TD N°1

Suites numériques et nombres réels : rappels et compléments

Rappel important : il existe un cours de L1 en ligne, intitulé "M@ths en L1gne", à l'adresse :

http://ljk.imag.fr/membres/Bernard.Ycart/mel/

plusieurs des exercices ci-dessous en sont d'ailleurs tirés. Il est crucial, pour toute la partie du cours sur les séries numériques, d'être à l'aise avec les suites. Vérifiez-donc cette aisance à l'aide des QCM, exercices, cours et compléments du site.

1. Limite d'un produit

1. Rappeler la démonstration du résultat suivant.

Soient $(u_n)_n$ et $(v_n)_n$ des suites de nombres complexes. Si $(u_n)_n$ et $(v_n)_n$ convergent, alors $(u_n v_n)_n$ converge et

$$\lim_{n} u_n v_n = (\lim_{n} u_n) \cdot (\lim_{n} v_n).$$

On pourra remarquer que si a et b sont des nombres complexes, $u_n v_n - ab =$ $(u_n - a)b + u_n(v_n - b).$

2. Donner un exemple de deux suites divergentes $(u_n)_n$ et $(v_n)_n$ telles que $(u_nv_n)_n$ soit convergente.

2. Calcul de limites à l'aide des fonctions usuelles

Calculer la limite, si elle existe, des suites suivantes.

1.
$$u_n = \frac{n+1}{3+2n}$$

$$2. \ u_n = \frac{n^{10}}{1.01^n}$$

$$3. \ u_n = \frac{1}{\sqrt{n+1} - \sqrt{n}}$$

4.
$$u_n = n^4 \left(\log \left(1 - \frac{1}{n^2} \right) + \frac{1}{n^2} \right)$$
 9. $u_n = \frac{\log(n^2 + 3n - 2)}{\log(n^{1/3})}$

5.
$$u_n = \frac{n!}{n^n}$$

6.
$$u_n = \tan(1/n)\cos(2n+1)$$

7.
$$u_n = \frac{(n+1)^2}{(n+1)^3 - n^3}$$

$$8. \ u_n = \frac{\sqrt{n-3} + \log(2n)}{\log n}$$

9.
$$u_n = \frac{\log(n^2 + 3n - 2)}{\log(n^{1/3})}$$

10.
$$u_n = n(e^{\frac{2}{n}} - 1)$$

3. Développement limités

Donner un développement limité pour $(u_n)_n$ (lorsque n tend vers l'infini) avec un reste en $o(1/n^2)$, dans chacun des cas suivants :

1.
$$u_n = \frac{n+1}{3+2n}$$

3.
$$u_n = \frac{1 - \frac{1}{\sqrt{n}}}{\sqrt{n} + 2}$$

2.
$$u_n = \frac{\log\left(1 - \frac{1}{n} + \frac{1}{n^2}\right)}{\sqrt{1 - \frac{1}{n}}}$$

4.
$$u_n = \left(1 + \frac{1}{n}\right)^{n+2}$$
5. $u_n = n - \frac{1}{\sin\frac{1}{n}}$

4. Borne supérieure, borne inférieure

Pour chacun des ensembles suivant, déterminer s'il est majoré, s'il est minoré, s'il a un maximum, s'il a un minimum, et le cas échéant déterminer ses bornes supérieures et inférieures.

1.
$$A = \{(-1)^n \mid n \in \mathbb{N}\}$$

$$4. D = \left\{ \frac{n+1}{n+2} \mid n \in \mathbb{N} \right\}$$

2.
$$B = \{(-1)^n/n \mid n \in \mathbb{N}^*\}$$

3. $C = \{(-1)^n n \mid n \in \mathbb{N}^*\}$

5.
$$E = \{\frac{1}{n} - \frac{1}{m} \mid n, m \in \mathbb{N}^* \}$$

Soit $(u_n)_n$ une suite réelle.

- 1. Montrer que si les suites extraites $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent vers la même limite, alors $(u_n)_n$ converge.
- 2. Montrer que si les suites extraites $(u_{2n})_n$, $(u_{2n+1})_n$ et $(u_{3n})_n$ convergent, alors $(u_n)_n$ converge aussi.
- 3. Montrer que si les suites extraites $(u_{2n})_n$, $(u_{2n+1})_n$ et $(u_{n^2})_n$ convergent, alors $(u_n)_n$ converge aussi.

6. Une somme téléscopique

1. Déterminer trois réels A,B,C tels que pour tout $x\in\mathbb{R}$ différent de 0,1 et -1 on ait :

$$\frac{1}{x(x^2-1)} = \frac{A}{x-1} + \frac{B}{x} + \frac{C}{x+1}$$

2. En utilisant cette relation pour $x=2,3,\cdots,n,$ déterminer pour chaque entier $n\geqslant 2$ une expression simple de

$$S_n := \sum_{k=2}^n \frac{1}{k(k^2 - 1)} = \frac{1}{2(2^2 - 1)} + \frac{1}{3(3^2 - 1)} + \dots + \frac{1}{n(n^2 - 1)}$$

3. En déduire que la suite $(S_n)_n$ converge et déterminer sa limite.

7. Suites adjacentes

Pour chacun des couples suivants, montrer que les suites $(u_n)_n$ et $(v_n)_n$ sont adjacentes.

1.
$$u_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $v_n = u_n + \frac{1}{n}$.

2.
$$u_n = \sum_{k=1}^n \frac{1}{k^3}$$
 et $v_n = u_n + \frac{1}{n^2}$.

3.
$$u_0 = a > 0$$
, $v_0 = b > a$, $v_{n+1} = \frac{u_n + v_n}{2}$ et $u_{n+1} = \sqrt{u_n v_n}$.

8. Algorithme de Babylone

Soient a et u_0 deux réels strictement positifs. On définit la suite $(u_n)_{n\geqslant 0}$ par :

$$\forall n \geqslant 0, \quad u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right) .$$

- 1. Montrer que si $(u_n)_n$ converge, c'est vers \sqrt{a}
- 2. Montrer que pour tout $n \ge 0$,

$$u_{n+1} - \sqrt{a} = \frac{1}{2}(u_n - \sqrt{a})\left(1 - \frac{\sqrt{a}}{u_n}\right).$$

3. Montrer que $(u_n)_n$ converge.

9. Moyennes de Césaro

Soit $(u_n)_{n\geqslant 1}$ une suite de nombres complexes. On note :

$$\forall n \geqslant 1, \quad S_n = \frac{1}{n}(u_1 + \ldots + u_n).$$

- 1. Montrer que si $(u_n)_n$ converge dans \mathbb{C} , alors $(S_n)_n$ converge vers la même limite.
- 2. Exhiber une suite $(u_n)_n$ divergente telle que $(S_n)_n$ converge.
- 3. Soit $(u_n)_n$ une suite de nombre réels strictement positifs telle que $\frac{u_{n+1}}{u_n}$ converge. Montrer que $(u_n^{1/n})_n$ converge vers la même limite.

10. Limite supérieure et limite inférieure

Soit $(u_n)_{n\geqslant 0}$ une suite bornée de nombres réels. On définit les suites i_n et s_n par :

$$\forall n \in \mathbb{N}, \quad i_n = \inf\{u_k \text{ t.q. } k \geqslant n\} \quad \text{ et } \quad s_n = \sup\{u_k \text{ t.q. } k \geqslant n\} .$$

1. Montrer que $(i_n)_n$ et $(s_n)_n$ convergent. La limite de i_n est appelée limite inférieure de la suite $(u_n)_n$ et est notée $\liminf_n u_n$. Celle de s_n est appelée limite supérieure de la suite $(u_n)_n$ et est notée $\limsup_n u_n$.

- 2. Montrer qu'il existe une sous-suite de $(u_n)_n$ convergeant vers $\liminf_n u_n$ et une autre convergeant vers $\limsup_n u_n$. Cela donne donc une autre démonstration du théorème de Bolzano-Weierstrass.
- 3. Montrer que $(u_n)_n$ converge si et seulement si $(i_n)_n$ et $(s_n)_n$ convergent dans \mathbb{R} vers la même limite.

11. Applications contractantes

Soit I un intervalle de $\mathbb{R},\,F$ une application de I dans lui-même et ρ un nombre réel de [0,1[. On suppose que F vérifie :

$$\forall x, y \in I, \quad |F(x) - F(y)| \le \rho |x - y|.$$

Montrer que la suite $(u_n)_n$ définie par $u_0 \in I$ et $u_{n+1} = F(u_n)$ converge, et que sa limite est l'unique point fixe de F. On pourra commencer par montrer que $(u_n)_n$ est une suite de Cauchy.

TD N°2

SÉRIES À TERMES POSITIFS

1. Nature de séries

Déterminer la nature des séries de terme général :

1.
$$u_{n} = \frac{e^{n}}{n^{5} + 1};$$
 8. $u_{n} = \frac{\ln n}{n};$
2. $u_{n} = \frac{2^{n} + n^{2}}{3^{n}n^{2} + 1};$ 9. $u_{n} = \left(1 + \frac{1}{\sqrt{n}}\right)^{n} \quad (n \ge 1);$
3. $u_{n} = \frac{e^{\frac{1}{n}}}{n+1};$ 10. $u_{n} = ne^{-n};$
4. $u_{n} = \frac{e^{\frac{1}{n}} - 1}{\sqrt{n+1}};$ 12. $u_{n} = \left(1 - \frac{1}{\sqrt{n}}\right)^{n} \quad (n \ge 2);$
5. $u_{n} = n \ln \left(1 + \frac{1}{n}\right) \quad (n \ge 1);$ 13. $u_{n} = \frac{n!}{n^{n}} \quad (n \ge 1);$
6. $u_{n} = \frac{e^{-n}}{4 + \sin n};$ 14. $u_{n} = \frac{\ln n}{n^{\alpha}} \quad (n \ge 1) \text{ (discuter selon la valeur du réel } \alpha);}$
7. $u_{n} = \frac{1 - n \ln(1 + \frac{1}{n})}{\sqrt{n+1}};$ 15. $u_{n} = \tan\left(\frac{1}{n}\right) - \frac{1}{n};$
16. $u_{n} = n^{2}\left(e^{\frac{1}{n}} - \sin\frac{1}{n} - \cos\frac{1}{n} - \left(\ln(1 - \frac{1}{n})\right)^{2}\right).$

2.

Soit $(u_n)_n$ une suite de nombres positifs telle que $\sum u_n$ converge. Montrer que la série $\sum \frac{u_n}{u_n+1}$ converge.

3. Série à terme général défini par une récurrence

Soit $(u_n)_n$ la suite définie par $u_0 = 1$ et $u_{n+1} = \frac{\sin u_n}{n+1}$. Montrer que pour tout $n \in \mathbb{N}$ on a $u_n \in [0,1]$, puis montrer que la série $\sum u_n$ converge.

4. Séries à terme général positif décroissant

Soit $(u_n)_n$ une suite positive décroissante telle que $\sum u_n$ converge. Montrer que pour tout $\varepsilon > 0$ il existe $N \in \mathbb{N}$ tel que pour tout n > N on ait $(n - N)u_n \leqslant \varepsilon$. En déduire que nu_n tend vers 0 quand n tend vers $+\infty$.

Donner un exemple de suite positive $(v_n)_n$ telle que $\sum v_n$ converge et nv_n ne tend pas vers 0.

5.

Soit $(u_n)_n$ une suite à termes positifs, et notons $v_n = \frac{1}{1 + n^2 u_n}$.

1. Montrer par des exemples que la divergence de $\sum u_n$ ne permet pas de déterminer la nature de $\sum v_n$.

On suppose dans la suite que $\sum u_n$ converge et on va montrer que $\sum v_n$ diverge.

2. Traiter le cas où n^2u_n ne tend pas vers $+\infty$.

3. Traiter le cas où $n^2u_n\to +\infty$ en appliquant l'inégalité de Cauchy-Schwarz à $\sum_{n=0}^N u_n^{1/2} v_n^{1/2}.$

6.

Soit $(u_n)_n$ une suite réelle positive. Pour tout $n \in \mathbb{N}^*$ on note $S_n = \sum_{p=0}^{n-1} u_p$.

Comparer la nature des séries $\sum u_n$ et $\sum \frac{u_n}{S_n}$ (indication : on pourra considérer $\log S_{n+1} - \log S_n$).

TD N°3

SÉRIES À TERMES QUELCONQUES

1. Natures de séries

Déterminer la nature des séries de terme général :

1.
$$u_n = \frac{(-1)^n}{\ln n}$$
; 5. $u_n = \sin \frac{(-1)^n}{n}$; 6. $u_n = 1 - \sqrt{1 - \frac{(-1)^n}{\sqrt{n}}}$; 7. $u_n = \frac{(-1)^n}{n+(-1)^n}$; 8. $u_n = \frac{(-1)^n}{(-1)^n}$; 8. $u_n = \frac{(-1)^n}{(-1)^n}$;

2. Linéarisations

Rappeler la formule d'Euler sur les polynômes trigonométriques puis déterminer la nature des séries de terme général :

1.
$$u_n = \frac{\sin^3(n)}{n}$$
;
2. $u_n = \frac{\sin^k(n)\cos^\ell(n)}{n}$ où $k, \ell \in \mathbb{N}$ sont fixés;
3. $u_n = \frac{|\sin(n)|}{n}$.

3. Comparaison avec une intégrale

En utilisant la comparaison avec une intégrale, étudier en fonction de $\alpha \in \mathbb{R}$ la nature des séries suivantes :

1.
$$\sum_{n} \frac{1}{n(\ln n)^{\alpha}};$$
 2.
$$\sum_{n} \frac{1}{n(\ln n)(\ln(\ln n))^{\alpha}}.$$

Indication : on pourra dans le premier cas calculer la dérivée de $x \mapsto (\ln x)^{\beta}$.

4. Petits "o"

Soit u_n une suite à termes réels.

- 1. Donner un exemple tel que $\sum u_n$ converge et $\sum u_n^2$ diverge.
- 2. On suppose dans les questions suivantes que $\sum u_n$ et $\sum u_n^2$ convergent. Soit f une application de \mathbb{R} dans \mathbb{R} deux fois dérivable en 0, telle que f(0) = 0. Montrer que $\sum f(u_n)$ converge.

5. Calcul de sommes

Montrer que les séries suivantes convergent et calculer leurs sommes :

1.
$$\sum_{n=3}^{\infty} (3^{-n+2} + 2^{-n+3})$$
 2. $\sum_{n=1}^{\infty} \frac{n^2 + 2n}{n!}$ 3. $\sum_{n=0}^{\infty} \frac{\cos(n)}{n!}$

$$2. \sum_{n=1}^{\infty} \frac{n^2 + 2n}{n!}$$

$$3. \sum_{n=0}^{\infty} \frac{\cos(n)}{n!}$$

6. Formule de Taylor-Lagrange

On note f la fonction $x \mapsto \ln(1+x)$ définie sur]-1,1[et on fixe $\lambda \in]-1,1[$.

- 1. Montrer que la série de terme général $u_n = \frac{(-1)^{n-1}\lambda^n}{n}$ (où $n \geqslant 1$) converge.
- 2. Montrer que sa somme vérifie

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \lambda^n}{n} = \ln(1+\lambda)$$

7. Calcul de $\sum_{n\geqslant 1} nx^{n-1}$

Soit x un nombre réel, avec |x| < 1.

- 1. Montrer que $\sum_{n} x^{n}$ et $\sum_{n} nx^{n-1}$ convergent.
- 2. Donner des expressions fermées (c'est-à-dire sans signe \sum) de

$$\sum_{n=0}^{N} x^n \qquad \text{et} \qquad \sum_{n=1}^{N} n x^{n-1}.$$

- 3. En déduire la valeur de $\sum_{n\geq 1} nx^{n-1}$.
- 4. Montrer que les séries suivantes convergent et calculer leurs sommes :

(a)
$$\sum_{n=1}^{\infty} ((n-2)3^{-n} + (n-3)2^{-n})$$
 (c) $\sum_{n=2}^{\infty} \frac{1}{n2^n}$

(b)
$$\sum_{n=1}^{\infty} (n^2 - 2n)3^{-n}$$

8. Attention à la semi-convergence

Soit $\sum u_n$ une série convergente à termes complexes. Montrer que la série $\sum \frac{u_n}{n}$ converge.

9. Un pot-pourri

Soient a et b deux réels. On considére la série $\sum u_n$ avec $u_n = \frac{a^n}{n+b^n}$.

- 1. On suppose $b \leqslant 1$. Pour quelles valeurs de a la série est-elle absolument convergente ?
- 2. Même question pour b > 1.
- 3. On suppose a = -1. Pour quelles valeurs de b la série est-elle convergente?
- 4. Représenter dans le plan les points de coordonnées (a, b) tels que la série est absolument convergente, convergente, divergente.

10. Règle de Raabe-Duhamel

Soit $(u_n)_n$ une suite de réels strictement positifs. On suppose qu'il existe a>0 b>1 tels que :

$$\frac{u_{n+1}}{u_n} = 1 - \frac{a}{n} + O\left(\frac{1}{n^b}\right) .$$

- 1. Pour tout $n \in \mathbb{N}$, on pose $v_n = n^a u_n$. Montrer que la série de terme général $\ln \frac{v_{n+1}}{v_n}$ converge.
- 2. En déduire la nature de la série de terme général u_n .

TD N°4

Intégrabilité des fonctions à valeurs positives

1. Une fraction rationnelle

1. Déterminer trois réels A, B, C tels que pour tout x > 0:

$$\frac{1}{x(x+1)(x+2)} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x+2}$$

2. Calculer pour X > 0:

$$I(X) = \int_1^X \frac{dx}{x(x+1)(x+2)}$$

3. Quelle est la limite lorsque $X\to +\infty$ de I(X)? Que peut-on donc dire de l'intégrale impropre $\int_1^{+\infty} \frac{dx}{x(x+1)(x+2)}$?

2. Changement de variable

Soit $X\in [0,+\infty[$. Calculer $I(X)=\int_0^X \frac{dt}{\mathrm{ch}t}$ puis déterminer la limite de I(X) lorsque $X\to +\infty$.

3. Intégration par parties

Déterminer une primitive F de la fonction

$$\begin{array}{ccc} f: [0,+\infty[& \rightarrow & [0,+\infty[\\ & t & \mapsto & t^2e^{-t} \end{array}$$

En déduire que l'intégrale impropre $\int_0^{+\infty} f(t)\,dt$ converge, et déterminer sa valeur.

4. Nature d'intégrales impropres

Déterminer la nature de chacune des intégrales impropres suivantes.

1.
$$\int_{1}^{\infty} \frac{\ln x}{x + e^{-x}} dx;$$

3.
$$\int_0^\infty \frac{\ln x}{x + e^{-x}} dx;$$

2.
$$\int_0^1 \frac{\ln x}{x + e^{-x}} dx$$
;

4.
$$\int_{1}^{\infty} \frac{|\sin x|}{x^2 + 1} dx$$
;

5.
$$\int_{0}^{\infty} \frac{dx}{1+x^{2}|\sin x|};$$
6.
$$\int_{1}^{\infty} \frac{\ln x}{x} e^{-x} dx;$$
7.
$$\int_{0}^{\infty} (x+2-\sqrt{x^{2}+4x+1}) dx;$$
8.
$$\int_{1}^{\infty} (\sqrt[3]{x^{3}+1} - \sqrt{x^{2}+1}) dx;$$
9.
$$\int_{1}^{\infty} e^{-\sqrt{x^{2}-x}} dx;$$
10.
$$\int_{2}^{\infty} \frac{\sqrt{x}}{(\ln x)^{3}} dx;$$
11.
$$\int_{1}^{\infty} \frac{2+\sin x+\sin^{2}x}{\sqrt[3]{x^{4}+x^{2}}} dx;$$
12.
$$\int_{-\infty}^{\infty} e^{-x^{2}} dx;$$
13.
$$\int_{0}^{1} \frac{\ln x}{1-x} dx;$$

5. Limite et convergence de l'intégrale

- 1. Soit $f: [0, +\infty[\to [0, +\infty[$ une fonction continue par morceaux telle que $f(t) \to \ell$ quand $t \to +\infty$, avec $\ell > 0$ ou $\ell = +\infty$. Montrer que $\int_0^{+\infty} f(t) dt$ diverge.
- 2. Donner un exemple de fonction continue par morceaux $g:[0,+\infty[\to [0,+\infty[$ telle que $g(t)\not\to 0$ quand $t\to +\infty$ et $\int_0^{+\infty}g(t)\,dt$ converge.

6. Deux équivalents

- 1. Déterminer la nature des intégrales impropres $\int_0^1 \frac{e^{-t}}{t} dt$ et $\int_1^{+\infty} \frac{e^{-t}}{t} dt$.
- 2. Pour tout x > 0, on pose $f(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt$. Calculer sa limite en $+\infty$.
- 3. Utiliser une intégration par parties pour donner un équivalent simple de f en $+\infty$.
- 4. Donner un équivalent simple de f en 0^+ .

7. Dérivée logarithmique

Soit $f:[0,+\infty[\to]0,+\infty[$ une fonction continue. Pour tout $x\in[0,+\infty[$ on note $F(x)=\int_0^x f(t)\,dt.$

Montrer que les intégrales impropres $\int_1^{+\infty} f(t) dt$ et $\int_1^{+\infty} \frac{f(t)}{F(t)} dt$ ont même nature.

8. Tiré de l'examen de rattrapage 2010

Pour tout entier $n \ge 0$ on pose

$$u_n = \int_{n\pi}^{(n+1)\pi} \frac{\cos^2 x}{1+x} dx, \qquad v_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin^2 x}{1+x} dx$$

- 1. Calculer $a_n := u_n + v_n$ et vérifier que la série $\sum_n a_n$ diverge.
- 2. En utilisant une intégration par parties, montrer que pour tout n>0 on a

$$|u_n - v_n| \leqslant \frac{1}{2\pi n^2}$$

- 3. Déduire des résultats précédents que $\sum_n u_n$ et $\sum_n v_n$ sont deux séries divergentes.
- 4. Si α est un paramètre réel, on pose

$$f_{\alpha}(x) = \frac{\sin^2 x}{(1+x)^{\alpha}} \quad \forall x \geqslant 0$$

Déterminer les valeurs de α pour les quelles la fonction f_{α} est intégrable sur $[0, +\infty[$.

TD N°5

INTÉGRALES IMPROPRES : CAS GÉNÉRAL

1. $\int_{\pi}^{+\infty} \frac{|\sin(t)|}{t} \ dt$ n'est pas absolument convergente

Pour tout $n \ge 1$, on pose :

$$u_n = \int_{n\pi}^{(n+1)\pi} \frac{|\sin(t)|}{t} dt.$$

- 1. Déterminer un réel a > 0 tel que pour tout $x \in [n\pi + \frac{\pi}{4}, n\pi + \frac{3\pi}{4}], |\sin(x)| \geqslant a$.
- 2. En déduire un réel b > 0 tel que $u_n \ge \frac{b}{n+1}$ pour tout $n \ge 1$.
- 3. En déduire que $\int_{\pi}^{+\infty} \frac{|\sin(t)|}{t} dt$ est divergente.

2. Nature d'intégrales impropres

Déterminer la nature de chacune des intégrales impropres suivantes.

1.
$$\int_{2}^{\infty} \frac{\cos x}{\ln(x)} dx;$$
2.
$$\int_{2}^{\infty} \frac{\sin(x-1)}{\sin(x-1)} dx$$

5.
$$\int_0^1 \frac{\cos \frac{2}{x}}{x} dx$$
;

2.
$$\int_{1}^{\infty} \frac{\sin(x-1)}{\ln(x)} dx;$$
3.
$$\int_{1}^{\infty} \frac{\sin x}{x+e^{-x}} dx;$$

6.
$$\int_{1}^{\infty} \frac{\sin^3(x)}{\sqrt{x+2}} dx;$$

$$J_1 \quad x + e^{-x}$$

$$4. \int_{-\pi/2}^{\infty} \frac{e^{ix}}{1/2} dx$$

4.
$$\int_{1}^{\infty} \frac{e^{ix}}{x^{1/2} + x^{1/4} \sin(x)} dx;$$
 7.
$$\int_{-\infty}^{+\infty} \frac{\sin^{2}(x)}{x(1 - x^{2}) \ln|x|} dx;$$

3. $\int_0^{+\infty} f(t^{\alpha}) dt$ pour une fonction périodique de moyenne nulle

Soit f une fonction continue sur \mathbb{R} , périodique, de période 1, et telle que $\int_0^1 f(t) dt =$ 0. On rappelle qu'une fonction continue sur un intervalle compact est bornée sur cet intervalle.

1. Montrer que la fonction f est bornée sur \mathbb{R} , et en déduire que la fonction Fdéfinie par :

$$F(x) = \int_0^x f(t) \ dt$$

est bornée sur \mathbb{R} .

- 2. Montrer que $\int_0^{+\infty} \frac{f(t)}{t^a} dt$ converge pour tout $a \in]0,1[$.
- 3. En déduire que $\int_0^{+\infty} f(t^{\alpha}) dt$ converge pour tout $\alpha > 1$.