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Abstract

For finitely generated groups, amenability and Følner properties are equiv-
alent. However, contrary to a widespread idea, Kaimanovich showed that
Følner condition does not imply amenability for discrete measured equiva-
lence relations. In this paper, we exhibit two examples of C∞ foliations of
closed manifolds that are Følner and non amenable with respect to a finite
transverse invariant measure and a transverse invariant volume, respectively.
We also prove the equivalence between the two notions when the foliation is
minimal, that is all the leaves are dense, giving a positive answer to a question
of Kaimanovich. The equivalence is stated with respect to transverse invariant
measures or some tangentially smooth measures. The latter include harmonic
measures, and in this case the Følner condition has to be replaced by η-Følner
(where the usual volume is modified by the modular form η of the measure).

1 Introduction

Discrete equivalence relations provide a natural approach to the study of foliations
on compact manifolds: the leaves induce a discrete equivalence relation on any
total transversal. We can also see this equivalence relation as the orbit equivalence
relation of the holonomy pseudogroup, which is of finite type in the compact case.
Some properties of the foliation can be appreciated in this discrete setting, and do
not depend upon the choices that we made. This is the case for the amenability
and Følner properties, the two main notions that we will study in this paper.

This two notions are motivated by the corresponding ones for finitely generated
groups. A finitely generated group is amenable if and only if it is Følner. Let us
start by recalling the definitions for groups. A finitely generated group G is said to
be amenable if there is an invariant mean, that is a positive linear functional on the
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Banach space l∞(G) which maps the constant function 1 to 1, and is translation
invariant. E. Følner showed that G is amenable if and only if

inf
E

|∂E|
|E| = 0,

where | · | denotes the cardinality of a set, E ⊂ G are finite subsets, and ∂E is the
boundary of E with respect to a given set of generators of G. A group satisfying
the latter condition is said to be Følner.

Both definitions can be easily stated for a compact foliated manifold equipped
with a transverse invariant measure, using the induced equivalence relation. Amenabil-
ity is the property of having (in a measurable way) a mean on almost all the equiv-
alence classes, with respect to the given measure (see § 2.3). On the other hand,
each equivalence class may be realized as the set of vertices of a graph, which is
naturally quasi-isometric to the corresponding leaf. An equivalence class is Følner if
there are finite subgraphs A with arbitrary small isoperimetric ratio |∂A|

|A| , where ∂A
is the boundary of A. We say that a foliation is Følner if almost all the equivalence
classes on a total transversal are Følner.

In this paper we are concerned with the relation between this two concepts
for compact foliated manifolds. In 1983, R. Brooks stated without proving (see
example-theorem 4.3 of [3]): Let F be a foliation with invariant measure µ. If µ-
almost all leaves are Følner, F is amenable with respect to µ. One of the aims of the
present paper is to show that amenability cannot be deduced from the condition
of having Følner leaves, thus disproving Brooks’ statement. This will be done
with two examples of C∞ foliations of closed manifolds that are Følner and non-
amenable. Both examples can be made real analytic. It is important to say that
in 2001, V. A. Kaimanovich constructed several examples of discrete equivalence
relations that are Følner and non-amenable [17]. In the same paper, he gave an
example of a C∞ foliation satisfying the same properties with respect to a transverse
invariant measure, that is not finite. The relevance in the two examples presented
in this paper are the measures: in the first one, presented in § 3.1, the measure in
consideration is a finite transverse invariant measure; and in the second one, § 3.2,
it is a transverse invariant volume. On the other hand, in 1985 it was proved by
Y. Carrière and É. Ghys that an amenable foliation, with respect to a transverse
invariant measure, is Følner [5].

The role of the measure considered is crucial. In this paper we will study the
amenability and Følner properties with respect to either transverse invariant mea-
sures, or tangentially smooth measures. The latter are measures on the ambient
manifold that are smooth along the leaves, and will be introduced in § 2.1. To
give an example, we can say that harmonic measures and smooth measures on the
manifold are tangentially smooth. As we will explain in § 2.2, we will have to adapt
the definition of Følner leaf for a tangentially smooth measure µ: we will define
the concept of η-Følner leaf, in the same spirit that Følner, but using a modified
tangent metric. The modification is done with the modular form η of the measure
µ, as explained in § 2.2.

In [17], Kaimanovich asked if the minimality of the foliation guarantees the
equivalence between the two notions. Here minimal means that all the leaves are
dense. The main objective of this paper is to present a proof of the following
theorems:
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Theorem 1.1 Let F be a minimal foliation of a compact manifold M , and ν a
transverse invariant measure. Assume that F has no essential holonomy, then F
is amenable with respect to ν if and only if ν-almost all leaves are Følner.

Theorem 1.2 Let F be a minimal foliation of a compact manifold M , and µ a
tangentially smooth measure. Assume that F has no essential holonomy and that
the normalized density function of µ is bounded. Then F is amenable with respect
to µ if and only if µ-almost all leaves are η-Følner.

We say that a foliation has no essential holonomy if almost all the leaves have
trivial holonomy. Under this hypothesis the modular form η admits a primitive
log h. The function h is defined almost everywhere and is known as the density
function. We will use a normalization of this function (relative to the choice of
a total transversal) to modify the volume on the leaves (details of this definitions
are in § 2.1). Without going into more detail, we will like to point out that the
normalized density function of a harmonic measure is always bounded.

Theorem 1.1 appeared in the Ph.D. thesis of the second author [22]. This theo-
rem is a particular case of theorem 1.2: harmonic measures are tangentially smooth
and a transverse invariant measure combined with the Riemannian volume on the
leaves forms a harmonic measure (such a harmonic measure is called completely
invariant), and has normalized density function equal to one. The implication in
the second theorem stating that an amenable foliation is Følner is a generalization
of Carrière and Ghys’ result. They proved this implication for transverse invariant
measures. We will rewrite their proof in this new setting in § 4.1. Even if the
proof of the other implication in the two theorems is very similar, we present them
separately since we believe that in the one of theorem 1.2 the technicalities hide the
main ideas. For this implication, we will use a theorem by D. Cass [6] that describes
minimal leaves.

The paper is divided in three sections: the first one contains the definitions and
concepts we will use; in the second one we describe the two examples of non-amena-
ble Følner foliations; and the third one contains the proofs of the main theorems.

The second author will like to thank her Ph.D. thesis advisor Étienne Ghys for
all his patience and comments during the preparation of this work; and Mexico, that
has sponsored her Ph.D. studies through the scholarship program of the Consejo
Nacional de Ciencia y Tecnoloǵıa (CONACyT). This work was partially supported
by ANR-06-BLAN-0030 in France and Xunta de Galicia INCITE08E1R207051ES
in Spain.

2 Preliminaries and general definitions

For the purposes of this paper we will always consider a foliation with a measure,
which may be a transverse quasi-invariant measure or a tangentially smooth measure
on the ambient space. We will always consider a compact foliated manifold (M,F)
of class Cr, for 2 ≤ r ≤ ∞ or r = ω, endowed with a Riemannian metric g that
induces a quasi-isometric class of Riemannian metrics on the leaves. Let us consider
a foliated atlas A = {(Ui, φi)}i∈I where φi : Ui → Pi × Ti is a map from an open
subset of M to the product of open discs in Rd and Rm−d. Let πi : Ui → Ti be the
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natural projection onto the local transversal Ti whose fibres are the plaques of Ui.
If Ui ∩ Uj �= ∅, the change of charts Φij = φj◦φ−1

i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj) is
given by

Φij(x, y) = (ψy
ij(x), γij(y))

where γij is an Cr-diffeomorphism between open subsets of Ti and Tj, and ψy
ij is a

Cr-diffeomorphism depending continuously on y in the Cr-topology. We will need
the following additional conditions:
– the cover U = {Ui}i∈I is locally finite,
– for each i ∈ I, U i is a compact subset of a foliated chart (not necessarily belonging
to U), so the plaques satisfy that their d-volume and the (d − 1)-volume of their
boundaries is uniformly bounded (by above and below);
– if Ui ∩ Uj �= ∅, there exists a foliated chart containing Ui ∩ Uj and then each
plaque of Ui intersects at most one plaque of Uj .

It is clear that T = 	i∈ITi is a total transversal which intersects every leaf. An
equivalence relation R is naturally defined on T : two points x, y ∈ T are equivalent
if and only if they belong to the same leaf of F .

Definition 2.1 Let R be an equivalence relation on a standard Borel space (T,B).
We have the following definitions:
– R is discrete if every equivalence class R[x] is at most countable.
– R is measurable if its graph is a Borel subset of T × T .
– A measure ν on (T,B) is said to be quasi-invariant for R if for every Borel set
B ∈ B with ν(B) = 0, the saturation of B is also of measure zero.
– If R and ν are as above, we say that R is a discrete measured equivalence relation
on (T,B, ν).

The equivalence relation R induced by F on T is discrete and measured. From
another point of view, we can see R as the orbit equivalence relation defined by
the natural action of the pseudogroup Γ, called the holonomy pseudogroup of F ,
generated by the local diffeomorphisms γij . It is important to emphasize that {γij}
forms a finite generating set, that we will call Γ1. Notice that we can visualize each
equivalence class R[y] = Γ(y) as a graph: the vertices are the points in R[y] and
the edges correspond to the generators. We can define a graph metric

dΓ(z, z′) = min
n

{∃g ∈ Γn|g(z) = z′},

where Γn are the elements that can be expressed as words of length at most n in
terms of Γ1. A transverse invariant measure of F , that is a measure on T invariant
under the action of Γ, gives us an example of a quasi-invariant measure for R.

2.1 Measures

In the latter paragraph we discussed invariant and quasi-invariant measures. Here
we are going to discuss a little bit further about quasi-invariant measures and to
introduce tangentially smooth measures. Contrary to the first two cases, these
measures are globally defined. Harmonic measures (introduced by L. Garnett in
[10]) are an example of tangentially smooth measures. An interesting fact about
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harmonic measures is that they always exist, which is not the case for transversal
invariant measures.

Consider the discrete equivalence relation R, induced by a foliation, on a total
transversal T endowed with a quasi-invariant measure ν. Integrating the counting
measures on the fibers of the left projection (y, z) �→ y from R to T with respect
to ν, gives the left counting measure dν̃(y, z) = dν(y). For the right projection, we
get the right counting measure dν̃−1(y, z) = dν̃(z, y) = dν(z). Then, ν is quasi-
invariant if and only if ν̃ and ν̃−1 are equivalent, in which case the Radon-Nikodym
derivative

δ(y, z) =
dν̃

dν̃−1
(y, z)

is called the Radon-Nikodym cocycle of (T, ν,R). Finally, let | · |y be the measure
on the equivalence class of y defined as |z|y = δ(z, y).

Let us now study global measures. Consider a regular Borel measure µ on
the manifold M . Using the foliated atlas, we can give a local decomposition µ =∫
λy

i dνi(y) on each Ui, where λy
i is a measure on the plaques and νi a measure on

Ti.

Definition 2.2 (Tangentially smooth measure) A measure µ on (M,F) is tangen-
tially smooth if for every i ∈ I and νi-almost every y ∈ Ti, the measures λy

i are
absolutely continuous with respect to the Riemannian volume dvoly, and the density
functions

hi(x, y) =
dλy

i

dvoly
(x, y),

are smooth functions of class Cr−1 on the plaques.

Observe that the functions hi are measurable in the transverse direction. We could
change C∞ by Cr, for r ≥ 2, and the results in this paper will still be valid. In the
intersection of two foliated charts Ui and Uj, we have two local decompositions of
the measure µ. Indeed, if Ui ∩ Uj �= ∅, we have that

µ|Ui∩Uj =
∫
λy

i dνi(y) =
∫
λy

jdνj(y).

Thus pushing the measure νj with the holonomy diffeomorphism γji we deduce that

δij(y) = d((γji)∗νj)/dνi(y) =
hi(x, y)

hj(ψ
y
ij(x), γij(y))

.

Then the functions hi verify that loghi − log hj = log δij on Ui ∩ Uj . Since δij is a
function on Ti, we have that dF log hi = dF log hj , where dF is the derivative along
the leaves of F . Then η = dF log hi is a well defined foliated 1-form of class Cr−2

along the leaves and measurable in the transverse direction.

Definition 2.3 (Modular form) The 1-form η is the modular form of µ.

The modular form measures the transverse measure distortion under the holon-
omy. If σ is a path in a leaf going from a point p to a point q, then exp(

∫
σ
η) is

the distortion of the transverse measure by the holonomy transformation along σ.
Since the δij are functions defined on T , the functions hi defined on the plaques
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match in the intersections modulo multiplication by a constant. Thus they define
primitives log h̃ of the induced 1-form η̃ on the holonomy covering L̃ of each leaf
L. If F has no essential holonomy, the functions hi can be glued together to get a
measurable function h on M , such that log h is a primitive of η almost everywhere.

Remarks 2.4 – Definition 2.2 is a little more restrictive than A. Candel’s defini-
tion (corollary 5.3 of [4]). However, harmonic measures are tangentially smooth in
our sense. A harmonic measure µ is completely invariant if and only if η = 0 (we
refer to corollary 5.5 of [4]).

– The homotopy groupoid Π1(F) and the holonomy groupoid Hol(F) can be in-
terpreted as the larger and smaller unwrapping of F so that the range projections
β are developing maps of the foliated structure (see [20]). If we denote by α the
source projections, this means that the lifted foliations F̂ = α∗F on Π1(F) and
F̃ = α∗F on Hol(F) are defined by the Cr submersions β : Π1(F) → M and
β : Hol(F) →M , respectively. Then η lifts to a pair of foliated 1-forms η̂ ∈ Ω1(F̂)
and η̃ ∈ Ω1(F̃). The first one η̂ admits a global primitive log ĥ because the first
group of foliated cohomology is trivial (we refer to corollary 6.14 of [1]). Then it
is easy to see that this primitive induces on Hol(F) a global primitive log h̃ of η̃,
which puts together all the local primitives described above.

2.2 Følner foliations

Traditionally a graph (with bounded geometry), as for example the equivalence
class R[x] of an equivalence relation induced by a foliation of a compact manifold,
is Følner if there exist finite subsets A of vertices with arbitrarily small isoperimetric
ratio |∂A|

|A| , where ∂A is the set of edges having exactly one end point in A (or the set
of these end points in A), see [15] and [12] for the original definitions. The notion of
a δ-Følner equivalence class, given below, was introduced by Kaimanovich in [16].
In this section we are going to introduce a continuous analogue to his definition: η-
Følner leaf. Since the modular form η has a primitive on each leaf without holonomy,
we have to restrain ourselves to such leaves, that form a residual set. We will say
that a foliation is Følner (respectively, η-Følner) if almost every leaf is Følner
(respectively, η-Følner). Let us start by stating Kaimanovich’s definition in terms
of foliations, observe that the definition does not depends upon the point y.

Definition 2.5 Let F be a foliation of a compact manifold M . Let R be the induced
equivalence relation on a total transversal T , and assume that ν is a quasi-invariant
measure whose Radon-Nikodym derivative is δ(y, z). We say that the equivalence
class R[y] is δ-Følner if there exists a sequence of finite sets {An}n ⊂ R[y] such
that |∂An|y/|An|y → 0, as n→ ∞.

Let us pass to the continuous analogue of this notion. Consider the foliated
space (M,F) with a tangentially smooth measure µ. On a leaf without holonomy
Ly passing through y ∈ T we can define a leafwise volume form dvolh as the volume
of the leafwise Riemannian metric g multiplied by the normalized density function
h/h(y). We will call this volume the modified volume and (h/h(y))g the modified
metric on the leaf Ly.
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Definition 2.6 Let (M,F) be a compact foliated manifold, endowed with a tangen-
tially smooth measure µ. Let Ly be a leaf without holonomy. Then Ly is η-Følner
if there exists a sequence of compact domains with boundary Vn ⊂ Ly such that

areah(∂Vn)
volh(Vn)

→ 0,

as n → ∞. Here areah denotes the (d − 1)-volume and volh the d-volume with
respect to the modified metric, and d is the dimension of F .

Remarks 2.7 – In general, the notion of η-Følner can be applied to the leaves of
F̃ , that is the holonomy covers of the leaves of F .

– In the case where µ is a completely invariant harmonic measure, the function h is
constant and thus the modified volume and the Riemannian volume coincide. Hence,
we recover the common definition of Følner leaf. In this situation, the assumption
that M is compact together with the condition that the volume of the plaques and
the area of their boundaries are uniformly bounded implies that for every y ∈ T , the
leaf Ly passing through y is Følner if and only if the corresponding graph R[y] is
Følner.

– When the measure µ is a harmonic measure (and assuming that the ambient
manifold is compact) we have that the modular form η is bounded, we refer to
lemma 4.19 on page 116 of B. Deroin Ph.D. thesis [8]. The result is based on the
Harnack inequality. In fact, the density function h is harmonic and thus inside a
distinguished open set we have that there exists a constant C > 1 such that

1
C

≤ h(q)
h(p)

≤ C,

for all p ∈M and for all q ∈ Lp. Hence, the function log h is uniformly tangentially
Lipschtiz, i.e. | log h(p) − logh(q)| ≤ Cd(p, q), where d(p, q) the distance between p
and q in Lp. This implies that the modified volume of the plaques and the modified
area of their boundaries remain uniformly bounded. Therefore, the leaf Ly is η-
Følner if and only if the graph R[y] is δ-Følner.

2.3 Amenable foliations

In this section we will recall what amenability is in the context of foliations and study
some equivalent notions. A foliation F of a compact manifold with a transverse
quasi-invariant measure ν is usually said to be amenable if the equivalence relation
R, on (T, ν), is ν-amenable. This definition is independent of the choices we made
to define the equivalence relation, and was introduced by R. J. Zimmer in [28].

Definition 2.8 Consider a standard Borel measure space (T,B, ν). A discrete mea-
sured equivalence relation R on T is amenable (or ν-amenable) if for ν-almost every
y ∈ T there is a mean on R[y] (i.e. a linear map my : L∞(R[y]) → R such that
my(f) ≥ 0 for f ≥ 0 and my(1) = 1) so that the function y �→ my on R is

– measurable, in the sense that for a measurable function f̃ defined on the graph of
R, the function defined by f(y) = my(f̃(y, ·)) is measurable;
– invariant, in the sense that my = mz for all z ∈ R[y].
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In the following theorem we summarize some equivalent notions of amenability
of discrete measured equivalence relations, and thus of a foliation.

Theorem 2.9 Let R be a discrete measured equivalence relation on (T,B, ν). The
following conditions are equivalent:
(i) R is amenable.
(ii) There exist sequences of probability measures {πy

n}y∈T,n∈N on R[y], such that

‖πy
n − πz

n‖ → 0

for ν̃-almost all (y, z) ∈ R. Here ‖·‖ is the norm in the space of probability measures
on an equivalence class. The map y �→ πy

n is measurable for all n, in the same sense
as in definition 2.8. We will call this Reiter’s criterion.
(iii) There exist sequences of probability measures {πy

n}y∈T,n∈N on R[y] such that∫
Dom(γ)

‖πy
n − πγ(y)

n ‖dν(y) → 0

for any partial transformation γ of T (i.e. a Borel isomorphism between Borel
subsets of T whose graph is contained in R). The map y �→ πy

n is measurable for
all n.
(iv) R is hyperfinite, that is there exists an increasing sequence of finite measured
equivalence relations Rn on (T,B, ν) such that R[y] =

⋃Rn[y].

The equivalence between (i) and (iv) was established by A. Connes, J. Feldman
and B. Weiss in [7]. They proved that an equivalence relation is amenable if and
only if it is generated by an action of Z. Reiter’s criterion, both (ii) and (iii) where
introduced by Kaimanovich. We refer to [16] and [17].

Let us place ourselves in the general situation of a compact foliated manifold
(M,F) with a tangentially smooth measure µ. We have a natural equivalence
relation RM on M whose equivalence classes are the leaves of F . Therefore, each
fibre Rp

M = {(p, q) ∈ M ×M |q ∈ Lp} identifies with the leaf Lp. By replacing the
counting measure on Rx ≡ R[x] by the Riemannian volume on Rp

M ≡ Lp, we can
obtain a Haar system in the sense of [2] (also named invariant transverse function in
[7]), that is a family of measures λp supported by the fibres Rp

M such that λq = λp

for all q ∈ Lp. According to [7], the amenability of RM with respect to (λ, µ)
means the existence for µ-almost every p ∈M of a mean on Rp

M (i.e. a linear map
mp : L∞(Rp

M , λp) → R such that mp(f) ≥ 0 for f ≥ 0 and mp(1) = 1) so that the
function p �→ mp on RM is measurable (i.e. for a measurable function f̃ defined
on the graph of RM , the function defined by f(p) = mp(f̃(p, ·)) is measurable)
and invariant (i.e. mp = mq for all q ∈ Lp). In this context, Reiter’s criterion
exhibited in the theorem above may be formulated as follow: there exist sequences
of probability measures {πp

n}p∈M,n∈N on Rp
M ≡ Lp, which are absolutely continuous

with respect to λp, such that ‖πp
n −πq

n‖ → 0 for µ̃-almost all (p, q) ∈ RM . The map
p �→ πp

n is measurable for all n, in the same sense as before, and µ̃ =
∫
λpdµ(p).

For other equivalent conditions, we refer to proposition 3.2.14 of [2].

Definition 2.10 We will say that the F is amenable if it satisfies one of the fol-
lowing two equivalent condition (see corollary 16 of [7]):
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– the equivalence relation RM on M is amenable (with respect to (λ, µ));
– the induced induced equivalence relation R on some (equivalently any) total transver-
sal T is amenable (with respect to the transverse measure ν induced by µ on T , which
is well defined up to measure equivalence).

3 Two examples of Følner foliations that are non-
amenable

In this section we will consider foliations F with transverse invariant measures ν.
Before the constructions, we are going to explain the reason why the foliations will
have dimension and codimension equal to 2.

C. Series’ theorem states that if F has polynomial growth, then it is hyperfinite
(we refer to [25]). This result was also proved by M. Samuélidès [24] in the quasi-
invariant case. In terms of foliations this result can be stated as:

Theorem 3.1 (Series, Samuélidès) A foliation such that ν-almost all its leaves
have polynomial growth is amenable.

Kaimanovich gave a proof, valid for foliations with sub-exponential growth [17].
Combining the latter result with the fact that the leaves in the support of an
invariant measure of a codimension one foliation have polynomial growth, we refer
to J. F. Plante’s theorem (theorem 6.3 of [21]), we deduce that such a foliation is
always amenable.

As we said, we will give examples of non-amenable foliations of a compact mani-
fold that are Følner. In 2001, Kaimanovich had already constructed some examples
of non-amenable discrete graphed equivalence relations with Følner classes, and an
example of a non-amenable Følner foliation. This foliated example has a Reeb com-
ponent, and thus the invariant measure is not locally finite. We refer the reader to
theorem 3 of [17]. The examples we are going to construct have finite transverse
invariant measures, and they may be interpreted as foliated versions of examples 1
and 3 described in [17].

The main idea in the following two examples is to construct a closed 4-manifold
M with a non-amenable ergodic foliation F1 by suspension of the action of a non-
amenable group, and then make a surgery so that the leaves become Følner.

3.1 First example: inserting a Reeb component

We will begin by constructing an ergodic non-amenable foliation F1 of a closed
4-manifold, admitting a total transversal diffeomorphic to a torus. We will then
modify the foliation in a neighborhood of the transversal, inserting arbitrarily long
bumps, in order to prove the following proposition:

Proposition 3.2 There exists an ergodic measured foliation F of a closed 4-manifold
possessing a finite transverse invariant measure ν, that is non-amenable and is
Følner.
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H0 Ht H1

Figure 1: The foliations H0, Ht for 0 < t < 1 and H1.

Proof. Let Σ2 be the orientable compact surface of genus two, whose funda-
mental group π1(Σ2) is generated by the loops α1, β1, α2, β2, satisfying the relation
[α1, β1] = [α2, β2]. The quotient of π1(Σ2) by the normal subgroup generated by β1

and β2 is a free group. Thus, for any free subgroup Γ of SL(2,Z) with two gener-
ators, we have a surjective homomorphism φ : π1(Σ2) → Γ. For example, consider
as Γ the subgroup generated by A1 = (

1

2

0

1 ) and A2 = (
1

0

2

1 ). In general, we will
denote Ai = φ(αi), for i = 1, 2.

Let us construct a foliation F1 of M = Σ2 × T2 defined by the suspension of φ.
First, we cut Σ2 along the loops β1 and β2, to obtain a surface S of genus zero with
four boundary components: β±

1 and β±
2 . Later we consider the manifold S×T2 with

the product foliation by double pants S × {∗}, and identify β−
i × T

2 with β+
i × T

2

using Id×Ai, for i = 1, 2. We get (M,F1) such that:
– it has a transverse invariant volume, given by the canonical volume form on T2,
with respect to whom F1 has no essential holonomy and is ergodic;
– it is non-amenable, with respect to this volume, since the transverse structure is
given by the action of Γ;
– the leaves without holonomy are diffeomorphic to the Cantor tree, i.e. a genus
zero surface with a Cantor set of ends.

Let T be a total transversal diffeomorphic to T2. The next step in the construc-
tion is to change the foliation in the interior of a tubular neighborhood P = D2 ×T
of the transversal, using a foliation H of P . Observe that the leaves of F1 intersect
infinitely many times P . In order to prove the proposition we need that H has an
invariant transverse measure and that the insertion of it inside P makes the leaves
Følner. As we said, the idea is to replace discs in the leaves with arbitrarily long
bumps.

– Construction of the foliation H of P
Let us begin with a classical construction of G. Reeb [23]. Consider the solid

torus D2 × S1 with coordinates (r, ψ, θ), and let H0 be the product foliation by
discs defined by the equation dθ = 0. Let ft : [−1, 1] → [0,∞) be a family of C∞

turbulization functions with t ∈ [0, 1], such that
– f0 is identically zero and ft is symmetric with respect to zero for every t > 0;
– ft is decreasing in [0, 3

4 ] and zero in [ 34 , 1] for every t > 0;

– limt→1 ft(0) = +∞ and limt→1
∂ft

∂r (1
2 ) = −∞.
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Using the vector fieldXt = ∂ft

∂t
∂
∂θ , we can push the discs of H0 in the S1-direction

to get a foliation Ht isotopic to H0. In fact, the isotopy is given by Φt(r, ψ, θ) =
(r, ψ, θ+ ft(r)). The foliations Ht define a homotopy in the space of foliations from
H0 and H1. We will call Reeb foliation the C∞ foliation H of D2×S1× [0, 1] defined
by this homotopy, see figure 1 where D2 is horizontal and S1 vertical. The leaves of
H meet ∂D2×S1×[0, 1] along the circles ∂D2×{θ}×{t}. Observe that H1 has a Reeb
component inside the solid torus {(r, ψ, θ) ∈ D2 × S1|r ≤ 1

2}. In the complement of
this component, H has a transverse invariant volume given by the differential form
ω = (Φt)∗dθ ∧ dt, but the existence of a Reeb component prevents the foliation to
have a transverse invariant volume. To find a transverse invariant measure, let us
consider the volume form ω0 = dθ ∧ dt on the annulus A0 = {x0}× S

1 × [0, 1], for a
point x0 ∈ ∂D2. The next lemma guarantees the existence of a transverse invariant
measure under a convenient choice of the functions ft.

Lemma 3.3 There exists a Reeb foliation H of D2 × S1 × [0, 1] with a finite trans-
verse invariant measure.

Proof. We want to find the necessary conditions so that H possesses a
transverse invariant measure. First, let us construct a total transversal to H. For
the point x0 ∈ ∂D2, take the arc C = {(rx0, θ) ∈ D2 × S1| a < r < b, θ = g(r)},
where a ∈ (0, 1

2 ), b ∈ (1
2 , 1) and g : (a, b) → R is a increasing C∞ function. Clearly,

the union A = A0 ∪ (C × [0, 1]) is a total transversal. The transverse invariant
volume form ω, defined on the complement of the Reeb component, gives us a
transverse invariant measure on A0 ∪ (C × [0, 1)). We want to extend this measure
to a transverse invariant measure ν of H. This is possible if the following integral
is finite∫

C×[0,1]

ω =
∫ 1

0

(
∫

C

(Φt)∗dθ)dt =
∫ 1

0

(
∫ b

a

(
∂g

∂r
+
∂ft

∂r
)dr)dt

= g(b) − g(a) +
∫ 1

0

(ft(a) − ft(b))dt.

Observe that for a good choice of ft the function ft(a) − ft(b) is integrable, and
thus the integral is finite. We can define the measure ν as follows: for any Borel
set B ⊂ C × [0, 1], define ν(B) =

∫
B∩(C×[0,1))

ω. Hence, the transverse measure ν
is defined on A and it is invariant under the holonomy. Notice that the restriction
of ν to A0 is ω0.

�

We can take two copies of this foliated manifold and paste them in order to get
a doubled foliation on D2 ×T2. We will abuse of the notation by keeping calling the
foliation H. This foliation is endowed with a finite transverse invariant measure ν.

– Insertion of H
Consider the foliated manifold (M,F1). Consider the transverse torus T and

a tubular neighborhood P ∼= D2 × T . Since H is transverse to the boundary of
D2 ×T2, we can replace the foliation in the interior of P by H. Observe that every
non compact leaf intersects the tubular neighborhood P in infinitely many discs
approaching any of its ends. In such a leaf, the discs are replaced either by
– bumps that get longer and longer as we approach the ends, and whose boundary
is constant an equal to the boundary of the disc we removed;

11



Figure 2: A Cantor tree with bumps.

– by semi-infinite cylinders S1 × [0,∞) that accumulate on the Reeb component.
In both cases, we get Følner sequences that approach any end. On the other hand, F
has an ergodic transverse invariant measure (obtained from ν) and is non-amenable
since F and F1 have the same transverse structure in restriction to the closed set
M \ P having T as total transversal. Moreover, the set of leaves that are quasi-
isometric to the Cantor tree with bumps, as in figure 2, has total mass. This implies
that the foliation is Følner.

�

3.2 Second example: using Wilson’s plug

We will start by constructing a new non-amenable foliation F1 of a compact mani-
fold by suspension and then we will perform a modification to make its leaves Følner.
For the modification we will use a volume preserving version of F. W. Wilson’s plug
[27]. Let us define plugs for 1-dimensional foliations, the generalization to bigger
dimensions is straightforward.

Definition 3.4 A plug is a manifold P endowed with a 1-dimensional foliation H
satisfying the following characteristics: the 3-manifold P is of the form D× [−1, 1],
where D is an oriented compact 2-manifold with boundary, and H is defined by the
orbits of a vector field H such that:
(i) H is vertical in a neighborhood of ∂P , that is H = ∂

∂z where z is the coordinate
of the interval [−1, 1];
(ii) H is transverse to D×{±1}, we will call D×{−1} the entry region and D×{+1}
the exit region;
(iii) the entry-exit condition is satisfied: if two points (x,−1) and (y, 1) are in the
same leaf, then x = y. That is a leaf that traverses P , exits just in front of its entry
point;
(iv) there is at least one entry point whose leaf has one end contained in P , we will
say that the leaf is trapped by P .

12



(a) Flow lines of Z
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Figure 3: Flow lines of Z and H1.

If a manifold P as above endowed with a foliation satisfies all conditions except
(iii), we will call it a semi-plug. The mirror-image construction allows us to get a
plug. Up to rescaling, such a plug consist of the quotient of the semi-plug (P,H) and
its mirror-image (P,−H) on D× [−1, 1] by the equivalence relation which identifies
their exit and entry regions D × {±1}.
– A volume preserving version of Wilson’s plug

The original construction of Wilson [27], gives a 3-dimensional plug with a vector
field that cannot be volume preserving. Here we need a volume preserving analogue,
and we will use a method of construction based on an idea of Ghys. Consider the
plane R2 with coordinates (r, z) and the Hamiltonian vector field Z = −2z ∂

∂r +3r2 ∂
∂z

associated to the energy function ζ(r, z) = r3+z2, see figure 3(a). By definition, the
flow φt fixes the origin, preserves the energy levels {ζ = const.} and the symplectic
form ω = dr ∧ dz.

We are going to modify this example to make it fit inside the rectangle R =
[1, 2]× [−1, 1]. An area preserving vector field with the conditions we need is given
by the Hamiltonian vector field H1 on R associated to the function

h(r, z) = (r − 3
2
)3 + (z2 − 1

2
z4)g(r),

where g is a C∞ function equal to zero near 1 and 2 and such that the function
3(r − 3

2 )2 + (z2 − 1
2z

4)g′(r) is positive away of the singularity (3
2 , 0), see figure

3(b). Take on the manifold P = S1 × R the vector field Ĥ = H1 + f ∂
∂θ , where

f : R→ R+ is a C∞ function that assumes the value zero near the boundary of the
rectangle and is strictly positive on the singularity. Thus, Ĥ is non singular and
has a periodic orbit. Moreover, it preserves the volume form dθ ∧ ω. In order to
satisfy the entry-exit condition we are going to use the mirror-image construction.
Rescaling the vector fields to make the two copies fit inside P , we will call the new
plug P and the resulting vector field H . Observe that H is non singular, has two
periodic orbits and preserves the volume form dθ ∧ ω.
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h = ± 1
8 h ≈ 0 h = 0

Figure 4: Flow lines of H in the cylinders {h = const.}.

Hence, we have endowed the manifold P with a 1-dimensional foliation H. Ob-
serve that there is a 2-dimensional foliation of P that is tangent to H : it is defined
by the equation h = const. and the leaves are the product of S1 with the two copies
of the flow lines of H1. It is convenient to use the system of coordinates (θ, h, z).
Summarizing, we have that:
– H has a transverse invariant volume, given by the differential 2-form ιH(dθ ∧ω);
– H satisfies the entry-exit condition;
– H has trapped leaves: the leaves through the points in (θ, 0, z) are semi-infinite
or infinite, except for the two circle leaves corresponding to the two copies of the
singularity of H1. The flow lines of H in the cylinders {h = const.} are similar to
described in figure 4 for h = ± 1

8 , h ≈ 0 and h = 0.

Proposition 3.5 There exists a non-amenable Følner foliation F of a closed 4-
manifold M with an ergodic transverse invariant volume.

Proof. To construct the non-amenable two dimensional foliation F1 we will use
again the suspension of the action of a non-amenable group, this time acting on the
sphere. Let us begin by considering an oriented surface Σ2 of genus two. Take now
a homomorphism φ : π1(Σ2, x0) → SO(3) such that φ(β1) = φ(β2) = Id and denote
Γ = φ(π1(Σ2, x0)). For example, we can suppose that Γ is a kleinian group of the
first kind (i.e. whose limit set is the whole sphere S2) generated by two elliptic
transformations φ(α1) and φ(α2). As in the previous example, by suspension of φ,
we obtain a foliation F1 of the manifold M = Σ2 × S2 such that
– it has a transverse invariant volume, given by the canonical volume form Ω on S2,
with respect to whom F1 has no essential holonomy and is ergodic;
– it is non-amenable with respect to this volume;
– the leaves without holonomy are diffeomorphic to the Cantor tree.
To make the leaves Følner we will insert a 2-dimensional volume preserving foliated
plug.

– Construction of the foliated plug.
Fix a volume preserving plug P = S1 × [1, 2] × [−1, 1] endowed with the 1-

dimension foliation H, as before. There is an embedding of P into the product
S

2× [−1, 1] such that H extends trivially to the whole product S
2× [−1, 1]. We will

abuse of the notation by keeping calling the new foliation H. Obviously the vector
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field defining this foliations is volume preserving. By J. Moser’s theorem from [19],
we can assume that the volume form induced on the entry region S2×{−1} coincides
with the canonical volume form Ω.

Consider the manifold Q = S2 × [−1, 1] × S1 foliated by G = H × S1, that
possesses a transverse invariant volume given by the 2-form ιH(dθ ∧ ω). Observe
that the entry region S2 × {−1}× S1 is foliated by circles. The circles (θ, h,±1, β),
with h �= 0 and β ∈ S1, belong to the same leaf of the foliation G.

– Insertion of the plug
Let us find a place in M to insert the plug. Consider the submanifold T =

{x0} × S
2. Then T is a transversal to F1 diffeomorphic to S

2. Consider also a
tubular neighborhood A ∼= S1 × [−1, 1] of the loop β2 passing through x0. Since
the holonomy on β2 is trivial, the trace of F1 on the product B = A × T ∼=
S1 × [−1, 1] × S2 is conjugated to the horizontal foliation (whose leaves are the
cylinders S1 × [−1, 1] × {∗}). As in the previous example, after reordering the
factors, we can replace the trivial foliated subbundle B by the plug Q. Obviously
the resulting foliation F has a transverse invariant volume.

– The foliation F
After the insertion of the plug Q, we have a C∞ foliation F of M with a trans-

verse invariant volume. We need to show that F is non-amenable and that all
its leaves are Følner. For the first, notice that the equivalence relation on any
transversal that does not intersects the inserted plug has not changed. Thus F is
non-amenable.

For the second point, let us analyze the leaves of the foliation F . The leaves
that entry Q in points with coordinates (θ, h, 1, β) for θ, β ∈ S1 and h �= 0 do
not change: for h ≈ ± 1

8 we just remove a cylinder and put the same back in its
place. As h → 0 the cylinder we glue back becomes longer, it turns inside Q as
the flow lines of H in P (see figure 4). For each leaf of F that meets points of
coordinates (θ, 0,±1, β) we remove a cylinder and glue back a semi-infinite cylinder
[0,∞)×S1 that corresponds to a flow line in the singular cylinder of P spiralling and
accumulating on the periodic orbit. We have also created new leaves: two compact
tori corresponding to the periodic orbits and infinite cylinders that correspond to
the flow lines in the singular cylinder of P that lie between the two periodic orbits.
Clearly, all the leaves that meet this singular cylinder become Følner. Since F1 is
minimal, every leaf becomes Følner: all the generic leaves are quasi-isometric to the
Cantor tree with tubes, see a portion in figure 5.

�

Remarks 3.6 – Both examples can be made real analytic. In the first case, we can
use U. Hirsch’s method from [13] in order to insert a real analytic Reeb foliation.
For the other one, as explained in [11] and [18], plug insertion can be made in the
real analytic category.

– The second example has exactly two types of invariant (harmonic) probability
measures: one is diffuse defined by the transverse volume and the other are com-
binations of atomic measures supported by the toric leaves. On the contrary, the
first example has a countable infinite set of atomic invariant measures supported by
compact leaves, one toric and the others hyperbolic.
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Figure 5: A portion of “Cantor tree” with tubes.

– Note that the non compact leaves of both examples have exhaustive Følner sequen-
ces, which combine exhaustive sequences of geodesic balls and suitable sequences of
bumps or tubes. An exhaustive Følner sequence is an increasing Følner sequence
that exhaust the whole space. Kaimanovich gave examples of discrete measured
equivalence relations with exhaustive Følner sequences that are non-amenable (we
refer to example 4 in [17]).

4 Proofs

The aim of the this section is to prove that amenability and Følner notions are
equivalent for minimal measured foliations. Our results may be interpreted as pro-
viding an effective version of the amenability criteria established by Kaimanovich
[16] in terms of isoperimetric properties of the leaves:

Theorem 4.1 (Kaimanovich) A discrete measured equivalence relation R on a
standard Borel space (T,B, ν) is ν-amenable if and only if for any non-trivial mea-
surable set T0 the induced equivalence relation R | T0 is δ-Følner.

In § 4.1 we will rewrite the proof of Carrière and Ghys’ necessary condition,
changing the transverse invariant measure for a tangentially smooth measure. In
§ 4.2, we will state D. Cass’ theorem about minimal leaves, that will allow us to
obtain the sufficient condition and to prove theorem 1.1. Finally, in § 4.3 we will
generalize the proof to tangentially smooth measures, thus proving theorem 1.2.

4.1 Carrière-Ghys’ theorem for tangentially smooth measures

As we said in the introduction Carrière and Ghys proved that if we consider a
foliation F of a closed manifold M , that is endowed with a transverse invariant
measure ν and has no essential holonomy, the amenability of F implies that it is
Følner [5]. In this section we are going to prove the necessary condition in theorem
1.1, for which we do not need the minimality condition, following Carrière-Ghys’
method.

Proposition 4.2 Let R be a discrete measured equivalence relation on a standard
Borel space (T,B, ν). Assume that ν is a quasi-invariant measure and R is ν-
amenable, then ν-almost every equivalence class is δ-Følner.
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Proof. Since R is amenable it is hyperfinite, i.e. there exists an increasing
sequence of finite measured equivalence relations Rn on (T,B, ν) such that R[x] =⋃

n Rn[x] for ν-almost every x ∈ T . Fix n, and consider a measurable function f
on T . Define

f̄(x) =
1

|Rn[x]|x
∑

y∈Rn[x]

f(y)δ(y, x).

Then, for every y ∈ Rn[x] we have that

f̄(y) =
1

|Rn[x]|y
∑

z∈Rn[x]

f(z)δ(z, x)δ(x, y) =

∑
z∈Rn[x] f(z)δ(z, x)δ(x, y)∑

z∈Rn[x] δ(z, x)δ(x, y)
= f̄(x).

Hence, we have that∫
f̄(x)dν(x) =

∫
1

|Rn[x]|x f(y)δ(y, x)dν̃(x, y)

=
∫

1
|Rn[x]|x f(y)δ(y, x)δ(x, y)dν̃(y, x)

=
∫

f(y)δ(y, x)δ(x, y)∑
z∈Rn[x] δ(z, y)δ(y, x)

dν̃(y, x)

=
∫
f(y)

∑
x∈Rn[y] δ(x, y)∑
z∈Rn[x] δ(z, y)

dν(y) =
∫
f(y)dν(y).

Denote by ∂Rn =
⋃

x∈T ∂Rn[x], and take fn = χ∂Rn , the characteristic function.
We have that

f̄n(x) =
1

|Rn[x]|x
∑

y∈Rn[x]

fn(y)δ(y, x) =
|∂Rn[x]|x
|Rn[x]|x

and therefore ∫
f̄n(x)dν(x) =

∫
fn(y)dν(y) = ν(∂Rn).

Since R[x] =
⋃

n Rn[x] for ν-almost every x ∈ T , we get that ν(∂Rn) converges to
zero as n→ ∞. By Fatou’s lemma,

lim inf
n→∞ f̄n(x) = lim inf

n→∞
|∂Rn[x]|x
|Rn[x]|x = 0

ν-almost everywhere.
�

The previous proposition implies that a foliation F of a compact manifold M
that is amenable with respect to a quasi-invariant measure ν induces a δ-Følner
equivalence relation on any total transversal. Since a δ-Følner equivalence class
corresponds to an η-Følner leaf, we have the following continuous version (that we
can also deduce from the hyperfiniteness of the equivalence relation RM on the
ambient manifold M):

Proposition 4.3 Let (M,F) be a compact foliated manifold endowed with a tan-
gentially smooth measure µ. Assume that F has no essential holonomy and is
µ-amenable. Then F is η-Følner.
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4.2 The invariant measure case: proof of theorem 1.1

In this section we will give a proof of the second implication in theorem 1.1, where
we will use the minimality condition. We will start by stating a theorem by Cass
[6], that is a key ingredient in the proof. As before we will fix a Riemannian metric
g on the compact foliated manifold (M,F). Given a point p ∈M , define BM (p,A)
as the ball with center at p and radius A, and B(p,A) the same restricted to the
leaf Lp through p. We need the following definition.

Definition 4.4 We say that a leaf L of the foliated manifold (M,F) is
– recurrent if for every ε > 0, there exists A > 0 such that L ⊂ BM (B(p,A), ε),
where A depends only on ε, and BM (B(p,A), ε) is the ε-neighborhood of the ball
B(p,A).
– quasi-homogeneous if there exists k ≥ 1 such that for all a > 0 and q ∈ L,
there exists A > 0, such that for every ball B(p, a) there exists an immersion f :
B(p, a) → B(q, A), with dilatation bound k ≥ 1.

Theorem 4.5 (Cass) Let L be a leaf of a foliated compact manifold (M,F). Then
L is minimal if and only if one of the following conditions is satisfied:
(i) L is recurrent;
(ii) L is quasi-homogeneous.

We will not give a proof of this theorem here, we refer the reader to the original
paper [6]. However, we will like to make a remark about the quantifiers involved
in the quasi-homogeneity that we will use later. First, the dilatation of the map
f can be taken arbitrarily close to one. In fact, the map f is constructed inside a
distinguished open set: it maps the ball B(p, a) to a domain contained in B(q, A)
that may not contain the point q. The dilatation bound implies that

vol(f(B(p, a))
vol(B(p, a))

and
area(∂f(B(p, a))
area(∂B(p, a))

are bounded by a constant that depends only on k and the dimension of F . The
main idea is that if we have a minimal leaf without holonomy, then any compact
domain in it can be lifted to the nearby leaves with controlled distortion.
Proof. Proof of Theorem 1.1 The steps of the proof are the following:
first, theorem 4.5 tell us that the leaves are quasi-homogeneous. Secondly, we
will construct sequences of probability measures satisfying Reiter’s criterion for
amenability as in theorem 2.9. First of all, fix a foliated atlas A and recall that d
is the dimension of F . Consider a generic leaf L. Then, L is a minimal Følner leaf.
Since it is Følner, there exist a sequence of compact submanifolds Vn of dimension
d such that

lim
n→∞

area(∂Vn)
vol(Vn)

= 0.

For any point p ∈ Vn there exist ap > 0 such that Vn ⊂ B(p, ap). Put pn ∈ Vn,
such that apn = an is minimal. Take a point q ∈ L, we claim that there exists a
sequence of compact submanifolds W q

n of dimension d, containing q, such that

area(∂W q
n)

vol(W q
n)

→ 0
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as n → ∞. To make the notation simpler, we will forget for a moment the index
n. Beginning with a submanifold V p ⊂ L, containing the point p, we will construct
a submanifold W q ⊂ L around any given point q ∈ L, whose isoperimetric ratio
is comparable to the one of V p. By assumption the leaf L is minimal. Using the
quasi-homogeneous hypothesis, we have that there exist A > 0 and an immersion
f : B(p, a) → B(q, A) into any ball B(q, A) ⊂ L, with dilatation bound k ≥ 1.
According to Cass’ proof, this dilatation bound k can be taken arbitrarily close to
1. Put V q = f(V p). Then there exist constants c and C, depending only on k and
d, such that

c ≤ vol(V q)
vol(V p)

≤ C,

and the same is valid for the areas of the boundaries of V p and V q.

In order to visualize better this construction, we can assume that B(p, a) has
trivial holonomy. In this case, B(p, a) can be lifted to nearby leaves, that is, there
is a distinguished open set U ∼= P × T such that V p ⊂ B(p, a) ⊂ P × {p}. On the
other hand, since F is minimal, T is a total transversal, so there are constants r ≥ a
and R such that the distance from q to T ∩ L is smaller that R and the distance
between two points of T ∩L is greater than r. Then A may be taken close to R+ a
and V q = f(V p) is a lifted copy of V p included in the plaque P × {f(p)} ⊂ U
passing through a point f(p) ∈ T whose distance to q is ≤ R.

Returning to the general case, observe that V q may not contain q. To overcome
this difficulty let W q = V q ∪ Pq, where Pq is a plaque of the atlas A containing q.
Associated to V p consider the d-current

ξp(α) =
1

vol(V p)

∫
V p

α,

where α is a differential d-form on M .
Let us come back to the Følner sequence. Starting with the sequence V p

n we ob-
tain the sequence W q

n such that q ∈ W q
n . The sequences V p

n and W q
n of submanifolds

define the sequences of d-currents

ξp
n(α) =

1
vol(V p

n )

∫
V p

n

α and ξq
n(α) =

1
vol(W q

n)

∫
W q

n

α,

that give rise to sequences of probability measures πp
n and πq

n on L, respectively.
Using Reiter’s criterion, we know that for proving the amenability of the foliation
F we need to prove that ‖πp

n − πq
n‖ → 0, or equivalently that M(ξp

n − ξq
n) → 0, as

n→ ∞, where M denotes the mass of a current. We have that

M(ξp
n − ξq

n) ≤ sup
‖α‖=1

(
1

vol(V p
n )

∫
V p

n

(Id− f∗
n)α

)

+ M

( |vol(V p
n ) − vol(W q

n)|
vol(V p

n )vol(W q
n)

∫
V q

n

α

)
+

vol(Pq)
vol(W q

n)

converge to 0 as n→ ∞. The convergence of the last two terms follows because the
volume of Pq is constant and the volume of V p

n and W q
n tend to be the same. For

the convergence of the first term, though it is not strictly necessary, we can express
any d-form α as a function multiplied the Riemannian volume on the leaves. The
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integrals in the first term may now be reduced to integrals of functions. Assuming
again that V p

n has no holonomy, it is easy to see that the map fn : V p
n → Un is close

to the inclusion map of V p
n into Un. In general, as in the former case, Cass’ theorem

provides a map fn : V p
n → M which is locally (and then globally) close to the

inclusion map of V p
n into M . This implies the convergence. Hence, ‖πp

n − πq
n‖ → 0.

The above construction can be done for every point q ∈ L and for any minimal
Følner leaf L of F . Thus F satisfies Reiter’s criterion, i.e it is amenable.

�

Remark 4.6 In fact, Cass’ theorem allowed us to remove the holonomy assumption
and to prove the theorem for general foliations. On the other hand, if F has no
essential holonomy, we can construct the Følner sequence {W q

n}n∈N without using
Cass’ theorem. For every point p in a leaf without holonomy, we can assume that
each set V p

n is included in a plaque Pn×{p} of a sequence of distinguished open sets
Un

∼= Pn×Tn satisfying that Tn+1 ⊂ Tn. Since F is minimal, each transversal Tn ⊂
Un is a total transversal. Observe that the traces of the leaves are the equivalence
classes of an increasing sequence of equivalence relations Rn induced by F on Tn.
Moreover, if we replace the Riemannian volume by the discrete volume defined in
[21] (i.e. the volume of a compact set V is the number of vertices of V ∩T0 ⊂ R0[x]),
there is no dilatation when we lift a set transversally into another place of the
leaf. In terms of the corresponding graphs, the quasi-homogeneity of the leaves
implies that every subgraph of diameter smaller than a has a copy inside every ball
of diameter greater than A. Therefore, it is possible to write the proof from the
discrete perspective. This proof is also valid for C0 laminations having no essential
holonomy.

4.3 The tangentially smooth measure case: proof of theorem
1.2

In this section we are concerned with the second implication in theorem 1.2. Here
F is a minimal foliation of a compact manifold M , equipped with a tangentially
smooth measure µ whose generic leaves are η-Følner with trivial holonomy. In order
to prove the theorem, we need to deal with the case where h is a measurable function
in the transverse direction such that in any distinguished open set h

h(p) is bounded.
This is the case when µ is a harmonic measure (see remarks 2.7). Recall that h is
of class Cr−1 in the tangent direction, provided that the foliation is of class Cr.
Proof. Proof of Theorem 1.2 Consider a generic leaf L of F , which is minimal,
η-Følner and has no holonomy. Since L is minimal, it is quasi-homogenous in the
sense of definition 4.4. Take an η-Følner sequence on L, that is, a sequence {Vn}n∈N

of compact domains with boundary such that

areah(∂Vn)
volh(Vn)

→ 0.

As before, since the holonomy of L is trivial, we can suppose that Vn is contained
in a plaque of a distinguished open set Un = Pn × Tn. It is important to observe
that the minimality of L implies that the transversal Tn is total. Let pn ∈ Tn ∩ Vn

we will call V p
n = Vn to distinguish these points (we will not write the index for the
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points pn to make the notation easier). For q ∈ L let

W q
n = V fn(p)

n ∪ Pq,

where fn is the map given in the proof of theorem 1.1 and Pq is a plaque of A
containing q. Consider the d-currents defined by

ξp
n(α) =

1
volh(V p

n )

∫
V p

n

h

h(p)
α and ξq

n(α) =
1

volh(W q
n)

∫
W q

n

h

h(fn(p))
α,

for any differential d-form α. They will be identified with the corresponding prob-
ability measures on L. According to the proof in section 4.2, we have to prove that
the mass of the difference of the two integral currents converges to zero, to conclude
that F is µ-amenable.

For each distinguished open set Un
∼= Pn × Tn, we have that

µ(Un) =
∫

Tn

∫
Pn×{y}

h(x, y)dvoly(x, y)dν(y) < +∞.

This implies that the function h|Un is integrable for the measure dvoly ⊗ dν and its
L1-norm is equal to µ(Un) < +∞. Thus h|Un can be approximated in the L1-norm
(with respect to the measure dvoly ⊗ dν) by a monotone increasing sequence of
continuous functions hn,m with compact support in Un, that is

‖h|Un − hn,m‖1 =
∫

Tn

∫
Pn

|h|Un − hn,m|dvolydν(y) → 0

when m → ∞. Moreover, since the function h
h(p) is bounded in any distinguished

open set Un, it is also integrable. Hence, for each Un, we can approximate h
h(p)

in the L1-norm by a monotone increasing sequence of continuous functions of the
form hn,m

hn,m(p) with compact support in Un. Now, for every pair (n,m), we have that∥∥∥ h
h(p) − hn,m

hn,m(p)

∥∥∥
1

is uniformly bounded.

Write p = (x, y), fn(p) = (x, y′) and q = (u, v) where the first coordinate is in
the plaque and the second one in the transversal, and we omitted the indexes for p
and (x, y). Let us begin by fixing the indexes n,m and expressing the difference of
the two currents:

ξp
n − ξq

n =
1

volh(V p
n )

∫
V p

n

h

h(p)
α− 1

volh(W q
n)

∫
W q

n

h

h(fn(p))
α

=
1

volh(V p
n )

∫
V p

n

h

h(p)
α− 1

volh(V p
n )

∫
V p

n

hn,m

hn,m(p)
α

+
1

volh(V p
n )

∫
V p

n

hn,m

hn,m(p)
α− 1

volh(W q
n)

∫
V

fn(p)
n

hn,m

hn,m(fn(p))
α

+
1

volh(W q
n)

∫
V

fn(p)
n

hn,m

hn,m(fn(p))
α− 1

volh(W q
n)

∫
V

fn(p)
n

h

h(fn(p))
α

− 1
volh(W q

n)

∫
Pq

h

h(fn(p))
α.
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Let

ξp
n,m =

1
volh(V p

n )

∫
V p

n

hn,m

hn,m(p)
α and ξfn(p)

n,m =
1

volh(W q
n)

∫
V

fn(p)
n

hn,m

hn,m(fn(p))
α.

Hence, in the L1-norm, we have that

‖ξp
n − ξq

n‖1 ≤ 1
volh(V p

n )

∫
V p

n

∣∣∣h|Un

h(p)
− hn,m

hn,m(p)

∣∣∣dvoly + ‖ξp
n,m − ξfn(p)

n,m ‖1

+
1

volh(W q
n)

∫
V

fn(p)
n

∣∣∣ h|Un

h(fn(p))
− hn,m

h(fn(p))

∣∣∣dvoly′

+
1

volh(W q
n)

∫
Pq

h

h(fn(p))
dvolv,

where the last term is equal to volh(Pq)/volh(W q
n). Since h

h(fn(p)) is bounded, we
can assume that volh(Pq) is bounded hence this term goes to zero when n→ ∞.

To show that F is amenable we are going to use again Reiter’s criterion (but
this time according to the formulation given in theorem 2.9 (iii) adapted to the
continuous setting). Let γn be the holonomy transformation that maps the point
p ∈ L to q ∈ L. We have that

lim
n→∞

∫
Dom(γn)

‖ξp
n − ξq

n‖1dν(y)

≤ lim
n→∞

∫
Tn

1
volh(V p

n )

∫
V p

n

∣∣∣h|Un

h(p)
− hn,m

hn,m(p)

∣∣∣dvolydν(y)
+ lim

n→∞

∫
Tn

‖ξp
n,m − ξfn(p)

n,m ‖1dν(y)

+ lim
n→∞

∫
Tn

1

volh(V fn(p)
n )

∫
V

fn(p)
n

∣∣∣ h|Un

h(fn(p))
− hn,m

hn,m(fn(p))

∣∣∣dvoly′
dν(y′).

Let us see what happens with each term in the sum when n goes to infinity:

– There exists c ≥ 0 such that
∥∥∥h|Un

h(p) − hn,m

hn,m(p)

∥∥∥
1
≤ c for every pair n,m ∈ N. On

the other hand, there exists Cn ≤ volh(V p
n ) such that Cn → ∞ when n goes to ∞.

For each m ∈ N, we have that

lim
n→∞

∫
Tn

1
volh(V p

n )

∫
V p

n

∣∣∣h|Un

h(p)
− hn,m

hn,m(p)

∣∣∣dvolydν(y)
≤ lim

n→∞
1
Cn

∥∥∥h|Un

h(p)
− hn,m

hn,m(p)

∥∥∥
1

≤ lim
n→∞

c

Cn
= 0.

– The same argument applies to the third therm in the sum above.
– Since the functions hn,m are continuous with compact support, the integral cur-
rents ξp

n,m and ξ
fn(p)
n,m behave as the integral currents in the proof in section 4.2,

hence ‖ξp
n,m − ξ

fn(p)
n,m ‖ → 0 as n→ ∞.

Therefore, for m big enough,

lim
n→∞

∫
Dom(γn)

‖ξp
n − ξq

n‖1dν(y) = 0,
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implying that the foliation F is µ-amenable.
�

5 Final comments

Before finishing, we will like to point out some questions related to this work that
we believe are important. Some of them have already appear in the literature, or
were posed to us. In some cases we have a partial answer, and in some others we
will like to motivate the reader.

– Measurable version of theorem 1.1

The existence of global and leafwise means (which follows from the amenability and
Følner conditions) are measurable properties. But we have used the minimality,
a property of topological nature, in order to prove the equivalence between this
notions. D. Gaboriau asked us if there is a measurable version of theorem 1.1. We
can give a partial answer.

Assume that R is a discrete measured equivalence relation on a standard Borel
space T , endowed with an invariant measure ν. As in the case of foliations without
holonomy, finite sets in the equivalence classes are stacked in Borel sets isomorphic
to the product of finite sets and Borel subsets of T . If ν is conservative, then there
is a decreasing sequence of Borel sets Tn ⊂ T which meet almost every equivalence
class such that

⋂
n∈N

Tn = ∅. We can replace minimality by this property. However,
we must fix a graphing Φ in the sense of [9] (or equivalently a graph structure in the
sense of [16]) to endow each equivalence class with a metric structure. For this, we
may suppose that all the equivalence relations R|Tn are Kakutani equivalent (with
respect to a sequence of graphings induced by Φ according to a construction in [9],
§ II.B). This means that for each n ∈ N and for each point x ∈ Tn+1, the inclusion
of R|Tn+1 [x] into R|Tn [x] is a quasi-isometry. We can resume this discussion in the
following result:

Theorem 5.1 Let R be a discrete measured equivalence relation on a standard
Borel space T , endowed with an invariant measure ν with Radon-Nikodym cocycle
δ and a graphing Φ. Assume that ν is conservative and therefore there exists a
decreasing sequence of Borel sets Tn ⊂ T which meet almost every equivalence class
such that

⋂
n∈N

Tn = ∅, and that the graphed equivalence relations R|Tn and R|Tn+1

are Kakutani equivalent. Then R is ν-amenable if and only if R is δ-Følner.

– Averaging sequences and tangentially smooth measures

From Plante’s work [21], it is known that usual Følner sequences define transverse
invariant measures supported by the limit set of the sequence. Borrowing the ter-
minology introduced in [12], we will say that any η-Følner sequence {Vn}n∈N with
areah(∂Vn)/volh(Vn) → 0 defines an averaging sequence

µn(f) =
1

volh(Vn)

∫
Vn

h(p)
h(pn)

f(p) dvol(p) , ∀f ∈ C(M),
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where pn ∈ Vn. Taking a subsequence if necessary, we may assume that the averag-
ing sequence µn converge weakly to a measure µ. A natural question is to ask if the
measure µ is tangentially smooth. We do not know the answer in general, but we
know that harmonic averaging sequences define harmonic measures. Details will be
published in a future paper.

As we previously said, the Følner and amenable conditions depend strongly on the
measure we are considering. Since a Følner leaf gives us a transverse invariant
measure, we could ask (as suggested by S. Hurder) if any foliation is amenable with
respect to such a measure. Observe that the two examples constructed in this paper
are amenable with respect to the atomic measures (supported by the toric leaves)
obtained as limit of averaging sequences.

– Følner and Liouvillian foliations

A stronger condition than amenability for a foliation F of a compact manifold is to
be Liouvillian, we refer to proposition 20 of [7]. If F is equipped with a harmonic
measure µ, we say that it is Liouvillian if µ-almost every leaf does not admit non-
constant bounded harmonic functions. In [14], Kaimanovich proved that a foliation
with sub-exponential growth is Liouvillian.

Observe that the examples we constructed imply that there are Følner foliations
that are not Liouvillian. Nonetheless, we could ask if a minimal Følner foliation is
Liouvillian. A positive answer to this question would imply that every harmonic
measure of a minimal Følner foliation is completely invariant (see [14]).

– Følner foliations are generically amenable

The examples we gave of non-amenable Følner foliations are unstable because a
small perturbation looses the Følner condition. Ghys asked us if almost all, or for
an open dense set of foliations, Følner foliations are amenable. The sense of this
almost all has to be properly defined in the set of Følner foliations.

As a first observation, we know that the existence of a Følner sequence implies the
existence of a transverse invariant measure. According to a theorem of D. Sulli-
van (see [26]), there is an one-to-one correspondence between transverse invariant
measures and foliated cycles. Since foliated cycles form a closed cone in the space of
foliated currents, the existence of a transverse invariant measure for a given foliation
is a closed condition. Hence, being Følner is also a closed condition. But we ignore
if the set of Følner foliations has empty interior.
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