)1/2)512uhu2ãã†). Although there isa priori no concep-
tual difficulty in treating this case, the corresponding dynamics becomes cumbersome when
atoms cross the cavities. We thus restrict ourself in what follows to the simpler situation in w
conditions~15! and ~28! are fulfilled.
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Let us determine the change of the wave function of the field mode when many atoms
the cavities. LetDt be such that the numberDt/dt of atoms crossing the cavities in a time interv
@ t,t1Dt# is large but much smaller than the inverse of the coupling strengthuhu:

1!
Dt

dt
!uhu21,uh3/2eu21,uheu22. ~35!

Assuming thatr g andr e are of the same order of magnitude, the numbers of atoms entering i
first cavity in stateug& andue& betweent andt1Dt are large and approximately equal tor gDt and
r eDt, respectively. Since the probabilitiesdp6(t) of occurrence of jumps when one atom cross
the cavities are assumed to be as small asuhu1uh3/2eu1uheu2, the probability of occurrence o
two or more jumps betweent and t1Dt is negligible. Suppose first that no jump occur betwe
these two times, i.e., that only cases~1! and ~4! occur for all atoms. Then,

uw~ t1Dt !&5¯~12 idtKg!¯~12 idtKe!¯~12 idtKg!¯uc~ t !&. ~36!

There arer gDt factors (12 idtKg) andr eDt factors (12 idtKe). Let us expand the products an
neglect terms of order (Dt/dt)2uh (41m)/2emu, m50, . . . ,4,which are small by~35!. We find:

uc~ t1Dt !&5
uw~ t1Dt !&
iw~ t1Dt !i ,

~37!
uw~ t1Dt !&.~12 iDtK !uc~ t !&,

with K5r gdtKg1r edtKe . Note that the changeuw(t1Dt)&2uw(t)& is proportional toDt. The
effective HamiltonianK is the average of the operatorsKi , which describe the evolution of th
quantum field as onegivenatom crosses the cavities without absorbing or emitting a photon,
its ~unknown! initial stateu i & ~i 5g with probability r gdt, and i 5e with probability r edt!. This
averaging is related to our assumption that many atoms cross the cavities betweent andt1Dt; it
is an average over the initial states of the atoms, and must be distinguished from the avera
the results of the measurements. Equation~29! gives

K5
1

2i
~g2~ ã†ã12~21!ke* ã1ueu2!1g1~ ãã†12~21!keã†1ueu2!!. ~38!

If a jump 6 occurs betweent and t1Dt, the change of the wave function is approximately

uc~ t1Dt !&5
W6uc~ t !&

iW6uc~ t !&i . ~39!

Actually, the change due to atoms crossing the cavities without modifying their states@cases~1!
and~4!# betweent and t1Dt is of order (Dt/dt)(uhu1uh3/2eu). It can be neglected with respec
to the change due to an atom having emitted or absorbed a photon, of order 1. Similar
probability Dp6(t) of occurrence of a jump6 in the time interval@ t,t1Dt# is obtained by
replacingdt by Dt in ~32!.

The above coarse-grained stochastic dynamics coincides forg15r e50 with that considered
by Wiseman and Milburn8 for a damped mode monitored by homodyne detection. In the Sc¨-
dinger picture, the mode wave functionucS(t1Dt)& is given by~39!, in which W6 is replaced by
W6

S (t)5e2 i tHW6eitH , if a jump 6 occurs betweent andt1Dt. In the opposite~and much more
probable! case, it is given by~37!, with K replaced byH1KS(t), KS(t)5e2 i tHKeitH . HereH
5v(a†a11/2) is the free Hamiltonian of the field mode, and we have assumedvDt!1. The
jump operators in the Schro¨dinger picture are, up to irrelevant phase factors,W2

S (t)5ã
1(21)kee2 ivt andW1

S (t)5ã†1(21)ke* eivt. Like the HamiltonianH int , W6 depends on time
in the Schro¨dinger picture and is time-independent in the interaction picture. The dynamics i
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Schrödinger picture is the same as in the interaction picture provided thate is replaced by an
oscillating field e(t)5ee2 ivt. This is also true for the dynamics between jumps,KS(t) being
obtained from~38! by the same rule.

For e50, the random evolution ofucS(t)& coincides with the random evolution in the mod
of Dalibard et al.,4 in agreement with the results of Ref. 27. ForeÞ0, it coincides with the QJ
evolution of Sec. II with the two Lindblad operatorsL25Ag2ã andL15Ag1ã†, and withl2

5Ag2(21)kee2 ivt, l15Ag1(21)ke* eivt.
All the results of this section are actually valid for an arbitrary HamiltonianHL—describing

the interaction of the two-level atoms with an arbitrary external field placed between
first cavity and the detector—such thatiHLitL!1. In fact, if we define e
5^eue2 i tLHLug&/lt^eue2 i tLHLue&, the only change in the calculation is the replacement of
prefactor (12uheu2)21/2 by ^gue2 i tLHLug& in ~23! and~25! and by^eue2 i tLHLue& in ~24! and~26!.
In particular, the stochastic dynamics is not modified if the laser frequency is detuned fro
atomic frequency byd5vL2v, with udutL!1. This is becausee is independent ofd in leading
order iniHLitL , i.e., the interaction timetL is too short for the atoms to feel the frequency sh
from the atomic transition.

C. Average dynamics of the field mode

In order to relate the random wave function dynamics with the familiar density matrix
proach, let us compute the master equation satisfied by the field mode density matrix:

r~ t !5Muc~ t !&^c~ t !u, ~40!

whereM denotes the mean value over the results of the measurements on the atoms~i.e., over all
quantum trajectories!.

As is well known, averaging the projectoruc(t)&^c(t)u over all results of the measuremen
is the same as not performing any measurement. One may therefore equivalently determ
differential equation for the reduced density matrixr̃(t) of the photon mode, in the same expe
mental scheme as in Fig. 1 butwithout the detector. The reduced density matrixr̃(t) is defined
as the partial trace over the atomic Hilbert spaces of the density matrixs(t) of the total system
‘‘atoms1field mode’’ ~see Sec. II!:

r̃~ t !5tr
A
~s~ t !!. ~41!

In order to justify the above-mentioned statement, let us show that the changes ofr(t) and
r̃(t) when one atom crosses the cavities are the same. The atom arrives in the first cavity
u i &, i 5g or i 5e. Before it enters in the cavity, the total density matrixs(t) is a tensor product
u i &^ i u ^ r̃(t). We assume thatr̃(t)5r(t)5Muc(t)&^c(t)u. It follows from the second equality in
~17!, from ~19!, and from the fact that the measurements on the atoms are independent:

r~ t1dt !5Mt1dtuc~ t1dt !&^c~ t1dt !u5tr
A
~MtuCent&^Centu!, ~42!

whereuCent& is given by~16!. Thus,

r~ t1dt !5tr
A
~e2 i tLHLe2 i tH intu i &^ i ur~ t !ei tH intei tLHL!5 r̃~ t1dt !5tr

A
~e2 i tH ints~ t !ei tH int!. ~43!

Hence the changes ofr(t) and r̃(t) are identical as one atom crosses the cavities. The
exponentials ofHL in ~43! disappear by cyclicity of the trace, showing thatr̃(t1dt)5r(t1dt)
does not depend on the laser fieldE. This last point is actually clear, since if no measurement
the atoms is performed, their interaction with the laser field in the second cavity has no eff
the field in the first cavity.
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Since they have the same time evolution, we identify in what followsr(t) and r̃(t) and
compute the master equation for the usual density matrix~41!. Two cases must be distinguishe

~1! The atom enters in the first cavity in its ground state:i 5g. By replacing~20! into ~43!,

r~ t1dt !5~12uhu2ã†ã!1/2r~ t !~12uhu2ã†ã!1/21uhu2ãr~ t !ã†[~11dtLg!r~ t !, ~44!

whereã is given by~21!.
~2! The atom enters in the first cavity in its excited state:i 5e. Then,

r~ t1dt !5~12uhu2ãã†!1/2r~ t !~12uhu2ãã†!1/21uhu2ã†r~ t !ã[~11dtLe!r~ t !. ~45!

For a given initial state of the atom, the evolution in~44! and~45! has the general form~7!. Under
the conditions~15! and ~28!, one has

dtLg~r!.uhu2~ ãrã†2 1
2 $ã†ã,r%!,

~46!
dtLe~r!.uhu2~ ã†rã2 1

2 $ãã†,r%!,

where the curly brackets denote the anticommutator$A,B%5AB1BA.
Let us determine the coarse-grained evolution ofr(t) on the time scaleDt satisfying~35!. By

the same arguments as in Sec. III B,

r~ t1Dt !5¯~11dtLg!¯~11dtLe!¯~11dtLg!¯r~ t !,

with r gDt factors (11dtLg) andr eDt factors (11dtLe). One can retain only the terms of orde
one inDt in the expansion of the product:

r~ t1Dt !.$11Dt~r gdtLg1r edtLe!%r~ t !. ~47!

The superoperator inside the parentheses is the average of the superoperatorLi over the initial
atomic statesu i &, i 5e or g. Writing Dr/Dt5dr/dt, the coarse-grained master equation in
interaction picture is therefore

dr

dt
5g2~ ãr~ t !ã†2 1

2 $ã†ã,r~ t !%!1g1~ ã†r~ t !ã2 1
2 $ãã†,r~ t !%!. ~48!

Not surprisingly, this is the equation of the damped harmonic oscillator with finite temperatuT.
HereT is the temperature of the atomic beam:

expS 2
v

kBTD5
r e

r g
5

g1

g2
, ~49!

wherekB is the Boltzmann constant. Equation~48! has the general form~1!, with two Lindblad
operatorsL25Ag2ã andL15Ag1ã†. Recall thatã coincides with the usual annihilation oper
tor a only if k50 ~perturbative regime!.

In conclusion, ifulut!1 and condition~28! holds, i.e., if each atom modifies weakly the sta
of the field, the average density matrix~40! satisfies the master equation~48!. Although the
quantum trajectories of the mode depend onE, the corresponding master equation is the same
all laser fields, in accordance with the general results of Sec. II.

IV. SINGLE QUANTUM TRAJECTORIES OF THE FIELD MODE

We focus in this section on single quantum trajectories of the field mode, correspond
specific realizations of the measurements. The main question addressed in the following co
the localization properties of the random dynamics at large times, for different laser fieldsE. In the
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caseE50, i.e, for the ‘‘standard’’ Monte Carlo wave function dynamics, it has been shown in
27 that the field wave function evolves at large times toward Fock statesun(t)& @with a time
fluctuating number of photonsn(t)#. Note that it is straightforward to prove that Fock states fo
an invariant family of states under the stochastic dynamics. In fact, ife50, the jump operators
W6 transformun& into un61& ~up to multiplicative constants!, and un& is an eigenvector ofH
1K05v(n11/2)2 i (g2sin2(uhun1/2)1g1sin2(uhu(n11)1/2))/(2uhu2). The localization property is
much more difficult to prove. For nonzero laser fields, Fock states do no longer form an inv
family and the localization is of different nature. In the case of zero temperature (g150), it has
been shown in Ref. 8 that the field mode has a diffusive dynamics in the limite→`, given by a
stochastic Schro¨dinger equation with real Wiener processes; we will prove in Sec. V that
remains true at any temperature. Such kind of dynamics has been widely studied
literature.11,12,15,26,28It is expected that localization occurs toward coherent or squeezed sta
the Lindblad operators are linear combinations ofa anda†. However, this has only been prove
in the caseL}(a1a†) as far as we are aware.28 Here we present numerical results indicating th
for T.0 and large enoughe, the mode wave functionuc(t)& evolves toward squeezed states af
some timeDt of the order of the thermalization time in the absence of measurements. At
times, the squeezing amplituder (t) of the squeezed states is found to fluctuate slightly aroun
mean valuer̄ , and the squeezing anglef(t) evolves linearly in time,f(t)5f02vt. Interest-
ingly, r̄ and f0 are independent of the realization and of the initial state, being, respect
functions of the temperatureT and the laser fieldE only. By lettinge→`, writing the correspond-
ing quantum state diffusion equation~which is derived in the general case in Sec. V!, and using a
result due to Rigo and Gisin,26 we obtain in Sec. IV B analytic expressions forr̄ andf0 in good
agreement with the numerical simulations.

A. Numerical results

Let us first look at the HusimiQ-function for the mode wave function in the interactio
picture,

FIG. 2. Q(a,t)11 for e50 andg1 /g253/4, at four different times:g2t50 ~top left!, g2t55 ~top right!, g2t520
~bottom left!, andg2t560 ~bottom right!.
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Q~a,t !5
1

p
u^auc~ t !&u2, aPC.

The simulations of single quantum trajectories fore50 and e550 give the results plotted in
Figs. 2 and 3, respectively. Recall that for Fock statesuc&5un&, Q(a) is equal to
uau2n exp(2uau2)/pn!, and for squeezed statesuc&5ua0 ,j& with jPR, uju5r ,

Q~a!5
1

p cosh~r !
expS 2

2R~a2a0!2

11e22r 2
2I~a2a0!2

11e2r D
~see Ref. 29!. This asymmetric paraboloid becomes symmetric for a coherent stateuc&5ua0&,
which corresponds tor 50 in the above-mentioned formula. It is seen in Fig. 2 that in the c
e50, the initial coherent stateua5212i & is transformed into states which are close to Fock sta
at timest3520/g2 (nÞ0) andt4560/g2 (n50). This is in agreement with the results of Re
27. On the other hand, fore550, Fig. 3 shows that the same initial coherent state is transfor
into states which are close to squeezed statesua,reif&. The squeezed states att3

and t4 have approximately the same squeezing parametersr and f50, but they have different
centersa.

In order to study more precisely the localization toward squeezed states at large values oe, let
us follow the time evolution of the mean square deviations for a given quantum traje
t°uc(t)&:

Dxf
2 ~ t !5^cS~ t !uXf

2 ucS~ t !&2^cS~ t !uXfucS~ t !&2,
~50!

Dyf
2 ~ t !5^cS~ t !uYf

2 ucS~ t !&2^cS~ t !uYfucS~ t !&2.

Xf andYf are the usual field quadrature operators rotated by an anglef:

FIG. 3. Q(a,t)11 for e550 andg1 /g253/4, at the same times as in Fig. 2.
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Xf5
ae2 if1a†eif

2
, Yf5Xf1p/25

ae2 if2a†eif

2i
. ~51!

We denote byfmin(t) the angle for whichDxf
2 (t) is minimum. The minimum mean squar

deviationDxfmin(t)
2 (t) is denoted byDx2(t) and, similarly,Dyfmin(t)

2 (t) is denoted byDy2(t). Ob-

viously, Dx2(t) and Dy2(t) remain unchanged if the wave functionucS(t)& in the Schro¨dinger
picture is replaced in~50! by the wave functionuc(t)& in the interaction picture. This replaceme
leads to an increase offmin(t) by vt.

The time evolutions ofDx2(t) and Dx2(t)Dy2(t) are shown in Figs. 4 and 5, for differen
quantum trajectories starting from the same coherent stateuc(0)&5ua&. Note that the time scale
is of order of the thermalization time of the density matrixr(t). Figure 4 corresponds toe520
and Fig. 5 toe5100. One sees in both Figs. 4 and 5 thatDx2(t) begins to fluctuate around a mea

FIG. 4. Dx2(t) ~solid, dashed, and dotted lines! andDx2(t)Dy2(t) @~1!, ~L!, and~,!# vs g2t for three different quantum
trajectories with initial coherent state. The values of the parameters aree520 andg1 /g253/4. The dotted line and the
triangles correspond to the exact dynamics using the nonperturbative formulas~23!–~26! for Kg , W6 , and Ke , with
ulut50.9331022.

FIG. 5. Same as in Fig. 4 but withe5100~the nonperturbative results are not shown but look similar!. In the upper square,
Dx2(t) andDx2(t)Dy2(t) are shown on a finer time scale, on which discontinuous quantum jumps can be seen sep
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valueDx2 after some transient timeDt.10/g2 . The comparison of the numerical results for t
different trajectories shows thatDx2 does not depend upon the specific realization. The fluc
tions are considerably reduced in the casee5100 ~Fig. 5! with respect to the casee520 ~Fig. 4!.
Moreover, in the former case, the productDx2(t)Dy2(t) is much closer to the minimum valu
1/16 allowed by the Heisenberg uncertainty principle. The variation ofDx2 andDx2Dy2 with e for
fixed temperatureT.0.288v/kB is presented in Fig. 6. One observes thatDx2 is almost constant
for 50<e<100. Furthermore, the time average ofDx2(t)Dy2(t) goes closer and closer to 1/16 a
e increases. The result presented in the inset shows moreover thatDx2 andDx2Dy2 are indepen-
dent of arg(e), up to small fluctuations.

Most numerical simulations were done using the approximations~31! and ~38! for the jump
operatorsW6 and forK, together withã5a. This is justified if the maximum number of photon
nmax is small with respect touhu225ulu22t22, and uhu225ulu22t22, and nmax

3/2 !uhu24ueu21,
nmax

3/2 !uhu22ueu ~see Sec. III B!. Since we worked in the Fock states basis,nmax was bounded by
the dimension of the Hilbert space~which was taken between 75 and 150!. One may be worried,
however, that, despite the smallness of the error made at each time stepdt, the error made after
many steps might be large and could invalidate our results in the long time limit. We checke
this is actually not the case by integrating numerically the exact dynamics, using formulas~23!–
~26! for the evolution on each time stepdt, and the exact possibilities of occurrence of the fo
cases. The curve in the dotted line and the triangles in Fig. 4 are the values ofDx2(t) and
Dx2(t)Dy2(t) obtained from a simulation of this nonperturbative dynamics. This means usin
exact formulas~23!–~26! for the evolution on each time stepdt, and the exact probabilities o
occurrence of the four cases. The total number of atoms crossing the cavity in the whol
interval is 23106, anduhu5A(g21g1)dt.0.0093. The exact results show very similar fluctu
tions, around the same valuesDx2 and Dx2Dy2, as the two trajectories obtained using the p
turbative scheme. No systematic deviation increasing with time is seen. This result, togethe
other simulations for different values ofe andh,31 shows errors in the considered time range. N
however that if uhu is too large~for values in the range 0.06–0.09 or larger in Fig. 4, a
0.02–0.04 or larger in Fig. 5!, large time fluctuations ofDx2(t) andDx2(t)Dy2(t) are observed
and therefore the localization is of different nature.

In all our simulations, we found thatDx2 andDx2Dy2 are insensitive to the initial stateuc~0!&
of the field mode. This is illustrated in Fig. 7 fore520 ande520110i ~similar results are

FIG. 6. Time averagesDx2 ~plain line! andDx2Dy2 ~L! for different values ofRe ~shown in the horizontal axis! and
Ie50. Inset: same for different values of arge ~shown in degrees in the horizontal axis! and fixed modulusueu550. The
time average is taken on the interval@10/g2,100/g2# andg1 /g253/4.
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obtained fore5100!. On the right-hand side of the Fig. 7, it is seen thatDx2(t) differs noticeably
at smallt ’s if uc~0!& is a coherent state@cases~1! and~2!# and if it is a Fock state@case~3!; the first
small time values are outside the range of the figure:Dx2(0)52.75#. However, the three curve
are hard to distinguish forg2t*10. In the two trajectories shown on the left-hand side, the
distinct initial states are chosen by picking randomly the 20 first components^nuc(0)& in the Fock
states basis~the realization of the measurements is also different in the two cases!. For times
bigger than 10/g2 , one observes thatDx2(t) fluctuates around the same value for both trajec
ries.

For the quantum trajectories studied in Figs. 3–5, the anglefmin(t)1vt is found to be zero at
timest>Dt. Nonvanishing angles are obtained if one considers non reale’s. The time dependence
of fmin(t)1vt for e520110i is presented in Fig. 8 for different initial states. It is seen tha
evolves toward a constant valuef0 which neither depends onuc~0!& nor on the ratiog1 /g2 . As
shown in the inset, we obtainf05arg(e).

FIG. 7. Dx2(t) ~lines! andDx2(t)Dy2(t) @~1!, ~L!, and ~s!# vs g2t for trajectories with different initial statesuc~0!&.
Left-hand side: in the two shown trajectories,^nuc(0)& is chosen randomly for 0<n<20 and vanishes forn.20; uc~0!&
and the realization of the measurements are different in each trajectory;e520110i andg1 /g251/2. Right-hand side:~1!
uc~0&5ua& with a5A3/2(11 i ) @plain line, (s);# ~2! id. with a52115i @dashed line,~1!;# ~3! uc(0)&5un55& @dotted
line, ~L!#; in all cases,e520 andg1 /g253/4. The dotted line on the left-hand side and dot-dashed line on the right-
side correspond to the theoretical result~64! for e→`.

FIG. 8. Anglefmin(t)1vt ~in degrees! vs g2t for e520110i and different initial states and temperatures:~1! uc~0!&5ua&
with a5222i ; g1 /g251/4 ~n!; ~2! uc(0)&5(212e29)21/2 ~ua&1ub&! with a523i andb53; g1 /g253/4 ~d!; ~3!
uc(0)&5un& with n510; g1 /g253/4 ~1!; ~4! uc~0!& is chosen randomly as in Fig. 7;g1 /g251/2 ~dashed line!. Inset:
time average off0(t)5fmin(t)1vt as function of arge ~both in degrees! for ueu550 andg1 /g253/4 ~time average as in

Fig. 6!. The result is well fitted by the broken linesf̄05arg(e) mod. 180.
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Bringing together the above-mentioned results, we are led to the following conclusions
large ueu and smalluhu smaller than.0.01, the wave functionucS(t)& of the field mode evolves
whatever its initial stateucS(0)&, to some almost minimum uncertainty states~MUS! at timest
>Dt, whereDt is a transient time. Moreover, ifT.0,

Dx2~ t !.Dx2,1/4, fmin~ t !.f02vt ~52!

at large times where bothDx2 andf05arg(e) are independent ofucS(0)& and of the realization of
the measurements. Therefore, providedueu is big enough anduhu small enough, the state of the fiel
mode at timest>Dt is close to a squeezed state:

ucS~ t !&.ua~ t !,j~ t !&. ~53!

The squeezing amplituder (t)5uj(t)u fluctuates slightly around a time-independent va
r .2 ln(4Dx2)/2 and arg(j(t)).2(f02vt). The centera(t) of the squeezed state moves around
the complex plane. Actually, by ergodicity, the time average ofucS(t)&^cS(t)u must coincide with
the equilibrium density matrixr (eq)5Z21 exp(2v(a†a11/2)/kBT). To check ergodicity, we have
computed numerically the time average ofu^nuc(t)&u2 on the interval@0,100/g2# for a single
quantum trajectory. It is indeed seen in Fig. 9 that it reproduces well the Bose–Einstein exp
tial distributionrnn

~eq!.

B. Analytical results

The above-given numerical results suggest that the dynamics has the localization pr
toward squeezed states in the limit of large laser fieldsueu→`. In particular, the squeezed stat
should form an invariant family of states under the stochastic dynamics in this limit. The se
statement can be shown analytically as follows. We restrict our analysis here to the pertu
regime whereuhu!1, uheu!1 and~28! holds withk50, so thatã.a. As said previously, one can
describe the mode’s dynamics in the limitueu→`, uhu→0, uheu→0 by a stochastic Schro¨dinger
equation with real Wiener processes~quantum state diffusion!. This is because the probability o
occurrence of jumps grows likeueu2 ~for instance, in Figs. 4 and 5, the total number of jumps
the whole time interval@0,100/g2# is close to 73104 and 1.753106, respectively!. On the other
hand, as is clear from~31! and~39!, the change of the wave function during a jump is of order 1e.
Hence there are infinitely many jumps with an infinitesimal impact on the wave function in

FIG. 9. Time average of the probabilityu^nuc(t)&u2 to find n photons fore550, g1 /g253/4 ~1!. The average is taken
over 5000 discrete times in the interval@0,100/g2#. The solid line corresponds to the Bose–Einstein distribution.
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limit ueu→`. On a time scale much bigger than the inverse frequencies of jumps@but small enough
so that uc(t)& does not change much on such a time scale#, uc(t)& satisfies the following Itoˆ
stochastic differential equation in the limite→`, arge5u:

udc&5FAg2~e2 iua2R^e2 iua& t!dw2~ t !1Ag1~eiua†2R^eiua†& t!dw1~ t !

1R^eiua†& tS g2e2 iua1g1eiua†2
g21g1

2
R^eiua†& tDdt2 iK 0 dt G uc~ t !&. ~54!

The notation is as follows:K05(g2a†a1g1aa†)/2i , ^O& t5^c(t)uOuc(t)& is the quantum ex-
pectation at timet and dw6(t) are the stochastic infinitesimal increments of two independent
Wiener processes, which have zero mean and satisfy the Itoˆ rules:30

dw6~ t !dw6~ t !5dt, dw2~ t !dw1~ t !50, dw6~ t !dt50. ~55!

Equation~54! will be derived in Sec. V in the general case. It belongs to the class of stoch
Schrödinger equations studied in Refs. 11 and 12 and has been derived from the QJ dynam
Wiseman and Milburn8 ~see also Refs. 5 and 9! in the case of a mode in a decaying cav
~corresponding here tog150!. It can actually be derived directly from the stochastic dynamics
Sec. III B, Eqs.~23!–~26!, with the probabilities~27!, in the limit ueu→`, uhu→0, uehu5const.,
under assumption~28! with k50.31 A related equation with complex Wiener processes has b
studied in Ref. 10.

Rigo and Gisin26 have shown that the stochastic Schro¨dinger equation~54! preserves squeeze
states. Since~54! actually differs from the equation considered by these authors by some
tional phase factorse6 iu, and the explicit solution of the evolution equations for the squeez
parameters is not given in Ref. 26, we briefly recall here their derivation. We use the Itoˆ formalism
of stochastic differential equations,30 whereas Stratanovich formalism was used in Ref. 26. I
convenient to characterize squeezed states by the following criterion:

uc&5iciua,j5re2if&⇔~a2Ga†2b!uc&50, G52e2if tanh~r !, b5a2Ga* . ~56!

The family of the squeezed states is invariant under~54! if uc&1udc& remains a squeezed state f
any uc&5ua,j&, i.e., (a2Ga†2dG a†2b2db)(uc&1udc&)50. This is equivalent to26

@a2Ga†,D~c!#uc&2~dG a†1db!D~c!uc&5~dG a†1db!uc&, ~57!

whereD(c) is the operator inside the square brackets in~54!. The left-hand side is found to be

S 2
g11g2

2
~a1G a†!dt1R^eiua†&~g1eiudt1g2e2 iuG dt1Ag1db dw11Ag2db dw2!

1Ag1 eiu~2a†db dw11dw1!1Ag2e2 iu~2a db dw21G dw2! D uc&. ~58!

We have thrown away all terms dG dw6 since dG is proportional to dt. This is because, by
inspection of~58!, the terms containing the noises dw6 on the left-hand side of~57! are propor-
tional to uc&. Multiplying both members of~57! by dw6 and using~55! and ~58! gives

db dw15Ag1eiudt, db dw25Ag2e2 iuG dt. ~59!

Now we use the well-known identityS(2j)D(2a)aD(a)S(j)5a coshr1G a† coshr1a, where
S(j)5exp(j*a2/22ja†2/2) andD(a)5exp(aa†2a*a) are, respectively, the squeezing and t
displacement operators.2 The squeezed stateuc& is equal toD(a)S(j)u0&. Let us multiply the two
members of~57! by S(2j)D(2a) and substitute~58! and ~59! into this equation. This leads to
the two coupled stochastic differential equations:
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dG52e2iu~11e22iuG!~g11g2e22iuG!dt,
~60!

db52S g21g1

2
1g2e22iuG Db dt12R~eiua* !~g1eiu1g2e2 iuG!dt

1Ag1eiudw11Ag2e2 iuG dw2 .

These equations are equivalent to~57! and have a solution. Hence the squeezed statesua,j& form
an invariant family under the quantum state diffusion dynamics, anda and j evolve in time
according to~60!.

We now obtain the squeezing amplitudesr (t) and anglesf(t) of the squeezed states b
solving ~60!. They are determined by the first equation:

G~ t !52e2iu
g1e(g22g1)t1c

g2e(g22g1)t1c
52e2if(t) tanh~r ~ t !!, ~61!

where c is an arbitrary complex constant. Thusr (t) and f(t) are deterministic, unlikea(t),
which is given by the second equation. Going back to the Schro¨dinger picture, one has fo
t(g22g1)@1:

tanh~r ~ t !!.
g1

g2
5expS 2

v

kBTD ,

~62!
f~ t !.u2vt.

It is worth noticing that perfect squeezing@r (t)→`# is obtained in thehigh temperature limit
kBT@v. The rate (g22g1)21 of convergence of tanhr(t) to tanhr̄5exp(2v/kBT) also tends to
infinity in this limit. Since the number of photons in the cavity becomes very large at very
temperatures and long times, the perturbative approximation~28! should however break down a
some point. This can put a limitation on the attainment of very larger (t). A more detailed study
of this apparently surprising result is the object in a separate work.31

As stated previously, the second equation in~62! agrees quite well with the results of th
numerical simulations of Fig. 8. Using the minimum mean square deviationDx25e22r /4 of
squeezed states2 yields the time averageDx2:

Dx2.
g22g1

4~g21g1!
. ~63!

In the particular case of an initial coherent stateuc(0)&5ua&, the constantc is equal to2g1 , so
that ~62! is exact at all timest>0 and

Dx2~ t !.
g22g1

4g214g1~122e2(g22g1)t!
. ~64!

This solution is compared in Fig. 7 with the numerical results forueu;20. The exact value ofDx2

is close to the approximated value 1/12 obtained from~63! for g1 /g251/2 ~left-hand side of Fig.
7!. It is a bit higher than the theoretical prediction 1/28.0.0357 forg1 /g253/4 ~right-hand
side!. For 50<e<100, one has a better agreement, as seen in Fig. 6. Hence the dynamics
mode is well described by the quantum state diffusion equation~54! for e>50, at this temperature

V. STOCHASTIC SCHRÖDINGER EQUATIONS

In this section we discuss the mathematical link between the quantum jump dynamics o
II and various stochastic Schro¨dinger equations found in the literature. The analysis is done
arbitrary open quantum systems having a Lindblad-type dynamics.
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A. Linear quantum jump dynamics

A linear version of the QJ dynamics of Sec. II, in which the random wave function is
normalized at each time stepdt, has been introduced in Ref. 18. The unormalized wave func
uw(t)& of the open systemS satisfies the following Itoˆ stochastic differential equation:

udw&5F2 i ~H1K !dt1(
m

~Wm21!dNm~ t !G uw~ t !&, ~65!

whereH is the Hamiltonian ofS, the jump operatorsWm are related to the Lindblad operatorsLm

by

Lm5Agm~Wm21!, ~66!

and dNm(t)50,1 are the stochastic increments of independent Poisson processesNm with param-
etersgm . These increments have meanM dNm(t)5gm dt and satisfy the Itoˆ rules:

dNm~ t !dNn~ t !5dn,mdNm~ t !, dNm~ t !dt50. ~67!

Equation~65! has been first considered by Belavkin14 with some jump operatorsWm proportional
to Lm @the relation with the jump operators~66! is given by the transformation~8!#. It has also
been considered independently in Ref. 16. It is easy to show thatr(t)5Muw(t)&^w(t)u obeys the
Lindblad equation~1! if K is appropriately chosen. In fact, by~65! and ~67!,

dr5M~ udw&^wu1uw&^dwu1udw&^dwu!

52 i @H,r#dt2 iKr dt1 irK† dt1(
m

gm~~Wm21!r1r~Wm
† 21!1~Wm21!r~Wm

† 21!!dt.

Replacing~66! into this equation yields

dr52 i @H,r#dt1(
m

S LmrLm
† 2

1

2
$Lm

† Lm ,r% Ddt,

provided that

K5
1

2i (m gm~Wm
† 11!~Wm21!5

1

2i (m ~Lm
† Lm12AgmLm!. ~68!

To give a physical meaning to the linear stochastic dynamics, one must choose the jump ragm

equal to the probability per unit time of the corresponding transitions. These are given b
Fermi golden rule to second order in perturbation theory. For instance, for the field mode
sidered in Sec. III,g6 are the damping rates~33! for the absorption and emission of a photon
the atoms.

Let us write ~65! in the ‘‘dissipative interaction picture’’uw̃(t)&5U(t)uw(t)&, whereU(t)
5exp(it(H1K)). It reads udw̃&5(m(W̃m(t)21)dNm(t)uw̃(t)&, with W̃m(t)5U(t)WmU(2t).
This implies:

uw̃~ t !&5W̃mp
~ tp!¯W̃m1

~ t1!uw~0!&,

where 0<t1<¯<tp<¯ are the jump times~times such that(m dNm(t)51!, tp<t,tp11 , and
mq is the index of the jump occurring at timetq ~dNmq

(tq)51, q51,...,p!. Hence the stochastic
Schrödinger equation~65! admits the solution:

uw~ t !&5e2 i (t2tp)(H1K)Wmp
e2 i (tp2tp21)(H1K)

¯Wm1
e2 i t 1(H1K)uw~0!&, tp<t,tp11 . ~69!
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In other words, the evolution of the quantum state may be computed as follows.
~1! If there is a jumpm betweent and t1dt, then

uw~ t1dt !&5Wmuw~ t !&. ~70!

This occurs with a probabilitygmdt independent ofuw(t)&.
~2! If no jump occurs betweent and t1dt, then

uw~ t1dt !&5~12 i dt~H1K !!uw~ t !&. ~71!

If g5(m gm,`, the time delayst2tp ,tp2tp21 ,...,t1 and the jump indicesmp ,...,m1 in ~69!
are independent random variables. The time delays are equally distributed, according to
ponential lawe2gs ds. Because of the independence of the Poisson processesNm , the probability
that mq5m is gm /g.

It has been proven in Ref. 18 that, under appropriate hypothesis onWm and gm , the wave
function ~69! is still well defined~as some limit of the right-hand side! if g5`, in which case
infinitely many jumps occur between 0 andt. This result is important for electrons in strong
disordered solids, wherem5( i , j ) labels pairs of eigenstatesu i &,u j & of the electronic Hamiltonian,
and Li j is equal or ‘‘close’’ to Ag i j u j &^ i u, i.e., Wi j .11u j &^ i u ~locality condition!. Then, the
number of jumps in a finite interval becomes infinite in the infinite volume limit, due to
divergence of the double sum( i , j g i j . In this case, the presence of the identity operator inside
parentheses in~66! is necessary for the mathematical definiteness ofuw(t)&.

B. Nonlinear quantum jump dynamics

The nonlinear QJ scheme of Sec. II can be deduced from the above-mentioned line
dynamics in the following way. By comparing~9! and ~4! with ~70! and ~71!, it is clear that, for
a given realization of the jumps, the normalized wave function

uc~ t !&5
uw~ t !&
iw~ t !i ~72!

evolves according to the nonlinear QJ scheme withlm5Agm. However, it was argued in Sec. I
that the density matrixr(t) is the mean value ofuc(t)&^c(t)u, whereas it has been seen earl
thatr(t)5Muw(t)&^w(t)u. This means that the probabilityP8 attached touc(t)& is different from
the probabilityP attached touw(t)&, that is, to the Poisson processesNm . This change of prob-
ability P→P8 provides the link between the two random evolutions foruw(t)& and uc(t)&. We
define it as follows. Let us denote byM8 and M the mean values with respect toP8 and P,
respectively. LetF be an arbitrary~operator-valued! stochastic process such thatF(t) depends
only upon the realizations of the jump times up to timet. SuchF is said to beadaptedto the
filtration of the Poisson processesNm .33 We ask that

M8~F~ t !!5M~F~ t !iw~ t !i2! ~73!

for any such processF. TakingF(t)5uc(t)&^c(t)u, this implies in particular

r~ t !5M8uc~ t !&^c~ t !u5Muw~ t !&^w~ t !u. ~74!

Let us compute the probability of occurrence of a jumpm between timest andt1dt for the new
probability P8:

dpm~ t !5M8~dNm~ t !uc~ t !!. ~75!

The right-hand side is the conditional~mean! expectation ofdNm(t) given uc(t)&, for the prob-
ability P8. Indeed, the (P8) probability of a jump betweent and t1dt depends upon the wav
function uc(t)& at time t. Let F(t) be an arbitrary stochastic force adapted to the filtration of
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Nm’s. ThenF(t)dNm(t) depends upon the realizations of theNm’s until time t1dt @recall that
dNm(t)5Nm(t1dt)2Nm(t)]. Therefore, replacingF(t) by F(t)dNm(t) in ~73!,

M8~F~ t !dNm~ t !!5M~F~ t !dNm~ t !iw~ t1dt !i2!5M~F~ t !dNm~ t !iWmuw~ t !&i2).

Formula~70! together with the fact thatdNm(t)50,1 have been used in the second line. By
independence of the forward incrementdNm(t) andF(t)iWmuw(t)&i2, one gets

M8~F~ t !dNm~ t !!5M~dNm~ t !!M~F~ t !iWmuw~ t !&i2)5gmdtM8~F~ t !iWmuw~ t !&i2iw~ t !i22).
~76!

But F(t) is arbitrary, thus~76! implies the identity of the conditional expectations:

dpm~ t !5M8~dNm~ t !uc~ t !!5gmdtM8~ iWmuw~ t !&i2iuw~ t !&i22uc~ t !)5gmdtiWmuc~ t !&i2,
~77!

in accordance with~12!. As a result, the stochastic evolution of the normalized wave func
uc(t)& with probability P8 coincides with that described in Sec. II forlm5Agm. It is moreover
given by the nonlinear stochastic Schro¨dinger equation:15

udc&5F2 i S H1K1
1

2
^K†2K& tDdt1(

m
S Wm

A^Wm
† Wm& t

21D dNm~ t !G uc~ t !&, ~78!

with ^O& t5^c(t)uOuc(t)&. This equation is readily obtained by computinguc(t1dt)& from ~70!
and ~71!.

C. Linear quantum state diffusion

It has been shown by Carmichael and Wiseman and Milburn5,8 that the nonlinear QJ dynamic
of the quantum field considered in Sec. III, withg150, is well described in limitueu→` by a
quantum state diffusion~QSD! stochastic equation involving real Wiener processes~white noise!.
The linear version of QSD is obtained in this section in the more general setting of arb
Markovian quantum open systems, by taking the limit of infinite jump ratesgm→` in the linear
QJ dynamics of Sec. V A.

Following Wiseman and Milburn,8 we introduce a small dimensionless parameter«.0 that
will tend to zero. Our goal is to increase up to infinity the ratesgm of the jumps in the linear QJ
dynamics, without modifying the master equation giving the average dynamics. Hence the
blad operatorsLm are here considered asfixed, i.e., independent of«. So are the damping rate
contained in the master equation, given by some«-independent ratesḡm.0. The jump ratesgm

are assumed to go to infinity like«24:

gm5«24ḡm . ~79!

The magnitude of the negative power of« is chosen for future convenience. Letuw(t)& be the
solution of the linear QJ stochastic equation~65!. We are interested in the variation ofuw(t)& on
a time intervalDt@gm

21 such that infinitely many jumps occur betweent and t1Dt in the limit
«→0. On the other hand, we wantDt to be small enough so that the changeuDw&5uw(t1Dt)&
2uw(t)& of the wave function goes to zero as«→0. A possibleDt realizing these two conditions
is

Dt5«3ḡ21, ~80!

whereḡ5(m ḡm is the sum of the fixed damping rates. Indeed, from~66!,

Wm511«2ḡm
21/2Lm . ~81!
 02 Oct 2006 to 152.77.18.70. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



t

f

ts
real

w
re

r

the
emark
he

3533J. Math. Phys., Vol. 43, No. 7, July 2002 Quantum jump dynamics in cavity QED

Downloaded
Since theLm are «-independent, the impact of each jump onuw& is of order«2. Moreover, the
number of jumpsm betweent andt1Dt is of ordergmDt5«21ḡm /ḡ. This means that the impac
of the jumps betweent and t1Dt is of order«213«25«, which is indeed small for small«.

Let DNm(t) be the number of jumpsm in the time interval@ t,t1Dt#. By dividing this
interval into smaller intervals@tn ,tn11# of length gm

21 , DNm(t) can be written as a sum o
gmDt5O(«21) independent random variablesNm(@tn ,tn11#) ~number of jumps betweentn and
tn11!, which have mean and variance 1. Therefore, by the central limit theorem,

Dzn5
DNm2gmDt

Agm

~82!

can be approximated for small« by a Gaussian random variable of zero mean and varianceDt @the
convergence as«→0 actually holds for a fixed«-independentDt; for Dt given by~80!, one gets
an infinitesimal increment dzn#. Shifting t by Dt or changingm leads to independent incremen
DNm and Dzm . It follows that Dzm are the infinitesimal increments of some independent
Wiener processeszm in the limit «→0. Indeed, a Wiener processz is by definition a stochastic
process with independent incrementsDz5z(t1Dt)2z(t) distributed according to a Gaussian la
of varianceDt. The convergence of (Nm2gmt)/Agm to a Wiener process can be shown mo
rigorously by using a theorem proven in Ref. 32.

The next step consists in evaluating both the mean and the fluctuating parts ofuDw& to leading
order in«. Let p5(m DNm(t) be the total number of jumps betweent and t1Dt. We denote by
sq5tq112tq , q51,...,p21, the time delays between consecutive jumps and sets05t12t and
sp5t1Dt2tp . By ~79! and~80!, p andsq have mean valuesgDt andg21 of order«21 and«4,
respectively. The generalized Hamiltonian~68! can be decomposed into two parts:

K5K02 i«22R, ~83!

whereK0 andR are«-independent:

K05
1

2i (m Lm
† Lm , R5(

m
AḡmLm . ~84!

Let us setVq5ḡmq

21/2Lmq
if q51,...,p andV050. With the help of~69!, ~81!, and~83!, one obtains

uDw&5H )
q5p

0 F S 12«22sqR1
1

2
«24sq

2R22 isq~H1K0!1O~«6! D ~11«2Vq!G21J uw~ t !&,

~85!

where the product is taken in decreasing order inq. The terms of order« in the expansion of the
product are

uDw& ( f )5 (
q50

p

~2«22sqR1«2Vq!uw~ t !&

5(
m

~2«22Dtḡm
1/21«2DNm~ t !ḡm

21/2!Lmuw~ t !&5(
m

Dzm~ t !Lmuw~ t !&. ~86!

These are the leading order fluctuating forces~of zero mean!. Since fluctuating terms of highe
order should not contribute in the limit«→0, we may replace the product in~85! by its mean value
in computing the terms of order«2 and more. This simplifies greatly the computation, because
order of the operators in the product then becomes of no importance. In fact, by the r
following ~71!, the random variabless0 ,...,sp , m1 ,...,mp are independent, so that the mean of t
product is the product of the means. Moreover,MVq5(m(gm /g)ḡm

21/2Lm5R/ḡ. Therefore, one
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can commute all operators in the product when computing the mean value. It is easy to sho
the terms of order«2 cancel on average. The terms of order«3 are found to be proportional toDt:

uDw& (d)5MuDw&52 i ~H1K0!Dt~11O~«!!. ~87!

This is the drift contribution touDw&.
The previous computation shows that the QJ dynamics is transformed as«→0, if one looks at

it with the time resolutionDt5ḡ21«3, to a diffusive dynamics given by the linear Itoˆ stochastic
differential equation:12,15,17

udw&5F2 i ~H1K0!dt1(
m

Lmdzm~ t !G uw~ t !&. ~88!

Here K05(m Lm
† Lm/2i and dzm(t) are the infinitesimal increments of independentreal Wiener

processeszm , which have zero mean and satisfy the Itoˆ rules:

dzm~ t !dzn~ t !5dn,m dt, dzm~ t !dt50. ~89!

D. Nonlinear quantum state diffusion

We have so far determined the linear stochastic Schro¨dinger equation foruw(t)&. The corre-
sponding nonlinear equation for the normalized wave functionuc(t)& is obtained by means of th
above-mentioned change of probabilityP→P8. This derivation of the nonlinear QSD equatio
from the linear one is actually well-known.12,28 It is slightly more complicated than for the Q
dynamics, becauseudc& is to be expressed in terms of Wiener processes for the new proba
P8. This can be done by using Girsanov’s theorem,33 which states that a Wiener differential dwm

for P8 is obtained by adding an appropriate drift differential to dzm . For the change of probability
defined by~73!, the conditional~mean! expectation of dP8/dP given uw(t)& is iw(t)i2. The drift
differential is then2iw(t)i22diwi2dzm ~for more details, see Refs. 12, 28!. From ~88! and~89!,
one gets

diwi252iw~ t !i2(
m

R^Lm& tdzm , ~90!

which implies thatiw(t)i2 is a local martingale. Thus,

dwm~ t !5dzm~ t !22R^Lm& tdt. ~91!

According to Itô’s formula,30 one has

udw&
iwi 5

d~Aiwi2uc&)
iwi 5udc&1S diwi2

2iwi 2
diwi2diwi2

8iwi3 D uc&1udc&
iwi .

The multiplication of both members by dzm leads, with the help of~88!–~90!, to dzmudc&5(Lm

2R^Lm& t)uc&dt. Going back to the original equation, it follows:

udc&5F2 i ~H1K0!dt1(
m

R^Lm& tS 2Lm1
3

2
R^Lm& tDdt1(

m
~Lm2R^Lm& t!dzmG uc&.

The nonlinear QDS equation is obtained by replacing~91! into this equation:11,12,15

udc&5F2 i ~H1K0!dt1(
m

R^Lm& tS Lm2
1

2
R^Lm& tDdt1(

m
~Lm2R^Lm& t!dwm~ t !G uc~ t !&.

~92!
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Let us come back to the mode dynamics of Sec. III. If one sticks to the norm-prese
QJ dynamics, the jump operatorsW6 in ~31! are defined up to a multiplicative constant.
k50, ã.a, they can be obtained, up to such a constant, from the Lindblad operatorL1

5Aḡ1a† andL25Aḡ2a by means of formula~66!, provided that the transition rates are replac
by some effective ratesg65ḡ6ueu2 andL6 are multiplied by the phase factorse6 iu, u5arge.
Thus the above-presented analysis can be used to compute the QSD equation for the nor
mode wave functionuc(t)& in the limit of large laser fieldsueu→`. The introduction of the phase
factorse6 iu in ~92! leads to the QSD equation~54!.

E. Links between the stochastic Schro ¨ dinger equations

The summary of the results of this section is given in Fig. 10. The stochastic Schro¨dinger
equations in Itoˆ form for the linear and nonlinear QJ models are, respectively, Eqs.~65! and~78!,
and those for the linear and nonlinear QSD models are, respectively, Eqs.~88! and ~92!.

VI. CONCLUSION

We have shown that the nonlinear quantum jump~or Monte Carlo wave function! model
applied to a simple optical system~damped harmonic oscillator at finite temperatureT! can be
generalized to describe the evolution of the quantum field in a cavity monitored by an a
beam of two level atoms. These atoms cross one by one the cavity and interact at its exit fir
a classical laser fieldE, and then with a detector measuring their states. This kind of monitorin
measurements is similar to that obtained by homodyne measurement of the field in a de
cavity,5,8 the photon counting on the output field being replaced by the measurements o
atoms. Actually, if all atoms are sent in their ground state (T50), the stochastic evolution of th
wave function of the quantum field~quantum trajectories! is the same for the two kinds o
monitoring. If the atoms form a beam of randomly prepared atoms with temperatureT.0, they
may also emit photons in the cavity and thus a new kind of quantum jump comes into
~creation of a photon!. This has notable effects on the quantum trajectories. The effect of the
field E is to modify the two jump operators. In fact, the measured atomic transitions can be d
by this field as well as by the interaction with the studied quantum field in the cavity. As a re
E also modifies the generalized Hamiltonian that rules the evolution between jumps. The a
over all realizations of the measurements leads to anE-independent dynamics, described by
density matrix satisfying the master equation of the damped harmonic oscillator with tempe
T. Whereas the density matrix converges at large times to the Bose–Einstein equilibrium
individual quantum trajectories for given realizations experience localization toward squ
states at largeE. The squeezing parameters evolve to some almost constant values, up to
fluctuations going to zero in the infinite laser intensity limit. This localization occurs at l
enough times, for any initial state of the quantum field. The centers of the squeezed state

FIG. 10. The links between the different stochastic Schro¨dinger equations.
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randomly in the complex plane, in such a way that the time averages of the quantum proba
to find n-photons are distributed according to Bose–Einstein~ergodicity!. The squeezing ampli-
tude r and phasef are controlled, respectively, by the temperatureT and the laser fieldE. r is
found to increase withT, which means that the squeezing is enhanced by increasing the tem
ture of the atomic beam; however, the waiting time beforer reaches its almost stationary value
also temperature increasing. On the other hand, no squeezing is obtained atT50, and localization
toward Fock states occurs ifE50. As in the case of the homodyne measurement, the quan
trajectories are given in the infiniteE limit by a so-called quantum state diffusion~QSD! stochastic
Schrödinger equation, involving real white noise.5,8,11,12A precise mathematical derivation of th
equation from the quantum jump dynamics was performed in Sec. V for arbitrary open qua
systems having a Lindblad-type dynamics. More precisely, this derivation starts from a
version of the QJ dynamics proposed in Ref. 18, in which the wave function is not normaliz
each step, which is proven to be related to the nonlinear QJ model by a simple chan
probability.
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