CONTRÔLE CONTINU 1 le 26 octobre 2017 de 12h30 à 14h30

Les documents, calculatrices, téléphones portables ainsi que tous les autres dispositifs électroniques sont strictement interdits. Seule une feuille recto-verso manuscrite est autorisée. Toutes les réponses doivent être justifiées et la qualité de la rédaction sera prise en compte.

Exercice 1. Autour du cours (2 points).

- 1. Que signifie « la série de réels $\left(\sum_{n>0} a_n\right)$ converge »?
- 2. Soient $\left(\sum_{n\geq 0}a_n\right)$ et $\left(\sum_{n\geq 0}b_n\right)$ deux séries à termes positifs. On suppose que pour tout n on a l'inégalité $a_n\leq b_n$. Démontrer le critère de comparaison suivant :

$$Si\left(\sum_{n\geq 0}b_n\right)$$
 converge alors $\left(\sum_{n\geq 0}a_n\right)$ converge.

Exercice 2. (4 points) Dire si les séries suivantes sont convergentes et, dans l'affirmative, calculer leur somme :

1.
$$\sum_{n\geq 3} \frac{\ln(\frac{32}{13}\pi)}{3^{n-2}}$$
 2.
$$\sum_{n\geq 2} \frac{n+1}{n!}$$

Exercice 3. (6 points) Déterminer la nature des séries de terme général u_n dans les cas suivants :

1.
$$u_n = \frac{2^n + 3^n}{n^3 + \ln(n) + 5^n}$$
 3. $u_n = \frac{(-1)^n}{\sqrt{n} + 1}$ 5. $u_n = \left(1 - \frac{2}{n}\right)^{n^3}$
2. $u_n = \frac{n}{e^n}$ 4. $u_n = \left(1 - \frac{3}{n^2}\right)^n$ 6. $u_n = (-1)^n \sin(1/n)\sqrt{n}$

Exercice 4. (4 points) Pour tout a > 0, discuter la nature de la série $\sum_{n > 0} \frac{2^{\sqrt{n}}}{2^{\sqrt{n}} + a^n}$.

Exercice 5. (5 points) Posons $u_1 := 1$. Pour tout $n \ge 1$ on définit par récurrence u_{n+1} par la formule

$$u_{n+1} := \frac{1}{n} e^{-u_n} .$$

- 1. Montrer que pour tout $n, 0 < u_{n+1} \le \frac{1}{n}$.
- 2. En déduire un équivalent de u_n .
- 3. Déterminer la convergence de la série de terme général u_n .
- 4. Déterminer la convergence de la série de terme général $\frac{u_n}{n}$.
- 5. Déterminer la convergence de la série de terme général $(-1)^n u_n$.

Exercice 6. (4 points) En comparant à une intégrale, donner un équivalent de $u_n = \sum_{k=1}^n (\ln k)^2$. (Indication : une primitive de $x \mapsto (\ln x)^2$ est $x \mapsto x(2-2\ln x + (\ln x)^2)$.)

CONTRÔLE CONTINU 1 le 26 octobre 2017 de 12h30 à 14h30

Documents, calculators, telephones and any other electronic device is strictly forbidden. A rectoverso handwritten sheet is authorized. All the answers have to be justified, and the quality of the reduction will be taken into account.

Exercise 1. About the lectures (2 points).

- 1. What does it mean « the series of real numbers $\left(\sum_{n\geq 0} a_n\right)$ converges »?
- 2. Let $\left(\sum_{n\geq 0}a_n\right)$ and $\left(\sum_{n\geq 0}b_n\right)$ be two series with positive general terms. We assume that for all n we have the inequality $a_n\leq b_n$. Prove the following comparison criterion :

If
$$\left(\sum_{n\geq 0} b_n\right)$$
 converges, then $\left(\sum_{n\geq 0} a_n\right)$ converges too.

Exercise 2. (4 points) Are the following series convergent? If yes, compute their sum:

1.
$$\sum_{n\geq 3} \frac{\ln(\frac{32}{13}\pi)}{3^{n-2}}$$
 2.
$$\sum_{n\geq 2} \frac{n+1}{n!}$$

Exercise 3. (6 points) Give the nature of the series with general term u_n in the following cases:

1.
$$u_n = \frac{2^n + 3^n}{n^3 + \ln(n) + 5^n}$$
 3. $u_n = \frac{(-1)^n}{\sqrt{n} + 1}$ 5. $u_n = \left(1 - \frac{2}{n}\right)^{n^3}$

2.
$$u_n = \frac{n}{e^n}$$
 4. $u_n = \left(1 - \frac{3}{n^2}\right)^n$ 6. $u_n = (-1)^n \sin(1/n)\sqrt{n}$

Exercise 4. (4 points) For all a > 0, give the nature of the series $\sum_{n \ge 0} \frac{2^{\sqrt{n}}}{2^{\sqrt{n}} + a^n}$.

Exercise 5. (5 points) Let $u_1 := 1$. For all $n \ge 1$ we define u_{n+1} inductively by the formula

$$u_{n+1} := \frac{1}{n} e^{-u_n} .$$

- 1. Show that for all n, $0 < u_{n+1} \le \frac{1}{n}$.
- 2. Deduce an equivalent of u_n .
- 3. Determine the nature of the series with general term u_n .
- 4. Determine the nature of the series with general term $\frac{u_n}{n}$.
- 5. Determine the nature of the series with general term $(-1)^n u_n$.

Exercise 6. (4 points) Comparing with an integral, give an equivalent of $u_n = \sum_{k=1}^{n} (\ln k)^2$. (Hint: a primitive of $x \mapsto (\ln x)^2$ is $x \mapsto x(2 - 2\ln x + (\ln x)^2)$.)

Exercice 1.

- 1. Pour $n \ge 0$, on pose $S_n := \sum_{k=0}^n a_k$. Par définition, la série $(\sum_{n\ge 0} a_n)$ converge si la suite de nombres réels $(S_n)_{n>0}$ converge.
- 2. Comme on a $a_n \geq 0$ pour tout entier n, la suite $S_n := \sum_{n \geq 0} a_k$ est non décroissante. Donc la suite $(S_n)_{n \geq 0}$ converge si et seulement si elle est bornée et dans ce cas la limite coïncide avec $\sup_n S_n$. Montrons qu'elle est bornée. Posons $S'_n = \sum_{n \geq 0} b_k$. La suite $(S'_n)_{n \geq 0}$ est encore non décroissante. Par hypothèse, $(S'_n)_{n \geq 0}$ converge et, comme tous les termes sont positifs, pour tout n on a

$$S_n \leq S'_n$$
.

Cela entraine que $\sup_n S_n \leq \sup_n S_n'$, comme $\sup_n S_n' < +\infty$, nous venons de démontrer que S_n est bornée. Donc $(\sum_n a_n)$ est convergente.

Exercice 2.

Dire si les séries suivantes sont convergentes et, dans l'affirmative, calculer leur somme :

1. Le terme $\ln(\frac{32}{13}\pi)$ est juste une constante. Donc $\left(\sum_{n\geq 3}\frac{\ln(\frac{32}{13}\pi)}{3^{n-2}}\right)$ converge si, et seulement si,

$$\left(\sum_{n\geq 3}\frac{1}{3^{n-2}}\right)$$
 converge. Or, on a

$$\sum_{n\geq 3} \frac{1}{3^{n-2}} = \frac{1}{3} + \frac{1}{3^2} + \dots = \sum_{n\geq 1} \frac{1}{3^n}.$$

Maintenant on sait par le cours que la série géométrique $(\sum_{n\geq 0} x^n)$ converge si, et seulement si, on a |x|<1, et que dans ce cas on a $\sum_{n\geq 0} x^n=(1-x)^{-1}$. On a donc

$$\sum_{n\geq 1} \frac{1}{3^n} = -1 + \sum_{n\geq 0} (1/3)^n = -1 + \frac{1}{1 - (1/3)} = 1/2.$$

Conclusion:

$$\sum_{n\geq 3} \frac{\ln(\frac{32}{13}\pi)}{3^{n-2}} = \frac{\ln(\frac{32}{13}\pi)}{2} . \tag{1}$$

2. Pour montrer la convergence, nous pouvons appliquer la règle de d'Alembert. Les termes de la série étant positifs, on peut éviter les valeurs absolues :

$$\frac{u_{n+1}}{u_n} = \frac{\frac{n+2}{(n+1)!}}{\frac{n+1}{n!}} = \frac{n+2}{n+1} \cdot \frac{n!}{(n+1)!} = \frac{n+2}{(n+1)^2} = \frac{n(1+\frac{2}{n})}{n^2(1+\frac{2}{n}+\frac{1}{n^2})}.$$

On a donc $\lim_n \frac{u_{n+1}}{u_n} = 0$ et la série converge. Pour le calcul de la somme on peut séparer les termes comme ci de suite :

$$\sum_{n\geq 2} \frac{n+1}{n!} = \sum_{n\geq 2} \frac{n}{n!} + \sum_{n\geq 2} \frac{1}{n!} = \sum_{n\geq 2} \frac{1}{(n-1)!} + \sum_{n\geq 0} \frac{1}{n!} - (1+1)$$
$$= \sum_{n\geq 1} \frac{1}{n!} + e - 2 = \sum_{n\geq 0} \frac{1}{n!} - 1 + e - 2 = 2e - 3.$$

Exercice 3.

1. Le terme général $u_n = \frac{2^n + 3^n}{n^3 + \ln(n) + 5^n}$ est positif, nous pouvons donc utiliser l'équivalence. On a $2^n + 3^n \sim 3^n$ car $\lim_n \frac{2^n + 3^n}{3^n} = \lim_n \frac{3^n ((\frac{2}{3})^n + 1)}{3^n} = 1$. D'autre part on a $n^3 + \ln(n) + 5^n \sim 5^n$ car $\lim_n \frac{n^3 + \ln(n) + 5^n}{5^n} = \lim_n \frac{n^3}{5^n} + \frac{\ln(n)}{5^n} + 1 = 1$. Donc on a

$$u_n \sim \frac{3^n}{5^n} = \left(\frac{3}{5}\right)^n.$$

Comme 3/5 < 1, la série $(\sum_{n} (3/5)^{n})$ converge et par équivalence $(\sum u_{n})$ aussi.

2. Pour montrer la convergence, nous pouvons appliquer la règle de Cauchy. Les termes de la série étant positifs, on peut éviter les valeurs absolues :

$$\lim_{n} \sqrt[n]{\frac{n}{e^n}} = \lim_{n} \frac{\sqrt[n]{n}}{e} = \frac{1}{e}.$$

Pour la dernière égalité on peut remarquer que $\sqrt[n]{n}=n^{1/n}=e^{\frac{1}{n}\ln(n)}$ et que $\lim_n\frac{\ln(n)}{n}=0$ de sorte que $\lim_n\sqrt[n]{n}=1$. Maintenant, comme 1/e<1, le critère de Cauchy entraine la convergence de la série $(\sum_{n} n/e^{n})$.

3. Le terme général $u_n = \frac{(-1)^n}{\sqrt{n}+1}$ a des signes alternés. Son module $|u_n| = \frac{1}{\sqrt{n}+1}$ tend vers

$$\sqrt{n+1} > \sqrt{n} \implies \sqrt{n+1} + 1 > \sqrt{n} + 1 \implies \frac{1}{\sqrt{n+1} + 1} < \frac{1}{\sqrt{n} + 1}$$
.

Le critère des signes alternés de Leibnitz s'applique et montre que la série est convergente.

4. Le critère de Cauchy ne permet pas de conclure car $\sqrt[n]{u_n} = 1 - \frac{3}{n^2}$ tend vers 1. On va démontrer en effet que $\lim_n u_n = 1$ ce qui entraine que la série $(\sum u_n)$ est divergente. Pour tout n on a $u_n > 0$, on peut donc écrire

$$u_n = e^{\ln(u_n)} = e^{\ln\left(\left(1 - \frac{3}{n^2}\right)^n\right)} = e^{n \cdot \ln(1 - \frac{3}{n^2})}$$

Maintenant $n \cdot \ln(1 - \frac{3}{n^2}) \sim n \cdot (-\frac{3}{n^2})$ et on a donc $\lim_n n \cdot \ln(1 - \frac{3}{n^2}) = 0$ ce qui entraine $\lim_{n} u_n = \lim_{n} e^{n \cdot \ln(1 - \frac{3}{n^2})} = 1.$

5. Le critère de la racine donne

$$\sqrt[n]{u_n} = \left(1 - \frac{2}{n}\right)^{n^2} = e^{n^2 \cdot \ln\left(1 - \frac{2}{n}\right)}$$

et $n^2 \cdot \ln\left(1 - \frac{2}{n}\right) \sim n^2 \cdot \left(-\frac{2}{n}\right) \to -\infty$. On a donc $\lim_n \sqrt[n]{u_n} = \lim_n e^{n^2 \cdot \ln\left(1 - \frac{2}{n}\right)} = 0$. Le critère de Cauchy entraine alors que $\sum_n u_n$ est convergente.

6. Le terme général $u_n = (-1)^n \sin(1/n) \sqrt{n}$ a des signes alternés. Son module tend vers zéro car $|u_n| = \sin(1/n)\sqrt{n} \sim \frac{1}{n} \cdot \sqrt{n} = \frac{1}{\sqrt{n}}$. Pour vérifier la décroissance de la suite $n\mapsto |u_n|$ (éventuellement à partir d'un certain rang) nous considérons la fonction f(x):= $\sin(1/x)\sqrt{x}$. On a

$$f'(x) = \cos(1/x) \cdot \frac{-1}{x^2} \cdot \sqrt{x} + \sin(1/x) \cdot \frac{1}{2\sqrt{x}}$$

Pour x > 0, on a $\sin(1/x) < 1/x$; et quand x est très grand on a $\cos(1/x) > 1/2$. Cela entraine que pour x très grand

$$f'(x) < \frac{1}{2} \cdot \frac{-1}{x^2} \cdot \sqrt{x} + \frac{1}{x} \cdot \frac{1}{2\sqrt{x}} = -\frac{1}{2x^{3/2}} + \frac{1}{2x^{3/2}} = 0$$

Plus précisément, on peut trouver M > 0 tel que pour tout x > M on ait f'(x) < 0. Si n > M, la suite $|u_n|$ est alors décroissante et le critère de Leibnitz entraine la convergence de la série $(\sum_n u_n)$.

Exercice 4. Pour tout a > 0 posons $u_n := \frac{2^{\sqrt{n}}}{2^{\sqrt{n}} + a^n}$.

Le terme général u_n est positif et on peut utiliser l'équivalence et la comparaison avec une autre série.

Pour a=1 nous avons $\lim_{n} \frac{2^{\sqrt{n}}}{2^{\sqrt{n}}+1} = 1$, donc la série de terme général $\frac{2^{\sqrt{n}}}{2^{\sqrt{n}}+1}$ diverge.

Si $0 < a \le 1$, alors

$$u_n = \frac{2^{\sqrt{n}}}{2^{\sqrt{n}} + a^n} \ge \frac{2^{\sqrt{n}}}{2^{\sqrt{n}} + 1}$$

et comme on vient de voir que la série de terme général $\frac{2^{\sqrt{n}}}{2^{\sqrt{n}}+1}$ diverge, cela montre que $(\sum_n u_n)$ diverge aussi par comparaison.

Supposons maintenant a > 1. Dans ce cas, on a $2^{\sqrt{n}} + a^n \sim a^n$. En effet on a

$$\frac{2^{\sqrt{n}} + a^n}{a^n} = 1 + \frac{2^{\sqrt{n}}}{a^n} = 1 + \frac{e^{\sqrt{n}\ln(2)}}{e^{n\ln(a)}} = 1 + e^{\sqrt{n}\ln(2) - n\ln(a)}$$

et comme a>1 on a $\ln(a)>0$ et donc $\lim_n(\sqrt{n}\ln(2)-n\ln(a))=\lim_n\sqrt{n}\cdot(\ln(2)-\sqrt{n}\ln(a))=-\infty$ ce qui entraine $\lim_n\frac{2^{\sqrt{n}}+a^n}{a^n}=1$. On a donc montré que

$$u_n \sim \frac{2^{\sqrt{n}}}{a^n} \,. \tag{2}$$

On peut maintenant appliquer le critère de Cauchy

$$\sqrt[n]{\frac{2\sqrt{n}}{a^n}} = \frac{2^{\frac{\sqrt{n}}{n}}}{a} = \frac{2^{\frac{1}{\sqrt{n}}}}{a} \to \frac{1}{a} < 1.$$

Le critère de Cauchy nous dit que, si a > 1, la série de terme général $\frac{2^{\sqrt{n}}}{a^n}$ converge et, par équivalence, cela entraine que la série de terme général u_n converge aussi quand a > 1.

Conclusion : on a divergence pour $0 < a \le 1$ et convergence pour a > 1.

Exercice 5. Posons $u_1 := 1$. Pour tout $n \ge 1$ on définit par récurrence u_{n+1} par la formule

$$u_{n+1} := \frac{1}{n} e^{-u_n}$$
.

- 1. Pour n=1, on a $u_2=1/e$ et l'encadrement $0 < u_{n+1} \le \frac{1}{n}$ est vrai. Supposons par récurrence que $0 < u_{n+1} \le 1/n$. C'est à dire $0 < u_n \le \frac{1}{n-1}$. En particulier, $-u_n < 0$ et, comme la fonction e^x est strictement croissante et positive, on a $0 < e^{-u_n} < e^0 = 1$. En divisant par n chaque terme, l'encadrement reste vrai. Donc $0 < e^{-u_n}/n = u_{n+1} < 1/n$, comme souhaité. Par récurrence l'encadrement est vraie pour tout n.
- 2. Par le théorème des gendarmes, l'encadrement du point précédent montre que $\lim_n u_n = 0$. Donc $\lim_n e^{-u_n} = 1$. Par conséquence

$$\lim_{n} \frac{e^{-u_n}/n}{1/n} = \lim_{n} e^{-u_n} = 1.$$

Cela montre que u_{n+1} est équivalent à 1/n qui est équivalent à 1/(n+1). Donc $u_n \sim 1/n$.

3. Comme les deux séries $\sum u_n$ et $\sum 1/n$ sont à termes positifs, on peut utiliser l'équivalence. Il en suit que $\sum u_n$ diverge car $\sum 1/n$ diverge.

- 4. Comme $u_n \sim 1/n$, alors $u_n/n \sim 1/n^2$. Les termes généraux u_n/n et $1/n^2$ sont encore positifs et on peut encore utiliser l'équivalence. Donc $\sum u_n/n$ converge car $\sum 1/n^2$ converge.
- 5. Puisque $u_n > 0$ pour tout n, le terme général $(-1)^n u_n$ est à signes alternés. Il ne suffit pas de savoir que u_n est équivalent à 1/n pour déduire la convergence de la série $\sum (-1)^n u_n$, ni la décroissance de la suite u_n .

Nous allons utiliser un DL. Sachant que u_n tends vers 0 on peut utiliser le DL de e^x en 0 : $e^x = 1 + x + \sigma(x)$, où $\sigma(x)$ est une fonction qui vérifie $\lim_{x\to 0} \frac{\sigma(x)}{x} = 0$. On trouve

$$(-1)^{n+1}u_{n+1} = (-1)^{n+1} \cdot \frac{1}{n} \cdot (1 - u_n + \sigma(u_n)) = -\frac{(-1)^n}{n} + (-1)^n \frac{u_n}{n} + \frac{\sigma(u_n)}{n}$$

Remarquons que cela est une <u>égalité</u> et non pas une approximation/équivalence. La fonction σ est inconnue, mais on arrive à en gérer la convergence (voir (c) ci plus bas). Maintenant :

- (a) La série de terme général $\frac{(-1)^n}{n}$ converge par le critère de Leibnitz.
- (b) La série de terme général $\frac{(-1)^n u_n}{n}$ converge absolument car son module est u_n/n qui est équivalent à $1/n^2$ (comme expliqué au point 4).
- (c) La série de terme général $\sigma(u_n)/n$ converge absolument. Plus précisément, nous allons démontrer maintenant qu'il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$ on a $|\sigma(u_n)/n| \leq 1/n^2$. Par comparaison, cela va entrainer la convergence absolue de $\sum \sigma(u_n)/n$.

En effet, l'inégalité $|\sigma(u_n)/n| \le 1/n^2$ équivaut à $n^2|\sigma(u_n)/n| \le 1$. Or, nous savons que $\lim_{x\to 0} \frac{\sigma(x)}{x} = 0$ et cela entraine que $\lim_n |\sigma(u_n)/u_n| = 0$. Par ailleurs, nous savons que $u_n \sim \frac{1}{n}$ et donc $n|u_n| \to 1$ et donc

$$\lim_{n} \left(n^2 \cdot \left| \frac{\sigma(u_n)}{n} \right| \right) = \lim_{n} n \cdot |\sigma(u_n)| = \lim_{n} \frac{|\sigma(u_n)|}{|u_n|} \cdot n \cdot |u_n| = 0$$

In existe donc $N \in \mathbb{N}$ tel que $n^2 \cdot \left| \frac{\sigma(u_n)}{n} \right| \leq 1$.

Comme expliqué, cela entraine que $\sum \sigma(u_n)/n$ converge absolument.

Une somme de séries convergentes étant convergente, on déduit des points (a), (b) et (c) que $\sum (-1)^n u_n$ est convergente.

Exercice 6. La suite $(\ln(k))^2$ n'est pas décroissante, on ne peut donc pas appliquer le théorème du cours. Elle est quand même croissante (pour $k \ge 1$), et cela permet d'imiter la preuve donnée en cours pour trouver un équivalent. Soient

$$f(x) = \ln(x)^{2},$$

 $F(x) = x(2 - 2\ln(x) + (\ln(x))^{2}),$
 $S_{n} = \sum_{k=1}^{n} \ln(k)^{2}.$

On a F' = f et $\int_1^X f(x)dx = F(X) - F(1) = F(X) - 2$. Maintenant pour tout $k \ge 1$ on a

$$f(k) \leq \int_{k}^{k+1} f(t)dt \leq f(k+1)$$
.

^{1.} La stratégie exposée au point (c) est la méthode standard du processus d'utilisation des DL, modulo le fait de considérer le DL d'un ordre suffisamment grand.

Donc

$$\sum_{k=1}^{n} f(k) \leq \sum_{k=1}^{n} \int_{k}^{k+1} f(t)dt \leq \sum_{k=1}^{n} f(k+1) ,$$

c'est-à-dire

$$\sum_{k=1}^{n} f(k) \leq \int_{1}^{n+1} f(t)dt \leq \sum_{k=2}^{n+1} f(k) .$$

Or on a $\int_1^{n+1} f(t)dt = F(n+1) - 2$. L'inégalité précédente s'écrit alors comme

$$S_n \le F(n+1) - 2 \le S_{n+1} - f(1) = S_{n+1}$$
.

dont on déduit que pour tout $n \ge 2$ on a

$$F(n) - 2 \leq S_n \leq F(n+1) - 2.$$

Or on a $F(x) \sim x(\ln x)^2$, donc la suite F(n) tend vers $+\infty$ quand $n \to +\infty$. On a alors $F(n)-2 \sim F(n)$, et de même on a $F(n+1)-2 \sim F(n+1)$.

Par ailleurs, on a

$$\frac{F(n+1)}{F(n)} \ = \ \frac{(n+1)(2-2\ln(n+1)+(\ln(n+1))^2)}{n(2-2\ln(n)+(\ln(n))^2)} \ \sim \frac{(n+1)(\ln(n+1))^2}{n(\ln n)^2} \to 1,$$

donc $F(n) \sim F(n+1)$. Par encadrement on a alors $S_n \sim F(n)$, et par conséquent

$$S_n \sim n(\ln n)^2$$
.