Exercices, variétés kählériennes (ou pas), feuille No. 5

Exercice 0.1. (Propriétés générales des variétés kählériennes) Soit (X^{2n}, ω, J) une variété kählérienne fermée.

- 1. Rappeler ou démontrer qu'une variété complexe est orientable, et que la structure complexe induit une orientation naturelle.
- 2. Montrer que si (e_1, \ldots, e_n) est une base complexe de T_xX et si $f_1 := Je_1, \ldots, f_n := Jf_n$ alors :

$$\omega_x^{2n}(e_1,\ldots,e_n,f_1,\ldots,f_n)>0.$$

En déduire que

$$\int_X \omega^n > 0.$$

- 3. En déduire que ω n'est pas exacte.
- 4. Soit à présent Σ^{2k} une sous-variété complexe de X. Montrer que Σ admet une structure de kähler, et que, lorsque Σ est compacte, $[\Sigma] \neq 0 \in H_{2k}(X, \mathbb{Z})$.
- 5. Prouver de deux façons différentes qu'il n'existe pas de sous-variétés holomorphes fermées (= compactes sans bord) dans \mathbb{C}^n autres que les unions finies de points.

Exercice 0.2. (L'espace \mathbb{C}^n) On considère sur \mathbb{C}^n la base canonique complexe (e_1, \ldots, e_n) et la base canonique réelle $(e_1, ie_1, \ldots, e_n, ie_n)$. Pour $z \in \mathbb{C}^n$, on écrit $z = (z_1, \ldots, z_n) = (x_1 + iy_1, \ldots, x_n + iy_n)$. On définit alors

$$\lambda_{st} := \frac{1}{\pi} (x_1 dy_1 + \dots + x_n dy_n),$$

$$\omega_{st} := \frac{1}{\pi} (dx_1 \wedge dy_1 + \dots + dx_n \wedge dy_n).$$

- 1. Vérifier que $d\lambda_{st} = \omega_{st}$.
- 2. Montrer que

$$\int_{B^{2n}(1)} \omega_{st}^n = 1.$$

3. On pose $\frac{\partial}{\partial \theta}(p) := \frac{d}{d\theta}\Big|_{\theta=0} e^{2i\pi\theta} \cdot p$. Montrer que $\lambda_{st}(\frac{\partial}{\partial \theta}) = 1$.

Exercice 0.3. (L'espace projectif complexe \mathbb{P}^n) On rappelle que

$$\mathbb{P}^n := \left(\mathbb{C}^{n+1} \backslash \{0\}\right) / \sim_1 = S^{2n+1} / \sim_2$$

où $z \sim_1 \lambda z$ et $z \sim_2 e^{2i\pi\theta} z$ ($\lambda \in \mathbb{C}^*, \theta \in \mathbb{R}/\mathbb{Z}$). On note π_1, π_2 les projections associées sur \mathbb{P}^n et $[z_0 : \ldots : z_n]$ la classe de $(z_0, \ldots, z_n) \in \mathbb{C}^{n+1}$ sous la relation d'équivalence \sim_1 .

1. Rappeler ou montrer que les applications

$$\phi_i : U_i \longrightarrow \mathbb{C}^n$$

$$[z_0 : \dots : z_n] \longmapsto \left(\frac{z_0}{z_i}, \dots, \frac{z_n}{z_i}\right)$$

fournissent un atlas holomorphe de \mathbb{P}^n .

- 2. Montrer que la structure complexe J_{st} sur \mathbb{C}^{n+1} est invariante par multiplication par $\lambda \in \mathbb{C}$. En déduire une structure presque-complexe J sur \mathbb{P}^n , que l'on décrira.
- 3. Montrer que $\phi_i^* J_{st} = J$, et en déduire que J est une structure complexe (presque-complexe intégrable). Soit $T^{\mathbb{C}}S^{2n+1} := TS^{2n+1} \cap J_{st}TS^{2n+1}$, $\tilde{J} := J_{st|T^{\mathbb{C}}S^{2n+1}}$, $\phi_{\theta} : z \mapsto e^{2i\pi\theta}z$, $\frac{\partial}{\partial \theta}(p) = \frac{d}{d\theta}\big|_{\theta=0} \phi_{\theta}(p)$ le vecteur défini dans l'exercice ci-dessus, et N(p) le vecteur unitaire sortant normal à S^{2n+1} en p.
 - 4. Montrer que $T_p^{\mathbb{C}}S^{2n+1} = \langle \frac{\partial}{\partial \theta}(p), N(p) \rangle^{\perp}$.
 - 5. Montrer que $\phi_{\theta}^* \tilde{J} = \tilde{J}$.
 - 6. Montrer que $d\pi_2: (T_z^{\mathbb{C}}S^{2n+1}, \tilde{J}) \to (T_{\pi_2(z)}\mathbb{P}^n, J)$ est un isomorphisme.
 - 7. Montrer que $\phi_{\theta}^* g_{st|S^{2n+1}} = g_{st}$, puis que $\phi_{\theta}^* \omega_{st|T^{\mathbb{C}}S^{2n+1}} = \omega_{st}$ (on rappelle que ω_{st} est la forme symplectique standard sur \mathbb{C}^{n+1}).
 - 8. En déduire que $\omega := \pi_* \omega_{st}$ est une deux-forme différentielle bien définie sur \mathbb{P}^n , et que $\omega_{FS}(\cdot, J \cdot)$ est une métrique riemanienne sur \mathbb{P}^n .
 - 9. Soient U, V, W des champs de vecteurs qui commutent sur un voisinage de $p \in \mathbb{P}^n$ et $\tilde{U}, \tilde{V}, \tilde{W}$ des relevés de U, V, W dans $T^{\mathbb{C}}S^{2n+1}$ ϕ_{θ} -invariants. Montrer que $\tilde{U}, \tilde{V}, \tilde{W}$ commutent. En utilisant que

$$d\omega(U, V, W) = U \cdot \omega(V, W) - V \cdot \omega(U, W) + W \cdot \omega(U, V),$$

démontrer que $d\omega_{FS} = 0$ en p, puis que ω_{FS} est fermée sur \mathbb{P}^n .

- 10. En déduire que $(\mathbb{P}^n, \omega_{FS}, J)$ est une variété kähléerienne. Faire le lien avec la définition de la métrique kählérienne sur \mathbb{P}^n vue dans le TD no. 2.
- 11. Montrer que

$$\int_{\mathbb{P}^n} \omega_{FS}^n = \int_{S^{2n+1}} \omega_{st} \wedge \lambda_{st} = 1.$$

Exercice 0.4. (L'espace projectif, suite) Sur \mathbb{C}^{n+1} , on note (e_0, \ldots, e_n) la base canonique. On rappelle que $\mathbb{P}^n = (\mathbb{C}^{n+1} \setminus \{0\})_{/\sim}$ et que $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ est la projection naturelle. On définit $\mathbb{P}^k := \pi(\langle (e_0, \ldots, e_k) \rangle - \{0\}) \subset \mathbb{P}^n$. On rappelle que $H_{2k+1}(\mathbb{P}^n, \mathbb{Z}) = 0$ et $H_{2k}(\mathbb{P}^n, \mathbb{Z}) = \langle [\mathbb{P}^k] \rangle$.

- 1. En utilisant la question 4 de l'exercice 2, montrer que la restriction à \mathbb{P}^k de la forme de kähler $\omega_{FS}(n)$ définie ci-dessus sur \mathbb{P}^n coincide avec $\omega_{FS}(k)$.
- 2. En déduire que

$$\int_{\mathbb{D}^k} \omega_{FS}^k = 1$$

- 3. En déduire que $[\omega_{FS}] \in H^2(\mathbb{P}^n, \mathbb{Z})$ (ceci signifie que son intégrale sur n'importe quelle variétés fermée est dans \mathbb{Z}).
- 4. En déduire aussi que pour toute variété holomorphe fermée $\Sigma \subset \mathbb{P}^n$ de dimension 2k, on a

$$\int_{\Sigma}\omega_{{\scriptscriptstyle FS}}^k\in\mathbf{N}_*.$$

5. Montrer qu'une variété projective fermée (c'est-à-dire biholomorphe à une sous-variété de \mathbb{P}^N pour un certain N) a des sous-variétés complexes de toutes les dimensions. Indication : on procédera par récurrence en produisant des hypersurfaces. Pour celles-ci, on intersectera Σ par la projection d'hyperplans complexes génériques (théorème de Sard).

Exercice 0.5. (Un tore (kählérien) non algébrique) Sur \mathbb{C}^2 , on pose $e_1 := {}^t(\frac{1}{\sqrt{\pi}}, 0)$, $e_2 := {}^t(0, \frac{1}{\sqrt{\pi}})$, $f_1 := ie_1$, $f_2 := ie_2$, de sorte que (e_1, e_2) est la base standard de \mathbb{C}^2 , et (e_2, e_2, f_1, f_2) est une base de \mathbb{C}^2 vu comme espace vectoriel réel. On a également les fonctions $z_1, z_2, x_1, x_2, y_1, y_2$.

1. Vérifier que (e_1, f_1, e_2, f_2) est une base symplectique de \mathbb{C}^2 .

Soient $p,q,r,s\in\mathbb{R}$ linéairement indépendants sur \mathbb{Q} , et tels que $pq-rs\notin\mathbb{Q}$. On pose $v_1:=e_1,\ v_2:=e_2,\ v_3:=pf_1+qf_2,\ v_4:=rf_1+sf_2\ \Lambda:=\mathbb{Z}\langle v_1,v_2,v_3,v_4\rangle$ et $T:=\mathbb{C}^2_{/\Lambda}$.

- 2. Montrer que les formes dx_1, dx_2, dy_1, dy_2 définies sur \mathbb{C}^2 définissent des formes sur T. Montrer qu'il en est de même des champs de vecteurs e_1, e_2, f_1, f_2 .
- 3. Montrer que T est une variété kählérienne.

On se propose de démontrer que T n'est pas projective, c'est-à-dire qu'il n'existe pas de plongement holomorphe de T dans \mathbb{P}^N . Ainsi, T fournit un exemple de variété kählérienne non-projective. On raisonne par l'absurde, et on suppose qu'il existe un plongement holomorphe $\Phi: T \hookrightarrow \mathbb{P}^N$. On définit une nouvelle forme de Kähler sur T par $\omega := \Phi^*\omega_{FS}$, où ω_{FS} est la forme de kähler sur \mathbb{P}^N définie dans les exercices précédents.

- 4. Montrer que $\omega \in H^2(T, \mathbb{Z})$.
- 5. En reprenant le TD 2, montrer qu'il existe une autre forme de Kahler ω' sur T, avec $[\omega'] = [\omega] \in H^2(T,\mathbb{Z})$, telle que

$$\omega' = \alpha dx_1 \wedge dy_1 + \beta dx_2 \wedge dy_2 + \gamma dx_1 \wedge dy_2 + \gamma' dx_2 \wedge dy_1 + \delta dx_1 \wedge dx_2 + \delta' dy_1 \wedge dy_2,$$

 $où \alpha, \beta, \gamma, \gamma', \delta, \delta' \in \mathbb{C} \text{ sont des constantes.}$

- 6. En utilisant le fait que ω' est de kähler, montrer que $\gamma = \gamma'$ et $\delta = \delta'$.
- 7. On note $T_{i,j} := \langle v_i, v_j \rangle_{/\Lambda}$. Montrer que $T_{i,j}$ est une sous-variété de dimension 2 de T. En déduire que

$$\int_{T_{i,j}} \omega' \in \mathbb{Z}.$$

- 8. En déduire que δ , $(ps-qr)\delta$, $p\alpha+q\gamma$, $r\alpha+s\gamma$, $q\beta+p\gamma$, $r\gamma+s\beta$ sont tous des nombres entiers relatifs.
- 9. En prenant en compte les conditions d'irrationnalité imposées à p,q,r,s, en déduire que $\alpha=\beta=\gamma=\delta=0$. (On pourra introduire la matrice $A:=\begin{pmatrix}p&q\\r&s\end{pmatrix}$).

Exercice 0.6. Soit X une variété complexe munie d'une métrique kählérienne $h = g - i\omega$.

- 1. Montrer que le produit extérieur avec ω est injectif sur les 1-formes si $\dim_{\mathbb{C}} X \geq 2$.
- 2. Soit $\phi: X \to \mathbb{R}_+^*$ une fonction lisse. On suppose que la métrique ϕh est kählérienne et que X est connexe. Montrer que ϕ est constante.

Exercice 0.7. Soit X une variété complexe et $L \to X$ un fibré en droite holomorphe muni d'une métrique hermitienne h.

1. Soit U un ouvert de X et s_1 et s_2 deux sections holomorphes partout non-nulles de L sur U. Montrer que

$$\partial \overline{\partial} h(s_1, s_2) = \partial \overline{\partial} h(s_2, s_2)$$

- sur U. Montrer que cette 2-forme sur U est de type (1,1), on la note $\omega_{h,U}$. Cette forme existe dès qu'il existe une section holomorphe sans zéros sur U.
- 2. Montrer qu'il existe une (1,1)-forme ω_h sur X ayant la propriété que pour tout ouvert $U \subset X$ tel qu'il existe une section holomorphe partout non-nulle de L sur U, $\omega_h = \omega_{h,U}$ sur U. Autrement dit, les formes $\omega_{h,U}$ se recollent en une forme globale sur X. Cette forme est appelée forme de courbure de la métrique h.
- 3. Montrer que ω_h est fermée.
- 4. Montrer que la classe de cohomologie de ω_h ne dépend que de L et pas de h.
- 5. (à relire après avoir vu la théorie de Hodge des variétés kählériennes et le lemme du $\partial \bar{\partial}$) On suppose X kählérienne compacte. Soit ω une (1,1)-forme réelle cohomologue à ω_h . Montrer qu'il existe une métrique h' sur L telle que $\omega = \omega_{h'}$.

Exercice 0.8. Soit X une variété complexe et $(E,h) \to X$ un fibré vectoriel holomorphe muni d'une métrique hermitienne. On note E_x la fibre de E au-dessus d'un point $x \in X$.

1. Définir naturellement $\mathbb{P}(E)$ et vérifier que c'est une variété complexe muni d'une submersion holomorphe $\pi: \mathbb{P}(E) \to X$. On note $(x, D \subset E_x)$ un point arbitraire de $\mathbb{P}(E)$. Ici $D \subset E_x$ est une droite complexe.

- 2. On considère le fibré tiré en arrière $\pi^*E \to \mathbb{P}(E)$. La fibre au-dessus de $(x, D \subset E_x)$ s'identifie à E_x . Soit S le sous-fibré en droites de $\pi^*E \to \mathbb{P}(E)$ dont la fibre au-dessu de $(x, D \subset E_x)$ s'identifie à D. On note $\mathscr{O}_{\mathbb{P}(E)}(1)$ le dual de S. Montrer que h induit naturellement des métriques hermitiennes sur les fibré π^*E , S, $\mathscr{O}_{\mathbb{P}(E)}(1)$.
- 3. Montrer que la forme de courbure, notée ω_E de la métrique correspondante sur $\mathcal{O}_{\mathbb{P}(E)}(1)$ (qui est une 2-forme sur $\mathbb{P}(E)$) est en restriction à chaque fibre

$$\mathbb{P}(E)_x \simeq \mathbb{P}(E_x)$$

la forme de "Fubini-Study" de $\mathbb{P}(E_x)$ induite par h_x . (Cette question se ramène à un calcul sur \mathbb{P}^n , x ne varie pas!)

4. On suppose X kählérienne compacte. Soit ω une forme de kähler sur X. Montrer que la forme

$$\omega_E + C\pi^*\omega$$

est kählérienne sur $\mathbb{P}(E)$ si C > 0 est une constante suffisamment grande.

Exercice 0.9. Soit X une variété complexe et $D \subset X$ une hypersurface lisse. Prenons un recouvrement ouvert $(U_i)_{i \in I}$ de X et des fonctions holomorphes $f_i : U_i \to \mathbb{C}$ telles que $U_i \cap D = \{f_i = 0\}$ et telles que f_i est une submersion le long de $\{f_i = 0\}$.

- 1. Montrer qu'il existe une fonction holomorphe $g_{ij}: U_i \cap U_j \to \mathbb{C}^*$ telles que $f_j = f_i g_{ij}$ sur $U_i \cap U_j$.
- 2. On définit un fibré en droite holomorphe $L \to X$ de la façon suivante. On considère l'union disjointe

$$| | U_i \times \mathbb{C}$$
 (1)

et on identifie $(z, v) \in U_i \cap U_j \times \mathbb{C} \subset U_i \times \mathbb{C}$ à $(z, g_{ij}(z)v) \in U_i \cap U_j \times \mathbb{C} \subset U_j \times \mathbb{C}$.

- 3. Vérifiez que vous comprenez cette définition, c'est-à-dire que le quotient de l'espace (1) par la relation d'équivalence engendrée par les identifications ci-dessus est bien l'espace total d'un fibré en droite holomorphe sur X.
- 4. Vérifiez que L est trivial sur le complémentaire de D.
- 5. Vérifiez que la 1-forme holomorphe df_i sur U_i définit (sur $U_i \cap D$) une section holomorphe partout non-nulle du dual du fibré normal de D dans X. Indice : quel est le noyau de $(df_i)_p$ pour $p \in U_i \cap D$?
- 6. Vérifier que le fibré L restreint à D est isomorphe au dual du fibré normal de D dans X.

Remarques : le fibré L décrit ci-dessous est aussi connu sous le nom de $\mathcal{O}_X(-D)$, l'isomorphisme décrit dans la dernière question ets une incarnation possible de la formule d'adjonction.

Exercice 0.10. Soit (X, ω) une variété kählérienne et Y une sous-variété complexe compacte. On note $\pi: X_Y \to Y$ l'éclaté de X le long de Y. On rappelle que la préimage $\pi^{-1}(Y)$ s'identife naturellement à l'espace total du fibré $\mathbb{P}(N_Y) \to Y$ où N_Y est le fibré normal de Y. On rappelle aussi (voir exercice 8) qu'il existe un fibré en droite naturel noté $\mathcal{O}_{\mathbb{P}(N_Y)}(1)$ sur $\mathbb{P}(N_Y)$.

- 1. Vérifiez que le fibré en droite $L := O_{X_Y}(-\pi^{-1}(Y))$ (avec les notations de la remarque ci-dessus...) restreint à $\pi^{-1}(Y) \simeq \mathbb{P}(N_Y)$ est isomorphe à $\mathcal{O}_{\mathbb{P}(N_Y)}(1)$. Si besoin voir page 82-83 du livre de C. Voisin (édition française).
- 2. Soit λ une forme réelle fermée de type (1,1) sur X_Y , nulle en dehors d'un voisinage compact de $\pi^{-1}(Y)$ et dont la restriction aux fibres de $\pi:\pi^{-1}(Y)\to Y$ est strictement positive. Montrer alors que $\lambda+C\pi^*\omega$ est une forme de Kähler sur X_Y si C>0 est une constante suffisamment grande.
- 3. Pour conclure il reste à montrer l'existence d'une forme λ comme dans la question précédente. On note s une section holomorphe partout non-nulle de L := O_{XY} (-π⁻¹(Y)) définie hors de π⁻¹(Y). On fixe une métrique h* sur le vectoriel N_Y → Y. On rappelle que cette métrique induit une autre métrique notée h** sur le fibré O_{P(NY)}(1) de forme de courbure notée ω*. La forme ω* est donc une (1,1) forme fermée sur l'espace total de P(NY), qui est positive sur les fibres de P(NY) → Y. Montrer qu'il existe une métrique hermitienne h_L sur L telle que h(s,s) = 1 hors d'un voisinage de π⁻¹(Y) et telle que h_L coïncide avec h** sur π⁻¹(Y) ≃ P(NY).
- 4. Montrer que la forme de courbure λ de h_L a les propriétés désirées. Conclure.