Exercices, spectre des opérateurs auto-adjoints compacts, feuille No. 3

Dans tout ce qui suit H désigne un espace de Hilbert et $A:H\to H$ un endomorphisme auto-adjoint compact. Autrement dit, A vérifie :

- $-- \langle Au, v \rangle = \langle u, Av \rangle \ \forall u, v \in H,$
- A(B(0,1)) est relativement compact dans H.

L'espace $\mathcal{L}(H)$ est muni de la norme d'opérateur associée à la norme Hilbertienne sur H:

$$||A|| := \sup_{||x||=1} ||Ax||.$$

Le spectre d'un opérateur est défini par

$$\sigma(A) := \{ \lambda \in \mathbb{R} \mid A - \lambda \text{Id n'est pas inversible} \}.$$

L'ensemble des valeurs propres de A est

$$VP(A) := \{ \lambda \in \mathbb{R} \mid \exists x \neq 0, \ Ax = \lambda x \}.$$

Le but de ce TD est de montrer le résultat suivant :

Théorème 0.1. Soit H un espace de Hilbert et $A: H \to H$ un opérateur auto-adjoint compact. Les espaces propres de H associés aux valeurs propres non-nulles sont de dimension finie, et les espaces propres associés à des valeurs propres distinctes sont deux-à-deux orthogonaux. De plus,

- Soit A possède un nombre fini de valeurs propres non-nulles, et alors $\bigoplus_{\lambda \in VP(A)} E_{\lambda} = H$, la somme directe étant orthogonale. Alors A est diagonalisable dans une base hilbertienne de H.
- Soit A possède un nombre infini dénombrable de valeurs propres non-nulles, et alors celles-ci forment une suite qui tend vers 0. Dans ce cas, il existe une base Hilbertienne de H formée de vecteurs propres de A.

Dans tous les cas, il existe une base hilbertienne $(\phi_n)_{n\in\mathbb{N}}$ de H de vecteurs propres de A, associés à des valeurs propres $\lambda_n \in \mathbb{R}$, et λ_n tend vers 0.

Exercice 1. Généralités sur le spectre.

- 1. Prouver que $VP(A) \subset \sigma(A)$.
- 2. Prouver que si A est inversible et continu, alors A⁻¹ est continue (indication : théorème de l'application ouverte).
- 3. Prouver que si A est inversible, il existe $\varepsilon > 0$ tel que A + h est inversible pour $||h|| < \varepsilon$.
- 4. En déduire que $\sigma(A)$ est fermé dans \mathbb{R} .
- 5. Trouver un espace de Hilbert et un opérateur continu $T: H \to H$ tel que $\sigma(T) \neq VP(T)$ (En l'absence d'idée, on pourra considérer $H = \ell^2(\mathbb{R})$).

Exercice 2. Soit $A: H \to H$ un opérateur auto-adjoint compact et $\lambda \in \sigma(A) - \{0\}$. On veut montrer que $\lambda \in VP(A)$. On raisonne par contradiction, et on suppose que $A - \lambda Id$ est injective, mais pas surjective. On pose $H_1 = Im(A - \lambda Id)$, $H_2 = A - \lambda Id(H_1)$, ...

- 1. Montrer que $H_n \subsetneq H_{n-1} \subsetneq \cdots \subsetneq H_1 \subsetneq H$.
- 2. Montrer que les H_i sont des sous-espaces vectoriels fermés. Indication : il suffit de le faire pour H_1 . Pour celui-ci, considérer une suite $y_n = (A \lambda Id)x_n$ qui converge et distinguer selon que x_n est bornée ou non. Le fait que A est compact est évidemment essentiel.
- 3. Construire une suite $x_n \in H_n$ telle que $||x_n|| = 1$ et $x_n \perp H_{n+1}$.
- 4. Soit n > m. En remarquant que $(A \lambda Id)(x_n x_m) + \lambda x_n \in E_{m+1}$, montrer que $||Ax_n Ax_m|| \ge |\lambda|$. Indication: écrire $A = \lambda Id + (A \lambda Id)$.
- 5. En déduire une contradiction lorsque $\lambda \neq 0$, et donc que $\lambda \in VP(A)$.

Exercice 3. Soit $A: H \to H$ un opérateur auto-adjoint compact.

- 1. Montrer que $\forall \lambda \in \sigma(A) \{0\}$, $\ker(A \lambda Id)$ est de dimension finie.
- Soit $\lambda_n \in \sigma(A) \{0\}, \ \lambda_n \to \lambda \in \mathbb{R}$.
 - 2. En supposant les λ_n distinctes, montrer que les sous-espaces $E_n := \ker(A \lambda_n Id)$ sont deux-à-deux orthogonaux.
 - 3. En déduire l'existence de $x_n \in E_n$ de norme 1 tels que $x_n \perp \underset{k \neq n}{\oplus} E_k$.
 - 4. Montrer que $||Ax_n Ax_m|| \ge \min\{|\lambda_n|, |\lambda_m|\} ||x_n x_m||$.
 - 5. En déduire que $\lambda = 0$, autrement dit que $\sigma(A) \{0\}$ est discret.
 - 6. En déduire qu'un tel opérateur a un nombre au plus dénombrable de valeurs propres.

Exercice 4. Bilan. À partir des exercices 1, 2 et 3, montrer que l'ensemble des valeurs propres Λ d'un opérateur auto-adjoint compact A est un ensemble dénombrable borné de \mathbb{R} , dont la seule valeur d'adhérence possible est 0. Ses espaces propres E_{λ} , $\lambda \in \Lambda - \{0\}$ sont de dimensions finies. En définissant H' comme l'adhérence de $\bigoplus_{\lambda \in \Lambda} E_{\lambda}$ dans H, H' est un espace de Hilbert et $A_{|H'|}$ admet une base de Hilbert de diagonalisation. Il reste donc à montrer que H = H' pour obtenir le théorème 0.1. Montrer que la restriction de A à l'orthogonal de H' dans H est un opérateur auto-adjoint compact de H', qui est un Hilbert, dans lui-même sans valeur propre.

Il suffit donc à présent de montrer qu'un opérateur auto-adjoint compact d'un espace de Hilbert a toujours une valeur propre pour obtenir le théorème 0.1.

Exercice 5. Soit $A: H \to H$ un opérateur auto-adjoint compact non nul.

1. Montrer que la fonction $x \mapsto \langle Ax, x \rangle$ n'est pas nulle.

Quitte à remplacer A par -A, on peut supposer que $\lambda := \inf_{\|x\|=1} \langle Ax, x \rangle < 0$. On veut montrer que $\lambda \in \sigma(A)$. On pose $a(u,v) := \langle Au - \lambda u, v \rangle$.

- 2. Montrer que a(u,v) est une forme bilinéaire symétrique positive et continue.
- 3. En utilisant l'inégalité de Cauchy-Scwhartz et la continuité, montrer l'existence d'une constante C telle que

$$\forall v, \quad a(u,v) \le Ca(u,u)^{\frac{1}{2}} ||v||$$

4. En déduire que $||Au - \lambda u|| \le C\sqrt{\langle Au - \lambda u, u \rangle}$.

Soit alors u_n de norme 1 telle que $\langle Au_n, u_n \rangle \to \lambda$. Quitte à extraire, on peut supposer que Au_n converge vers $v \in H$.

5. En remarquant que $\langle Au_n - \lambda u_n, u_n \rangle \to 0$, montrer que $||Au_n - \lambda u_n||$ tend vers 0, puis que v est un vecteur propre de A associé à la valeur propre λ .

Exercice 6. Appliquer la théorie précédente à l'opérateur $\Delta^{-1}: L^2([0,1]) \to L^2([0,1])$.