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Abstract
The spectral fluctuations of a quantum Hamiltonian system with time-reversal
symmetry are studied in the semiclassical limit by using periodic-orbit theory.
It is found that, if long periodic orbits are hyperbolic and uniformly distributed
in phase space, the spectral form factor K(τ) agrees with the GOE prediction
of random-matrix theory up to second order included in the time τ measured
in units of the Heisenberg time (leading off-diagonal approximation). Our
approach is based on the mechanism of periodic-orbit correlations discovered
recently by Sieber and Richter (2001 Phys. Scr. T 90 128). By reformulating
the theory of these authors in phase space, their result on the free motion on
a Riemann surface with constant negative curvature is extended to general
Hamiltonian hyperbolic systems with two degrees of freedom.

PACS numbers: 05.45.Mt, 03.65.Sq

1. Introduction

One of the fundamental characteristics of quantum systems with classical chaotic dynamics
is the universality of their spectral fluctuations. This universality and the agreement with the
predictions of random-matrix theory (RMT) was first conjectured by Bohigas, Giannoni and
Schmit (BGS) [2]. It was later supported by numerical investigations on a great variety of
systems [3]. However, the necessary and sufficient conditions on the underlying classical
dynamics leading to such a universality in quantum spectral statistics are not known, and the
origin of the success of RMT in clean chaotic systems is still subject to debate.

In the semiclassical limit, where the BGS conjecture is expected to be valid, the Gutzwiller
trace formula [4] expresses the density of states ρ(E) = ∑

n δ(E − En) of the quantum
system as a sum of a smooth part ρ(E) and an oscillating part. The latter is given by a sum
ρosc(E) = (πh̄)−1 ∑

γ Aγ cos(Sγ /h̄ − πµγ /2) over all classical periodic orbits γ of energy
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E (Sγ and µγ are the action and the Maslov index of γ , and Aγ is an associated amplitude).
The energy correlation function

R(ε) = 1

ρ(E)2

〈
ρ

(
E +

ε

2

)
ρ

(
E − ε

2

)〉
E

− 1 (1)

and its Fourier transform K(τ), the so-called form factor, are given by sums over pairs (γ, γ ′)
of periodic orbits. Here τ is the time measured in units of the Heisenberg time TH = 2πh̄ρ(E)

(TH = O(h̄1−f ) for systems with f degrees of freedom). The brackets denote an (e.g.
Gaussian) energy average over an energy width W much larger than the mean level spacing
�E = ρ(E)−1, but classically small, W � E, so that 〈ρ〉E � ρ(E). By neglecting the ‘off-
diagonal’ terms, i.e., the contributions of pairs of distinct orbits modulo symmetries, Berry [5]
showed that the spectral fluctuations of classically chaotic systems agree in the limit h̄ → 0
with the RMT predictions to first order in τ (τ � 1). Two different approaches have been
proposed to support the BGS conjecture to all orders in τ in the semiclassical limit. The first
one is based on a mapping between the parameter level dynamics and the dynamics of a gas
of fictitious particles [3, 6]. The second one uses field-theoretic and supersymmetric methods
and applies to systems with exponential decays of classical correlation functions [7].

The link between spectral correlations and correlations among periodic orbits was first put
forward in [8]. It was argued in this reference that the BGS conjecture implies some universality
at the level of classical action correlations. Recently, Sieber and Richter [1] identified a general
mechanism leading to correlations among periodic orbits in chaotic systems with two degrees
of freedom having a time-reversal invariant dynamics. This has opened the route towards an
understanding of the universality of spectral fluctuations based on periodic-orbit theory only.
The crucial fact is that an orbit γ having a self-intersection in configuration space with nearly
antiparallel velocities is correlated with another orbit γ̃ , having an avoided intersection instead
of a self-intersection, which has almost the same action and amplitude. In two special systems,
the free motion on a Riemann surface with constant negative curvature (Hadamard–Gutzwiller
model) [1] and quantum graphs [9], the pairs (γ, γ̃ ) have been found to give a contribution
K2(τ ) = −2τ 2 to the semiclassical form factor. This result is in agreement with the Gaussian
orthogonal ensemble (GOE) prediction of RMT,

KGOE(τ ) = 2τ − τ ln(1 + 2τ) 0 < τ < 1

= 2τ − 2τ 2 + O(τ 3).
(2)

The first term K1(τ ) = 2τ is obtained by using Berry’s diagonal approximation.
The purpose of this work is to extend Sieber and Richter’s result to general hyperbolic and

ergodic two-dimensional Hamiltonian systems. Unlike in [1], our approach does not rely on
the concepts of self-intersections and avoided intersections with nearly antiparallel velocities,
but rather focus on what corresponds to such events in phase space, namely the existence of
two stretches of the orbit (for both γ and γ̃ ) which are almost the time reverse of one another.
It will be argued that working in phase space has a number of advantages and may allow
for easier generalizations to periodically driven systems and to systems with f > 2 degrees
of freedom. A similar approach is presented in [10]; an alternative approach, based on a
projection onto the configuration space as in [1], is presented in [11].

In section 2, we state the main hypothesis on the classical dynamics used throughout this
paper. After having briefly recalled the main ingredients of the theory of Sieber and Richter
in section 3, a characterization of the orbit pairs (γ, γ̃ ) in the Poincaré surface of section
is given in section 4. The unstable and stable coordinates associated with a pair (γ, γ̃ ) are
introduced in the following section. The leading off-diagonal correction K2(τ ) = −2τ 2 to
the semiclassical form factor is derived in section 6. Our conclusions are drawn in the last
section. Some technical details are presented in two appendixes.
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Figure 1. Billiard �: qn and pn = sin βn are the arc length along ∂� and the momentum tangential
to ∂� in dimensionless units.

2. Hyperbolic Hamiltonian systems

We consider a particle moving in a Euclidean plane (f = two degrees of freedom), with
Hamiltonian H(q,p) = H(q,−p) invariant under time-reversal symmetry. We assume
the existence of a compact two-dimensional Poincaré surface of section � in the (four-
dimensional) phase space �, contained in an energy shell H(q,p) = E and invariant under
time reversal (TR) [4, 12]. Every classical orbit of energy E intersects � transversally. The
classical dynamics can then be described by an area-preserving map φ on �, together with a
first-return time map x ∈ � �→ tx ∈ [0,∞] (see [12]). In what follows, letters in normal and
bold fonts are assigned to the canonical coordinates x = (q, p) in � and to points x = (q,p)

in �, respectively. It is convenient to use dimensionless q and p by measuring them in units
of some reference length L and momentum P. The n-fold iterates of x by the map are denoted
by xn = φnx, n ∈ Z. They are the coordinates of the intersection points xn of a phase-space
trajectory with �, according to a given direction of traversal. The Euclidean distance between
two points of coordinates x and y in � is denoted by |y − x|. If the system is a billiard
(H(q,p) = p2/2M if q is inside a compact domain � ⊂ R

2 and +∞ otherwise), � is the set
of points (q,p) ∈ � such that q is on the boundary ∂� of the billiard, p is the momentum
after the reflection on ∂�, and |p| = √

2ME. Then q is the arc length along ∂� in units of
the perimeter L, p is the momentum tangential to ∂� in units of

√
2ME and tx is the length

of the segment of straight line linking two consecutive reflection points, multiplied by the
inverse velocity

√
M/2E (see figure 1). Due to the Hamiltonian nature of the dynamics, the

linearized n-fold iterated map M(n)
x = Dx(φ

n) is symplectic. This means that it conserves
the symplectic product

�x ∧ �x ′ = �p�q ′ − �q�p′ (3)

for any two infinitesimal displacements �x = (�q,�p) and �x ′ = (�q ′,�p′) in the tangent
space Tx�.

The time reversal (TR) acts in the phase space � by changing the sign of the momentum,
T� : (q,p) �→ (q,−p). Its action on x is given by an area-preserving self-inverse map T. When
acting on an infinitesimal displacement �x in Tx�, the same symbol T refers to the linearized
version of T (we avoid the cumbersome notation DxT , the meaning of T being clear from the
context). In most cases, the exact map T is already linear and given by T : (q, p) �→ (q,−p).
The TR symmetry of the Hamiltonian implies φT = T φ−1, i.e., (T x)n = T x−n.

Some spatially symmetric systems in an external magnetic field have non-conventional
TR symmetries, obtained by composing T� with a canonical transformation associated with
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the spatial symmetry [3]. The Sieber–Richter pairs (γ, γ̃ ) of correlated orbits also exist
in such systems, although they look different in configuration space [13]. By performing
the canonical transformation to redefine new coordinates (q,p) at the beginning, the TR
becomes the conventional one. Therefore, the analysis below also applies to systems with
non-conventional TR symmetries.

The normalized φ-invariant measure is the Liouville measure dµ(q, p) = dq dp/|�|,
where |�| is the (dimensionless) area of �. Our main assumptions on the dynamical system
(φ,�,µ) are

(i) µ is ergodic;
(ii) all Lyapunov exponents are different from zero on a set of points x of measure one

(complete hyperbolicity);
(iii) long periodic orbits are ‘uniformly distributed in �’.

Note that (i) and (ii) imply that the Lyapunov exponents ±λx are constant µ-almost everywhere
and equal to ±〈λ〉, with 〈λ〉 > 0 (the periodic points are notable exceptions of measure zero
where this is wrong!). Examples of billiards satisfying (i) and (ii) are semi-dispersing billiards
(if trajectories reflecting solely on the neutral part of ∂� form a set of measure zero), the
stadium and other Bunimovich billiards, the cardioid billiard and the periodic Lorentz gas
(see e.g. [14] and references therein). Assumption (iii), associated with ergodicity (i), means
that an (appropriately weighted) average over periodic orbits with periods inside a given time
window [T , T + δT ] can be replaced in the large-T limit by a phase-space average [15, 16].
Note that this statement, which is the precise content of (iii), does not concern individual
periodic orbits but rather averages over many periodic orbits with large periods. We think that
the statement can hold true even if some periodic orbits with arbitrary large periods are stable,
if there are exponentially fewer such orbits than unstable orbits.

As is typically the case in billiards, the Poincaré map φ or its derivatives may be singular
on a closed set S ⊂ � of measure zero. For instance, if the boundary ∂� is concave outward,
φ is discontinuous at a point xS = (qS, pS) such that the trajectory between qS and the next
reflection point is tangent to ∂� at this point (see figure 1). Let us denote by d(x,S) the
Euclidean distance from x to S. We assume that

(iv) S is ‘not too big’: µ(Bδ,S) � C1δ
σ1 for any δ > 0, with Bδ,S = {x ∈ �; |x − xS| �

δ, xS ∈ S} and σ1 > 0;
(v) the divergence of the derivatives of φ on S is at most algebraic, |∂rφ/∂xα1 · · · ∂xαr | �

C2d(x,S)−σ2(r−1), with σ2 > 0.

Here C1 > 0 and C2 � 1 are constants of order 1 and the indices α, β = 1, 2 refer to the q-
and p-coordinates in � (x1 = q, x2 = p). (iv) and (v) are standard mathematical assumptions
on billiard maps [17].

3. The theory of Sieber and Richter

The starting point of Sieber and Richter is the semi-classical expression of the form factor,

Ksemicl

(
τ = T

TH

)
= 1

TH

1

δT

〈 ∑
T �(Tγ +Tγ ′ )/2�T +δT

Aγ Aγ ′ e
i
h̄
(Sγ −Sγ ′ )−i π

2 (µγ −µγ ′ )

〉
E

. (4)

The sum runs over all pairs of periodic orbits (γ, γ ′) such that the half-sum of their periods
(Tγ + Tγ ′)/2 is in the time window [T , T + δT ] of width δT � TH. For isolated periodic

orbits, Aγ = Tγ r−1
γ

∣∣det
(
M(F)

γ − 1
)∣∣−1/2

, where rγ is the repetition (number of traversals) of
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Figure 2. Pairs of correlated periodic orbits γ (solid line) and γ̃ (dashed line) in configuration
space for systems with conventional TR symmetry. The intersections of q-space with � are
schematically represented by parallel vertical lines.

γ and M(F)
γ is the stability matrix of γ for displacements perpendicular to the motion [4].

In order to work with a self-averaging form factor [18], a time averaging over the window
[T , T + δT ] (with, e.g., δT = h/W ) has been performed in (4). Equivalently, K(τ) can be
defined as the truncated Fourier transform

K(τ) = ρ(E)

∫ ∞

−∞
dεR(ε)

sin(εδT /2h̄)

εδT /2h̄
e− i

h̄
εT (5)

of the energy correlation function (1). Formula (4) gives the correct form factor for small
enough times τ only. It relates the quantum energy correlations to the classical action
correlations [8]. Indeed, only orbits with correlated actions, differing by an amount of order
h̄, can interfere constructively in (4).

For fixed τ = T/TH > 0, the sum (4) deals with orbits with very long periods as h̄ → 0
(recall that TH = O(h̄−1)). Such orbits have many self-intersections in q-space, some of
them characterized by small angles ε at the crossing point. As shown in [1], the two loops
at both sides of the crossing point can be slightly deformed in such a way that they form a
neighbouring closed orbit in q-space, having an avoided crossing instead of a crossing (see
figure 2). The two partner orbits γ and γ̃ are almost the time reverse of each other on one
loop (right loop) and almost coincide on the other (left loop). Such a construction, which was
supported in [1] by using the linearized dynamics, is in general possible in systems with TR
symmetry and for small enough ε only. Due to the hyperbolicity of γ , the two orbits come
exponentially close to each other in q-space as one moves away from the crossing point qc.
This means that the phase-space displacement perpendicular to the motion associated with γ

and γ̃ is almost (but not exactly) on the unstable manifold of γ at xi,c = (qc,pc,i ), whereas
the displacement associated with γ and the TR of γ̃ is almost on the stable manifold of γ at
xi,c [13]. If a symbolic dynamics is available, the symbol sequence of γ̃ can be constructed
from the symbol sequence of γ in a simple way [19]; in the Markovian case, the TR symmetry
implies that the partner sequence must not be pruned. Since the two orbits γ and γ̃ have
almost the same period and almost the same Lyapunov exponents, the amplitudes Aγ and Aγ̃

are almost equal. Furthermore, it can be shown by using a winding number argument that
µγ̃ = µγ [10, 11]. In the Hadamard–Gutzwiller model, the difference δS of the actions of γ̃

and γ is given by δS � Eε2/λ(F) in the small ε limit, where λ(F) is the positive Lyapunov
exponent of the Hamiltonian flow [1]. The main hypothesis of [1] is that, if the system has
no other symmetries than TR, only the pairs (γ, γ̃ ) contribute to the leading off-diagonal
correction K2(τ ) to the semiclassical form factor (4) in the limit h̄ → 0,
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K2(τ ) = 1

TH

1

δT

〈 ∑
T �Tγ �T +δT

A2
γ

∑
γ̃ partner of γ

e
i
h̄
δS

〉
E

. (6)

The main task is to evaluate the right-hand side. This was performed up to now for the
Hadamard–Gutzwiller model [1] and for quantum graphs [9]. The main difficulties arising in
extending the theory of Sieber and Richter to other systems satisfying the hypothesis in the
previous section are

• the orbit γ may have a family of correlated self-intersections, corresponding to one and
the same partner orbit γ̃ ; this happens for instance in focusing billiards [11, 20]; care
must be taken to avoid overcounting the pairs (γ, γ̃ );

• the specific property of the Hadamard–Gutzwiller model is that all orbits γ have the same
positive Lyapunov exponent λ(F); this clearly does not hold in generic systems; then the
action difference δS expressed in terms of ε depends in general on γ ;

• the singularities xS ∈ S of the map φ affect the number of self-intersections with small
crossing angles ε and may even ‘destroy’ the partner orbit γ̃ if γ approaches S too closely.

We shall see in the following sections that working in the Poincaré surface of section
enables one to resolve all these difficulties.

4. The phase-space approach

4.1. Orbits with two almost time-reverse parts

As noted in [13], if an orbit γ has a self-intersection at qc with a small crossing angle ε in
configuration space, there are two phase-space points xc,i = (qc,pc,i) and xc,f = (qc,pc,f )

on γ which are nearly TR of one another, xc,i � T�xc,f . Indeed, |pc,i + pc,f | � |pc,i ||ε|
is very small for |ε| � 1 (see figure 2). There is in fact a part of γ centred on xc,i almost
coinciding with the TR of another part of γ , centred on xc,f . The smaller the distance between
T�xc,f and xc,i , the longer these parts of orbit. There is therefore a family of points xm of
intersection of γ with the surface of section �, with coordinates xm = φmx such that

T xn−m ≈ xm m = 0,±1,±2, . . . (7)

(see figure 3(a)). The integer n is the time (for the map) separating the two centres x = x0

and xn of the two almost TR parts1 of γ .
It turns out that the breaking of the linear approximation (LA) plays an essential role in

the existence of a family {xm} with property (7). Indeed, we will show that, if the orbit γ is
unstable and n is large, the displacements

�xm = T xn−m − xm (8)

cannot be determined from �x = �x0 by using the LA for m � n/2. In order to make
quantitative statements, and with the aim of transforming (7) into a precise definition, we
introduce a small real number c(t)

x , depending on x and on an integer t, the latter denoting the
current time. Loosely speaking, c(t)

x is the phase-space scale at which deviations from the LA
after t iterations of a point y near x start becoming important. More precisely, this number
is defined as the maximal distance |ym − xm| between the m-fold iterates of y and x, for an
arbitrary y ≈ x and an arbitrary time m between 0 and t, such that the final displacement yt −xt

can be determined from the initial displacement y − x by using the LA, yt − xt � M(t)
x (y − x)

1 There is an analogy between the family of points {xm} and the family of vertices visited twice by an orbit in
quantum graphs [9].
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(recall that M(t)
x is the linearized t-fold iterated map)2. As the errors of the LA may accumulate

at each iteration, the larger the time t, the smaller must be c(t)
x . We shall see below that c(t)

x

decreases to zero like t−1 for large t if the map φ is smooth. If φ is not smooth, a typical
trajectory in � approaches a singularity point xS of φ arbitrarily closely between times 0 and
t as t → ∞. As a result, c(t)

x decreases to zero faster than t−1 at large t (c(t)
x even vanishes if x

hits xS after m � t iterations, but such x form a set of measure zero).
We can now define the time m0 of breakdown of the LA for the displacements (7) as the

largest integer such that

|�xm| � c(m0)
x m = 0, . . . , m0. (9)

In other words, m0 is equal to the largest integer m such that �xm � M(m)
x �x. Similarly,

going backward in time, we denote by mT
0 the largest integer m such that �x−m � M(−m)

x �x.
In what follows, we say that the orbit γ has two almost TR parts separated by n whenever
(9) holds true for a family {xm} of points of intersection of γ with �, where �xm is defined
by (8). The point x0 is chosen among {xm} in such a way that |�x0| is minimum for m = 0.
This condition fixes n. In order to simplify the notation, we shall drop the index 0 for the
coordinate x0 of the centre point x0, writing x = x0 and, similarly, �x = �x0. Since
we are interested in the limit |�x0| � c(m0)

x , we always assume that m0 and mT
0 are large

(but much smaller than the period of γ ). If γ is unstable, then |�xm| � ∣∣M(m)
x �x

∣∣ and
|�x−m| � ∣∣M(−m)

x �x
∣∣ grow exponentially fast with m for large m with the same rate λγ ,

λγ = λx > 0 being the positive Lyapunov exponent of γ for the Poincaré map. Moreover,
the components of �x in the stable and unstable directions are roughly the same, since, by
assumption, |�xm| is minimum for m = 0. This implies that mT

0 ≈ m0.
Let us first assume that n is large. The exponential growth of |�xm| in the regime of

validity m � m0 of the LA has the following consequence. Let us look at the distance in
configuration space in figure 2 between the point qm, moving on the lower branch of the right
loop as one increases m (starting at m = 0), and its ‘symmetric point’ qn−m, moving backward
in time on the upper branch of the same loop. After the time m = n/2, the two points on
the lower and upper branches of the loop are exchanged. Thus, the distance between these

2 A more quantitative definition of c
(t)
x and the precise meaning of ‘yt − xt � M

(t)
x (y − x)’ are given in section 6.2.
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two points cannot increase for m � n/2. In contrast, it must decrease exponentially as m
approaches n, and come back to its initial value |qn − q0| for m = n. It follows that the
LA must break down before m = n/2, i.e., one has m0 � n/2. A similar reasoning holds
in phase space. We first note that the (n − m)-fold iterates of T xn and x are equal to T xm

and xn−m, respectively. Thanks to (8), �xn−m = −T �xm for any integer m. The equality
|�xn−m| = |T �xm| would be violated if 2m0 � n � 1, in view of the exponential growth of
|�xm| predicted by the LA. As a result, for large n, the condition

n � 2m0 (10)

must be fulfilled.
Another situation arises when n is of order 1, n � m0. Then the above-mentioned

arguments do not apply since, if m is of order 1, the unstable and stable components
of �xm are of the same order and |�xm| does not necessarily increase with m. Since
|qn−m − qm| � |T xn−m − xm| � 1 for all times m between −mT

0 and m0 � n, the right loop
in figure 2 consists of two almost parallel lines, connected by a small piece of line with length
of order 〈l〉, 〈l〉 being the mean length of a trajectory between two consecutive intersections
with �. This means that the orbit γ has an almost self-retracing part in q-space, centred
at q0.

To conclude, we have shown that n0 = 2m0 has the meaning of a minimal time separating
two distinct almost TR parts of γ (i.e., excluding almost self-retracing parts). A similar result
is obtained in [10, 11] for continuous times. The continuous-time version of n0 is the minimal
time T0 to close a loop in q-space introduced in [1]. In the present context, this time arises
with the new interpretation of the breakdown of the LA.

Let N be the period of γ for the Poincaré map. If the family {xm} fulfils condition (9), then
the family of almost TR points {xn+m} also fulfils this condition, with n replaced by N − n.
This expresses the fact that, for a periodic orbit, the existence of a right loop in q-space implies
the existence of a left loop (figure 2). Setting y = xn, one has TyN−n−m − ym = −T �x−m

and thus |TyN−n−m − ym| � ‖T ‖c(−mT
0 )

x for m = 0, . . . , mT
0 . This indeed shows that if {xm}

satisfies (9), then this is also the case for {xn+m} with n replaced by N − n, m0 by m′
0 ≈ mT

0

and mT
0 by mT

0
′ ≈ m0.

The distinction made in the previous section between a self-intersecting orbit and an orbit
with an avoided crossing in q-space is irrelevant in the surface of section �: both orbits have
two parts which are almost TR of one another. In other words, they both have families of
points {xm} and {xn+m} satisfying (9). Note that these two families can correspond in q-space
with a family of self-intersections, as in the case of focusing billiards if self-intersections occur
at conjugate points [11, 20], or with one self-intersection (or one avoided crossing) only, as in
the case of the Hadamard–Gutzwiller model [1].

4.2. The partner orbit

We can now construct the partner orbit γ̃ described in section 3 in the surface of section �.
Let γ be an unstable orbit of period N with two almost TR parts separated by n < N . The
orbit γ̃ is defined by an N-periodic point x̃ = x̃0 lying close to x = x0. This point is such that{|T x̃n−t − xt | � 1 for t = 0, . . . , n

|x̃t − xt | � 1 for t = n, . . . , N.
(11)

It can be checked in figure 2 that these properties indeed define the desired partner orbit. Note
the symmetry of (11) with respect to the exchange of x and x̃. By determining δx = x̃ − x as
a power series in �x, it is shown in appendix A that x has at most one partner point x̃. These
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arguments indicate moreover that x̃ exists if |�x| is ‘sufficiently small’ and the two almost
TR parts of γ are sufficiently far apart from a singularity point of φ. To first order in �x, it is
found in appendix A that

δx = x̃ − x = T
(
1 − M(n)

x M
(N−n)
T x

)−1(
M(n)

x + T
)
�x (12)

in agreement with [1]. The matrices M(n)
x and M

(N−n)
T x appearing in (12) are the stability

matrices of the right loop and of the TR of the left loop in figure 2.
The partner point associated with xm,−mT

0 � m � m0, coincides with the m-fold iterate
x̃m = φmx̃ of x̃. This can be seen by noting that x̃m satisfies (11) with x replaced by xm and
n replaced by n − 2m, as follows by combining (11) with (9). Hence, by uniqueness, x̃m is
the partner point of xm. It is not difficult to check this statement explicitly to lowest order
in �x on (12) (see appendix A). We conclude that the partner points of all the points xm,
−mT

0 � m � m0, belong to the same orbit γ̃ . In other words, if |�x| � 1, there is a unique
partner orbit γ̃ associated with the whole family {xm}. If this family is almost self-retracing,
i.e., if n � m0, this orbit coincides with γ itself, as already noted elsewhere [20]. Actually,
then x̃ = x satisfies (11), hence γ̃ = γ by uniqueness of the partner point (within the LA, this
can be seen by replacing T �x = −�xn = −M(n)

x �x in (12); the identity �xn = M(n)
x �x

follows from n � m0). By using a similar argument, one shows that the orbit γ̃ ′ constructed
from the family {xn+m} is the TR of γ̃ , as is immediately clear in figure 2.

4.3. A simple example: the baker’s map

The main advantage of the above-mentioned construction of the pairs (γ, γ̃ ) is that it works
whatever the dimension of � (i.e., for systems with f > 2 degrees of freedom as well).
Moreover, it applies to hyperbolic maps. It is instructive to exemplify this construction in
the case of the baker’s map. Then � is the unit square. It is convenient to equip � with
the distance |x − x ′| = max{|q − q ′|, |p − p′|}. A point x = (q, p) ∈ � is in one-to-one
correspondence with a bi-infinite sequence ω = · · · ω−2ω−1 . ω0ω1ω2 · · ·, obtained from the
binary decompositions of q and p

(
q = ∑

l>0 ωl−12−l and p = ∑
l>0 ω−l2−l

)
, with binary

symbols ωl ∈ {0, 1}, l ∈ Z. The map φ acts on ω by shifting the point ‘.’ one symbol
to the right. The TR symmetry is the reflection with respect to the diagonal of the square,
T : (q, p) �→ (p, q). This corresponds to reversing the order of the symbols of ω i.e.,
T : ω �→ ωT = · · · ω2ω1ω0 . ω−1ω−2 · · ·. Periodic points are associated with sequences ω

containing a finite word ω0 · · · ωN−1, which repeats itself periodically; one usually writes the
finite word only, keeping in mind that circular permutations of this word correspond to the
same orbit. It is easy to see that the condition (9) with c(m0)

x = 2−s is satisfied if ωn−l−1 = ωl

for any l = −s, . . . , m0 + s − 1. Similarly, the condition |�x−m| � 2−s , m = 0, . . . , mT
0 , is

satisfied if ωn−l−1 = ωl for any l = −mT
0 − s, . . . , s − 1. This means that ω has the form

x ←→ ω = ZT
LLZL . ZRRZT

R (13)

where ZL,ZR,L and R are finite words containing
(
mT

0 + s
)
, (m0 + s),

(
N − 2mT

0 − 2s
)

and
(n− 2m0 − 2s) symbols, respectively. The symbol sequence of the partner point x̃ is obtained
by reversing time on R and leaving all other symbols unchanged,

x̃ ←→ ω̃ = ZT
LLZL . ZRRT ZT

R. (14)

The inequality n > 2m0 + 2s must be fulfilled in order that R is nonempty. In the opposite
case, ω has an almost self-retracing part ZLZRZT

RZT
L and ω̃ = ω. Similar pairs (ω, ω̃) of

symbol sequences occur in the Hadamard–Gutzwiller model [19] and in certain billiards [20].
The families {xm} and {x̃m} look like those in figure 3(a) after a rotation by an angle π/4.
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5. Use of the unstable and stable coordinates

To evaluate the leading off-diagonal correction K2(τ ) to the form factor, we shall first consider
the second sum in (6) over all partner orbits γ̃ of γ , for a fixed unstable periodic orbit γ ,
which will be assumed to be infinitely long and to cover densely and uniformly the surface
of section. We will then argue in section 6 that one can replace the obtained result inside the
sum over γ in the limit T → ∞. The sum over the partner orbits γ̃ of γ is to be expressed
as an integral over some continuous parameters characterizing γ̃ , chosen such that the action
difference δS = Sγ̃ − Sγ is a function of these parameters only. In configuration space, one
may integrate over the crossing angle ε [1]. It is argued in this section that a convenient
choice of parameters in the surface of section is given by the unstable and stable coordinates
of the small displacement �x. The local coordinate system defined by the unstable and stable
directions is singled out by the stretching and squeezing properties of the dynamics. These
properties play a crucial role in the theory of Sieber and Richter, because they determine the
time m0 of breakdown of the LA and the exponential smallness of the distances (11).

5.1. The coordinate family Lx,η,ξ

Under the hyperbolicity assumption (ii), there are at almost all y ∈ � two vectors eu(y) and
es(y) tangent to the unstable and stable manifolds at y, which span the whole tangent space
Ty�. These vectors can be found by means of the cocycle decomposition [12],

M(m)
y eu(y) = �(m)

u,y eu(ym) M(m)
y es(y) = �(m)

s,y es(ym) (15)

where �(m)
u,y and �(m)

s,y are the stretching and squeezing factors. Because M(m)
y is symplectic,

�(m)
s,y = 1

/
�(m)

u,y and the symplectic product eu(y) ∧ es(y) is independent of y (see [12]). The
vectors eu,s(y) can be ‘normalized’ in such a way that this constant is equal to 1,

eu(y) ∧ es(y) = 1. (16)

The product of the norms of eu(ym) and es(ym) diverges as m → ±∞ if the angle between
the unstable and stable directions at ym decreases to zero. Since the exponential growth of
M(m)

y eu(y) at large m is (by definition) captured by the stretching factor, the divergence of
|eu,s(ym)| is smaller than exponential, ln |eu,s(ym)| = o(m) [12]. The notation f (m) = o(m),
where f is an arbitrary function over integers stands for f (m)/m → 0 as m → ±∞. The
stretching factor �(m)

y = �(m)
u,y satisfies

ln
∣∣�(m)

y

∣∣ = mλy + o(m) (17)

where λy is the positive Lyapunov exponent at y. If y belongs to a periodic orbit γ with period
N, then eu,s(y) are the eigenvectors of the stability matrix M(N)

y of γ and
∣∣�(N)

y

∣∣ = exp(Nλγ ).

By invoking the TR symmetry, M
(m)
Ty T = T M(−m)

y . Replacing this expression into (15), one
finds eu,s(T y) ∝ T es,u(y), with some φ-invariant proportionality factors. By ergodicity, these
factors are almost everywhere constant (y-independent). One can thus ‘normalize’ eu,s(T y)

in such a way that

eu(T y) = T es(y) es(T y) = T eu(y) �
(m)
Ty = �(m)

y−m
(18)

for almost all y ∈ �. Note that this agrees with (16), since T es(y) ∧ T eu(y) = eu(y) ∧ es(y).
Two almost TR parts of an unstable orbit γ can be parametrized by the family

Lx,η,ξ = {
(ηm, ξm);−mT

0 � m � m0
} ⊂ R

2 (19)

of the unstable and stable coordinates (ηm, ξm) of the displacements �xm,

�xm = T xn−m − xm = ηm eu(xm) + ξm es(xm). (20)
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ξη= a2

η

ξ

e λ−ν γ

ξ=η

ξ=η

eνλ γ

Figure 4. Domain Dγ,a,ν in the (η, ξ)-plane (region marked by horizontal lines). The black points
are the points (ηm, ξm) in Lx,η,ξ ; ν of them are contained in Dγ,a,ν .

Thanks to (15),

ηm = �(m)
x η ξm = ξ

�
(m)
x

ηm ξm = ηξ (21)

where −mT
0 � m � m0 and η = η0, ξ = ξ0. The points (ηm, ξm) ∈ Lx,η,ξ are located on a

hyperbola in the (η, ξ)-plane (see figure 4).
In the case of the baker’s map (section 4.3), eu(y) and es(y) are independent of y and

coincide with the unit vectors in the q- and p-directions. The stretching factors �(m)
y = 2m

are also y-independent. The coordinates ηm and ξm are the usual q- and p-coordinates of
�xm = T xn−m − xm,{

ηm = pn−m − qm = 2m(pn − q)

ξm = qn−m − pm = 2−m(qn − p).
(22)

5.2. Estimation of m0

In the limit η, ξ → 0, the time m0 of breakdown of the LA depends logarithmically on the
unstable coordinate η,

m0 = − ln |η|
λγ

+ o
(
λ−1

γ ln |η|). (23)

Indeed, thanks to hyperbolicity, |�xm| grows exponentially fast with m with the rate λγ > 0,
until it reaches, for m = m0, a value of the order of the phase-space scale c(m0)

x at which
deviations from the LA start becoming important. Since

∣∣�xm0

∣∣ ≈ |ηm0 |, one must have
ln

(|η|/c(m0)
x

) ∼ −m0λγ . More precisely, we may approximate |�xm| by |ηm||eu(xm)| for
m = m0 and m = m0 + 1, making an exponentially small error for large m0 (recall that
|η||eu(x)| ≈ |ξ ||es(x)|). By definition, |�xm0 | is smaller than c(m0)

x and
∣∣�xm0+1

∣∣ is greater
than c(m0+1)

x . Then (23) follows from (17), (21) and ln |eu(xm)| = o(m). Note that the terms
λ−1

γ

∣∣ln c(m0)
x

∣∣ and λ−1
γ

∣∣ln c(m0+1)
x

∣∣ have been neglected in (23). As stated in section 4.1, for a

smooth map φ, c(m0)
x decreases to zero like m−1

0 as m0 → ∞, i.e., as η → 0. Therefore,∣∣ln c(m0)
x

∣∣ is of order ln m0 = O(ln | ln |η‖) and can be incorporated into the error term in (23).
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If φ has singularities on �, c(m0)
x decreases to zero faster than m−1

0 as η → 0. In such a case,
it will be argued in section 6.2 that formula (23) is not valid for all orbits γ . However, the
right-hand side of (23) always gives an upper bound on m0. Strictly speaking, the asymptotic
behaviour of (17) and (23) provides good approximations only if m0 is close to a multiple of
(or is much larger than) the period N of γ . The physically relevant values of m0 are, however,
such that 1 � m0 � N . For such m0 (23) should give nevertheless a reasonable approximation
of the average value of m0 (in fact it gives a good approximation of the inverse of the average
of the inverse of m0). This average can be taken over all points x on γ ∩� satisfying (9) such
that the unstable and stable coordinates of �x = T xn − x are in small intervals [η, η + dη]
and [ξ, ξ + dξ ], for an arbitrary integer n � N/2 and some fixed η, ξ, dη � |η| � 1, and
dξ � |ξ | � 1.

One shows similarly that

mT
0 = − ln |ξ |

λγ

+ o
(
λ−1

γ ln |ξ |). (24)

For the baker’s map, in view of (22), 2m0 |pn − q| � 2−s � 2m0+1|pn − q|, where we
have chosen c(m0)

x = 2−s . If m0 � s, this yields m0 � −ln |pn − q|/ ln 2 and, similarly,
mT

0 � −ln |qn − p|/ ln 2, in agreement with (23) and (24).

5.3. The probability of ‘near-head-on return’

To count the number of partner orbits of an orbit γ with a very large period N, one needs to
know the probability of having two points on γ which are nearly TR of one another. The aim
of this subsection is to determine the (unnormalized) probability density Pγ (η, ξ) associated
with the unstable and stable coordinates of �xt = T xt+n − xt , for all pairs (xt ,xt+n) of
almost TR points on γ ∩ � which do not pertain to an almost self-retracing family (i.e., such
that n � 2m0). This density is defined through the number Pγ (η, ξ) dη dξ of points xt on
γ ∩ � such that the unstable and stable coordinates of �xt are in the infinitesimal intervals
[η, η + dη] and [ξ, ξ + dξ ], for an arbitrary integer n between 2m0(xt , η) and N/2. Let us
recall that the partner orbits γ̃ and γ̃ ′ built from the two families {xm} and {xn+m}, separated
from their almost TR families by the times n and N − n, respectively, are TR of one another
(section 4). The two pairs (γ, γ̃ ) and (γ, γ̃ ′) have thus identical contributions to the form
factor (6) (the corresponding action differences δS are clearly the same). This is why it suffices
to consider only the orbits γ̃ constructed from the family with the smaller time, n � N/2.

Let us define the infinitesimal parallelograms d�x,η,ξ in � by

d�x,η,ξ = {y ∈ �; η � (y − x)u � η + dη, ξ � (y − x)s � ξ + dξ} (25)

where (y − x)u,s are the unstable and stable coordinates of y − x. Then

Pγ (η, ξ) dη dξ =
N−1∑
t=0

N/2∑
n=2m0(xt ,η)

χ
(
T xn+t ∈ d�xt ,η,ξ

)
(26)

where χ(P) equals 1 if the property P is true and 0 otherwise. We shall assume here that the
periodic orbit γ covers densely and uniformly the surface of section �. If N � 4m0 � 1,
the sum over n can then be replaced by a phase-space integral, giving

P erg
γ (η, ξ) dη dξ =

N−1∑
t=0

(
N

2
− 2m0(xt , η)

) ∫
dµ(y)χ

(
Ty ∈ d�xt ,η,ξ

)
. (27)
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This integral is nothing but the area
∣∣T d�xt ,η,ξ

∣∣ = ∣∣d�xt ,η,ξ

∣∣ of the parallelogram (25) per
unit area. By (16), it is equal to dη dξ/|�|. By virtue of (23),

P erg
γ (η, ξ) � N

2|�|
(

N +
4 ln |η|

λγ

)
. (28)

It is worth noting that the ergodic hypothesis implies the identity between (26) and (27) for
a set of points x0 of measure one, and does not tell anything a priori about the points x0 on
periodic orbits, of measure zero in �. We shall argue below that, although (26) and (27) may
differ for individual periodic orbits γ which do not cover � uniformly, one can use the ergodic
result (28) to calculate the form factor in the semiclassical limit.

5.4. The domain Dγ,a,ν

The density Pγ (η, ξ) just defined overcounts the number of partner orbits γ̃ relevant
for the form factor. Actually, a unique partner orbit γ̃ is associated with each family{
xm;−mT

0 � m � m0
}

(section 4.2), whereas all points xm belonging to the same family
are counted separately in Pγ (η, ξ). To avoid overcounting, we define a domain Dγ,a,ν in the
(η, ξ)-plane R

2, having the good property to contain, for any (η, ξ) inside this domain, a fixed
number ν of elements (ηm, ξm) in the family Lx,η,ξ . This integer ν is independent of η and ξ

(and thus of m0 and mT
0 ) and is such that 1 � ν � N . Provided that this condition is fulfilled,

the precise value of ν does not matter for the final result. Introducing also a small number
a > 0 controlling the maximal values of |η| and |ξ |, we define

Dγ,a,ν =
{
(η, ξ) ∈ R

2; e−νλγ � |ξ |
|η| � eνλγ , |ηξ | � a2

}
. (29)

If (η, ξ) belongs to Dγ,a,ν , then |η| and |ξ | are bounded by a eνλγ /2. The domain Dγ,a,ν is
represented in figure 4. For any (η, ξ) ∈ Dγ,a,ν , it contains dx � ν elements of the family
Lx,η,ξ . Actually, in view of (17) and (21),

ln

( |ξm|
|ηm|

)
= ln

( |ξ |
|η|

)
− 2mλγ + o(m) 1 � |m| � min

{
m0,m

T
0

}
. (30)

By choosing a small enough, one has, thanks to (23), m0 + o(m0) � ν for any (η, ξ) ∈ Dγ,a,ν

(for instance, if c(m0)
x = bm−α

0 with b, α > 0, one may choose a = b e−3νλγ /2). The number
of (ηm, ξm) in the family Lx,η,ξ which fulfil the first condition in (29) is then equal to ν + o(ν).
If (η, ξ) ∈ Dγ,a,ν , the second condition |ηmξm| � a is fulfilled, by (21), for all m between
−mT

0 and m0, since it holds true for m = 0. Hence Dγ,a,ν ∩Lx,η,ξ has dx = ν + o(ν) elements.
Note that, as already stressed in section 5.2, the use of the asymptotic behaviour (30) for
1 � m0 � N is in fact only justified if one is concerned with the average value of d−1

x , taken
e.g. over all x on γ satisfying (9) with unstable and stable coordinates of �x in some intervals
[η, η + dη] and [ξ, ξ + dξ ] for an arbitrary n � N/2.

Let us define a new weighted probability density P̃ γ (η, ξ), in which the overcounting of
partner orbits is compensated by a weight d−1

xt
attributed to each event T xn+t ∈ d�xt ,η,ξ in

(26). By repeating the argument of the last subsection, one gets

P̃ erg
γ (η, ξ) =

N−1∑
t=0

1

dxt

(
N

2
− 2m0(xt , η)

)
1

|�| � N

2|�|ν
(

N +
4 ln |η|

λγ

)
. (31)

This density differs from (28) by a factor 1/ν.
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5.5. Action difference

The main point in determining the action difference δS = Sγ̃ − Sγ of the two orbits γ̃ and γ

is to observe the following geometrical property of the partner points in the small |�x| limit:
x, x̃, T xn and T x̃n form a parallelogram, with sides parallel to eu,s(x) (see figure 3(b)). It
may be tempting to argue that since, by (11), x̃ must be exponentially close to the unstable
manifold at x and the stable manifold at T xn, this property follows straightforwardly from
the continuity of the unstable and stable directions. However, some care must be taken here.
Indeed, the unstable and stable directions vary notably inside the small region between the
four N-periodic points x, x̃, T xn and T x̃n. This is due to the well-known intricate pattern built
by the unstable and stable manifolds in the vicinity of heteroclinic points. We proceed as
follows. Since T xn − x = ηeu(x) + ξes(x), it suffices to show that, to lowest order in �x,

x̃ − x = ηeu(x) T x̃n − x = ξes(x). (32)

The idea is to combine a stability analysis with the fact that eu(x) is nearly proportional to
eu(x̃). For indeed, the orbits γ and γ̃ look almost the same between times t = −(N − n) and
t = 0. Therefore, their unstable directions must be almost parallel at x and x̃. Similarly, the
TR of γ is very close to γ̃ between t = 0 and t = n, so that the stable directions at T xn and x̃

must be almost parallel, es(T xn) ∝ es(x̃).
To show (32), let us consider the unstable and stable coordinates (ψ, ζ ) of x − x̃,

x − x̃ = ψeu(x̃) + ζes(x̃). (33)

In view of (11), one may approximate M(n)
x by M

(n)
T x̃n

and M
(N−n)
T x by M

(N−n)
T x̃ if |�x| � 1. By

(12), one has, to lowest order in �x,

−(
1 − M

(N)
T x̃

)
T (x − x̃) = (

M(n)
x + T

)
�x. (34)

Here M
(N)
T x̃ = M

(n)
T x̃n

M
(N−n)
T x̃ is the stability matrix of the TR of γ̃ , with eigenvectors eu,s(T x̃)

and eigenvalues �±1
γ̃ such that |�γ̃ | = exp(Nλγ̃ ). By using (18), (20) and (33) and by

neglecting terms smaller by a factor exp(−Nλγ̃ ) or exp(−nλγ ) than the other terms, (34) can
be rewritten as

ζ�γ̃ eu(T x̃) − ψes(T x̃) = �(n)
x ηeu(xn) + ηes(T x). (35)

Hence, for n � 1 and (N − n) � 1, ζ � 0 and ψes(T x̃) � −ηes(T x). Replacing this
result into (33) and using (18), we arrive at the first equality in (32). We now argue that the
partner point of T x is x̃n. This is already clear in figure 2. This can be shown by invoking
the uniqueness of the partner point and by noting that the replacement of (x, x̃) by (T x, x̃n)

and of n by N − n in (11) leads to the exchange of the upper and lower lines, up to a TR. This
replacement gives, by (8), �(T x) = T �x = ξeu(T x) + ηes(T x). Then the second identity in
(32) is a consequence of the first one (with the above-mentioned replacement), to which one
applies the TR map T.

The action difference δS is determined to lowest order in �x in appendix B. It coincides
with the symplectic area of the parallelogram (x, x̃, T xn, T x̃n),

δS = (x̃ − x) ∧ (T x̃n − x) = ηξ (36)

where we have chosen LP as the unit of action. It is clear that δS is independent of the choice
of the pair of partner points (xm, x̃m), with −mT

0 � m � m0, as all these pairs (xm, x̃m)

correspond to the same orbit pair (γ, γ̃ ). Since ηm ξm is the only m-independent combination
of ηm and ξm of second order, the result (36) (with an unknown prefactor) was thus to be
expected.
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6. Leading off-diagonal correction to the form factor

6.1. The case of smooth maps

The form factor (6) is, introducing a dimensionless Planck constant h̄eff = h̄/(LP ),

K2(τ ) = 2

TH

1

δT

〈 ∑
T �Tγ �T +δT

A2
γ

∫
Dγ,a,ν

dη dξP̃ γ (η, ξ) exp

(
iηξ

h̄eff

)〉
E

. (37)

The variables η and ξ are integrated over the domain Dγ,a,ν defined in (29). As seen above, to
avoid overcounting the partner orbits, one must use the weighted density P̃ γ (η, ξ), related to
the density Pγ (η, ξ) defined in section 5.3 by a factor 1/ν. Only partner orbits constructed from
parts of γ separated by n � N/2 from their almost TR parts are taken into account in these near
head-on-return densities where N is the period of γ for the map φ. The other partner orbits,
corresponding to n � N/2, give the same contribution to the form factor (see section 5.3).
This contribution is taken into account by the factor 2 in (37).

The values of η and ξ contributing significantly to the integral (37) are of order
√

h̄eff .
Thanks to (23), n0 = 2m0 is thus of the order of the Ehrenfest time λ−1

γ | ln h̄eff|. For large
periods, one has N � T/〈ty〉 = τ |�|/(2πh̄eff), where

〈ty〉 =
∫

dµ(y)ty = (|�|LP)−1
∫

dy δ(H(y) − E) = (2πh̄)2 ρ(E)

|�|LP
(38)

is the mean first-return time. Therefore N � n0 � 1 for the physically relevant values of η in
the semiclassical limit. This has also the important consequence that, for small but finite h̄eff ,
the values of the time T = τTH for which the theory of Sieber and Richter works are limited
below by the Ehrenfest time 2T0 � 2〈ty〉n0, since N must be greater than 2n0.

We would now like to replace P̃ γ (η, ξ) by the ergodic result (31) inside the sum (37).
To do this, one needs that long periodic orbits are uniformly distributed in phase space, in the
sense explained in section 2 (see also [21]). We shall assume here that this is the case, and that
(31) can indeed be used under the sum over periodic orbits (37) in the limit T → ∞. A good
indication supporting this assumption is given by Bowen’s equidistribution theorem [15]: for
any continuous function f on �,∑
T �Tγ �T +δT

e−λ(F)
γ Tγ

∫ Tγ

0
dt f (xγ (t)) ∼

∑
T �Tγ �T +δT

Tγ e−λ(F)
γ Tγ

∫
�

dµE(y)f (y) (39)

as T → ∞. The integral on the left-hand side is taken along γ , and λ(F)
γ is the positive

Lyapunov exponent of γ for the Hamiltonian flow. The normalized microcanonical measure
dµE(y) = N δ(H(y) − E) dy on the right-hand side is the product of the invariant measure
µ and the Lebesgue measure along the orbit [12],∫

�

dµE(y)f (y) =
∫

�

dµ (y)F (y) F (y) ≡ 1

〈ty〉
∫ ty

0
dt f (y(t)). (40)

Orbits γ with multiple traversals rγ � 2 have a negligible contribution in (39) because
they are exponentially less numerous than the orbits with rγ = 1. One can thus replace
T 2

γ exp
(−λ(F)

γ Tγ

)
by the square amplitude A2

γ in (39),∑
T �Tγ �T +δT

A2
γ

N−1∑
n=0

F(xn) ∼
∑

T �Tγ �T +δT

NA2
γ

∫
dµ (y)F (y) T → ∞. (41)

To our knowledge, the sum rule (39) has been proved rigorously for a restricted class of
systems only, which includes uniformly hyperbolic systems [15] and the free motion on a
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Riemann surface with non-negative curvature [16]. Moreover, (41) cannot be applied directly
to our problem, because χ and m0 in (26) are discontinuous functions. We shall not pursue
here in trying to motivate the above-mentioned assumption. Instead, we shall go ahead in
determining K2(τ ). It would be interesting from a mathematical point of view to find general
conditions on the dynamics implying our assumption.

Replacing P̃ γ (η, ξ) by (31) into the integral

Iγ,a,ν =
∫
Dγ,a,ν

dη dξP̃ γ (η, ξ) exp

(
iηξ

h̄eff

)
(42)

one obtains

Iγ,a,ν = 2Nh̄eff

|�|ν

{∫ a e−νλγ /2

0

dη

η

(
N +

4 ln η

λγ

)
sin

(
η2 eνλγ

h̄eff

)

+
∫ a eνλγ /2

a e−νλγ /2

dη

η

(
N +

4 ln η

λγ

)
sin

(
a2

h̄eff

)
−

∫ a eνλγ /2

0

dη

η

(
N +

4 ln η

λγ

)
sin

(
η2 e−νλγ

h̄eff

)}
. (43)

The first and third integrals can be computed with the help of the changes of variables
η′ = η eνλγ /2 and η′ = η e−νλγ /2, respectively. This yields

Iγ,a,ν = T

πTH

{
−4

∫ a

0

dη′

η′ sin

(
η′2

h̄eff

)
+ λγ

(
N +

4 ln a

λγ

)
sin

(
a2

h̄eff

)}
. (44)

The first term inside the brackets is equal to −π + O(h̄eff a−2). The second one is a rapidly
oscillating sine and gives rise to higher order contributions in h̄eff after by the energy average.
Ignoring this oscillating term and the terms of order h̄eff/a

2, one gets Iγ,a,ν = −T/TH. It
should be stressed that this result is true only for very long periodic orbits which cover
uniformly the whole surface of section �. It has been argued above that, although such a
result is not true for all orbits γ , it can be used inside the sum over γ in (37). This gives

K2(τ ) = −2T

T 2
H

1

δT

∑
T �Tγ �T +δT

A2
γ (1 + O(h̄eff a−2)). (45)

We can now invoke the Hannay–Ozorio de Almeida sum rule [21],

1

δT

∑
T �Tγ �T +δT

A2
γ ∼ T T → ∞ (46)

to arrive at the announced result

K2(τ ) = −2τ 2 (47)

valid in the limit h̄ → 0, τ = T/(2πh̄ρ(E)) fixed.

6.2. The case of maps with singularities

We have ignored so far the fact that φ or its derivatives may be singular on a closed setS ⊂ � of
measure zero, as is typically the case in billiards [17]. As stressed above, the term λ−1

γ

∣∣ln c(m0)
x

∣∣
neglected in (23) can be as large as m0 if γ approaches S too closely between times 0 and
m0. In such a case, it may a priori also happen that no partner orbit is associated with the
family {xm} (see appendix A). The aim of this section is to show that, under assumptions
(iv) and (v) in section 2, the result (47) is still valid. Indeed, we shall see that (23) and the
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action difference (36) are correct for all x outside a small subset of �. This subset turns out
to be unimportant for K2(τ ) in view of its negligible measure. We will not discuss here the
diffractive corrections to the semiclassical expression (4), which should a priori also be taken
into account.

Let us first estimate the phase-space scale c(t)
x associated with the breakdown of the LA

introduced in section 4.1. By invoking the cocycle property M(t)
x = M(1)

xt−1
· · · M(1)

x1
M(1)

x0
of the

linearized map, it is easy to show that yt − xt is equal to

M(t)
x (y − x) +

1

2

t−1∑
m=0

2∑
α,β=1

M(t−1−m)
xm+1

(
∂2φ

∂xα∂xβ

)
xm

[
M(m)

x (y − x)
]β[

M(m)
x (y − x)

]α
+ · · ·

(48)

where M(0)
x is the identity matrix. The displacement yt − xt can be determined from the initial

displacement y − x by using the LA if the first term of the Taylor expansion (48) is much
greater than the subsequent (higher-order) terms. This is the case if |ym − xm| � c(t)

x for
0 � m � t , with

c(t)
x = b

t
min

m=0,...,t−1
min
r�2

min
α1,...,αr=1,2

∣∣∣∣∣
(

∂rφ

∂xα1 · · · ∂xαr

)
xm

∣∣∣∣∣
−1/(r−1)

. (49)

A small fixed number b � 1 controlling the error of the LA has been introduced. By
assumption (v) of section 2,

c(t)
x � b

t
C−1

2 min
m=0,...,t−1

d(xm,S)σ2 . (50)

Let δ > 0 and

B
(m0)
δ,S =

m0−1⋃
m=0

φ−m(Bδ,S) Bδ,S = {x ∈ �; |x − xS| � δ for some xS ∈ S}. (51)

By (iv), it is possible to choose δ such that the probability to find x in B
(m0)
δ,S ,

µ
(
B

(m0)
δ,S

)
�

m0−1∑
m=0

µ(Bδ,S) � C1 m0 δσ1 (52)

is very small. For instance, taking δ = (b/m0)
1/σ1 gives µ

(
B

(m0)
δ,S

)
� C1b � 1. Let us assume

that x is not in B
(m0)
δ,S , i.e., that the part of orbit between times 0 and m0 − 1 does not approach

a singularity closer than by a distance δ. Then, by (50),

c(m0)
x � C−1

2 bσ m−σ
0 (53)

with σ = 1 + σ2/σ1. Therefore,
∣∣ln c(m0)

x

∣∣ is at most of order ln m0 = O(ln | ln |η‖) as η → 0
and can be incorporated in the error term in (23). This reasoning shows that (23) can be used
except if the centre point x of the family {xm} is in B

(m0)
δ,S .

If x is in B
(m0)
δ,S , then m0 may have a different behaviour for |η| � 1 than that given

by (23). Anomalous behaviour due to singularities of the minimal time T0 to close a loop
has been indeed observed in numerical simulations for the desymmetrized diamond billiard
and the cardioid billiard in [11, 20]. These numerical results show that non-periodic orbits
satisfy (23), with λγ replaced by the mean positive Lyapunov exponent 〈λ〉, except those orbits
approaching a singularity too closely.

By using an expansion similar to (48), one can show that the relative errors made by
approximating M(n)

x by M
(n)
T x̃n

and M
(N−n)
T x by M

(N−n)
T x̃ are small in the small |�x| limit if x is
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not in B
(m0)
δ,S . The arguments of section 5.5 leading to the parallelogram (x, x̃, T xn, T x̃n) and

to the action difference (36) thus apply if x is not in B
(m0)
δ,S .

Let us now parallel the calculation of P̃ γ (η, ξ) in sections 5.3 and 5.4. Replacing the
time average over t in (31) by a phase-space average,

P̃ erg
γ (η, ξ) = N

∫
dµ(x)

1

dx

(
N

2
− 2m0(x, η)

)
1

|�|

= N

2|�|ν

{
N − 4m0

(
1 − µ

(
B

(m0)
δ,S

)) − 4
∫

B
(m0)

δ,S

dµ(x)m0(x, η) + o(m0)

} (54)

with m0 = −λ−1
γ ln |η| and δ = (b/m0)

1/σ1 . The integral in the second line gives a negligible

contribution, as m0(x, η) � m0 + o(m0) for any x (section 5) and µ
(
B

(m0)
δ,S

)
� C1b. Thus

P̃
erg
γ (η, ξ) is still given by (31), with an error of order b. As b can be chosen arbitrarily small

(in the limit h̄ → 0), it follows that K2(τ ) = −2τ 2 for Poincaré maps with singularities
satisfying hypotheses (iv) and (v) in section 2.

7. Conclusion

We have proposed a new method to calculate the contribution of the Sieber–Richter pairs
of periodic orbits to the semiclassical form factor in chaotic systems with TR symmetry.
Our basic assumption is the hyperbolicity of the classical dynamics. The method has been
illustrated for Hamiltonian systems with two degrees of freedom. By assuming furthermore
that long periodic orbits are uniformly distributed in phase space, the same leading off-diagonal
correction K2(τ ) = −2τ 2 as found in [1] for the Hadamard–Gutzwiller model has been
obtained. This result is system independent and coincides with the GOE prediction to second
order in the rescaled time τ . One advantage of our method is its applicability to hyperbolic
area-preserving maps, provided their invariant ergodic measure is the Lebesgue measure. This
should allow one to treat the case of periodically driven systems. Moreover, the method is
suitable to treat hyperbolic systems with more than two degrees of freedom f , for which the
relevant periodic orbits do not in general have self-intersections in configuration space. A
Sieber–Richter pair of orbits (γ, γ̃ ) is then parametrized by f − 1 unstable and f − 1 stable
coordinates (η(1), . . . , η(f −1)) and (ξ (1), . . . , ξ (f −1)). The time m0 of breakdown of the linear
approximation is given by the minimum of −ln|η(i)|/λ(i)

γ over all i = 1, . . . , f −1, where λ(i)
γ

is the ith positive Lyapunov exponent of γ . For Hamiltonian systems, the action difference
δS = Sγ̃ − Sγ is given by the sum

∑
i η

(i)ξ (i). It is γ -independent, whereas δS depends on
the stability exponents of γ in the approach of Sieber and Richter [1]. The evaluation of the
integral (37) is more involved for f > 2 than for f = 2 and will be the subject of future work.
A second advantage of the phase-space approach is that it is canonically invariant and thus
immediately applicable to systems with non-conventional time-reversal symmetries. A third
advantage is, in our opinion, that orbits with crossings and avoided crossings in configuration
space are treated here on equal footing.

A further understanding of the universality of spectral fluctuations in classically chaotic
systems may be gained by studying the contributions of the correlations between orbits with
several pairs of almost time-reverse parts (‘multi-loop orbits’) and their associated ‘higher-
order’ partners. These contributions are expected to be of higher order in τ . A first step in
this direction has been done recently for quantum graphs [22]. The phase-space approach
presented in this work might be useful to tackle this problem. One would like to know if the
RMT result (2) can be reproduced in the semiclassical limit to all orders in τ by looking at
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correlations between these partner orbits only, or if other types of correlations must be taken
into account. An alternative way to study this problem is to investigate the impact of the
partner orbits on the weighted action correlation function defined and studied in [8, 23].

The periodic-orbit correlations discussed in this work have also remarkable consequences
for transport in mesoscopic devices in the ballistic regime: they lead to weak-localization
corrections to the conductance in agreement with RMT [24]. More generally, they should be
of importance in any n-point correlation function of a clean chaotic system with time-reversal
symmetry.
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Appendix A. Existence and uniqueness of a partner orbit

We present in this appendix a general method, based on a Taylor expansion, to prove the
existence and the uniqueness of the partner orbit.

Let γ be an orbit of period N with two almost TR parts separated by n < N . Let x be
the centre point of the family

{
xm;−mT

0 � m � m0
}
. The partner orbit γ̃ is defined by an

N-periodic point x̃ in the vicinity of x, called the partner point of x. This point fulfils the
property (11), i.e., it is such that (i) |T x̃n−t − xt | � 1 between times t = 0 and t = n, and
(ii) |(T x̃)t − (T x)t | � 1 between t = 0 and t = N − n. The small displacement δx = x̃ − x

is obtained as a power series in �x = T xn − x,

δxα = (x̃ − x)α =
∞∑

r=1

[
A(n,r)

x

]α

β1···βr
�xβ1 · · · �xβr . (A1)

We use here the summation convention for the Greek indices β1, . . . , βr = 1, 2, referring
to the q- and p-coordinates in � (x1 = q, x2 = p). Let us stress that it is necessary to go
beyond the linear approximation (term r = 1 in the series (A1)) to establish the existence of
the partner orbit. Indeed, one must show that x̃ is exactly N-periodic, i.e., that x̃N = x̃ to all
orders in �x.

Let us assume that the map φ is smooth along γ and its TR. We get the coefficients A(n,r)
x

in (A1) by expanding the final displacements as Taylor series in the initial ones for (i) the part
of γ between t = 0 and t = n, and (ii) the part of the TR of γ between t = 0 and t = N − n.
The identity x̃N = x̃ is then used to match the two results. More precisely, the computation is
performed in four steps: (1) expand (T x̃)N−n − (T x)N−n in powers of T x̃ − T x; (2) replace
δx by (A1) into this result; (3) expand T x̃ − xn in powers of T x̃n − x and replace the series
obtained in the previous step into this expansion and (4) identify each power of �x. These
manipulations lead for the linear order r = 1 to

D(n)
x T A(n,1)

x = M(n)
x + T (A2)



7288 D Spehner

with D(n)
x = 1 − M(n)

x M
(N−n)
T x . Let us denote the partial derivatives (∂rφt/∂xβ1 · · · ∂xβr )α by[

M(t,r)
x

]α

β1...βr
, with t, r � 1. For any 2×2 matrix C, we set

[
CA(n,r)

x

]ρ

β1···,βr
= Cρ

α

[
A(n,r)

x

]α

β1···βr
.

The higher-order tensors A(n,r)
x , r � 2, are obtained recursively through the formula[

D(n)
x T A(n,r)

x

]ρ

β1···βr
=

r∑
s=2

[
B(n,s)

x

]ρ

α1···αs

∑
r1+···+rs=r,ri�1

[
T A(n,r1)

x

]α1

β1···βr1
· · · [T A(n,rs )

x

]αs

βr−rs +1···βr

(A3)

with[
B(n,s)

x

]ρ

α1···αs
=

s∑
l=1

∑
s1+···+sl=s,si�1

1

l!s1! · · · sl!

[
M(n,l)

x

]ρ

δ1···δl

[
M

(N−n,s1)
T x

]δ1

α1···αs1
· · ·

× [
M

(N−n,sl )
T x

]δl

αs−sl +1···αs
. (A4)

We have assumed for simplicity that the TR map T on � is linear.
It is worth noting that all tensors A(n,r)

x are obtained by inverting the same matrix D(n)
x . If

det D(n)
x �= 0, then (A2) reduces to (12) and all A(n,r)

x are uniquely defined. Since 1−D(n)
x tends

to the stability matrix M(N)
xn

= M(n)
x M(N−n)

xn
of the unstable orbit γ as |�x| → 0, det D(n)

x �= 0
for sufficiently small |�x|. This argument, however, does not suffice to show that D(n)

x is
invertible for the physically relevant values of |�x|, which are of order

√
2πh̄eff = √

τ |�|/N
(section 6.1). Another open mathematical problem concerns the convergence of the series
(A1). It can be expected that (A1) diverges when the orbit γ approaches too closely a
singularity xS ∈ S between times −mT

0 and m0. Provided that D(n)
x is invertible and the series

(A1) converges, the N-periodic point x̃ exists and is unique.
The above-mentioned construction is not restricted to the centre point x in the family{

xm;−mT
0 � m � m0

}
. Taking another point xm in this family, one can as well construct its

partner point (̃xm), by replacing x by xm, n by (n − 2m) and �x by �xm in (A1). Let us show
that, to linear order in �x, (̃xm) is the m-fold iterate x̃m of x̃. To lowest order in �x, one finds

(̃xm) − xm = A(n−2m,1)
xm

M(m)
x �x = M

(m)
x̃ A(n,1)

x �x = x̃m − xm. (A5)

The second equality is obtained by approximating 1 − D(n)
x and M(m)

xn
by M

(N)
T x̃ and by M

(m)
T x̃ ,

respectively (see section 5.5), by using the cocycle property of the linearized maps, and by
invoking the TR symmetry, which implies M

(m)
Ty T = T

(
M(m)

y−m

)−1
. It follows that (̃xm) = x̃m

belongs to the same partner orbit γ̃ as x̃.
To conclude, we have given strong arguments in support of the existence of a unique

partner orbit γ̃ associated with the family
{
xm;−mT

0 � m � m0
}

if |�x| � 1 and the points
in this family do not approach too closely a singularity of φ.

Appendix B. Action difference

The action difference δS = Sγ̃ − Sγ between the two partner orbits γ̃ and γ can be computed
by considering separately the contributions δSR and δSL of the right loop (part of γ between
q0 and qn) and of the left loop (part between qn and qN ) in figure 2. δSR and δSL can be
evaluated by means of the formula

S(q̃i , q̃f , E) − S(qi , qf , E) = (
pf + 1

2δpf

) · δqf − (
pi + 1

2δpi

) · δqi + O(|δx(t)|3) (B1)

which gives the difference of action of two nearby trajectories q(t) and q̃(t) = q(t) + δq(t)

of energy E, initial positions qi �= q̃i and final positions qf �= q̃f . This formula is also valid
for billiards. It is easily obtained by expanding the action difference up to second order in δqi
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and δqf , and by using ∂S/∂qf = pf and ∂S/∂qi = −pi . In billiards, the momenta on the

two trajectories have jumps σ = p(+)
refl − p(−)

refl and σ̃ = p̃(+)
refl − p̃(−)

refl at each reflection on the
boundary ∂� (the sign −/+ refers to the values just prior/after the reflection). At first glance,
a new term δSrefl = −(σ̃ + σ) · δqrefl/2 should then be added to (B1) for each reflection point
qrefl on the unperturbed trajectory (such an additional term arises when writing the action
difference as a sum of two contributions, corresponding to the two segments between qi and
qrefl and between qrefl and qf ). However, δSrefl is of order |δx(t)|3. Actually,

δqrefl = δqT +
δq2

2
κN + O(δq3) = δqT̃ − δq2

2
κN + O(δq3) (B2)

where δq is the arc length on ∂� between the two nearby reflection points qrefl and q̃refl, κ is
the curvature and T ,N are the unit vectors tangent and normal to ∂� at qrefl (see figure 1).
The tangent vector T̃ = T + δqκN + O(δq2) at q̃refl appears in the last expression. Invoking
the fact that σ and σ̃ are perpendicular to the boundary, one gets δSrefl = O(δq3).

Let us denote by x, x̃,xn and x̃n the points on the surface of section � with respective
(q, p)-coordinates x, x̃, xn and x̃n. In the case of a billiard �, these points are by definition
associated with the values of the momenta just after a reflection on ∂�. The corresponding
points just before a reflection are denoted by the same letters with an added upper subscript
(−). The momentum jumps are denoted by σ = p − p(−), with corresponding notation for
p̃,pn and p̃n. The action differences δSR and δSL are obtained by applying (B1) with

xi = T�x(−)
n x̃i = x̃ xf = T�x x̃f = x̃(−)

n

xi = xn x̃i = x̃n xf = x(−) x̃f = x̃(−)

respectively. This yields

2δSR = −(2p − p̃(−)
n − p) · (q̃n − q) − (−2p(−)

n + p̃ + p(−)
n ) · (q̃ − qn) (B3)

2δSL = (2p(−) + p̃(−) − p(−)) · (q̃ − q) − (2pn + p̃n − pn) · (q̃n − qn). (B4)

A calculation without difficulties leads to

2δS = δSR + δSL = (x̃ − x) ∧ (T�x̃n − x) + (T�x̃n − T�xn) ∧ (x̃ − T�xn)

− (σ̃ + σ) · (q̃ − q) − σ̃n · (q̃n − q) − σn · (q̃ − qn) + O(�x3). (B5)

The �-symplectic product (y − x) ∧ (z − x) of two infinitesimal displacements (y − x) and
(z − x) tangent to � at x, with coordinates (y − x) and (z − x), reduces to the �-symplectic
product (y−x)∧(z−x) given by (3) (a choice of (q, p)-coordinates in � with these properties
is always possible, see [4]). Hence letters in bold font can be replaced by letters in normal
font. The first term in the second line in (B5) is of third order in �x by the above argument.
One finds

δS = 1
2 (x̃ − x) ∧ (T x̃n − x) + 1

2 (T x̃n − T xn) ∧ (x̃ − T xn)

− 1
2 ((q̃ − qn)

2 − (q − q̃n)
2)κnpn · N n + O(�x3) (B6)

where κn and Nn are the curvature and the normal vector of ∂� at the point qn of arc
length qn. Since x, x̃, T xn and T x̃n form a parallelogram to lowest order (see section 5.5),
x̃ − T xn � x − T x̃n and the last term is of higher order in �x. Therefore, (B6) reduces to the
canonical invariant expression (36). Note that this result holds for any dimension of the phase
space �.
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