Triangulations of complex projective spaces.

Francis Sergeraert

June 2009

In memory of Mirian Andrés

Mirian worked on a subject which, in the third millenium, could seem exhausted, namely the Eilenberg-Zilber theorem. More than sixty years after its discovery, various computer experiments show on the contrary we are far from having understood the deep nature of this result. For example the profiler accounts of the Kenzo program instruct us most of its runtime is devoted to using the Eilenberg-Zilber theorem, more precisely, the strong form describing a reduction $C_*(X \times Y) \Rightarrow C_*(X) \otimes C_*(Y)$: this is nothing but the initial inevitable bridge between Topology and Algebra. The current implementation, combining several dirty tricks in a rather weird way, though better than the first ones, cannot be the right one. Bearing in mind the ideal goal of a proved version of the Kenzo program, any work reconsidering the various aspects of the Eilenberg-Zilber theorem is welcome; and forcing oneself to obtain a certified proof of such a fundamental theorem is one of the best ways to discover precious hidden properties in this reduction. We hope other people of Mirian’s team at Logroño will continue her beautiful work, so tragically stopped.

1 Introduction.

The simple Eilenberg-Zilber theorem is nothing but a preferred description of a triangulation of the product of two simplices $\Delta^p \times \Delta^q$. In Combinatorial Topology, simplicial sets are more flexible than simplicial complexes, with this amusing terminological paradox: the definition of a simplicial set is more complex than the definition of a simplicial... complex.

The nice paper [5] obtains and describes the unique minimal triangulation of $P^2(\mathbb{C})$ as a simplicial complex with $(9, 36, 84, 90, 36)$ simplices, that is, 9 vertices, 36 edges, 84 triangles, 90 tetrahedrons and 36 4-simplices. The Kenzo program obtains here a triangulation of $P^2(\mathbb{C})$ with only $(1, 0, 2, 3, 3)$ simplices; this does not contradict the previous claim, for the last model is a simplicial set, not a simplicial complex: for example it is legal in a simplicial set to attach the boundary of

*Totally supported by Ministerio de Educación y Ciencia, Project MTM2006-06513.
a triangle to a point to obtain a \((1, 0, 1)\) “triangulation” of the 2-sphere \(S^2\) as a simplicial set, while, as a simplicial complex, the minimal triangulation of \(S^2\) needs \((4, 6, 4)\) simplices. The main interest of the Kühnel triangulation of \(P^2(\mathbb{C})\) is not really in the triangulation itself but in the remarkable symmetry properties that are used and described in it, a subject not at all considered in our triangulation as a simplicial set.

Another work around this subject must be quoted. In [1, Exemple 1.19], Clemens Berger obtains as a consequence of his effective version of the Hurewicz theorem a triangulation of the Hopf map \(S^3 \to S^2\). The mapping cone of this map again is our \(P^2(\mathbb{C})\), which produces with this method a \((1, 0, 5, 9, 6)\)-triangulation.

We do not know any use of our triangulation. The matter is just to highlight how Effective Homology [7] is a tool which can be used in some unexpected situations. The common advertisement about effective homology underlines it is so possible to process objects not of finite type such as huge chain complexes or simplicial sets, and to compute the corresponding homology or homotopy groups, when they are guaranteed being of finite type by Jean-Pierre Serre [10]. This short paper is devoted to an amusing side effect: effective homology can also be used to obtain finite geometrical objects by a process going through infinite geometrical objects. It seems this method can be used for arbitrary complex projective sets. For example the Kenzo program obtains in a few seconds a triangulation of \(P^5(\mathbb{C})\) with \((1, 0, 5, 40, 271, 1197, 3381, 5985, 6405, 3780, 945)\) simplices. More precisely, the object so obtained has the homotopy type of \(P^5(\mathbb{C})\) and it is an open – and interesting – question to determine whether it is homeomorphic to \(P^5(\mathbb{C})\).

This could recall Thomas Chapman’s result about simple homotopy types, see [3, 11]: Chapman proved Whitehead’s conjecture about the simple homotopy type of homeomorphisms between finite CW-complexes through an essential use of Hilbert cube manifolds, some exotic manifolds of infinite dimension. The similarity is clear but there is also a difference: Chapman’s result has a very general scope, valid for every finite CW-complex while which is explained here on the contrary is rather limited: only the first complex projective spaces are currently covered.

The main ingredients of our construction:

- A triangulation of \(P^n\mathbb{C}\) defines also a \((2n)\)-cycle, the homology class of which is the canonical generator of \(H_{2n}(P^n\mathbb{C}, \mathbb{Z})\).
- The inclusion \(P^n\mathbb{C} \hookrightarrow P^\infty\mathbb{C}\) induces an isomorphism between the respective \(H_{2n}\) groups.
- The infinite projective space \(P^\infty\mathbb{C}\) and the Eilenberg-MacLane space \(K(\mathbb{Z}, 2)\), in particular its canonical minimal Kan model, have the same homotopy type.
- The Kenzo program can compute the effective homology of \(K(\mathbb{Z}, 2)\), in particular a generator of \(H_{2n}K(\mathbb{Z}, 2)\) as a simplicial cycle.

Combining these facts gives easily the desired triangulations.
2 The Eilenberg-MacLane space $K(\mathbb{Z}, 2)$.

The projective spaces $P^n\mathbb{C}$ can be organized as an inductive system

$$* = P^0\mathbb{C} \hookrightarrow P^1\mathbb{C} \hookrightarrow \ldots \hookrightarrow P^n\mathbb{C} \hookrightarrow P^{n+1}\mathbb{C} \hookrightarrow \ldots \hookrightarrow P^\infty\mathbb{C}$$

In particular, the limit of this system $P^\infty\mathbb{C}$ is the most common model for the Eilenberg-MacLane space $K(\mathbb{Z}, 2)$. The Kan simplicial model for this space is obtained in the Kenzo program by a process totally independent from the projective spaces, and appropriately using this simplicial model, we obtain triangulations for the projective spaces by a rather strange and lucky process.

We recommend the small book [6] as an ideal reference for the simplicial techniques which are used below, and also for the notions of principal fibration and classifying space. The introductory text [9] could also be useful.

2.1 Complex projective spaces.

The complex n-vector spaces can be considered as defining an inductive system:

$$\mathbb{C} \hookrightarrow \mathbb{C}^2 \hookrightarrow \ldots \hookrightarrow \mathbb{C}^n \hookrightarrow \mathbb{C}^{n+1} \hookrightarrow \ldots \hookrightarrow \mathbb{C}^{(N)}$$

where the last space is made of the infinite sequence of complex numbers, all null except a finite number of them. The inclusion $\mathbb{C}^n \hookrightarrow \mathbb{C}^{n+1}$ adds a null component at the end of a vector.

This gives an inductive system of unit spheres:

$$S^1 \hookrightarrow S^3 \hookrightarrow \ldots \hookrightarrow S^{2n-1} \hookrightarrow S^{2n+1} \hookrightarrow \ldots \hookrightarrow S^\infty$$

The diagonal action $S^1 \times S^{2n-1} \hookrightarrow S^{2n-1} : (s, (z_1, \ldots, z_n)) \mapsto (sz_1, \ldots, sz_n)$ of the unit circle over these spheres is compatible with the inductive structure, so that the corresponding homogeneous spaces $S^{2n-1}/S^1 =: P^{n-1}\mathbb{C}$ are also organized as an inductive system:

$$* \hookrightarrow P^1\mathbb{C} \hookrightarrow P^2\mathbb{C} \hookrightarrow \ldots \hookrightarrow \ldots \hookrightarrow P^{n-1}\mathbb{C} \hookrightarrow P^n\mathbb{C} \hookrightarrow \ldots \hookrightarrow P^\infty\mathbb{C}$$

2.2 $P^\infty\mathbb{C}$ as a classifying space.

The action of the topological multiplicative group S^1 over the infinite sphere S^∞ is free, that is, $sz = z$ implies $s = 1$, and defines a principal fibration:

$$S^1 \hookrightarrow S^\infty \longrightarrow P^\infty\mathbb{C}$$

The infinite sphere S^∞ is contractible. Let us define a contracting homotopy $h : I \times S^\infty \to S^\infty$. The shift operator $\sigma : S^\infty \to S^\infty$ is defined as $\sigma(z_0, z_1, \ldots) = (0, z_0, z_1, \ldots)$. If two points z and z' of S^∞ are not opposite, a geodesic $\gamma_{z,z'} : I \to S^\infty$ is defined connecting both points; it is the radial projection of the segment.
joining z and z'. Furthermore the value $\gamma_{z,z'}(t)$ depends continuously on z, z' and t. Finally let $P = (1, 0, 0, \ldots)$ be the “north pole” of S^∞.

In particular a point z is never opposite to its shift $\sigma(z)$, and a shift $\sigma(z)$, being on the “equator” $z_0 = 0$, cannot be opposite to the north pole P.

Then we can define $h(t, z)$ as follows:

$$
\begin{align*}
 h(t, z) &= \gamma_{z, \sigma(z)}(2t) & \text{if } 0 \leq t \leq 1/2 \\
 &= \gamma_{\sigma(z), P}(2t - 1) & \text{if } 1/2 \leq t \leq 1
\end{align*}
$$

It so happens the shift σ is a homeomorphism between the whole sphere S^∞ and the equator $z_0 = 0$, a strange world.

The total space of our principal fibration is contractible, so that this fibration is universal and the base space $P^\infty C$ can be qualified as the classifying space of the group S^1. Most often, this is denoted by $P^\infty C = BS^1$.

The topological group S^1 is not discrete, but it is also a classifying space, namely the classifying space of the discrete group \mathbb{Z}. This comes from the canonical action of $\mathbb{Z} \times \mathbb{R} \to \mathbb{R} : (n, x) \mapsto n + x$. It is again a free action, the total space \mathbb{R} is again contractible and the quotient \mathbb{R} / \mathbb{Z} is nothing but the circle S^1. So that

$$S^1 = B\mathbb{Z} \text{ and } P^\infty C = B^2 \mathbb{Z}.$$

2.3 $P^\infty C$ as an Eilenberg-MacLane space.

Iterating the classifying space construction is possible for commutative groups. In particular, if G is a discrete commutative group, the Eilenberg-MacLane space $K(G, n)$ is defined as the iterated classifying space $K(G, n) := B^n G$.

If G is a topological group, the homotopy groups of BG are the same as those of G, shifted: $\pi_n G = \pi_{n+1} BG$; furthermore, $\pi_0 BG = 0$, that is, the classifying space BG is connected.

For a discrete group G, all the homotopy groups are null except $\pi_0 G = G$, using here the standard convention that $\pi_0 X$ is the set of the (arc-) connected components of X, which is also a group when G is a topological group. So that, if G is a discrete group, all the homotopy groups of $B^n G$ are null except $\pi_n B^n G = G$. In fact this defines unambiguously the homotopy type of $B^n G$, then often denoted by $K(G, n)$.

In particular \mathbb{Z} is a commutative discrete group, so that $\mathbb{Z} = K(\mathbb{Z}, 0)$, $S^1 = K(\mathbb{Z}, 1)$ and $P^\infty C = K(\mathbb{Z}, 2)$.

2.4 $K(\mathbb{Z}, 2)$ in the Kenzo environment.

The Kenzo program has a predefined function $k-z$ constructing the Kan minimal model of $K(\mathbb{Z}, n)$ for $n > 0$.

4
The Lisp prompt is the greater character ‘>’ and the user then enters a Lisp statement to be evaluated, here the statement (setf kz2 (k-z 2)). On this display, the end of the Lisp statement is marked by the maltese character ‘✠’, in fact not visible on the user’s screen; the end of the Lisp statement is automatically detected by the Lisp interpreter, which then evaluates the given statement and returns the result of the evaluation, here the Kenzo object #13, which happens to be an abelian simplicial group. Only a simple external reference to this object is displayed, the internal object, a package of rather sophisticated algorithms, cannot be properly displayed.

The evaluated statement here also assigns the returned object to the symbol kz2, arbitrarily chosen by the user; this symbol can be used later to refer to our model of $K(\mathbb{Z}, 2)$.

What about the origin of kz2?

> (orgn kz2) ✠
(CLASSIFYING-SPACE [K1 Abelian-Simplicial-Group])

It is the classifying-space of the Kenzo object #1, which is also an abelian simplicial group, but what about the origin of the latter?

> (orgn (k 1)) ✠
(K-Z-1)

2.4.1 $K(\mathbb{Z}, 1)$.

As explained in the previous section, $K(\mathbb{Z}, 2)$ can be obtained from a general constructor, the classifying-space constructor $G \mapsto BG$, valid in the Kenzo environment if G is a connected simplicial group, not necessarily abelian; but if G is abelian, BG is also an abelian simplicial group, so that the construction can be iterated. This recursive process must therefore start from a connected simplicial group. The starting point is $K(\mathbb{Z}, 1)$ constructed by Kenzo “from scratch”, because of the specific well known properties of the minimal Kan model of $K(\mathbb{Z}, 1)$.

For convenient further references, let us assign $K(\mathbb{Z}, 1)$, that is, the Kenzo object #1, to the symbol kz1.

> (setf kz1 (k 1)) ✠
[K1 Abelian-Simplicial-Group]

The most important property of kz1 is its effective homology.
Let us examine the mysterious object \(K_{28} \) and its origin:

It is the chain complex deduced from the ordinary model of the circle, one vertex and one (loop) edge starting from and ending at the unique vertex. Let us compare the basis for example in dimension 1 of \(\text{kz1} \) and the circle \(k_{28} \).

In the Kenzo environment, the notion of basis has different meanings depending on the context. For a simplicial set, the basis in dimension 1 is the set of the non-degenerate 1-simplices. It happens the 1-basis of \(\text{kz1} \) is \(\mathbb{Z}_1^* = \mathbb{Z}_* \), the non-null integers, it is an infinite object which cannot be displayed on a finite (!) machine; such an object in the Kenzo environment is called locally effective, which explains the error which is obtained and its descriptor; see [7, 8] for the meaning and the reason of the qualifiers effective and locally effective. While the (algebraic) basis of the chain group of dimension 1 of the chain complex \(k_{28} \) is made of a unique object, the symbol \(S_1 \), corresponding to the unique 1-simplex of the ordinary simplicial model of a circle.

The simplicial model of \(K(\mathbb{Z}, 1) \) here located through the symbol \(\text{kz1} \) is a simplicial set where the \(n \)-basis \(K(\mathbb{Z}, 1)_n \) is \(\mathbb{Z}_n^* \), the sequences of length \(n \) made of non-null integers. The associated chain complex is not of finite type, so that its homology groups cannot be elementarily computed. But the homotopy type is well defined by the characteristic property: all the homotopy groups are null except \(\pi_1 = \mathbb{Z} \), a property satisfied as well by the circle, so that the homology groups of our \(K(\mathbb{Z}, 1) \) are certainly isomorphic to those of the circle, namely \((\mathbb{Z}, \mathbb{Z}, 0, 0, \ldots)\).

Now the effective homology of \(K(\mathbb{Z}, 1) \), obtained before through the operator \text{efhm}, is a reduction connecting \(C_*(\text{kz1}) \), the chain complex associated to the simplicial group \(K(\mathbb{Z}, 1) \), and the chain complex \(k_{28} \).

As already explained, the homology groups of \(C_*(\text{kz1}) \) cannot be directly computed: this chain complex is not of finite type. But the Kenzo program has recorded the reduction over \(k_{28} \), so that if we ask for example for the first homology group of \(K(\mathbb{Z}, 1) \):
in fact Kenzo uses the chain complex k_{28} to obtain the requested homology group, here $H_1 K(Z, 1) = \mathbb{Z}$.

2.4.2 $K(Z, 2)$.

The next Eilenberg-MacLane space $K(Z, 2)$ is the classifying space of $K(Z, 1)$.

In this case, Kenzo remembers this space has already been constructed, and returns it. It is also an object with effective homology.

The situation is more complex. The effective homology is the chain equivalence k_{153} connecting the chain complex of $K(Z, 2)$, denoted also by k_{13} to the effective chain complex k_{139} through an intermediate chain complex k_{143} not of finite type either.

You see only the 4-basis of k_{139} is returned, made of a unique element, the bar generator which would be traditionally denoted by $[S_1 | S_1]$. It happens the chain complex k_{139} is the bar construction of k_1, see [2] for this notion which allowed Henri Cartan to completely solve the problem of computing the (ordinary) homology of $K(G, n)$ for G an abelian group of finite type.

This algebraic chain equivalence k_{153} will be the main ingredient allowing us to geometrically triangulate the complex projective spaces.

1Such a situation is possible because of the rich class system of Common Lisp; here the class abelian-simplicial-group is a subclass of the class chain-complex.
3 Using the effective homology of $K(\mathbb{Z}, 2)$.

At this time of our Kenzo environment, no projective space is “visible”.

3.1 $H_* P^\infty \mathbb{C} = H_* K(\mathbb{Z}, 2)$.

Let us examine a little the nature of $H_* K(\mathbb{Z}, 2)$. It depends only on the homotopy type, so that the structure of this homology can be also studied by an examination of the cellular presentation:

\[* = P^0 \mathbb{C} \hookrightarrow P^1 \mathbb{C} \hookrightarrow \cdots \hookrightarrow P^n \mathbb{C} \hookrightarrow P^{n+1} \mathbb{C} \hookrightarrow \cdots \leftarrow P^\infty \mathbb{C} \]

In fact $P^n \mathbb{C}$ is obtained from $P^{n-1} \mathbb{C}$ by attaching a disk D^{2n} by the projection map $S^{2n-1} \rightarrow P^{n-1} \mathbb{C}$. For example $D^4 = \{(z_0, z_1) \in \mathbb{C}^2 : |z_0|^2 + |z_1|^2 \leq 1\}$ and a surjective map $D^4 \rightarrow P^2 \mathbb{C}$ is defined sending (z_0, z_1) to the projective class of $(z_0, z_1, \sqrt{1 - |z_0|^2 - |z_1|^2})$. The restriction of this map to the open disk $|z_0|^2 + |z_1|^2 < 1$ is a homeomorphism $(D^4 - S^3) \rightarrow (P^2 \mathbb{C} - P^1 \mathbb{C})$ while the restriction to the boundary S^3 is the projective projection $S^3 \rightarrow P^1 \mathbb{C}$; so that $P^2 \mathbb{C}$ is obtained by attaching a D^4 to $P^1 \mathbb{C}$ through this projection.

The cellular complex allowing one to compute the homology groups of $P^\infty \mathbb{C}$ is therefore very simple: only one generator in the even positive degrees, and the \mathbb{Z}-homology is also made of one copy of \mathbb{Z} for every even positive degree. The projective space $P^n \mathbb{C}$ is also an oriented $2n$-manifold, and the canonical orientation defines also the fundamental $2n$-homology class as canonically associated to any triangulation.

3.2 Is some converse possible?

In other words, would it be possible to obtain a triangulated projective space $P^n \mathbb{C}$ from some homology class produced by a different process? The answer is positive and rather amazing.

The simplicial model kz2 produced by the Kenzo program, the (essentially unique) minimal Kan simplicial model of $K(\mathbb{Z}, 2)$, has the same homotopy type as $P^\infty \mathbb{C}$. The Kenzo program also knows the homology groups of this space, certainly isomorphic to those described in the previous section: exactly one copy of \mathbb{Z} for every even degree. But because the Kenzo program computes the effective homology of this space, it can also produce explicit cycles $z_{2n} \in Z_{2n} K(\mathbb{Z}, 2)$ whose corresponding homology classes are the generators of the homology.

Now we can try the following game: the cycle z_{2n} so obtained should have some “similarity” with $P^n \mathbb{C}$, the fundamental homology class of which also represents the canonical generator of $H_{2n} P^\infty \mathbb{C}$. This cycle z_{2n} is a \mathbb{Z}-linear combination of $2n$-simplices, and these simplices must fit to each other along their boundaries rather nicely, for this combination of simplices is a cycle. We can then consider the smallest simplicial subset $Z_{2n} \subset K(\mathbb{Z}, 2)$ containing the cycle z_{2n} and, who knows,
with some luck, maybe Z_{2n} is the triangulation of an object which could be $P^n\mathbb{C}$? Yes it is, in fact it is the triangulation of a simplicial set having the homotopy type of $P^n\mathbb{C}$, and Kenzo proves it. Of course we would prefer the simplicial set so obtained is homeomorphic to $P^n\mathbb{C}$, but this is an open problem.

3.3 Triangulating the homotopy type of $P^2\mathbb{C}$.

The fundamental homology class of $P^2\mathbb{C}$ is a generator of $H_4P^\infty\mathbb{C}$, and it is therefore interesting to consider the fourth homology group $H_4(K(\mathbb{Z}, 2), \mathbb{Z})$.

```
> (homology kz2 4) ✗
Homology in dimension 4 :
Component Z
```

As expected, we obtain $H_4(K(\mathbb{Z}, 2), \mathbb{Z}) = \mathbb{Z}$. Let us recall the effective homology of $kz2$ and assign it to the symbol efhm-kz2:

```
> (setf efhm-kz2 (efhm kz2)) ✗
[K153 Homotopy-Equivalence K13 <= K143 => K139]
```

where the chain complex #139 is of finite type; then a variant of homology can compute the same homology and a list of generators for the homology group:

```
> (chcm-homology-gen (k 139) 4) ✗
Homology in dimension 4 :
Component Z

---{CMBN 4}---------------------------------------------
<1 * <<Abar[2 S1][2 S1]>>>
---{CMBN 4}---------------------------------------------

Only one generator, already mentioned Section 2.4.2, in fact also the generator of the chain group $k139_4$. We extract it from this generator list in fact made of this unique generator, and assign it to the symbol g:

```
> (setf g (first *)) ✗
---{CMBN 4}---
<1 * <<Abar[2 S1][2 S1]>>>
---{CMBN 4}---

Now we can use the equivalence efhm-kz2:

$$C_*K(\mathbb{Z}, 2) = C_*(kz2) \iff k143 \iff k139$$

to obtain the corresponding cycle in $C_*K(\mathbb{Z}, 2)$:
We obtain a \mathbb{Z}-linear combination of three 4-simplices of $K(\mathbb{Z}, 2)$. The partial statement \((\text{rg efhm-kz2 } g)\) computes the image of \(g\) in the central chain complex \(k143\) and \((\text{lf efhm-kz2 } \ldots)\) computes the image of the previous result in the left-hand chain complex \(C_4(K(\mathbb{Z}, 2))\). The obtained cycle should have some similarity with \(P^2\mathbb{C}\). Let us verify it is really a cycle!

A statement \((? \text{ kz2 } \text{ xxx})\) computes the boundary of \(\text{xxx}\) in the chain complex associated to \(\text{kz2}\).

The components of the cycle \(z_4\) can be used to construct a simplicial set \(Z_4\), more precisely a simplicial subset of \(\text{kz2}\). The last simplicial set is not of finite type, it is only locally effective, but nevertheless this allows a user to undertake any “local” work, for example to compute all the faces, faces of faces, and so on, of some simplices, to construct a finite simplicial set from the initial 4-simplices. The Kenzo function \(\text{gmsms-subsmst} (= \text{geometrical-simplices-to-subsimplicial-set})\) does this work and returns two results, a high level Lisp technicality. Only the first one is displayed. But the technical Lisp function \(\text{multiple-value-setq}\) assigns both values respectively to two symbols, here \(\text{ssz4}\) and \(\text{incl}\).

The first value is simply the simplicial set constructed from the cycle, assigned to the symbol \(\text{ssz4}\) and displayed. This simplicial set \(Z_4\) is a simplicial subset of \(K(\mathbb{Z}, 2)\) and we will see later the canonical inclusion \(Z_4 \hookrightarrow K(\mathbb{Z}, 2)\) will play an essential role in our study; this inclusion is also computed by the \(\text{gmsms-subsmst}\) function, returned as a second value, here assigned to the symbol \(\text{incl}\). We can display the value of the symbol \(\text{incl}\) and verify it is really a simplicial morphism \(Z_4 \hookrightarrow K(\mathbb{Z}, 2)\), that is, \(k154 \hookrightarrow k13\).
3.4 Studying the obtained Z_4.

It was explained above we “hope” the simplicial set Z_4 maybe is strongly connected to the standard $P^2\mathbb{C}$. We will prove here, using the Kenzo program, that it really has the homotopy type of $P^2\mathbb{C}$.

We can firstly examine the homology groups.

$$Z_4$$ is a finite simplicial set of dimension 4, so that it is enough to examine the homology groups $H_i Z_4$ for $0 \leq i < 5$. Good! we find the homology groups of $P^2\mathbb{C}$, namely $(0,0,0,0,0)$.

But it is well known this does not guarantee the right homotopy type. For example the wedge $S^2 \vee S^4$ has the same homology groups and does not have the homotopy type of $P^2\mathbb{C}$.

3.5 Using the Hurewicz-Whitehead theorem.

The Hurewicz-Whitehead theorem states that if a continuous map $f : X \to Y$ between two simply connected CW-complexes X and Y induces an isomorphism between the respective homology groups $H_\bullet X$ and $H_\bullet Y$, then the map f is a homotopy equivalence.

We know there exists a homotopy equivalence between $P^\infty\mathbb{C}$ and our Kan minimal model $K(\mathbb{Z}, 2)$; let $f : K(\mathbb{Z}, 2) \to P^\infty\mathbb{C}$ such a homotopy equivalence.
Because of the cellular approximation theorem, we can assume the map \(f \) sends the \((2n)\)- and \((2n+1)\)-simplices of \(K(\mathbb{Z}, 2) \) in \(P^n \mathbb{C} \), this point will be essential. Note in these descriptions the objects \(P^\infty \mathbb{C} \) and \(f \) are only “abstract”, not available in our Kenzo environment: no possibility to install a “general” CW-complex \(X \) on a computer, because of the arbitrary continuous attaching maps between the added \(n \)-dimensional cells \(D^n \)'s and the previous \((n - 1)\)-skeleton \(X_{n-1} \).

Let us call \(\alpha : Z_4 \hookrightarrow K(\mathbb{Z}, 2) \) the canonical inclusion, which was assigned to the symbol \text{incl} in our Kenzo environment. Now the composition again denoted by \(\alpha := f \alpha : Z_4 \to P^\infty \mathbb{C} \) in fact has its image in \(P^2 \mathbb{C} \), which allows us to denote again as \(\alpha : Z_4 \to P^2 \mathbb{C} \) essentially the same map with a smaller target \(P^2 \mathbb{C} \) instead of \(P^\infty \mathbb{C} \).

Theorem 1 — The map \(\alpha : Z_4 \to P^2 \mathbb{C} \) is a homotopy equivalence.

The simplicial set \(Z_4 \) is a simplicial subset of \(K(\mathbb{Z}, 2) \), the simplicial model of which has only one vertex and no non-degenerate 1-simplex. The same properties are satisfied by \(Z_4 \) which therefore is simply connected. The Appendix gives the detailed organisation of the simplices of \(Z_4 \) and their faces.

The spaces \(Z_4 \) and \(P^2 \mathbb{C} \) are simply connected CW-complexes and proving \(\alpha : Z_4 \to P^2 \mathbb{C} \) is a homotopy equivalence is equivalent to proving the maps induced between homology groups are isomorphisms.

The inclusion \(P^2 \mathbb{C} \hookrightarrow P^\infty \mathbb{C} \) induces isomorphisms between the homology groups for the degrees \(i < 6 \), so that, taking account of the homotopy equivalence \(f \), it is enough to prove the inclusion \(\alpha : Z_4 \hookrightarrow K(\mathbb{Z}, 2) \) induces isomorphisms between homology groups for the degrees \(\leq 4 \).

If \(\beta : C_* \to C'_* \) is a chain complex morphism, the cone of \(\beta \), denoted by \(\text{Cone}^\beta \), is a chain complex defined as follows: \(\text{Cone}^\beta_i = C'_i \oplus C_{i-1} \) and the boundary operator \(d : \text{Cone}^\beta_i \to \text{Cone}^\beta_{i-1} \) is the matrix:

\[
\begin{bmatrix}
 d_{C'_i} & \beta \\
 0 & -d_{C_{i-1}}
\end{bmatrix}
\]

The homology groups of \(C_* \), \(C'_* \) and \(\text{Cone}^\beta \) are then connected by a long exact sequence:

\[
\cdots \to H_{i+1} \text{Cone}^\beta \to H_i C_* \xrightarrow{\beta} H_i C'_* \to H_i \text{Cone}^\beta \to H_{i-1} C_* \to \cdots
\]

which allows one to connect isomorphisms induced by \(\beta \) between homology groups to null homology groups of \(\text{Cone}^\beta \).

In the case of our simplicial map \(\alpha : Z_4 \hookrightarrow K(\mathbb{Z}, 2) \), because \(H_5 K(\mathbb{Z}, 2) = 0 \), proving \(\alpha \) induces isomorphisms between homology groups for degrees \(\leq 4 \) is equivalent to proving \(H_i \text{Cone}^\alpha = 0 \) for \(0 \leq i \leq 5 \). And the Kenzo program knows how to compute these homology groups.

First we construct the cone of \(\alpha = \text{incl} \).
It is a chain complex not at all of finite type, for $C_* K(\mathbb{Z}, 2)$ is not, but the methods of effective homology, see [7, 8], easily compute these homology groups.

The absence of indication "Component xxx" means in fact these homology groups are null.

3.6 Higher dimensions.

So far, only the case of $P^2 \mathbb{C}$ has been considered in this article, just to be simpler. Analogous computations give analogous results for $P^n \mathbb{C}$ for $n \leq 6$, needing a few hours of runtime in the case $n = 6$, and it is sensible to conjecture in fact our method works for every n. But we do not have any hint for a proof!

So that our Kenzo program obtains simplicial models for the homotopy types of $P^n \mathbb{C}$ for $n \leq 6$. The numbers of simplices in dimensions $\leq 2n$ are as follows:

<table>
<thead>
<tr>
<th>$P^n \mathbb{C}$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P^0 \mathbb{C}$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$P^1 \mathbb{C}$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$P^2 \mathbb{C}$</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P^3 \mathbb{C}$</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>25</td>
<td>30</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P^4 \mathbb{C}$</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>22</td>
<td>97</td>
<td>255</td>
<td>390</td>
<td>315</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P^5 \mathbb{C}$</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>271</td>
<td>1197</td>
<td>3381</td>
<td>5985</td>
<td>6405</td>
<td>3780</td>
<td>945</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P^6 \mathbb{C}$</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>65</td>
<td>627</td>
<td>4162</td>
<td>18496</td>
<td>54789</td>
<td>107933</td>
<td>139230</td>
<td>112770</td>
<td>51975</td>
<td>10395</td>
</tr>
</tbody>
</table>

Some "regularity" is observed, for example $\# P^n \mathbb{C}_2 = n$, $\# P^n \mathbb{C}_{2n} = 1.35 \ldots (2n-1)$, $\# P^n \mathbb{C}_{2n-1} = (n-1) \# P^n \mathbb{C}_{2n}$, and Peter Paule, using the On-Line Encyclopedia of Integer Sequences [4], discovered that $\# P^n \mathbb{C}_3 = (n-1)n(n+7)/6$, thanks Peter! So far no other closed formula is known for the number of simplices, but it is clear some formulas must exist!
References

Appendix.

We give in this appendix the complete description of the triangulation of $P^2 \mathbb{C}$ used as example in the paper. Analogous descriptions can be obtained for $P^n \mathbb{C}$ for $n \leq 6$, but they are of course a little more lengthy. The Kenzo program can produce the following listing.
Every simplex is named S_{ij}, the character i being its dimension and the character j just an identification number. Every face is an “abstract” simplex, an important data type in the Kenzo program, representing some possible degeneracy of a non-degenerate simplex.

A notation as $<\text{AbSm} - S_{30}>$ means a non-degenerate simplex, namely in this case the simplex S_{30}. So you can read in the listing that the face #3 of the simplex S_{42} is the (non-degenerate) simplex S_{30}. In the same way, the face #0 of S_{42} is the 2-degeneracy $\eta_2 S_{21}$ if η_i denotes an elementary degeneracy operator. You see also $\partial_3 S_{30} = \partial_0 S_{31} = \eta_1 \eta_0 S_{00}$, that is, the only possible degeneracy of the base point in dimension 2.

The author is very interested by a direct proof that this relatively simple (?) finite simplicial set is a triangulation of the homotopy type of $P^2 \mathbb{C}$. Or even maybe a triangulation of $P^2 \mathbb{C}$ itself?