
MSRI Summer School on Geometric Group Theory, Oaxaca Mexico, July 1–12, 2019
Exercises for the Minicourse by Spencer Dowdall

Geometry and topology of free group automorphisms: hyperbolic extensions

1 – Free groups and Folding

Recall that the free group FX on a set X consists of all freely reduced finite (or empty) words in
the alphabet X tX−1, where the group operation is “concatenate and freely reduce

1. Convince yourself that the definition above indeed defines a group. (Check that multiplication
is well-defined (independent of choices in reducing), that multiplication is associative, and the
axioms regarding inverses and the identity).

2. The free group FX is alternately defined by the universal property that: For any group G and
any set map ϕ0 : X → G there is a unique group homomorphism ϕ : FX → G extending ϕ0.

(a) Convince yourself that our definition of FX above satisfies the universal property.

(b) Prove that group homomorphisms FX → G are in bijective correspondence with set maps
X → G.

A graph is a 1–dimensional cell complex. This is formally defined as a tuple (V,E,−, ι) where V
is the set of vertices, E is the set of oriented edges, − : E → E is a free involution (i.e ē 6= e and
¯̄e = e for all e ∈ E), and ι : E → V is a function recording the initial vertex of each oriented edge.

A graph morphism is a cellular map G→ G′ that sends each open edge of G homeomorphically onto
an open edge of G′ (where we consider morphisms equivalent if they differ by a homeomorphism
(of G and/or G′) that is isotopic to the identity rel vertices). Formally, a morphism (V,E,−, ι)→
(V ′, E′,−, ι) is a pair of maps V → V ′ and E → E′ that commute with − and ι. You should
convince yourself these are the same concept.

3. Show that a graph morphism G→ G′ is an immersion (i.e., locally injective) iff it satisfies:

ι(e1) = ι(e2) and f(e1) = f(e2) =⇒ e1 = e2 for any edges e1, e2 of G,

4. Let f : X → Y be an immersion of finite graphs. Show that it is possible to attach finitely many
0 and 1 cells to X to obtain a graph X̃ to which f extends to a morphism f̃ : X̃ → Y that is a
covering map. Moreover, if Y has only one vertex, it is possible to build X̃ by only attaching
edges. Conclude that any immersion is a composition of an embedding and a covering map.

5. An elementary homotopy of an edge path e1, . . . , ek is a move that inserts or deletes a consec-
utive pair of edges of the form e, ē.

(a) Show that every edge path can be transformed into a reduced edge path via a sequence of
elementary homotopies. (This is called tightening.)

(b) Show that two reduced edge paths are homotopic rel endpoints iff they are equal.

(c) Show that edge paths are related by an elementary homotopy iff they are homotopic rel
endpoints

(d) Show that for a graph G and vertex v, elements of π1(G, v) are in bijective correspondence
with reduced edge paths that start and stop at v.
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6. Show that an immersion between graphs is π1–injective. (That is, if f : G→ G′ is an immersion
and v ∈ G is a vertex, then f∗ : π1(G, v)→ π1(G

′, f(v)) is injective.)

7. If e1, e2 are edges of a graph G such that ι(e1) = ι(e2) and e2 6= e1 6= ē2, we may fold (i.e.
identify e1 with e2 and τ(e1) with τ(e2)) to quotient graph morphism G→ G′. Prove that:

(a) if τ(e1) 6= τ(e2) in G, then the fold G→ G′ is a homotopy equivalence.

(b) if τ(e1) = τ(e2) in G, then the fold G→ G′ is π1–surjective but not π1–injective.

8. Prove Stalling’s Theorem that every morphism G→ G′ of finite graphs factors as

G = G0 → G1 → · · · → Gk → G′,

where each map Gi → Gi+1 is a fold and the last map Gk → G′ is an immersion.

9. Prove/convince yourself that the fundamental group of any graph is a free group. Here are
several routes you might take:

(a) Use a spanning tree T in G to show that elements γ of π1(G, v) can be put in a normal
form that agrees with our definition of FX where X is the set of edges of G \ T .

(b) Use van Kampen’s theorem and the fact π1(S) ∼= Z to conclude that π1(G, v) satisfies the
universal property of free groups.

(c) Directly show that π1(G, v) satisfies the universal property of free groups. (Use topology:
Choose an appropriate subset X ⊂ π1(G, v) to serve as the free basis. For any other group
H and set map X → H, take a space Y with π1(Y, y) ∼= H and build a map G→ Y that
induces the desired homomorphism π1(G, v)→ H.)

10. Prove the Nielsen–Schreier Theorem: Every subgroup of a free group is free.

11. Let F1 = F{a,b} and H = 〈a3b, ābab, a2b̄a〉. In class we saw how to used Stalling’s folds to find
a free basis of H.

(a) Try different factorizations / folding sequences. Check that the resulting graph is always
the same.

(b) How do we know the result of this process indeed gives a free basis for H?

Recall that the core of a based graph Y is the smallest subgraph that contains the base vertex and
to which Y deformation retracts.

12. Let G be a finite graph and v ∈ G a vertex, so π1(G, v) is free. Let H ≤ π1(G, v) be any finitely
generated subgroup and (YH , ṽ)→ (G, v) the corresponding cover of this subgroup.

(a) Prove that the following are equivalent:

1. The core of (YY , ṽ).

2. The largest connected finite subgraph of YH that contains ṽ and has no valence 1
vertices (except possibly at ṽ).

3. The union of images of all reduced edge paths of YH that start and end at ṽ.

4. The union of the finitely many reduced edge paths representing the generators of H.

(b) Show that YH can be built from the core by attaching trees at the vertices.
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(c) Show the core of YH can be calculated via the Stalling’s fold method described in lecture.
(That is, prove the folding method always terminates with the core of YH .)

13. If H ≤ Fn is finitely generated and normal, prove that either H = {1} or else [Fn : H] <∞.

14. Given a generators of a finitely generated subgroup H ≤ Fn:

(a) Can you compute its normalizer N(H) = {w ∈ Fn | wHw−1 = H}?
(b) What can you say about [N(H) : H]?

(c) Given w ∈ Fn, can you algorithmically decide if w ∈ H?

(d) Given w ∈ Fn, can you algorithmically decide if w is conjugate to an element of H?

(e) Can you decide if H is normal in Fn?

(f) Can you decide if [Fn : H] <∞?

15. Let F2 = F{a,b} and H = 〈abab−1, ab2, babba3b−1〉.
(a) What is the rank of the free group H? Find a free basis of H.

(b) Is ab2a−2ba63b−1 and element of h? What about b?

(c) Does H have finite index in F2?

(d) Is H normal in F2?

16. Consider the subgroup H = 〈a2, b2, aba−1, ba2b−1, baba−1b−1〉 of F2 = F{a,b}. Try to compute
it’s normalizer N(H) = {w ∈ F2 | wHw−1 = H}. What is the index [N(H) : H]?

17. Show that the subgroup H = 〈bnab−n | n ∈ Z〉 of F2 = F{a,b} is normal but not finitely
generated. (Hint: try to build a covering that represents this subgroup).

18. Given a homomorphism Fn → Fm, can you decide when h is injective/surjective/bijective?

19. Show that for any homomorphism h : Fn → Fm, there is a free factorization Fn = A ∗ B such
that h kills A (i.e., h(A) = {1}) and h is injective on B.

20. Prove Marshall Hall’s Theorem: For every finitely generated H ≤ Fn, there exits a finite-index
subgroup H ′ ≤ Fn so that H ≤ H ′ with H a free factor of H ′.

21. Prove that Fn is Hopfian, meaning that every epimorphism Fn → Fn is an automorphism. This
says that Fn is not isomorphic to a proper quotient of itself. Conclude that any generating set
of Fn of size n is a free basis.

22. Prove that Fn is residually finite: For any nontrivial w ∈ Fn, there exists a finite-index normal
subgroup H ′ C Fn so that w /∈ H ′. (Hint: Build a smart covering of the rose.)

23. Show that Fn has the following property: If H ≤ Fn is a finitely-generated subgroup such that
for every w ∈ Fn there is some k = k(w) > 0 such that wk ∈ H, then H has finite index in Fn.
Note that this is not true for arbitrary groups! Indeed, there exists infinite finitely generated
groups (e.g Burnside groups) where every element has finite order.

24. Show that for every finitely generated H ≤ Fn and elements g1, . . . , gk ∈ Fn \ H, there is a
finite-index subgroup H ′ ≤ Fn such that H ≤ H ′ with H a free factor of H ′ and so that
g1, . . . , gk /∈ H ′.
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25. Show that if H is a finite index subgroup of Fn, then rank(H)− 1 = [Fn : H](n− 1).

26. In the statement of Nielsen’s theorem that Aut(Fn) is finitely generated, verify that each of
the maps Fn → Fn in the indicated generating set are in fact automorphisms of Fn. (Use the
universal property.)

27. Prove that Aut(F4), where F4 = F{a1,...,a4} is generated by the following 4 elements:

• Φ1, which sends ai 7→ ai+1 (with indices taken mod 4)

• Φ2, which sends a1 7→ a2, a2 7→ a1, a3 7→ a3, and a4 7→ a4.

• Φ3, which sends a1 7→ a−11 and ai 7→ ai for i = 2, 3, 4.

• Φ4, which sends a1 7→ a1a1 and ai 7→ ai for i = 2, 3, 4.

28. If T and T ′ are two spanning trees of a finite graph G, show there is a sequence T = T0 →
· · · → Tk = T ′ of spanning trees in G such that each move Ti → Ti+1 is a single edge swap (i.e
the symmetric difference of Ti and Ti+1 is exactly 2 edges).
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2 – Out(Fn) and Outer Space

29. Show that the center Z(Fn) = {w ∈ Fn | wx = xw for all x ∈ Fn} is trivial. Conclude that
Inn(Fn) is isomorphic to Fn.

30. For G a finite graph, let HE(G) be the set of homotopy equivalences G→ G. Put an equivalence
relation on HE(G) by declaring elements to be equivalent iff they are homotopic. Show that
the quotient HE(G)/ ∼ is naturally a group isomorphic to Out(π1(G, v)) for any v ∈ G.

If X is a free basis of Fn, define the word length and conjugacy length with respect to X by

|w|X = min
{
n | w = x1 · · ·xn with each xi ∈ X ∪X−1

}
and ‖w‖X = min

g∈Fn

∣∣gwg−1∣∣
The stretch factor of an element φ ∈ Out(Fn) is defined as log λ(φ) = sup

α∈Fn

lim
n→∞

1

n
log ‖φn(α)‖X .

31. Show that the definition of the stretch factor λ(φ) is independent of the free basis X.

32. In lecture we defined Outer space Xn to be the space of equivalence classes of marked metric
graphs of volume 1. Show that Outer space Xn may alternately be defined as the space of metric
trees equipped with a minimal, isometric Fn action that has covolume 1, up to equivalence given
by Fn–equivariant isometry.

33. For an automorphism φ ∈ Out(Fn) and point Γ ∈ Xn, suppose that σ : Γ→ Γ · φ is an optimal
difference of markings whose tension graph ∆ = ∆(σ) ⊂ Γ and associated illegal turn structure
on ∆ satisfy the conditions:

• σ(∆) ⊂ ∆,

• σ sends each edge of ∆ to a legal path, and

• σ sends legal turns to legal turns.

Prove that Γ realizes τ(φ) (i.e., d(Γ,Γ · φ) = inf{d(Γ′,Γ′ · φ) | Γ′ ∈ Xn}) and that λ(φ) = eτ(φ).

34. Consider the automorphism of F2 = F{a,b} defined by φ(a) = a and φ(b) = ab. Show that φ
acts parabolically on by finding a sequence Γk ∈ X2 such that d(Γk,Γk · φ) tends to 0.

35. Let us call an automorphism of Fn “positive” if it maps each generator ai to a positive word
in the alphabet {a1, . . . , an} (i.e., without using any inverses a−1j ). Show that if φ is positive,
then obvious representative on the rose Φ: Rn → Rn is a train track representative.

36. Consider the automorphism φ of F{a,b,c} defined by φ(a) = ac2, φ(b) = c and φ(c) = ab. The
previous problem says the obvious map f : R3 → R3 of the rose is a train track representative.

(a) Verify that φ is an automorphism.

(b) Find the appropriate train track structure on R3. That is, define the illegal turns so that
f maps edges to legal paths and legal turns to legal turns.

(c) Find the transition matrix M of f

(d) Compute the largest eigenvalue of M and its associated eigenvector λ.

(e) Put a metric on R3 so that f stretches every edge by λ, and thus that the tension graph
of f is all of R3.
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(f) What are the stretch factor λ(φ) and translation length τ(φ)? How do you know?

(g) (Bonus thing to consider: Compute the inverse φ−1 and carry out this analysis for it.)

(h) (More bonus: Now let φn be given by φ(a) = acn, φ(b) = c, and φ(c) = ab. What happens
to λ(φn), τ(φn) and the metric on R3 as n→∞? What about for φ−1n ?)

37. Suppose Γ is a finite core graph and that σ : Γ→ Γ is a map that sends vertices to vertices and
edges to nondegenerate immersed paths. Show that finding an invariant train track structure
on Γ is algorithmic (when it exists). (Hint: Build a finite directed graph whose vertices are the
directions at the vertices of Γ and whose edges record the action of the derivative Dσ. How
does this graph help to find a train track structure or else show that none exists?)

38. Here is a more elaborate example: Let φ be the automorphism of F3 = F{x1,x2,x3} given by

φ(x1) = x2, φ(x2) = x−12 x−11 x2x1x3 and φ(x3) = x1. Let Γ be the graph with (oriented) edge
set E+ = {a, b, c, d}, vertex set V = {v0, v1}, and attaching maps ι(a) = ι(b) = ι(d) = v0 and
ι(ā) = ι(b̄) = ι(d̄) = ι(c) = ι(c̄) = v1. Let f : Γ → Γ be a map sending vertices to vertices and
edges to immersed edge paths as follows: f(a) = d, f(b) = a, f(c) = b̄a and f(d) = bādb̄ac.

(a) Draw a picture of Γ with a labeling so that you can see the map f .

(b) Show that f represents φ: Find an identification F3
∼= π1(Γ) for with f∗ = φ.

(c) Verify that φ is an automorphism. (Maybe try the folding method!)

(d) Find an illegal turn structure on Γ so that f becomes a train track map.

(e) Find the transition matrix M of f .

(f) Put a metric on Γ so that the tension graph of f is all of Γ.

(g) Find the stretch factor λ(φ) and translation length τ(φ).
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3 – Hyperbolicity

39. Let K ≥ 1 and C,B ≥ 0 be given. Prove there exist constants K ′ ≥ 1 and C ′, B′, A ≥ 0 such
that the following holds: If f : (X, d) → (Y, ρ) is any (K,C)–quasi-isometry whose image is B
dense (meaning ∀y ∈ Y ∃x ∈ X so that ρ(y, f(x)) ≤ B), then there exists a (K ′, C ′)–quasi-
isometry g : Y → X that is B′–dense and such that d(x, g(f(x))), ρ(y, f(g(y)) ≤ A for all x ∈ X
and y ∈ Y . (That is, prove every quasi-isometry has quasi-isometry coarse inverse).

By a geodesic in a metric space (X, d) we mean a map γ : I → X where I ⊂ R is an interval and
d(γ(s), γ(t)) = |s− t| for all s, t ∈ I. We often confuse the map γ with its image in X. For any
point y ∈ X, the distance to γ and the closest-point-projection to γ are defined by

d(y, γ) = inf{d(y, p) | p ∈ γ} and πγ(y) = {p ∈ γ | d(y, p) = d(y, γ)} ⊂ γ.

40. Let γ ⊂ X be a geodesic and y ∈ X any point.

(a) Prove that the infimum d(y, γ) = inf{d(y, p) | p ∈ γ} is always realized. Thus πγ(y) 6= ∅.
(b) Prove that diam(πγ(y)) is finite.

A geodesic γ in a metric space X is called D–strongly contracting, where D ≥ 0, if for all y, y′ ∈ X
with d(y, y′) ≤ d(y, γ) one has diam(πγ(y) ∪ πγ(y′)) ≤ D.

A geodesic γ in a metric space is Morse if for all K ≥ 1 and C ≥ 0 there exists N = N(K,C)
such that for any (K,C)-quasi-geodesic ρ : [a, b] → X with ρ(a), ρ(b) ∈ γ, the Hausdorff distance
dHaus(ρ, γ) between the sets γ and ρ = ρ([a, b]) ⊂ X is at most N . We call the requisite function
N : [1,∞)× [0,∞)→ R a Morse gauge for γ and say that γ is “N–Morse.”

41. Prove that for every D ≥ 0 there exists a Morse gauge N such that any D–strongly contracting
geodesic in any geodesic metric space X is N–Morse. (Hint: Pick some large constant M to
be determined later. Argue that if ρ contains a long subsegment ρ([c, d]) that lies outside the
M–neighborhood of γ, then closest-point-projection to γ contracts this subpath by a definite
amount. If M is sufficiently large compared to K, then the geodesic concatenation from ρ(c) to
πγ(ρ(c)) to πγ(ρ(d)) to ρ(d) will be significantly shorter than the quasi-geodesic ρ([c, d]). This
will violate the fact that ρ is a quasi-geodesic, unless |d− c| is uniformly bounded.)

42. Let X be a δ–hyperbolic geodesic metric space.

(a) Prove that all geodesic quadrilaterals in X are 2δ–thin.

(b) Prove that if y, y′ ∈ X are such that diam(πγ(y)∪πγ(y′)) ≥ 10δ, then d(y, y′) ≥ d(y, γ)−2δ.
(We sketched this in lecture.)

(c) Show that for any number r there exists a bound B such that d(y, y′) ≤ r implies
diam(πγ(y) ∪ πγ(y′)) ≤ B.

(d) Prove there exists D ≥ 0 such that every geodesic in X is D–strongly contracting.

43. Let X be any geodesic metric space, γ be a geodesic, and y ∈ X any point. Choose a point
z ∈ πγ(y). Let ρ be a geodesic joining y to z. Let β be the concatenation of ρ with the
subgeodesic of γ traveling away from z (either to the left or right); parameterize β by arclength.
Prove that β is a (3, 0)-quasi-geodesic.
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44. Prove that for every D ≥ 0 there exists δ ≥ 0 such that if X is a geodesic metric space in which
every geodesic is D–strongly contracting, then X is δ–hyperbolic.

45. Cannon proved the amazing fact that if G is any hyperbolic group with finite generating set
S, then the formal power series p(x) =

∑∞
k=0 σkx

k with coefficients σk = #{g ∈ G : |g|S = k}
is a rational function. Verify this in the case of the free group Fn with S its standard basis:

(a) Calculate the cardinality σk = #{w ∈ Fn : |w|S = k} of the k–sphere in Fn.

(b) Form the formal power series
∑∞

k=0 σkx
k and determine what rational function it is. If

the general case is too hard, try it for n = 2 or 3.
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