> -------------------------------------------------- ;; Loading the Kenzo program. -------------------------------------------------- > -------------------------------------------------- (LOAD-CFILES) -------------------------------------------------- > -------------------------------------------------- ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\classes.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\macros.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\various.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\combinations.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\chain-complexes.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\chcm-elementary-op.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\effective-homology.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\searching-homology.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\homology-groups.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\cones.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\tensor-products.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\koszul.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\groebner.fasl ; Fast loading C:\Docume~1\Francis\AA\Kenzo\GiftQ\smithQ.fasl --- done --- -------------------------------------------------- > -------------------------------------------------- ;; Constructing the monomial ideal: ;; I = \subset Q[x,y,t]. -------------------------------------------------- > -------------------------------------------------- (SETF IDEAL '((1 0 2) (0 0 3) (2 0 0))) -------------------------------------------------- > -------------------------------------------------- ((1 0 2) (0 0 3) (2 0 0)) -------------------------------------------------- > -------------------------------------------------- ;; Constructing the corresponding Koszul complex. -------------------------------------------------- > -------------------------------------------------- (SETF KSZ (K-COMPLEX/I 3 IDEAL)) -------------------------------------------------- > -------------------------------------------------- [K3 Chain-Complex] -------------------------------------------------- > -------------------------------------------------- ;; Computing some differentials. ;; d(y dx.dy) = ? -------------------------------------------------- > -------------------------------------------------- (? KSZ 2 '((0 1 0) (1 1 0))) -------------------------------------------------- > -------------------------------------------------- ----------------------------------------------------------------------{CMBN 1} <-1 * ((0 2 0) (1 0 0))> <1 * ((1 1 0) (0 1 0))> ------------------------------------------------------------------------------ -------------------------------------------------- > -------------------------------------------------- ;; d(dx.dy) = xy dy - y^2 dx *reordered*. ;; ;; d(x dx.dy) = ? -------------------------------------------------- > -------------------------------------------------- (? KSZ 2 '((1 0 0) (1 1 0))) -------------------------------------------------- > -------------------------------------------------- ----------------------------------------------------------------------{CMBN 1} <-1 * ((1 1 0) (1 0 0))> ------------------------------------------------------------------------------ -------------------------------------------------- > -------------------------------------------------- ;; d(x dx.dy) = xy dx only, ;; because x^2 = 0 with respect to the ideal. -------------------------------------------------- > -------------------------------------------------- IDEAL -------------------------------------------------- > -------------------------------------------------- ((1 0 2) (0 0 3) (2 0 0)) -------------------------------------------------- > -------------------------------------------------- ;; Effective homology of the Koszul complex. -------------------------------------------------- > -------------------------------------------------- (SETF EFHM (EFHM KSZ)) -------------------------------------------------- > -------------------------------------------------- [K226 Equivalence K3 <= K199 => K202] -------------------------------------------------- > -------------------------------------------------- ;; It is an equivalence between: ;; K3 = Koszul complex = locally effective. ;; K202 = Effective complex. ;; ;; Giving a rough idea of the ;; RECURSIVE nature of K202. -------------------------------------------------- > -------------------------------------------------- (LET ((LIST (KD2 202))) (PRINT LIST) (PRINT (LENGTH LIST)) (VALUES)) -------------------------------------------------- > -------------------------------------------------- Object: [K202 Chain-Complex] Origin: (CONE [K197 Morphism (degree 0): K169 -> K89]) Object: [K197 Morphism (degree 0): K169 -> K89] Origin: (2MRPH-CMPS [K97 Morphism (degree 0): K86 -> K89] [K196 Morphism (degree 0): K169 -> K86] CMBN) Object: [K196 Morphism (degree 0): K169 -> K86] Origin: (2MRPH-CMPS [K195 Morphism (degree 0): K166 -> K86] [K180 Morphism (degree 0): K169 -> K166] CMBN) Object: [K195 Morphism (degree 0): K166 -> K86] Origin: (2MRPH-CMPS [K108 Morphism (degree 0): K7 -> K86] [K194 Morphism (degree 0): K166 -> K7] CMBN) Object: [K194 Morphism (degree 0): K166 -> K7] Origin: (2MRPH-CMPS [K9 Morphism (degree 0): K5 -> K7] [K187 Morphism (degree 0): K166 -> K5] CMBN) Object: [K187 Morphism (degree 0): K166 -> K5] Origin: (2MRPH-CMPS [K123 Morphism (degree 0): K121 -> K5] [K171 Morphism (degree 0): K166 -> K121] CMBN) Object: [K180 Morphism (degree 0): K169 -> K166] Origin: (CONE-3MRPH-TRIANGLE [K169 Chain-Complex] [K166 Chain-Complex] [K148 Morphism (degree 0): K139 -> K131] [K148 Morphism (degree 0): K139 -> K131] [K179 Morphism (degree 1): K139 -> K131]) Object: [K179 Morphism (degree 1): K139 -> K131] Origin: (N-MRPH -1 [K178 Morphism (degree 1): K139 -> K131]) Object: [K178 Morphism (degree 1): K139 -> K131] Origin: (2MRPH-CMPS [K150 Morphism (degree 1): K131 -> K131] [K163 Morphism (degree 0): K139 -> K131] CMBN) Object: [K171 Morphism (degree 0): K166 -> K121] Origin: (CONE-2MRPH-DIAG [K166 Chain-Complex] [K121 Chain-Complex] [K154 Morphism (degree 0): K131 -> K114] [K154 Morphism (degree 0): K131 -> K114]) Object: [K169 Chain-Complex] Origin: (CONE [K164 Morphism (degree 0): K139 -> K139]) Object: [K166 Chain-Complex] Origin: (CONE [K162 Morphism (degree 0): K131 -> K131]) Object: [K164 Morphism (degree 0): K139 -> K139] Origin: (2MRPH-CMPS [K145 Morphism (degree 0): K131 -> K139] [K163 Morphism (degree 0): K139 -> K131] CMBN) Object: [K163 Morphism (degree 0): K139 -> K131] Origin: (2MRPH-CMPS [K162 Morphism (degree 0): K131 -> K131] [K148 Morphism (degree 0): K139 -> K131] CMBN) Object: [K162 Morphism (degree 0): K131 -> K131] Origin: (2MRPH-CMPS [K155 Morphism (degree 0): K114 -> K131] [K161 Morphism (degree 0): K131 -> K114] CMBN) Object: [K161 Morphism (degree 0): K131 -> K114] Origin: (2MRPH-CMPS [K116 Morphism (degree 0): K114 -> K114] [K154 Morphism (degree 0): K131 -> K114] CMBN) Object: [K155 Morphism (degree 0): K114 -> K131] Origin: (2MRPH-CMPS [K141 Morphism (degree 0): K131 -> K131] [K134 Morphism (degree 0): K114 -> K131] CMBN) Object: [K154 Morphism (degree 0): K131 -> K114] Origin: (2MRPH-CMPS [K133 Morphism (degree 0): K131 -> K114] [K141 Morphism (degree 0): K131 -> K131] CMBN) Object: [K150 Morphism (degree 1): K131 -> K131] Origin: (CONE-3MRPH-TRIANGLE [K131 Chain-Complex] [K131 Chain-Complex] [K51 Morphism (degree 1): K1 -> K1] [K68 Morphism (degree 1): K1 -> K1] [K149 Morphism (degree 2): K1 -> K1]) Object: [K149 Morphism (degree 2): K1 -> K1] Origin: (2MRPH-CMPS [K51 Morphism (degree 1): K1 -> K1] [K143 Morphism (degree 1): K1 -> K1] CMBN) Object: [K148 Morphism (degree 0): K139 -> K131] Origin: (CONE-3MRPH-TRIANGLE [K139 Chain-Complex] [K131 Chain-Complex] [K50 Morphism (degree 0): K47 -> K1] [K50 Morphism (degree 0): K47 -> K1] [K147 Morphism (degree 1): K47 -> K1]) Object: [K147 Morphism (degree 1): K47 -> K1] Origin: (N-MRPH -1 [K146 Morphism (degree 1): K47 -> K1]) Object: [K146 Morphism (degree 1): K47 -> K1] Origin: (2MRPH-CMPS [K51 Morphism (degree 1): K1 -> K1] [K137 Morphism (degree 0): K47 -> K1] CMBN) Object: [K145 Morphism (degree 0): K131 -> K139] Origin: (CONE-3MRPH-TRIANGLE [K131 Chain-Complex] [K139 Chain-Complex] [K49 Cohomology-Class on K1 of degree 0] [K49 Cohomology-Class on K1 of degree 0] [K144 Cohomology-Class on K1 of degree -1]) Object: [K144 Cohomology-Class on K1 of degree -1] Origin: (2MRPH-CMPS [K49 Cohomology-Class on K1 of degree 0] [K143 Morphism (degree 1): K1 -> K1] CMBN) Object: [K143 Morphism (degree 1): K1 -> K1] Origin: (2MRPH-CMPS [K127 Morphism (degree 0): K1 -> K1] [K51 Morphism (degree 1): K1 -> K1] CMBN) Object: [K141 Morphism (degree 0): K131 -> K131] Origin: (CONE-2MRPH-DIAG [K131 Chain-Complex] [K131 Chain-Complex] [K44 Morphism (degree 0): K1 -> K1] [K44 Morphism (degree 0): K1 -> K1]) Object: [K139 Chain-Complex] Origin: (CONE [K138 Cohomology-Class on K47 of degree 0]) Object: [K138 Cohomology-Class on K47 of degree 0] Origin: (2MRPH-CMPS [K49 Cohomology-Class on K1 of degree 0] [K137 Morphism (degree 0): K47 -> K1] CMBN) Object: [K137 Morphism (degree 0): K47 -> K1] Origin: (2MRPH-CMPS [K127 Morphism (degree 0): K1 -> K1] [K50 Morphism (degree 0): K47 -> K1] CMBN) Object: [K134 Morphism (degree 0): K114 -> K131] Origin: (AIBJC-RDCT-G [K1 Chain-Complex] [K127 Morphism (degree 0): K1 -> K1] [K128 Morphism (degree 0): K1 -> K1] [K1 Chain-Complex] [K129 Morphism (degree 0): K1 -> K114] [K130 Morphism (degree 0): K114 -> K1] [K114 Chain-Complex]) Object: [K133 Morphism (degree 0): K131 -> K114] Origin: (AIBJC-RDCT-F [K1 Chain-Complex] [K127 Morphism (degree 0): K1 -> K1] [K128 Morphism (degree 0): K1 -> K1] [K1 Chain-Complex] [K129 Morphism (degree 0): K1 -> K114] [K130 Morphism (degree 0): K114 -> K1] [K114 Chain-Complex]) Object: [K131 Chain-Complex] Origin: (CONE [K127 Morphism (degree 0): K1 -> K1]) Object: [K130 Morphism (degree 0): K114 -> K1] Origin: (K/I-SIGMA 3 ((0 0 1))) Object: [K129 Morphism (degree 0): K1 -> K114] Origin: (K/I-J 3 ((0 0 1))) Object: [K128 Morphism (degree 0): K1 -> K1] Origin: (K/I-RHO 3 ((0 0 1))) Object: [K127 Morphism (degree 0): K1 -> K1] Origin: (K/I-I 3 ((0 0 1))) Object: [K123 Morphism (degree 0): K121 -> K5] Origin: (AIBJC-RDCT-F [K114 Chain-Complex] [K116 Morphism (degree 0): K114 -> K114] [K117 Morphism (degree 0): K114 -> K114] [K114 Chain-Complex] [K118 Morphism (degree 0): K114 -> K5] [K119 Morphism (degree 0): K5 -> K114] [K5 Chain-Complex]) Object: [K121 Chain-Complex] Origin: (CONE [K116 Morphism (degree 0): K114 -> K114]) Object: [K119 Morphism (degree 0): K5 -> K114] Origin: (K/I-SIGMA 3 ((1 0 0) (0 0 1))) Object: [K118 Morphism (degree 0): K114 -> K5] Origin: (K/I-J 3 ((1 0 0) (0 0 1))) Object: [K117 Morphism (degree 0): K114 -> K114] Origin: (K/I-RHO 3 ((1 0 0) (0 0 1))) Object: [K116 Morphism (degree 0): K114 -> K114] Origin: (K/I-I 3 ((1 0 0) (0 0 1))) Object: [K114 Chain-Complex] Origin: (K-COMPLEX/I 3 ((0 0 1))) Object: [K108 Morphism (degree 0): K7 -> K86] Origin: (2MRPH-CMPS [K92 Morphism (degree 0): K27 -> K86] [K30 Morphism (degree 0): K7 -> K27] CMBN) Object: [K97 Morphism (degree 0): K86 -> K89] Origin: (CONE-3MRPH-TRIANGLE [K86 Chain-Complex] [K89 Chain-Complex] [K64 Morphism (degree 0): K38 -> K57] [K64 Morphism (degree 0): K38 -> K57] [K96 Morphism (degree 1): K38 -> K57]) Object: [K96 Morphism (degree 1): K38 -> K57] Origin: (2MRPH-CMPS [K64 Morphism (degree 0): K38 -> K57] [K95 Morphism (degree 1): K38 -> K38] CMBN) Object: [K95 Morphism (degree 1): K38 -> K38] Origin: (2MRPH-CMPS [K82 Morphism (degree 0): K38 -> K38] [K70 Morphism (degree 1): K38 -> K38] CMBN) Object: [K92 Morphism (degree 0): K27 -> K86] Origin: (CONE-2MRPH-DIAG [K27 Chain-Complex] [K86 Chain-Complex] [K75 Morphism (degree 0): K20 -> K38] [K75 Morphism (degree 0): K20 -> K38]) Object: [K89 Chain-Complex] Origin: (CONE [K84 Morphism (degree 0): K57 -> K57]) Object: [K86 Chain-Complex] Origin: (CONE [K82 Morphism (degree 0): K38 -> K38]) Object: [K84 Morphism (degree 0): K57 -> K57] Origin: (2MRPH-CMPS [K64 Morphism (degree 0): K38 -> K57] [K83 Morphism (degree 0): K57 -> K38] CMBN) Object: [K83 Morphism (degree 0): K57 -> K38] Origin: (2MRPH-CMPS [K82 Morphism (degree 0): K38 -> K38] [K67 Morphism (degree 0): K57 -> K38] CMBN) Object: [K82 Morphism (degree 0): K38 -> K38] Origin: (2MRPH-CMPS [K75 Morphism (degree 0): K20 -> K38] [K81 Morphism (degree 0): K38 -> K20] CMBN) Object: [K81 Morphism (degree 0): K38 -> K20] Origin: (2MRPH-CMPS [K22 Morphism (degree 0): K20 -> K20] [K74 Morphism (degree 0): K38 -> K20] CMBN) Object: [K75 Morphism (degree 0): K20 -> K38] Origin: (2MRPH-CMPS [K59 Morphism (degree 0): K38 -> K38] [K41 Morphism (degree 0): K20 -> K38] CMBN) Object: [K74 Morphism (degree 0): K38 -> K20] Origin: (2MRPH-CMPS [K40 Morphism (degree 0): K38 -> K20] [K59 Morphism (degree 0): K38 -> K38] CMBN) Object: [K70 Morphism (degree 1): K38 -> K38] Origin: (CONE-3MRPH-TRIANGLE [K38 Chain-Complex] [K38 Chain-Complex] [K51 Morphism (degree 1): K1 -> K1] [K68 Morphism (degree 1): K1 -> K1] [K69 Morphism (degree 2): K1 -> K1]) Object: [K69 Morphism (degree 2): K1 -> K1] Origin: (2MRPH-CMPS [K51 Morphism (degree 1): K1 -> K1] [K62 Morphism (degree 1): K1 -> K1] CMBN) Object: [K68 Morphism (degree 1): K1 -> K1] Origin: (N-MRPH -1 [K51 Morphism (degree 1): K1 -> K1]) Object: [K67 Morphism (degree 0): K57 -> K38] Origin: (CONE-3MRPH-TRIANGLE [K57 Chain-Complex] [K38 Chain-Complex] [K50 Morphism (degree 0): K47 -> K1] [K50 Morphism (degree 0): K47 -> K1] [K66 Morphism (degree 1): K47 -> K1]) Object: [K66 Morphism (degree 1): K47 -> K1] Origin: (N-MRPH -1 [K65 Morphism (degree 1): K47 -> K1]) Object: [K65 Morphism (degree 1): K47 -> K1] Origin: (2MRPH-CMPS [K51 Morphism (degree 1): K1 -> K1] [K54 Morphism (degree 0): K47 -> K1] CMBN) Object: [K64 Morphism (degree 0): K38 -> K57] Origin: (CONE-3MRPH-TRIANGLE [K38 Chain-Complex] [K57 Chain-Complex] [K49 Cohomology-Class on K1 of degree 0] [K49 Cohomology-Class on K1 of degree 0] [K63 Cohomology-Class on K1 of degree -1]) Object: [K63 Cohomology-Class on K1 of degree -1] Origin: (2MRPH-CMPS [K49 Cohomology-Class on K1 of degree 0] [K62 Morphism (degree 1): K1 -> K1] CMBN) Object: [K62 Morphism (degree 1): K1 -> K1] Origin: (2MRPH-CMPS [K33 Morphism (degree 0): K1 -> K1] [K51 Morphism (degree 1): K1 -> K1] CMBN) Object: [K59 Morphism (degree 0): K38 -> K38] Origin: (CONE-2MRPH-DIAG [K38 Chain-Complex] [K38 Chain-Complex] [K44 Morphism (degree 0): K1 -> K1] [K44 Morphism (degree 0): K1 -> K1]) Object: [K57 Chain-Complex] Origin: (CONE [K55 Cohomology-Class on K47 of degree 0]) Object: [K55 Cohomology-Class on K47 of degree 0] Origin: (2MRPH-CMPS [K49 Cohomology-Class on K1 of degree 0] [K54 Morphism (degree 0): K47 -> K1] CMBN) Object: [K54 Morphism (degree 0): K47 -> K1] Origin: (2MRPH-CMPS [K33 Morphism (degree 0): K1 -> K1] [K50 Morphism (degree 0): K47 -> K1] CMBN) Object: [K51 Morphism (degree 1): K1 -> K1] Origin: (K-COMPLEX-H 3) Object: [K50 Morphism (degree 0): K47 -> K1] Origin: (K-COMPLEX-G 3) Object: [K49 Cohomology-Class on K1 of degree 0] Origin: (K-COMPLEX-F 3) Object: [K44 Morphism (degree 0): K1 -> K1] Origin: (IDNT-MRPH [K1 Chain-Complex]) Object: [K41 Morphism (degree 0): K20 -> K38] Origin: (AIBJC-RDCT-G [K1 Chain-Complex] [K33 Morphism (degree 0): K1 -> K1] [K34 Morphism (degree 0): K1 -> K1] [K1 Chain-Complex] [K35 Morphism (degree 0): K1 -> K20] [K36 Morphism (degree 0): K20 -> K1] [K20 Chain-Complex]) Object: [K40 Morphism (degree 0): K38 -> K20] Origin: (AIBJC-RDCT-F [K1 Chain-Complex] [K33 Morphism (degree 0): K1 -> K1] [K34 Morphism (degree 0): K1 -> K1] [K1 Chain-Complex] [K35 Morphism (degree 0): K1 -> K20] [K36 Morphism (degree 0): K20 -> K1] [K20 Chain-Complex]) Object: [K38 Chain-Complex] Origin: (CONE [K33 Morphism (degree 0): K1 -> K1]) Object: [K36 Morphism (degree 0): K20 -> K1] Origin: (K/I-SIGMA 3 ((2 0 0))) Object: [K35 Morphism (degree 0): K1 -> K20] Origin: (K/I-J 3 ((2 0 0))) Object: [K34 Morphism (degree 0): K1 -> K1] Origin: (K/I-RHO 3 ((2 0 0))) Object: [K33 Morphism (degree 0): K1 -> K1] Origin: (K/I-I 3 ((2 0 0))) Object: [K30 Morphism (degree 0): K7 -> K27] Origin: (AIBJC-RDCT-G [K20 Chain-Complex] [K22 Morphism (degree 0): K20 -> K20] [K23 Morphism (degree 0): K20 -> K20] [K20 Chain-Complex] [K24 Morphism (degree 0): K20 -> K7] [K25 Morphism (degree 0): K7 -> K20] [K7 Chain-Complex]) Object: [K27 Chain-Complex] Origin: (CONE [K22 Morphism (degree 0): K20 -> K20]) Object: [K25 Morphism (degree 0): K7 -> K20] Origin: (K/I-SIGMA 3 ((0 0 3) (2 0 0))) Object: [K24 Morphism (degree 0): K20 -> K7] Origin: (K/I-J 3 ((0 0 3) (2 0 0))) Object: [K23 Morphism (degree 0): K20 -> K20] Origin: (K/I-RHO 3 ((0 0 3) (2 0 0))) Object: [K22 Morphism (degree 0): K20 -> K20] Origin: (K/I-I 3 ((0 0 3) (2 0 0))) Object: [K20 Chain-Complex] Origin: (K-COMPLEX/I 3 ((2 0 0))) Object: [K9 Morphism (degree 0): K5 -> K7] Origin: (K/I-I 3 ((1 0 2) (0 0 3) (2 0 0))) Object: [K7 Chain-Complex] Origin: (K-COMPLEX/I 3 ((0 0 3) (2 0 0))) Object: [K5 Chain-Complex] Origin: (K-COMPLEX/I 3 ((1 0 0) (0 0 1))) Object: [K1 Chain-Complex] Origin: (K-COMPLEX 3) (202 197 196 195 194 187 180 179 178 171 ...) 92 -------------------------------------------------- > -------------------------------------------------- ;; List of Koszul-complexes. -------------------------------------------------- > -------------------------------------------------- (DOLIST (ITEM *K-LIST*) (WHEN (EQ 'K-COMPLEX/I (FIRST (DFNT ITEM))) (PRINT (DFNT ITEM)))) -------------------------------------------------- > -------------------------------------------------- (K-COMPLEX/I 3 ((0 0 1))) (K-COMPLEX/I 3 ((2 0 0))) (K-COMPLEX/I 3 ((0 0 3) (2 0 0))) (K-COMPLEX/I 3 ((1 0 0) (0 0 1))) (K-COMPLEX/I 3 ((1 0 2) (0 0 3) (2 0 0))) -------------------------------------------------- > -------------------------------------------------- ;; To be compared with the pdf diagram. -------------------------------------------------- > -------------------------------------------------- ;; In fact one Koszul complex is missing: -------------------------------------------------- > -------------------------------------------------- (DFNT (K 1)) -------------------------------------------------- > -------------------------------------------------- (K-COMPLEX 3) -------------------------------------------------- > -------------------------------------------------- ;; This is the Koszul complex of the GROUND ring itself. -------------------------------------------------- > -------------------------------------------------- ;; Examining the central chain complex of ;; the effective homology. -------------------------------------------------- > -------------------------------------------------- (SETF TCC (TCC EFHM)) -------------------------------------------------- > -------------------------------------------------- [K199 Chain-Complex] -------------------------------------------------- > -------------------------------------------------- ;; What about its nature? -------------------------------------------------- > -------------------------------------------------- (DFNT TCC) -------------------------------------------------- > -------------------------------------------------- (CONE [K195 Morphism (degree 0): K166 -> K86]) -------------------------------------------------- > -------------------------------------------------- ;; It is the cone of a morphism K166 -> K86. ;; ;; What about K166 ? -------------------------------------------------- > -------------------------------------------------- (DFNT (K 166)) -------------------------------------------------- > -------------------------------------------------- (CONE [K162 Morphism (degree 0): K131 -> K131]) -------------------------------------------------- > -------------------------------------------------- ;; It is the cone of a morphism K131 -> K131. ;; ;; What about K131 ? -------------------------------------------------- > -------------------------------------------------- (DFNT (K 131)) -------------------------------------------------- > -------------------------------------------------- (CONE [K127 Morphism (degree 0): K1 -> K1]) -------------------------------------------------- > -------------------------------------------------- ;; It is the cone of a morphism K1 -> K1. ;; ;; What is this morphism ? -------------------------------------------------- > -------------------------------------------------- (DFNT (K 127)) -------------------------------------------------- > -------------------------------------------------- (K/I-I 3 ((0 0 1))) -------------------------------------------------- > -------------------------------------------------- ;; It is the multiplication by (0 0 1) = t. ;; ;; The same study for K86 would lead ;; to the multiplication by x^2 K1 -> K1. -------------------------------------------------- > -------------------------------------------------- ;; Studying the right reduction of ;; the effective homology. ;; ;; Extracting the effective chain complex. -------------------------------------------------- > -------------------------------------------------- (SETF EKSZ (RBCC EFHM)) -------------------------------------------------- > -------------------------------------------------- [K202 Chain-Complex] -------------------------------------------------- > -------------------------------------------------- ;; It is actually effective. ;; Computing the basis. -------------------------------------------------- > -------------------------------------------------- (DOTIMES (I 4) (DOLIST (ITEM (BASIS EKSZ I)) (PRINT (LIST I ITEM)))) -------------------------------------------------- > -------------------------------------------------- (0 >>) (1 >>) (1 >>) (1 >>) (2 >>) (2 >>) (2 >>) (3 >>) -------------------------------------------------- > -------------------------------------------------- ;; Second basis element in degree 2. -------------------------------------------------- > -------------------------------------------------- (SETF B-2-2 (SECOND (BASIS EKSZ 2))) -------------------------------------------------- > -------------------------------------------------- >> -------------------------------------------------- > -------------------------------------------------- ;; Its image in the central chain complex. -------------------------------------------------- > -------------------------------------------------- (SETF T-B-2-2 (RG EFHM 2 B-2-2)) -------------------------------------------------- > -------------------------------------------------- ----------------------------------------------------------------------{CMBN 2} <1 * >>> <1 * >>> <-1 * >>> <1 * >>> ------------------------------------------------------------------------------ -------------------------------------------------- > -------------------------------------------------- ;; The component with respect to the base point: ;; >> ;; shows the corresponding multidegree is (1 0 3). -------------------------------------------------- > -------------------------------------------------- ;; The top chain complex is locally-effective. -------------------------------------------------- > -------------------------------------------------- (BASIS (TCC EFHM)) -------------------------------------------------- > -------------------------------------------------- :LOCALLY-EFFECTIVE -------------------------------------------------- > -------------------------------------------------- ;; But we can verify our object actually is a cycle. -------------------------------------------------- > -------------------------------------------------- (? (TCC EFHM) T-B-2-2) -------------------------------------------------- > -------------------------------------------------- ----------------------------------------------------------------------{CMBN 1} ------------------------------------------------------------------------------ -------------------------------------------------- > -------------------------------------------------- ;; We can continue and go to the Koszul complex itself. -------------------------------------------------- > -------------------------------------------------- (? (LF EFHM) T-B-2-2) -------------------------------------------------- > -------------------------------------------------- ----------------------------------------------------------------------{CMBN 2} <1 * ((0 0 2) (1 0 1))> ------------------------------------------------------------------------------ -------------------------------------------------- > -------------------------------------------------- ;; So that [t^2 dx.dt] is a cycle not homologous to 0. -------------------------------------------------- > -------------------------------------------------- ;; But why B-2-2 is not a boundary ? ;; ;; It is enough to compute the image of the unique generator ;; of EKSZ in degree 3. -------------------------------------------------- > -------------------------------------------------- (? EKSZ 3 (FIRST (BASIS EKSZ 3))) -------------------------------------------------- > -------------------------------------------------- ----------------------------------------------------------------------{CMBN 2} <-1 * >>> ------------------------------------------------------------------------------ -------------------------------------------------- > -------------------------------------------------- ;; It is not B-2-2 = >> -------------------------------------------------- > -------------------------------------------------- B-2-2 -------------------------------------------------- > -------------------------------------------------- >> -------------------------------------------------- > -------------------------------------------------- ;; And why B-2-2 is a cycle ? -------------------------------------------------- > -------------------------------------------------- (? EKSZ 2 B-2-2) -------------------------------------------------- > -------------------------------------------------- ----------------------------------------------------------------------{CMBN 1} ------------------------------------------------------------------------------ -------------------------------------------------- > -------------------------------------------------- ;; Homology of the Koszul complex. -------------------------------------------------- > -------------------------------------------------- (HOMOLOGY KSZ 0 4) -------------------------------------------------- > -------------------------------------------------- Computing boundary-matrix in dimension 0. Rank of the source-module : 1. ;; Clock -> 2006-08-25, 17h 12m 40s. Computing the boundary of the generator 1 (dimension 0) : >> End of computing. Computing boundary-matrix in dimension 1. Rank of the source-module : 3. ;; Clock -> 2006-08-25, 17h 12m 40s. Computing the boundary of the generator 1 (dimension 1) : >> End of computing. ;; Clock -> 2006-08-25, 17h 12m 40s. Computing the boundary of the generator 2 (dimension 1) : >> End of computing. ;; Clock -> 2006-08-25, 17h 12m 40s. Computing the boundary of the generator 3 (dimension 1) : >> End of computing. Homology in dimension 0 : Component Z ---done--- ;; Clock -> 2006-08-25, 17h 12m 40s. Computing boundary-matrix in dimension 1. Rank of the source-module : 3. ;; Clock -> 2006-08-25, 17h 12m 40s. Computing the boundary of the generator 1 (dimension 1) : >> End of computing. ;; Clock -> 2006-08-25, 17h 12m 40s. Computing the boundary of the generator 2 (dimension 1) : >> End of computing. ;; Clock -> 2006-08-25, 17h 12m 40s. Computing the boundary of the generator 3 (dimension 1) : >> End of computing. Computing boundary-matrix in dimension 2. Rank of the source-module : 3. ;; Clock -> 2006-08-25, 17h 12m 40s. Computing the boundary of the generator 1 (dimension 2) : >> End of computing. ;; Clock -> 2006-08-25, 17h 12m 40s. Computing the boundary of the generator 2 (dimension 2) : >> End of computing. ;; Clock -> 2006-08-25, 17h 12m 40s. Computing the boundary of the generator 3 (dimension 2) : >> End of computing. Homology in dimension 1 : Component Z Component Z Component Z ---done--- ;; Clock -> 2006-08-25, 17h 12m 41s. Computing boundary-matrix in dimension 2. Rank of the source-module : 3. ;; Clock -> 2006-08-25, 17h 12m 41s. Computing the boundary of the generator 1 (dimension 2) : >> End of computing. ;; Clock -> 2006-08-25, 17h 12m 41s. Computing the boundary of the generator 2 (dimension 2) : >> End of computing. ;; Clock -> 2006-08-25, 17h 12m 41s. Computing the boundary of the generator 3 (dimension 2) : >> End of computing. Computing boundary-matrix in dimension 3. Rank of the source-module : 1. ;; Clock -> 2006-08-25, 17h 12m 41s. Computing the boundary of the generator 1 (dimension 3) : >> End of computing. Homology in dimension 2 : Component Z Component Z ---done--- ;; Clock -> 2006-08-25, 17h 12m 41s. Computing boundary-matrix in dimension 3. Rank of the source-module : 1. ;; Clock -> 2006-08-25, 17h 12m 41s. Computing the boundary of the generator 1 (dimension 3) : >> End of computing. Computing boundary-matrix in dimension 4. Rank of the source-module : 0. Homology in dimension 3 : ---done--- ;; Clock -> 2006-08-25, 17h 12m 41s. NIL -------------------------------------------------- > -------------------------------------------------- ;; Computing the generators of the homology of EKSZ ;; in degree 2. -------------------------------------------------- > -------------------------------------------------- (HOMOLOGY-GEN EKSZ 2) -------------------------------------------------- > -------------------------------------------------- Computing boundary-matrix in dimension 2. Rank of the source-module : 3. ;; Clock -> 2006-08-25, 17h 12m 54s. Computing the boundary of the generator 1 (dimension 2) : >> End of computing. ;; Clock -> 2006-08-25, 17h 12m 54s. Computing the boundary of the generator 2 (dimension 2) : >> End of computing. ;; Clock -> 2006-08-25, 17h 12m 54s. Computing the boundary of the generator 3 (dimension 2) : >> End of computing. Computing boundary-matrix in dimension 3. Rank of the source-module : 1. ;; Clock -> 2006-08-25, 17h 12m 54s. Computing the boundary of the generator 1 (dimension 3) : >> End of computing. Homology in dimension 2 : Component Z Component Z ( ----------------------------------------------------------------------{CMBN 2} <1 * >>> ------------------------------------------------------------------------------ ----------------------------------------------------------------------{CMBN 2} <1 * >>> ------------------------------------------------------------------------------ ) -------------------------------------------------- > -------------------------------------------------- ;; Understanding the multidegree indications in the pdf diagram. ;; ;; Taking again B-2-2. -------------------------------------------------- > -------------------------------------------------- B-2-2 -------------------------------------------------- > -------------------------------------------------- >> -------------------------------------------------- > -------------------------------------------------- ;; Its image in the top chain complex = ;; a twisted sum of 8 copies of K(A). -------------------------------------------------- > -------------------------------------------------- (RG EFHM 2 B-2-2) -------------------------------------------------- > -------------------------------------------------- ----------------------------------------------------------------------{CMBN 2} <1 * >>> <1 * >>> <-1 * >>> <1 * >>> ------------------------------------------------------------------------------ -------------------------------------------------- > -------------------------------------------------- ;; The multidegree is (1 0 3) (~ xt^3). ;; ;; The respective components have a multidegree ;; and "coordinates" ;; ;; >> = (0 0 0) 2-1 ;; >> = (0 0 3) 1-1 ;; >> = (1 0 2) 3-1 ;; >> = (1 0 3) 3-2 ;; -------------------------------------------------- > -------------------------------------------------- ;; Observing how the top chain-complex is twisted. ;; ;; Computing the boundary of the fourth generator. -------------------------------------------------- > -------------------------------------------------- (SETF G4 (GNRT (FOURTH (CMBN-LIST T-B-2-2)))) -------------------------------------------------- > -------------------------------------------------- >> -------------------------------------------------- > -------------------------------------------------- (TCC EFHM 2 G4) -------------------------------------------------- > -------------------------------------------------- ----------------------------------------------------------------------{CMBN 1} <-1 * >>> ------------------------------------------------------------------------------ -------------------------------------------------- > -------------------------------------------------- ;; Because we STAY in the sub (1 0 3)-world, ;; the result is somewhere in the (1 0 2)-K(A) component. ;; it is just the result of multiplication by t ;; which twistes the direct sum of two copies of K(A). -------------------------------------------------- > -------------------------------------------------- ;; +-----------------+ ;; + | ;; + The END | ;; + | ;; +-----------------+ -------------------------------------------------- >