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(P9) The trunkenness of a volume-preserving vector field. En collaboration
avec Pierre Dehornoy. A paraitre dans Nonlinearity.

(P10) Perspectives on Kuperberg flows. En collaboration avec Steve Hurder.
A paraitre dans les mémoires de la conférence 31st Summer Conference on Topology
and its Applications.

Dans ce texte je présente des résultats tirés des papiers (P5), (P7) et (P9). Le papier (P10) est
une compilation de questions autour des flots de Kuperberg, il est cité dans ce texte.

Je vais donc utiliser quelques lignes pour vous raconter les résultats des articles (P6) et (P8),
avant d’introduire mon mémoire. Dans (P6) nous avons trouvé deux preuves alternatives de I’énoncé
suivant, qui a été originalement prouvé par C. H. Taubes [Tau09] en utilisant des invariants de
Seiberg-Witten. Nous disons qu’un champ de vecteurs est strictement ergodique si son flot admet
une unique mesure invariante et si cette mesure est un volume.

THEOREME. Soit X un champ de vecteurs sur S strictement ergodique. Alors Uhélicité de X
est nulle.

L’hélicité est définie dans la Section il s’agit d’un invariant de conjugaison C* pour les flots
qui préservent un volume.

Dans P’article (P8) nous établissons une équivalence entre deux modeéles discrets de propagation
de gaz dans un réseaux, appelés en anglais Lorenz lattice gases. Ils ont des propriétés remarquables.
Notre papier donne une recette pour passer d’'un modele a un autre sur des réseaux réguliers du
plan.

Tous mes papiers peuvent étre consultés sur ma page web :

www.matem.unam.mx/rechtman/publications.html



Introduction

Dans ce mémoire je présente des résultats reliés a ’étude des flots en dimension 3. Le mémoire
est divisé en deux chapitres. Le premier est dédié & mon travail pour comprendre ’ensemble minimal
du piege de Kuperberg, ou dit d’une autre fagon, ’ensemble minimal des seuls exemples connus de
flots lisses sans points fixes et sans orbites périodiques sur S. Dans le second, j’explique comment
construire une quantité appelée tronc associée & un flot sur S* muni d’une mesure invariante, qui est
préservée par conjugaison topologique. Ce résultat s’inscrit dans la démarche consistant a trouver
des invariants pour les flots provenant d’invariants pour les nceuds.

Les résultats présentés dans le premier chapitre ont été obtenus en collaboration avec Steve
Hurder, avec qui j’ai commencé a collaborer lors de mon postdoctorat a Chicago. Nous nous
sommes donné pour tadche de comprendre I’ensemble minimal du piege de Kuperberg. La premiere
observation importante pour ce faire est que la construction dépend de certains choix, je cite
E. Ghys [Ghys95] :

Par ailleurs, on peut construire beaucoup de pieges de Kuperberg
et il n'est pas clair qu’ils aient la méme dynamique.

Les choix donnent toujours un piege dont le flot est C'°°, sans orbites périodiques et avec un
unique ensemble minimal, mais nous ne savons pas si I’ensemble minimal est le méme pour tous
les choix possibles. En effet, une question qui reste ouverte est de savoir s’il y a des choix pour
lesquels I’ensemble minimal est de dimension 1. Dans notre travail, nous imposons des hypotheéses
supplémentaires a la construction du piége qui nous permettent de montrer que I’ensemble minimal
est de dimension topologique 2 et d’en déduire d’autres propiétés dynamiques du flot. Nous appelons
ces choix génériques, car il s’agit de demander que deux propiétés de la construction soient de
nature quadratique. Nous appelons les flots obtenus des flots de Kuperberg génériques. Je présente
ces hypothéses brievement dans la remarque et avec plus de détails dans la section[1.6

Il faut mentionner que dans la catégorie des flots linéaires par morceaux, Greg et Krystyna
Kuperberg parviennent a construire un piege de Kuperberg dont I’ensemble minimal est de dimen-
sion 1 [KK96]. Aussi, si un piege de Kuperberg est tel que son ensemble minimal est de dimension 1,
I’ensemble minimal est contenu dans un esemble invariant de dimension topologique 2 qui a la
méme structure que ’ensemble minimal du cas générique.

Comment étudier un ensemble minimal ? Quels sont les aspects importants ?

Une premiere approche est de se faire une image de cet ensemble minimal, de le visualiser.
Finalement c’est un ensemble plongé dans R3 et 3 est encore une petite dimension. J’ai essayé
dans ce mémoire d’expliquer I'image que nous nous sommes faite de cet ensemble,; la section
donne une fagon de comprendre comment il est structuré. Tout n’y est pas dit, j’ai décidé de ne pas
rentrer dans certaines complications et détails. Il s’agit donc d’une image idéalisée de ’ensemble,
qui permet de comprendre les autres aspects que nous avons décidé d’étudier.

Une seconde approche naturelle est la théorie de la forme. Introduite par Borsuk [Bor68], elle
permet d’étudier certains aspects des ensembles plongés dans un espace euclidien, en étudiant des
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12 Introduction

suites de voisinages de plus en plus petits. Nous avons été guidés par une question de K. Kuperberg :
est ce que la forme de ’ensemble minimal est stable 7 Comme expliqué dans la section [I.4.1] nous
savons que la réponse & cette question est négative (dans le cas d’un flot de Kuperberg générique).
Le concept d’ensemble «movable» est un autre concept important dans la théorie de la forme. Nous
ignorons si I’ensemble minimal des flots de Kuperberg génériques est «movabley». Je conjecture que
oui.

Nous comprenons donc comment visualiser cet ensemble minimal exceptionnel (c’est-a-dire
transversement un ensemble de Cantor) de dimension topologique 2. Il est, par minimalité, localement
homogene, mais il n’est pas globalement homogene. Comme expliqué dans le théoreme [1.3.5]
I’ensemble ne forme pas une lamination, mais il contient un ouvert dense de dimension 2 qui est
une lamination £ avec des feuilles ouvertes. Nous pouvons donc considérer la dynamique de cette
lamination et la comparer a la dynamique du flot restreint a I’ensemble minimal.

Cet approche nous a permis de construire des pseudogroupes agissant, soit dans un rectangle
presque transverse au flot, soit dans une transversale a la lamination L. Il s’agit, par leur nature et
par la construction, de pseudogroupes différents mais semblables, avec des ensembles de générateurs
similaires. Le premier de ces pseudogroupes est décrit brievement dans la section En utilisant
la notion d’entropie pour les pseudogroupes, introduite par Ghys, Langevin et Walczak [GLWSS],
nous avons étudié ces pseudogroupes. Dans la section [T.4.2] j’explique quelques-uns des résultat
obtenus.

Les pseudogroupes utilisés dans [P5] ont tous la propiété que le nombre de points séparés par
des mots de longueur n (avec un ensemble de générateurs fixé) croit comme 'exponentielle de
n®, pour un certain « € (0,1). Ils sont donc tous d’entropie nulle, mais d’entropie lente positive
(les définitions sont données dans la section [1.4.2). Cette affirmation s’étend au flot restreint a
I’ensemble minimal : le flot est d’entropie topologique nulle, mais a une entropie lente positive. Le
fait que 'entropie topologique du flot soit nulle est aussi une conséquence d’un théoréme de Katok
[Kat80], comme remarqué par E. Ghys [Ghys95].

Avec l'objectif de trouver des flots & entropie topologique positive pres des flots de Kuperberg,
nous avons étudié des déformations de la construction du piége dans [P7]. Nous avons alors trouvé
une famille C*° & un parameétre contenant un flot de Kuperberg et des flots a entropie positive. La
construction et quelques idées des preuves forment le contenu de la section

Le flot de Kuperberg est donc une bifurcation dans ’espace des flots sur une variété fermée de
dimension 3. Il s’agit d’une situation non générique, mais ce flot doit probablement étre entouré
d’autres bifurcations parmi lesquelles il pourrait y avoir des bifurcations génériques. Je ne sais pas,
pour le moment, si I’étude d’un voisinage du piége parmi les bifurcations est abordable.

Par ailleurs, les piéges & entropie topologique positive construites dans [P7] contiennent une
famille dénombrable d’ensembles invariants dont la dynamique transverse est conjuguée a un fer a
cheval. Comment ceux-ci dégéneérent-ils vers I’ensemble minimal du piége de Kuperberg? Le temps
de retour a ces ensembles tranverses invariants devient de plus en plus long quand on s’approche
du piege de Kuperberg, mais j’ignore si c’est 'unique cause de la bifurcation. Il me semble donc
intéressant de comprendre ce processus.

Les résultats du deuxieme chapitre ont été obtenus en collaboration avec Pierre Dehornoy. Nous
avons construit une quantité associée a un champ de vecteurs X muni d’une mesure invariante
1, qui est préservée par conjugaison. Nous appelons cette quantité un invariant de (X, pu). Ce
probléme est motivé par une observation de Helmholtz [Hel1858] : si X; est un champ de vecteurs
non-autonome qui satisfait les équations d’Euler (dans le cas plus simple de ces équations) et si on
note ¢; son flot, alors rot(X;) est 'image sous ¢; de rot(Xp). Comme ¢; est un difféomorphisme
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qui préserve un volume, un invariant appliqué a rot(Xp) nous donne une quantité qui ne dépend
pas du temps pour les solutions de 1’équation d’Euler.

L’invariant le plus connu est I’hélicité, il est défini quand la mesure invariante p est un volume.
Gréce aux travaux d’Arnold [Arn73], nous avons une interprétation topologique de cet invariant :
dans S* (ou un domaine simplement connexe de R?), I'hélicité coincide avec le nombre d’enlacement
asymptotique. Ce nombre est défini de la facon suivante. Prenons deux points x1,2o € S? et
deux nombres t1,t2 € R. On consideére les courbes k(z;,t;), pour i = 1,2, formées par le segment
d’orbite entre x; et ¢y, (x;) suivi d’'un arc (court) entre ces deux points. On peut montrer [Vog02]
que pour presque toute paire de points et pour presque toute paire de nombres réels, on obtient
deux courbes fermées simples et disjointes. Nous pouvons donc calculer leur nombre d’enlacement
(k(x1,t1), k(x2,t2)). L'hélicité est alors égale a

//( lim ak(xl’tl)’k(xz’tQ)))dudu.
t1,t2—00 tito

Si p est une mesure ergodique, nous n’avons pas besoin d’intégrer. Cette interprétation nous dit que
I’hélicité est un invariant asymptotique : elle peut étre obtenue comme la limite d’un invariant des
entrelacs. Il semble donc naturel d’imiter cettte construction pour d’autres invariants de nceuds ou
entrelacs, pour trouver d’autres invariants asymptotiques. Cette voie a été explorée par Gambaudo
et Ghys [GGO1], Baader [Baall] et Baader et Marché [BM12], pour différents invariants des noeuds.
Mais tous les invariants obtenus par ces auteurs sont proportionnels a 1'hélicité.

Récemment, Kudryavtseva [Kud14, [Kud16] et Enciso, Peralta-Salas et Torres de Lizaur [EPT16]
ont montré sous différentes hypotheses, que tout invariant dont la dérivée de Fréchet est l'intégrale
d’un noyau continu, est une fonction de I'hélicité. Donc, si I’on cherche de nouveaux invariants, ils
ne peuvent pas étre trop réguliers.

Nous avons décidé d’étudier un invariant des nceuds appelé le trone, introduit par Ozawa [Ozw10].
Cet invariant est construit en comptant le nombre de points d’intersection entre un nceud et les
niveaux d’une fonction hauteur. Dans le cas de S?, une fonction hauteur a deux points singuliers et
tout autre niveau est une spheére. Une adaptation naturelle au cas des champs de vecteurs est le
flux géometrique a travers les niveaux de la fonction. Il s’agit de mesurer par rapport a une mesure
invariante, le passage infinitésimal & travers la surface sans considérer ’orientation.

L’invariant qui en résulte est un invariant par conjugaison topologique, et il admet une in-
terprétation asymptotique : dans le cas d’une mesure ergodique, il s’agit de la limite du tronc
de k(z,t) divisé par t, pour presque tout = € S®. Je présente dans le chapitre [2|les résultats que
nous avons obtenus concernant cet invariant, en particulier, nous pouvons montrer qu’il n’est pas
proportionnel a I'hélicité. Dans la section [2.1] j'ai décidé d’inclure le calcul qui nous permet de
montrer cette derniére affirmation.
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Chapter 1

A minimal set

A 3-dimensional closed manifold has Euler characteristic zero, meaning that it admits a non-
singular vector field. There is one known way to build C' or real analytic flows without fixed
points and without periodic orbits that applies to any of these manifolds: using Kuperberg plugs. A
plug allows to modify a flow inside a flow-box, trapping orbits and introducing at least a minimal
set.

K. Kuperberg’s construction appeared in 1993, published in 1994 [Kup94]. The article was
then followed by a Séminaire Bourbaki exposition by E. Ghys [Ghys95], a Sugaku lecture by S.
Matsumoto [Mat95] and a paper by Greg and Krystyna Kuperberg [KK96]. Each of these papers
gives different insights into the dynamics of Kuperberg flows, I will explain briefly some of them in
Section [I:2.2] Regarding the minimal set of the flow inside the plug, it was known that there is
only one minimal set and there where examples for which its dimension is 2.

In [P5], S. Hurder and I went into the details of these flows, trying to understand what the
minimal set looks like. I will give here an informal description of it and cite the main results of
our work, mainly related to its shape properties and some types of entropy of the flow. To my
knowledge, our work gives the first explicit example of an exceptional minimal set of a flow that has
topological dimension 2 and is not obtained from a suspension of a diffeomorphism. This minimal
set has amazing properties, some of them explained below. We developed a set of ad-hoc techniques
for studying it. I ignore if any of these can be applied to other minimal sets.

The chapter is organized as follows. Sections and are a brief introduction to the problem
and the results on Kuperberg flows previous to our work. Section [L.2]is divided into the original
construction by K. Kuperberg explained in Section [I.2.1] and some known results on their dynamics
other than aperiodicity explained in Section [[.2.2] In Section [I.3]and its subsections, I tried to give
a picture of the minimal set. In Section [[.3.1] I start by explaining the structure of two special
orbits of the flow, then in Section [I.3.2]I use these two orbits to decompose a dense subset of the
minimal set whose dimension is 2. This is not a formal exposition since it avoids several minor
complications and I refer for the proofs of the facts used to [P5].

In the paper [P5] we used several pseudogroups acting on a rectangle that is almost transverse
to the flow of the Kuperberg plug to study the dynamics beyond aperiodicity. Even if in this text I
don’t present any proof using pseudogroups, I included in Section the choice of the rectangle and
some of the maps we studied in [P5]. These maps then appear in the discussions in Sections m
and

Section corresponds to the results obtained in [P7]. Kuperberg flows have topological entropy
zero, as a consequence of Katok’s theorem on C2-flows [Kat80]. The question that motivated
the results in [P7] was whether there are positive topological entropy flows arbitrarily near the
Kuperberg flows. The answer is yes in the C'-topology by more general results on 3-dimensional

15



16 CHAPTER 1. A MINIMAL SET

flows. Since the Kuperberg examples are explicit, it seemed that we could work in the C'*°-topology.
The answer is again yes: we found an explicit construction of a 1-parameter family containing a
Kuperberg flow and flows of positive topological entropy. I give the construction highlighting the
difference with the original construction by K. Kuperberg and explain the main ideas in the proof.

1.1 The Seifert conjecture, a story beyond Wilson,
Schweitzer and Kuperberg

In 1950, Seifert proved that vector fields close to a vector field tangent to the Hopf fibration have
periodic orbits [Seil950]. He asked whether any non-singular vector field on the three sphere S3
had a periodic orbit, the positive answer to this question became known as the Seifert conjecture.

When studying a vector field on a manifold, the first relevant question is to know if it has zeros.
To each isolated zero of the vector field we can associate an integer index, and the Poincaré-Hopf
theorem tell us, that the sum of the indeces is equal to the Euler characteristic of the manifold.
After Seifert result, there was the hope to find an analog of the Poincaré-Hopf theorem for periodic
orbits. The result by F. W. Wilson mentioned below killed the hope to find such an index in
dimension greater than 3, and then the results by P. Schweitzer and K. Kuperberg imply that there
is no analog in dimension 3.

In 1966, F. W. Wilson built a plug that allows to obtain on any closed 3-manifold a non-singular
vector field with a finite number of periodic orbits [Wil66, PW'T7] (the construction in the second
paper is simpler). Moreover, this can be donne in any homotopy class of vector fields. That is, any
homotopy class of non-singular vector fields contains a vector field with a finite number of periodic
orbits. For manifolds of dimension strictly greater than 3, Wilson’s construction provides a vector
field without periodic orbits; at the place of the finite number of periodic orbits in dimension 3, in
dimension n > 3 the construction gives a finite number of invariant n — 2 dimensional tori endowed
with an aperiodic flow. Thus on any closed manifold of dimension n > 3 with Euler characteristic
zero, each homotopy class of non-singular vector fields contains a vector field without periodic
orbits.

Back to dimension 3, after Wilson’s result the problem was how to destroy those periodic orbits
and there was a possible path: to build a plug without periodic orbits.

To fix ideas, let me define a plug. A 3-dimensional plug is a manifold P endowed with a vector
field X satisfying the following properties: the manifold P is of the form D x [—2,2], where D is a
compact 2-manifold with boundary 0D. Let % be the vertical vector field on P, where z is the
coordinate on [—2,2]. The vector field X on P must satisfy the conditions:

(P1) wertical near the boundary: X = % in a neighborhood of P; thus, D x {—2} and D x {2}

are the entry and exit regions of P for the flow of X', respectively;

(P2) entry-exit condition: if a point (x,—2) is in the same trajectory as (y,2), then z = y. That

is, an orbit that traverses P, exits just in front of its entry point;

(P3) trapped orbit: there is at least one entry point whose entire forward orbit is contained in

P; we will say that its orbit is trapped by P and we call the set of entry points with trapped
orbit the trapped set;

(P4) tameness: there is an embedding i: P — R? that preserves the vertical direction on the

boundary OP.

A plug is aperiodic if there is no closed orbit for X'. After Wilson’s result an aperiodic plug
will allow to build a vector field without periodic orbits. Indeed, we can use such a plug to destroy
the periodic orbits one by one. Consider one periodic orbit, it suffices to embed the aperiodic plug
in a flow-box intersecting the periodic orbit in such a way that the periodic orbit gets trapped
inside the plug, thus it will no longer be periodic. This can be done by conditions (P1), (P3) and
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(P4). Condition (P2) guarantees that there are no new periodic orbits after surgery: there are no
periodic orbits inside the plug and if an orbit intersects the plug and is not trapped, the entry-exit
condition implies that it will stay periodic or non-periodic after surgery. Repeating this process at
most finitely many times, gives an aperiodic flow on any closed 3-manifold.

The first aperiodic plug was built by
P. Schweitzer [Sch74] in 1974, though the flow
is only C. The aperiodic plug that is C*° (and
even real analytic) was built by K. Kuperberg in
1993 [Kup94]. In both cases, the use of the plugs
gives a vector field that is homotopic (through
non-singular vector fields) to the original one.
Hence, the surgery does not changes the homo-
topy class of the vector field. Notice that almost
20 years passed between the two constructions,
in the meantime J. Harrison managed to make
a C? version of Schweitzer’s plug [Har88] and
there are a couple of papers trying to prove that
it is impossible to build an aperiodic plug with
a smooth flow. But how to prove that there
are no aperiodic plugs in the C" category for
r > 27
Figure 1.1: A plug trapping a periodic orbit Let me highlight one of the main differences
between Schweitzer’s and Kuperberg’s construc-
tion. Condition (P3) in the definition of a plug implies that a trapped orbit has to accumulate on
an invariant set, thus a plug contains a minimal set for the flow. Schweitzer’s construction starts
with a minimal set: the main idea is to substitute the periodic orbits in the Wilson plug with two
copies of the Denjoy minimal set. The differentiability problem comes from this set. J. Harrison
changed the embedding of the minimal set to make the flow C2. Kuperberg’s construction focuses
on destroying the periodic orbits of the Wilson plug, there is some minimal set in the plug, but
not too much was known about it before our work. I will cite S. Matsumoto [Mat95] to describe
K. Kuperberg’s construction:

We therefore must demolish the two closed orbits in the Wilson Plug beforehand.
But producing a new plug will take us back to the starting line. The idea of Kuperberg
is to let closed orbits demolish themselves. We set up a trap within enemy lines and
watch them settle their dispute while we take no active part.

After Schweitzer’s construction the idea to prove that it was impossible to build a C'°° aperiodic
plug concentrates on the minimal set inside the plug (the starting point of his construction). I want
to mention a paper by M. Handel [Han80], in which he proves that if the trapped orbits of a plug
accumulate on a minimal set whose dimension is 1 and this is the only invariant set for the flow in
the plug, then the minimal set is surface-like: the flow restricted to the minimal set is topologically
conjugated to the minimal set of a flow on a surface. He considers also the case of a minimal set
whose topological dimension is two, but he makes the assumption that there is a disk-like section of
the minimal set. In Kuperberg’s plug the minimal set is not the only invariant set of the plug, as
proved by S. Matsumoto (see Theorem , and when it has topological dimension 2 it does not
admits a disk-like section.

There is also a paper by R. J. Knill that embeds Denjoy minimal sets in C*°-flows on S?,
but these are not isolated as any neighborhood contains periodic orbits [Kni81]. Hence, until
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K. Kuperberg’s construction, the idea was to look at the possible minimal sets for an aperiodic
plug.

It seems a good moment to comment on two (difficult) questions. The first one is on the
dimension of the minimal set of the Kuperberg plug. We proved in [P5] that, under some extra
assumptions on the construction, this set has topological dimension two. We do not know if there
are smooth Kuperberg flows whose minimal set has dimension 1. I have tried to build them without
success. Can one prove that a minimal set with dimension 1 and unstable shape cannot be isolated
(meaning that any neighborhood should contain periodic orbits)? The answer to this question is
yes if the minimal set is a solenoid as proved by E. S. Thomas [Tho73].

Secondly, consider the case of volume preserving flows on 3-manifolds. We are at the stage of
knowing that there are examples with a finite number of periodic orbits and C'! examples without
periodic orbits on any closed 3-manifold. These were built by G. Kuperberg [Kup96]. Is it possible
to build a C'*° volume preserving aperiodic plug? Can we a priori say something about its minimal
or invariant sets?

1.2 Kuperberg’s construction and previous results

As mentioned above, K. Kuperberg’s idea is to destroy the periodic orbits in the modified
Wilson’s plug using the plug itself, or let the periodic orbits demolish themselves. So I start
explaining how to build Wilson plug (actually a modified version of the original plug). The
construction of the self-insertions that destroy the periodic orbits is explained in Section [1.2.1

Consider the rectangle
R=[1,3]x[-2,2]={(r,2) |1 <r<3&-2<z<2}

Choose a C*°-function g: R — [0, go] for go > 0, which satisfies the “vertical” symmetry condition

g(r,z) = g(r,—z). Also, require that g(2,—1) = ¢(2,1) = 0 and that g(r,z) > 0 otherwise.

Define the vector field W, = g - % which has two

+ 92 singularities, (2,41) and is otherwise everywhere
vertical, as illustrated in Figure [I.2}

Next, choose a C*®-function f: R — [-1,1]

1 . which satisfies the following conditions:

W1) f(r,—z) = —f(r,z) [anti-symmetry in z].

W2) f(&) =0 for £ near the boundary of R.

W3) f(r,z) >0 for —2 <z <0.
f
f

W4) f(r,z) <0for 0 <z <2
W5) f(2,-1)=1and f(2,1) = —1.
Next, define the manifold with boundary

W=[1,3] x S' x [-2,2] 2R x §* (1.1)

(
z 0 E
(
(

1 2 3

- with cylindrical coordinates @ = (r,0, z). That is,

W is a solid cylinder with an open core removed,
obtained by rotating the rectangle R, considered as
Figure 1.2: Vector field W, embedded in R3, around the z-axis.
Extend the functions f and g above to W by setting f(r,0,2) = f(r, 2) and g(r,0, 2) = g(r, 2),
so that they are invariant under rotations around the z-axis. The modified Wilson vector field W
on W is defined by

0 0
W:g(r,@,z)quf(T,H,z)% . (12)
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Let ¥, denote the flow of W on W. Observe that the vector field W is vertical near the boundary
of W and is horizontal at the points (r,0,z) = (2,60,%£1). Also, W is tangent to the cylinders
{r = cst.}. The flow ¥; on the cylinders {r = ¢st.} is illustrated by Figure

o
raaal

T%l’S 7”%2 7":2

Figure 1.3: Wh-orbits on the cylinders {r = cst.}

Define the closed subsets:

R = {(2,0,2)| -1<z<1} [The Reeb Cylinder]
A = {z= } [The Center Annulus]
O; = {(2,0,(=1))} [Periodic Orbits, i=1,2]

0, W = {(r,0,-2)} [The Entry Region|

onw = {(n, 9 ,2)} [The Exit Region]

Then O is the lower boundary circle of the Reeb cylinder R and O, is the upper boundary circle.
The flow ¥, has exactly two periodic orbits O; and Os, the maximal invariant set inside the plug
is the Reeb cylinder R and satisfies the entry-exit condition (P2) as a consequence of the symmetry
in the function g and condition (W1). Finally, observe that the trapped set are the points with
r = 2 in the entry region of W.

Figure 1.4: W-orbits on the cylinder {r = 2} and in W
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1.2.1 The Kuperberg plug K

CHAPTER 1. A MINIMAL SET

The construction of the Kuperberg Plug begins with the modified Wilson Plug W with vector

Figure 1.5: Embedding of Wilson Plug W as a
folded figure-eight

field W. The first step is to re-embed the man-
ifold W in R? as a folded figure-eight, as shown
in Figure [[.5] preserving the vertical direction.

The fundamental idea of the Kuperberg Plug
is to construct two insertions of W into itself,
in such a way that the two periodic orbits will
be trapped by these self-insertions. Moreover,
the insertions are made so that the resulting
space K is again embedded in R3. A key sub-
tlety of the construction arises in the precise
requirements on these self-insertions. As with
the construction of the modified Wilson Plug,
the description of this construction in the works
[Kup94], [Ghys95], Mat95] is qualitative, as this

suffices to prove the aperiodicity of the resulting flow. As explained in [P5], other properties of the
dynamics of the flow ®; in the resulting plug K are strongly influenced by the precise nature of
these maps, so some hypotheses were added to the construction. We call a plug satisfying these
hypotheses a generic Kuperberg plug and its flow a generic Kuperberg flow. In Remark [[.2:1] at the
end of this section I briefly explain the generic hypotheses and in Section [I[.6]I give a compilation

of the generic hypotheses.

After the embedding presented in Figure the construction continues with the choice in the
annulus [1,3] x St of two closed regions L;, for i = 1,2, which are topological disks. Each region
has boundary defined by two arcs: for ¢ = 1,2, o} is the boundary contained in the interior of
[1,3] x St and ; in the outer boundary contained in the circle {r = 3}, as depicted in Figure

Figure 1.6: The disks L; and Lo

Consider the closed sets D; = L; x [-2,2] C
W, for ¢ = 1,2. Note that each D; is homeo-
morphic to a closed 3-ball, that D; N Dy = 0
and each D; intersects the cylinder {r = 2} in
a rectangle. Label the top and bottom faces of
these regions by

LE =1, x{£2}, LT =Ly x {2} . (1.3)

The next step is to define insertion maps
oi: D; — W, fori = 1,2, in such a way that the
periodic orbits O; flow ¥, intersect o;(L; ) in
points corresponding to VW-trapped entry points
for the Wilson plug W. Consider two disjoint
arcs (3 in the inner boundary circle {r = 1},
that are in front of the arcs «; when the plug is
embedded as in Figure [I.5] For i = 1,2, choose

orientation preserving diffeomorphisms o;: o — B} and extend these maps to smooth embeddings
o;: D; — W, as illustrated in Figure which satisfy the conditions:
(K1) o;(af x 2) = B x z for z € [—2,2], the interior arc « is mapped to a boundary arc 5};

(K2 for D; = ai(Di)7 DiNDy = @,
(K
(K
(K

)

3) o1(Ly) € {z <0} and o2(LF) C {z > 0};
)
)

4) For every z € L;, the image o;(x x [—2,2]) is an arc contained in a trajectory of W;
5) Each slice o;(L; x {z}) is transverse to the vector field W, for all —2 < z < 2;



1.2. KUPERBERG’S CONSTRUCTION AND PREVIOUS RESULTS 21

(K6) D; intersects the periodic orbit O; and not O, for ¢ # j.
For i = 1,2, the components of the boundary of the embedded regions D; = o;(D;) C W that
are transverse to W are labeled by

LE =0 (LF) . (1.4)

Note that the arcs o;(x x [—2,2]) in condition (K3) are line segments from o;(x x {—2}) € L; to
oi(x x {2}) € £ which follow the W-trajectory and traverse the insertion from the bottom face to
the top face. Since W is vertical near the boundary of W and horizontal at the two periodic orbits,
we have that the arcs o;(z x [—2,2]) are vertical near the inserted curve o;(a) and horizontal at
the intersection of the insertion with the periodic orbit @;. Thus, the embeddings of the surfaces
0;(L; x {z}) make a half turn upon insertion, for each —2 < z < 2. The turning is clockwise for the
bottom insertion i = 1 as illustrated in Figure [I.7] and counter-clockwise for the upper insertion
i = 2, which is illustrated in Figure[T.9]

The embeddings o; are also required to sat-
isfy two further conditions, which are the key
to showing that the resulting Kuperberg flow
d, is aperiodic:

(K7) For ¢« = 1,2, the disk L; con-
tains a point (2,6;) such that the
image under o; of the vertical seg-
ment (2,6;) x [-2,2] ¢ D, ¢ W
is an arc of the periodic orbit O; of
W.

(K8) Radius Inequality: For all x =
(r',0",2) € L; x [-2,2], let (r,0,2) =
o;(r',0',2") € D;, then ' > r unless

. . = (2,0;,2).
Figure 1.7: The image of D; under = (2,0;,
& & ! oL The Radius Inequality (K8), illustrated in
r' =3 Figure is one of the most fundamental con-
’r_ cepts of Kuperberg’s construction. This is an
7 = 2 w—
\ “idealized” case, as it implicitly assumes that

the relation between the values of r and r’ is
“quadratic” in a neighborhood of the special
points (2,0;), which is not required in order
that (K8) be satisfied. This “quadratic condi-
tion” is part of the generic hypotheses on the

construction (see Remark and Hypothe-

—_ / sis [1.6.3)). L2

The Radius Inequality (K8) is a monotone
condition that allows to keep track of the behav-
ior of the orbits in the Kuperberg plug. It is this
condition that is violated in the construction in
Section

The embeddings o;: L; X [—2,2] = W, for i = 1,2, can be constructed by first choosing smooth
embeddings of the faces o;: L; — W so that the image surfaces are transverse to the vector field
W on W and satisfy the conditions (K1), (K5) for z = —2, (K7) and (K8). Then we extend the
embeddings of the faces L to the sets L; x [—2, 2] by flowing the images using a reparametrization
of the flow of W, so that we obtain embeddings of L; x [—2, 2] satisfying conditions (K1) to (K8),
as pictured in Figure for the bottom insertion.

r<2 r=2 r> 2

Figure 1.8: The radius inequality
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Finally, define K to be the quotient manifold obtained from W by identifying the sets D; with D;.
That is, for each point € D; identify = with o;(z) € W, for i = 1,2, as illustrated in Figure
The restricted ¥;-flow on the inserted disk D; = 0;(D;) is not compatible with the image of the
restricted W;-flow on D;. Thus it is necessary to modify W on each insertion D;, by replacing the
vector field W on the interior of each region D; with the image vector field, so that the dynamics
in the interior of each insertion region D; reverts back to the Wilson dynamics on D;. As for the
insertion of plugs, the flow has to be reparametrized near the boundary of the insertion so that the
resulting flow is C'°. Let K be the resulting vector field and &, its flow.

Figure 1.9: The Kuperberg Plug K

REMARK 1.2.1 (The generic hypotheses). Under the name generic hypotheses, we added in [Pi]
a set of conditions to the constructions of the modified Wilson plug W and the Kuperberg plug K
that allowed us to study the dynamics of the flows beyond aperiodicity. Some of these are technical
assumptions and can be classified into two classes:

— The function g in the construction of the modified Wilson plug W is zero only at the points
(2, £1) of the rectangle and the speed at which it goes to zero near this points is specified in
the generic hypotheses: we ask g to be a quadratic function of the distance to these points
(in a small neighborhood).

— The Radius Inequality (K8) is required to be quadratic near the special points, as suggested

by Figure[I.8

These assumptions are used to prove that the minimal set in the plug has topological dimension 2
(see Chapter 17 of [P3]]), to give explicit computations of the topological entropy of the flow restricted
to the minimal set (see Chapters 20 and 21 of [P3]) and to justify the description of the minimal
set (see Chapter 18 of [P3]).

Recently, D. Ingebretson used the generic hypotheses to interpret the minimal set as the minimal
set of an iterated function system and compute its Hausdorff dimension [HI].
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1.2.2 Notation and basic results on the dynamics

In this section, I introduce notations that will be used throughout this chapter. The notation
used here is the same as in [P5]. Introduce the sets:

W = W—{D;UuD,} , W = W—{D,UDs}. (1.5)

The compact space W C W is the result of “drilling out” the interiors of D; and Ds.

For z,y € K, we say that z <x y if there
exists t > 0 such that ®;(x) = y. Likewise, for
',y € W, we say that o’ <yy v if there exists
t > 0 such that Uy (z') =y’

Let 7: W — K denote the quotient map,
which for ¢ = 1,2, identifies a point x € D;
with its image o;(z) € D;. Then the restric-
tion 7: W — K is injective and onto. Let
(7)71: K — W’ denote the inverse map, which
followed by the inclusion W C W, yields the
(discontinuous) map 771: K — W. For z € K,
let = (r,0, z) be defined as the W-coordinates
of 771(x) C W'. In this way, we obtain (discon-
tinuous) coordinates (r, 6, z) on K. In particular,
let r: W — [1, 3] be the restriction of the radius
coordinate on W, then the function is extended

Figure 1.10: W with some Wilson arcs to the radius function of K, again denoted by
r, where for z € K set r7(x) = r(77(z)).

The flow of the vector field W on W pre-
serves the radius function on W, so z’ <yy ¢y’ implies that r(z’) = r(y’). However, z <x y need
not imply that r(z) = r(y). The points of discontinuity for the function ¢ — r(®:(z)) play a
fundamental role in the study of the dynamics of Kuperberg flows.

Figure copied from Ghys’ paper [Ghys95|, is fundamental for the understanding of the
Kuperberg plug K. Indeed, an orbit in K can be chopped into segments of W-orbits, or in

other words into segments of orbits in W whose endpoints lie in the boundary OW. Thus, up to
identification of LF with £, Figure contains all the information needed to follow the KC-orbits.
This is the technique used to study the dynamics inside K, as explained below or in any of the
references [Ghys95], [KK96, [Kup94, [Mat95, [P5].

Let 0, K=7(0, W\ (L] UL5)) and 8 K = 7(9 W\ (LT ULJ)) denote the bottom and top
horizontal faces of K, respectively. That is, the entry and exit regions of K. Points 2’ € 9, W and
y' € 0;"W are said to be facing, we write 2’ = y/, if 2’ = (r,0,—2) and y’ = (r,6,2) for some r and
6. The entry/exit property of the Wilson flow is then equivalent to the property that «’ =y if
[2/,y']w is an orbit from 8, W to 9 W whenever 7(2") # 2. There is also a notion of facing points
for z,y € K, if either of two cases are satisfied:

— Forz=71(z') € 9, Kand y = 7(¢y') € 97K, if 2/ =/ then z = y.

— For i = 1,2, with x = 0y(2') and y = o4 (y/), if ' = ¢ then z = y.

Consider the embedded disks Eli C W defined by , which appear as the faces of the
insertions in W in Figure that are transverse to the vector field W. Their images in the quotient
manifold K are denoted by:

ElzT(ﬁl_),S1=T(£T),E2=T(£2_),S2=T(£;). (16)

Note that 771(E;) = L7, while 771(S;) = L. The transition points of an orbit of K are those



24 CHAPTER 1. A MINIMAL SET

points where the orbit intersects E, E3, S1, Sz or a boundary component 9, K or 8;L"K. They are
then either primary or secondary transition points, where xz € K is:

— a primary entry point if x € 9, K or a primary exit point if x € 8;{1[(;

— a secondary entry point if x € E1 U E5 or a secondary exit point if x € S1 U Ss.
If a K-orbit contains no transition points, then it lifts under 7= to a W-orbit in W flowing from
9, W to 9 W.

The special points for the flow &, are the images, for i = 1,2,

p(Z) = T(Oz N ,C;) e E; s T?(’L) = T(Ol N ﬁj) cs;. (17)

Then p(i) = p(3) for i = 1,2 and by the Radius Inequality (K8), we have r(p(i)) = r(p(i)) = 2 for
i =1,2. The two K-orbits containing these points are the special orbits S; for i = 1, 2.

A W-arc is a closed segment [z, ylic C K of the flow of K whose only transition points are
the endpoints {z,y}. The open interval (x,y)c is then the image under 7 of a unique W-orbit
segment in W', denoted by (z/,y)yy where 7(2’) = z and 7(y") = y Let [2/, y']yv denote the closure
of (/,y)w in W, then we say that [, y']w is the lift of [z,y]x and is an arc of W-orbit as in
Figure Note that the radius function r is constant along [z, ']y .

The level function along a K-orbit indexes the discontinuities of the radius function. Given
z € K, set n,(0) =0 and for ¢ > 0 define

ne(t) = # {(BELUB) Ndy(x) | 0< s <t} —#{(S1US) Ndy(x) [0<s<t}.  (L8)

That is, n.(t) is the total number of secondary entry points, minus the total number of secondary
exit points, traversed by the flow of « over the interval 0 < s < t. Thereafter, n,(t) changes value by
+1 at each ¢t > 0 such that ®;(x) is a transition point and whether the value increases or decreases,
indicates whether the transition point is an entry or exit point.

The level function is the main tool for studying the dynamics of ®;. Consider an orbit in K and
assume that it is not a Wilson orbit, meaning that it contains a certain number of transition points.
Cutting the orbit at these points gives a sequence of W-arcs that lift to pieces of orbit in W (as in
Figure . We understand completely all the possible pieces in W, thus what is important is to
understand how these pieces concatenate to form an orbit in K.

The level function measures how “deep” the orbit goes: how many entries has passed, without
crossing the corresponding exit points. This allows to follow the orbit and understand the behavior
of the radius coordinate. In Section [I.3.2] the level function is used in a fundamental way to
understand the structure of the minimal set.

Clearly the main result on K is:
THEOREM 1.2.2. K endowed with the vector field IC is an aperiodic plug.

The proof uses strongly the level function. The Radius Inequality (K8) is only used for proving
that there are no periodic orbits inside the plug. We refer to any of the papers [Ghys95| [KK96,
Kup94| Mat95| [P5] for a proof.

I also like to state a result by S. Matsumoto on the dynamics of the plug (see Proposition 7.5 of
[P5] for a proof).

THEOREM 1.2.3. The trapped set of K contains a set with non-empty interior.

In particular, Theorem [1.2.3] implies that there is a “big” invariant set. In the next section
I describe the minimal set, first as the closure of the special orbits, then as the closure of a
2-dimensional set 9 obtained by flowing the Reeb cylinder 7(R) in K. The proof of Theorem [I.2.3]
implies that there is an invariant set that is larger than 9. In Chapter 16 of K we describe the
orbits of this invariant set.
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1.3 The minimal set under the generic hypotheses

The aim of this section is to give a description of the minimal set under the generic hypotheses
(see Remark and Section . I start by explaining how the special orbits, that is the orbits
obtained after the Kuperberg surgery from the periodic orbits of the Wilson plug, behave. As
remarked previously, an orbit in the Kuperberg plug K is a concatenation of segments of Wilson
orbits whose endpoints are in the boundary of W (see Figure . These segments of W-orbits are
quite simple, thus to understand orbits in K one has to understand the rules of concatenation. The
two special orbits have similar structure, I just treat the case of one of them. Once the structure of
these is orbits is settled, the structure of the minimal set comes naturally.

The objective is to give a visual explanation of the objects mentioned above. By doing so, I will
skip some complications. Some of the minor ones are the appearance of “bubbles” in the minimal
set (see Chapters 15 and 18 of [P5]), the fact that the construction of K is not completely symmetric
(see Chapter 9 of [P5] for a proof that the non-symmetry has minor effects on the dynamics). The
more important one, is not proving that the generic hypotheses imply that the minimal set has
topological dimension 2, as proved in Chapter 17 of [P5].

1.3.1 The special orbits

The minimal set of the plug K is obtained as the closure of any of the special orbits &; or Sa,
these are the orbits in K that contain the arcs O = O; N W’ of the periodic orbits of the Wilson
plug W. That is

S =K(0)) = {®(x) |z € O, t € R},

observe that the endpoints of O} are the special points p(i) and p(i) defined in , for i = 1 and
2. What follows explains why the periodic orbits of Wilson are not longer periodic after the surgery,
but it is not a proof of the aperiodicity of the plug. The explanation implies also that Sy C S; and
when carried out for Sy (I do not give the details) we get that S; = S is a minimal set. Proving
that this set is the only minimal set in the plug is a harder task: it involves understanding the
asymptotic behavior of every orbit that is entirely contained in K. In Proposition 7.1 of [P5], it is
proved that the w-limit of every point in K whose orbit stays in K contains &1, while its a-limit
contains Sy. Thus ¥ = S; = S, is the unique minimal set.
We recall first from Figure of the Wilson plug that the cylinder {r = 2} contains the two

P(1)
4 (9 5 < < |
o p(2) p( )|E2 o
(@] L'fr — 1Lt
: > E}?E%?l,l)p(n 1

Figure 1.11: The cylinder {r =2} in W
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periodic orbits O; for i = 1,2. Consider the cylinder {r = 2} in W containing the segments of orbit
O} for i = 1,2. Since this cylinder intersects both insertions, in Figure I erased two regions of
the rectangle, one intersecting @; and the other Oy, corresponding to each insertion. Observe that
these two regions are basically rectangles, with two of their sides tangent to the vector field and
two transverse to the vector field. The transverse sides are either in the entrance of the insertions
L; or in the exit of the insertions £, for i = 1, 2.

The orbit segment O] intersects the bottom entrance £; and the bottom exit £;. Condition
(K7) implies that the intersection with £ is at the special point p(1) that is identified with the point
p'(1) = (2,01,—-2) € Ly n{r = 2}. Thatis o1(p'(1)) = p(1), 7(p(1)) = 7(p'(1)) and r(p'(1)) = 2. By
abuse of notation, let p(1) be the corresponding point in F; C K. Likewise, the intersection of O}
with £ is at the special point p(1) that is identified with the point (1) = (2,6;,2) € LT n{r = 2}.
That is o1 (p'(1)) = p(1), 7(p(1)) = 7(p'(1)) and r(p'(1)) = 2. By abuse of notation, let p(1) be the
corresponding point in S; C K.

In general, I will use the same notation for points in Ef and their images under 7 in E; and S;
for i = 1,2. The corresponding points in Lf are marked with a prime.

The positive K-orbit of a point in 7(O}) continues after crossing E; at p(1) as a trapped W-orbit
in the cylinder {r = 2}, that is the image under 7 of the W-orbit of p’(1). Since the W-orbit of
P’ (1) accumulates on O, it intersects infinitely many times £7. Then the image under 7 of this
orbit intersects By = 7(£] ) infinitely many times. Let p(1;1,1) be the first intersection. Denote by
p/(1;1,1) € L] the point in the entrance of W such that 7(p’(1;1,1)) = p(1;1,1), then the Radius
Inequality (K8) implies that r(p'(1;1,1)) > 2.

We need the following important result (we refer to Propositions 6.5 and 6.7 of [P3]):

PROPOSITION 1.3.1. Let x be a primary or secondary entry point with r(x) > 2, let T be the
exit point facing x (x =T). Then T is in the same K-orbit as x and the K-orbit of x contains the
ordered collection of W-arcs in the W-orbit of ' that are in W', where 7(2') = .

The proposition implies that the KC-orbit S; will make a (a priori) complicated trajectory from
p(1;1,1) € By C K before reaching S; at the facing point p(1;1,1) (this point is not necessarily
the first intersection of the orbit with the secondary exit region S;). Condition (K4) implies that
p(1;1,1) and p(1;1, 1) belong to the same Wilson orbit that is contained in the cylinder {r = 2}.

The above description can be applied repeatedly to Sy, always in the positive direction. From
P(1;1,1) the orbit makes a turn around the cylinder {r = 2} and intersects E; at a point p(1;1,2)
that is above p(1;1,1) and below p(1), as illustrated in Figure Since r(p(1;1,2)) > 2,
Propositionapplies once more implying that p(1;1,2) € S facing p(1;1,2) belongs to the orbit
S1. We can then continue forever: from p(1;1,2) follows a W-arc that makes a turn around the
cylinder {r = 2} to a point p(1;1,3) € Ey, with r(p(1;1,3)) > 2. Then Propositionﬂguarantees
that p(1;1,3) € Sy is in Sy, etc.

Since the W-orbit of p’(1) accumulates on the periodic orbit O;, the forward K-orbit of
p(1) € By C K accumulates on 7(07) C 8;. That is, recursively we obtain points p(1;1,¢) for £ > 1
in E; that belong to the special orbit &; and accumulate on p(1). The Radius Inequality (K8)
implies that r(p(1;1,¢)) is an decreasing sequence converging to 2 as £ — oo (at least for ¢ big
enough the sequence is decreasing).

REMARK 1.3.2. We have obtained that the w-limit of the points in Sy, denoted by w(S1), contains
O} and thus contains Si. In other words, S1 C w(Sy).
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Now let us fill the gap between p(1;1, 1) and
p(1;1,1), the same explanation applies to the
segments of orbit between p(1;1,¢) and p(1; 1, ¢)
but gets increasingly complicated as ¢ grows
since the radius of the starting point p(1;1, /)
is closer to 2. I will give an explanation for ¢
equal to 1 and 2.

As entry point p(1;1,1) has radius greater
than 2, thus the point p’(1;1,1) € LT C W has
radius r; greater than 2. We have two possibil-
ities, either the cylinder {r = r1} intersects the

P11 insertions or it does not. Assume that it does

not as in Figure Then the entire Wilson
Figure 1.12: The intersection of the orbit of grhit of p'(1;1,1) is contained in W’ and hence
p'(1;1,1) with the cylinder {r =ry} the image under 7 of the W-orbit of p/(1;1,1)
is a segment of K-orbit joining p(1;1,1) € F;
to p(1;1,1) € Sy.

From p(1;1,1) the orbit S; makes one turn around the cylinder {r = 2} and it intersects F;
at the point p(1;1,2). Proposition implies that p(1;1,2) € S; belongs to the orbit &;. T will
now explain how to fill the gap between these two points. The Radius Inequality (K8) implies that
ro = r(p(1;1,2)) > 2. We have the same two possibilities as above, either the cylinder {r = r5}
intersects the insertions or it does not (here I will assume that the insertions are symmetric in the
sense that either the cylinder intersects both insertions or none). The latter case is the simple one
as treated for p(1;1,1). Now assume that the cylinder {r = ro} intersects both insertions and also
that the W-orbit of p’(1;1,2) intersects both insertions, as in Figure m

(1 1,1)

P(1;1,2)

Az
pl;l

P(11,2)
Figure 1.13: The intersection of the orbit of p’(1;1,2) with the cylinder {r = ro}

The intersection of the W-orbit of p’(1;1, 2) with W’ is a collection of W-arcs between transition
points, contained in the cylinder {r = r3}. The second part of Proposition means that the
image under 7 of all these arcs is contained in S; and in the same order. Let us call these arcs A;
for 1 < j < n for some finite n (n is finite since the W-orbit of p’(1;1,2) is finite, in Figure we
have n = 5).

Clearly the image under 7 of the arcs above does not completely fills the gap between p(1;1,2)
and p(1;1,2), since it is not a connected set. To do so, we need to understand what happens



28 CHAPTER 1. A MINIMAL SET

between the endpoint of an arc A; and the starting point of the following arc A;4 .
Let us follow the orbit from p(1;1,2) =
F(L1,21,1) 7(p'(1;1,2)). We start by the image under 7 of

the first arc A;. The assumptions imply that
the endpoint of this arc is a point in F; that we
denote by p(1;1,2;1,1). Let p'(1;1,2;1,1) €

LT be the corresponding point in the entrance
of W. Observe that the Radius Inequality
(K8) implies that ro < 721 = r(p(1;1,2;1,1)).
Again there are two possibilities: either the
cylinder {r = ro 1} intersects the insertions or
not. If not, the image under 7 of the W-orbit
P (1;1,2;1,1) goes from p(1;1,2;1,1) to the fac-
ing point p(1;1,2;1,1) € Sy joining A; to As.
Figure 1.14: The intersection of the orbit of If yes we have to iterate the description. Since
p'(1;1,2;1,1) with the cylinder {r =721} each time that the orbit intersects a secondary

entry point the radius grows, eventually it gets
to a cylinder that does not intersects any of the insertions. So assume, to make the discussion
shorter, that we are in the second case, as in Figure

P(1;1,2%1,1)

Recapitulating, under the assumptions made, we have

TV, 5131, 1) 222 p(131,2) T2 p(11, 201, 1) T2, 511, 201,1),

p(1;1,1)
where p(1;1,2;1,1) € Sy is the starting point of the arc 7(A2) and it is facing p(1;1,2;1,1) by
condition (K4).

Now 7(Az) has its starting point in Sy and its endpoint either in E; or in Fs (in Figure
the endpoint of As is in £7 with 7(£]) = F7). Repeating the above description we fill in the orbit
segment between the endpoint of 7(A3) and the starting point of 7(As). We can thus join the
collection of arcs 7(A;) and find the K-orbit segment from p(1;1,2) to p(1;1,2).

This finishes the description of the forward K-orbit of points in Of.

The above description applies without any significant changes to the backward orbit of O].
Indeed the backward orbit of a point in O] intersects £ in the special point (1) facing p(1) as
in Figure m This point is identified with p'(1) € Lf that has radius 2 and the intersection
of the backward W-orbit of this point with W’ is mapped under 7 to parts of S;. Since this
Wh-orbit accumulates in backward time on O, then 7(0)) is contained in the a-limit of S; and
thus Sy C a(S1) C S1. Also, recursively, in the backward direction, we can fill the gaps to describe
the entire orbit.

This is a first explanation of how the orbit &7 is composed. In the rest of this section, always
add “the image under 7”7 to the sets considered. I will explain basically the same construction of
S1, but in a new set of diagrams. For this we consider the level sets of S;. We need the following
result (see Proposition 10.1 in [P5]).

PROPOSITION 1.3.3. Fori=1,2, there is a well-defined level function
ng: St U82_>N:{071,2,...}, (19)

such that ny *(0) = 7(O} U O%).
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- p(l)  p(1)
- N [a— ' 4
p(1;1,1)% i
T
p(1;1,2)4

<

av o
r

Figure 1.15: Level 0 and 1 of §; with gaps

The level zero of ngls, is the arc 7(0}) with
endpoints p(1) and p(1), represented by the hor-
izontal segments in Figure The level one
is composed by (the image under 7 of) two
semi-infinite W-orbits: the forward W-orbit
of p'(1) and the backward W-orbit of p'(1),
represented by the two vertical lines in Fig-
ure [LT5l Observe that the vertical lines are
not continuous: the dotted parts correspond
to the arcs that are not in the intersection of
these two W-orbits with W’. In other words, in
the left-hand side vertical line the continuous
segments correspond (from top to bottom) to
the arcs from p(1) to p(1;1,1), from p(1;1,1) to
p(1;1,2), from p(1;1,2) to p(1;1,3) and in gen-
eral from p(1;1,¢) to p(1;1,£+1) for £ > 1 and
unbounded. The right-hand side vertical line
is the backward orbit of p(1) that repeatedly
intersects the second insertion.

Let me point out one aspect in this new set of
flattened diagrams. In the plug K the left-hand
side vertical continuous segments in Figure m

correspond to arcs that accumulate on the horizontal segment 7(0}), while the right-hand side

vertical continuous segments accumulate on 7(053).

The level 2 of S is composed by all the finite W-orbits starting at the intersections of the two
level 1 orbits with E7 and Es. Thus by (the image under 7 of) a countable collection of finite
W-orbits. Observe that since these are finite Wilson orbits, we just need to consider the starting

p(l}

(1)

Figure 1.16: Level 0, 1 and 2 of &7 with gaps
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point in the entrance of the insertions Ey U E5, Proposition [[.3.1] implies that they will contain the
facing points in the exit of the insertions S; U Ss. I represent in Figure these orbits as the
border of horizontal tongues, because of their shape inside W (as in Figures and . Again the
dotted parts are the segments that are not in the intersection with W’ and thus do not belong to
S1. As we travel downwards along the two level one W-orbits the tongues that appear at level 2 get
longer, since the radius of their starting point gets closer to 2. This also implies that, eventually,
the tongues intersect the insertions. In Figure (and Figure below), the assumption is that
the W-orbit of p’(1;1,1) does not intersects the insertions and the W-orbit of p’(1;1,2) intersects
both insertions. Then the intersection of the W-orbit of p’(1;1,2) with W’ is composed of the arcs
Aj for 1 < j < k and k finite. In Figure the value of k is 3.

At any level n greater than 2, we consider the W-orbits of the points in the intersection of the

p(1) ()

—:W

p(1;1,1

Figure 1.17: The tree diagram for S; with marked tips

W-orbits at level n — 1 with the entry regions F; and F,. Recursively we obtain the diagram, in
Figure [[.T7] representing levels 0 to 4. This situation repeats again at any level, adding to the
complexity of the diagram in Figure[I.1

Observe that this set of diagrams explain the concatenation of pieces of Wilson orbits that form
the special orbit &7, but do not reflect how the orbit is embedded in K. The embedding is quite
complicated by the nature of the maps o;, for ¢« = 1,2. In particular, the width of the tongues that
appear is roughly the same and equals the width of the Reeb cylinder, as a consequence of the
shape of Wilson orbits. I will come back to this point in Section [1.3.2

In Figure I marked a set of points: every finite WW-orbit intersects the annulus {z = 0}
at a single point. Condition (W1) implies that at this point the vector field W is vertical and by
condition (K3) this point is in W’ (since all the finite Wilson orbits we are considering have radius
greater than 2). For a finite W-orbit we will call this point its tip.

Consider thus the set of tips contained in S; and their lifts to W’/. We obtain a countable set
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of points in the annulus {2z = 0}, whose radii are arbitrarily close to 2. Hence the closed set S;
contains points in 7(R') the image of the Reeb cylinder in K.

I finish this section pointing out some conclusions:

— §; C 87 for all i,j = 1,2, thus S; = S; = X is the minimal set.

— 3 contains points in 7(R').
We are faced with a dichotomy: either the tips in §; U S; accumulate on a Cantor set in the circle
{#z = 0,7 = 2} contained in 7(R’) or they accumulate on the whole circle. Theorem 17.1 in [P5]
states that under the generic hypotheses (see Remark and Section , the tips accumulate
on the whole circle, implying that 3 has topological dimension 2. A description of this set, more
precisely a dense dimension 2 subset of 3 is given in the following section. We do not know if there
is a smooth Kuperberg plug for which the minimal set has dimension 1. In the piecewise linear
category, G. Kuperberg and K. Kuperberg [KK96] construct a plug with a 1-dimensional minimal
set.

1.3.2 9y, a dense subset of the minimal set

In this section I describe a dense dimension 2 subset of X for a generic Kuperberg flow, that
is denoted by 9ty. The set My is obtained by flowing inside K the notched Reeb cylinder 7(R’)
and the description is very similar to the decomposition of S; by levels explained in Figures [1.15
and Before starting, I need to introduce two types of surfaces in W: finite and infinite
propellers.

For a moment, we will work in the Wilson plug. Consider a curve v in the entry region 9, W of
the plug. We parametrize this curve as (t) with ¢ € [0, 1] and we assume that:

— r(v(0)) = 3;

— r(y(1)) <r(y(t)) for ¢ € [0,1);

— r(v(1) = 2.

The propeller P, is obtained by flowing ~y inside the Wilson plug. In the following figures we assume
that v is transverse to the cylinders {r = cst.}, just to make the figures simpler. I describe next
the surface P .
If r(7(1)) > 2 describing P, is a simple
game. Indeed the W-orbit of every point in
a’":-w v is finite, as it exits the plug in some finite
time. The finite propeller P, is the compact
surface composed by the finite orbits of the
points v(t) for ¢ € [0,1]. It has the shape of a
tongue that turns in the positive #-direction as
in Figure Its boundary is composed by
in the entry region of W, the facing curve ¥ in
the exit region of W, the orbit of v(0) that is
just a vertical segment in the vertical boundary
of W and the orbit of (1). Observe that the
orbit of (1) gets longer as the radius of (1)
tends to 2.

If r(y(1)) = 2 it is not so simple since the
forward orbit of (1) is trapped. We consider in
this case the forward orbits of the points in the
curve v and the backward orbits of the points
in the facing curve 7, for all times for which the orbits are defined. Equivalently, we consider the
union of finite propellers P, for s € [0,1) and 7, C «y the curve obtained as ([0, s]) and the two
semi-infinite orbits: the forward orbit of (1) and the backward orbit of the facing point 7(1). The

Figure 1.18: Finite propeller inside W
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infinite propeller P, is an open surface that turns infinitely many times around the Reeb cylinder
R. Observe that we do not consider its closure that consists of the union of P, and R.

W Q

Figure 1.20: 7(R’) C K

r=3
r=2
. —

Figure 1.21: v in LT

Propellers are the blocks to build the surface
Mo in the Kuperberg plug. To describe 9ty we
divide it by levels, Proposition 10.1 from [P5]
states:

PROPOSITION 1.3.4. There is a well-
defined level function

no: My — N ={0,1,2,...}, (1.10)
such that ny *(0) = 7(R').

Let 9% C 9N be the set of points at level at
must k, I describe next these sets for k =0, 1, 2.

The level zero set is the image under 7 of
the notched Reeb cylinder R = RNW’. In W’
it is easy to visualize it (as in Figure , in
K it is a little bit more difficult. Figure is
an attempt to represent this set as it is embed-
ded in K ¢ R?. What the map o; does to this
cylinder is to choose a vertical segment in the
cylinder ({6 = 6,1} in condition (K7)) and turns
it to make it tangent to part of the boundary of
the cylinder that got erased by the lower notch.
Analogously, oo chooses a vertical segment in
the cylinder ({# = 62} in condition (K7)) and
turns it to make it tangent to part of the bound-
ary of the cylinder that got erased by the upper
notch. The directions of the flow force the two
turns to be in opposite directions.

Observe that R’ N L] is a vertical line that
we call the curve v (as in Figure and
let 4 be the corresponding curve in L] (as in
Figure [1.21)). That is o1(7") = v and 7(v') =
7(7y). Analogously we have a curve A € £5 and
NelL;.

Since L; and L, are subsets of the entry
region of W, consider the two infinite propellers
P, C W generated by the curve v and Py
generated by ) in W. The set 9t} of points
with level at most one consists of the image
under 7 of the Reeb cylinder and the two infinite

propellers P, and Py. Each of these propellers intersects infinitely many times the insertions, thus
Py =P, NW" and Py = P\ N W’ have infinitely many notches each.

In analogy with Figure Figure is a flattened diagram of 9. The horizontal band
is the notched Reeb cylinder R’, whose lower boundary is O] and whose upper boundary is O,
union the boundaries of the notches. The two vertical bands correspond to P. (the lower one) and
P (the upper one), parts of their boundaries are contained in S; and S respectively. The set my
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in K is embedded differently, since the two infinite propellers turn around the Reeb cylinder that is
itself embedded as in Figure I wont attempt to draw an image of this.

The set M3 consists of 9} union the image

under 7 of a countable set of finite propellers.

W Indeed each notch in P“/y or P{ has to be filled
with a propeller. The intersection of 7(P}) with
FE; for i = 1,2 consist of a countable family of
g curves, that by the Radius Inequality (K8) are
contained in the set {r > 2}. Each one of these
curves in F; corresponds to a point p(1;1,/)
for £ > 1 and unbounded. The first two curves
are illustrated in Figure [1.23] Each curve in
FE; is mapped under O'i_l to a curve in L, for
i = 1,2, that generates a finite propeller in W.
The image under 7 of these finite propellers is
contained in 9Z. Analogously for 7(P). Each
of these propellers adds a finite tongue to Fig-
ure that gets longer as we travel along the
level one infinite propellers 7(P;) and 7(Py).
The finite propellers might have notches, since
if they are long enough they will intersect the
insertions. The tongues at level 1 are the hori-
zontal tongues attached to the flattened infinite
propellers in Figure (where just 7(P,) and
some of its ramifications are illustrated, the up-
per side corresponding to 7(P5) is analogous).

()L

The level three set 93 is obtained from 92
by filling the notches of the level 2 propellers
Figure 1.22: Flattened Mt} with finite propellers. Analogously D% is ob-
tained from sm’g*l by filling the notches of the
level k — 1 propellers with finite propellers. This

process continues and gives the surface 9.
Under the generic hypotheses, the closure of 91y is the minimal set 3. This means that the
“boundary” of My that consists of the orbits S and S; is dense in M. In Chapter 18 of [P5] we
prove that ¥ = M is a zippered lamination, roughly meaning that the interior has the structure of
a lamination (transversely Cantor) and the boundary is dense in the interior of the leaves. The
definitions of interior and boundary for ¥ are made precise in [P5]. T summarize the description in

the last two sections with the following statement.

THEOREM 1.3.5 (Theorems 17.1 and 19.1 of [PH]). For a generic Kuperberg flow My = X is
the minimal set of the plug. The set X has topological dimension 2 and contains:

— an open 2-dimensional subset that forms a lamination with open leaves;

— a I-dimensional subset that is dense in the previous set.
These two sets are disjoint.

Let me say a few words about the theorem. The lamination contains the interior of 9%y, obtained
by flowing the open notched Reeb cylinder, thus 9y minus the two special orbits. But 9, is not
transversely a Cantor set, while the lamination in Theorem is. In Chapters 18 and 19 of [P5]
we study the intersection of 9ty with a rectangle {6 = cst.}, as the rectangle Rg introduced in the
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Figure 1.23: Curves in 7(P;) N Ey

following section. This allows to understand the intersection of X\ 9y with a given rectangle and
describe the lamination in the theorem. Consider the rectangles {§ = c¢st.} that do not intersect
the insertions. Recall that each one of these rectangles has coordinates r € [1,3] and z € [-2,2].
The intersection of ¥ with each rectangle is a set symmetric with respect to the line {z = 0} and
formed by three types of sets:

1. a set of closed curves that is at most countable;
2. a set of points (that contains the tips of propellers);
3. a set of closed arcs (of uniformly bounded length).

The last two sets are not countable. The first set and the interior of the arcs in the third set
are the intersection of the lamination in Theorem with the rectangle, while the second set
and the endpoints of the arcs in the third set are the intersection of the 1-dimensional subset in
Theorem [I.3.5] with the rectangle.

REMARK 1.3.6. Observe from Figure that My has the structure of a tree whose branches
correspond to the propellers and can be rooted by the choice of a point in T(R'). The growth of this
tree is then the growth of the leaves in the lamination of Theorem[1.3.5 and is studied in Chapter 14
of [P5)]. The growth is closely related to the growth of words in the pseudoxgroup Gr, introduced in
the following section.

1.4 Pseudogroups

A tool introduced in [P5] that is used to study the dynamics of the flow, are the pseudogroups
and pseudoxgroup acting on an almost transverse rectangle. In a pseudoxgroup we consider only
compositions of a (symmetric) generating set, but we do not ask for the condition on union of maps
to be in the pseudoxgroup, as for pseudogroups. This section corresponds to parts of Chapter 9 of
[P5], where all details and proofs can be consulted. I introduce here the main maps, that arise in
the discussions in Sections [[.4.2) and [I.5] related to entropy.

In the plugs W and K we can consider the rectangles {6 = cst.}, one of them in K is depicted
in Figure [1.25
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Figure 1.24: Flattened 90,

Figure 1.25: A rectangle Rg in the Kuperberg Plug K
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We must be careful to chose a value 6 so that the rectangle Ry = {6 = 6y} C W does not
intersect neither D; nor D; for i = 1 and 2. Let Ry be the corresponding rectangle in K, we use
the same notation since 7 is bijective when restricted to such a rectangle. I will ask one more thing
to this rectangle, that it lies between the two insertions as in Figure so that from the upper
part (z > 0) points flow to the upper insertion and from the bottom part (z < 0) points flow to the
lower insertion.

Observe that, either in W or in K, the vector field is tangent to the rectangle near the boundary
and also at the line {z = 0}. Let w; € Ry be the intersection of the periodic orbit O; with Rg
when considering the rectangle in W or the intersection of the arc O} with Ry when considering
the rectangle in K, for i = 1, 2.

A finite W-orbit, that is an orbit going from the entrance to the exit of the plug W, if it
intersects Ry, it does so in a symmetric pattern with respect to the line {z = 0}. In this case,
the construction of the flow implies that the intersection consists of a finite sequence of points
contained in the vertical line of constant radius (the value of the radius is determined by the orbit).
We have to consider two situations, either the orbit is tangent to R at the line {z = 0} or not, in
both situations the points in the intersection of the orbit with Rg are paired: for each point (r, —z)
in the intersection, (r, z) is also in the intersection.

We can define a first return map U for the flow U, that will have discontinuities (I refer to
Chapter 9 of [P5] for a complete discussion of the discontinuities and other properties of this map).
The domain of W is the set:

Dom (V¥ ) ={{€Rp|Tt>0 such that ¥,(¢) € Ry and U,(§) ¢ Ro for 0 < s <t}. (1.11)

The radius function is constant along the orbits of the Wilson flow, so that r(\fl(f)) = r(§) for all
£ ¢ Dom( ). Also, note that the points w; for i = 1,2 are fixed-points for ¥ and for all other
points & € Ry with € # w;, points climb up that is z(\If(f)) > z(§).

Here I will consider just two types of first return maps for the flow ®;, instead of considering
the general first return map that is too complicated for a succinct discussion. Observe first that if
an arc of K-orbit [£, n]x with £ and 1 in Ry does not contains transition points and its intersection
with Ry is only at its endpoints, then n = \Tl(f) For i =1,2, let Uy+ C Ro be the subset consisting
of points £ such that the K-arc [, 7]k contains a single transition I;Oint x € E; and its intersection
with Ry is only at the endpoints £ and 7. Note that for such &, we see from Figures[I[.10]and [T.25]
that its K-orbit exits the surface E; as the W-orbit of a point 2’ € L, with 7(2’) = z € E;, flowing
upwards from J; W until it intersects Ro again. If the K-orbit of £ enters E; but exits through S;
before crossing RO, then ¢ is not considered to be in the set U, s since its orbits contains more than

one transition point before returning to Ro. Let ¢} : U o V¢+ As the K-arcs [, n]x defining

#; do not intersect A, the restricted map ¢; is continuous. The sets U, o+ and V+ are sketched in
the left-hand side illustration in Figure [I.26] / /
For 1 = 1,2, let U¢‘_ C Ry be the subset of Rg consisting of points £ such that the KC-arc [, n]x

contains a single transition point z € S; and its intersection with Ry is only at the endpoints ¢ and
n. Then let ¢; : Uy- — V-. Again, as the K-arcs [{, 7]k defining the maps ¢;  do not intersect A,
the restricted map ¢; is continuous. The sets U,— and V- are sketched in the right-hand side

illustration in Figure [1.26
Let me comment on some details of the regions in Figures m (a) and (b). For the map ¢,
1 = 1,2, the domain contains a neighborhood of the point w;. Flowing the domain U o+ forward to

E; and then applying the map 071 we obtain a set [7;; C L; containing points with r-coordinate

equal to 2. Observe that the Radius Inequality implies that the maximum radius of points in U.+ oF is
bigger than the maximum radius of points in U 6 The first intersection of the W-orbits of points
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(a) Domains of ¢, ¢7 (b) Domains of ¢, ¢5

Figure 1.26: Domains and ranges for the maps {¢], ¢3, o1, #5 }

in U + with Ry is thus a region containing points with r-coordinate equal to 2 and since these
pomts climb slower than other points, the region folds at {r = 2}. Similar considerations apply to
the maps ¢; for i =1,2.

Observe that each map qﬁj for ¢ = 1,2 corresponds to a flow through a transition point which