MSRI Summer School on Geometric Group Theory, Oaxaca Mexico, July 1–12, 2019 Exercises for the Minicourse by Spencer Dowdall Geometry and topology of free group automorphisms: hyperbolic extensions

1 – Free groups and Folding

Recall that the free group F_X on a set X consists of all freely reduced finite (or empty) words in the alphabet $X \sqcup X^{-1}$, where the group operation is "concatenate and freely reduce

- 1. Convince yourself that the definition above indeed defines a group. (Check that multiplication is well-defined (independent of choices in reducing), that multiplication is associative, and the axioms regarding inverses and the identity).
- 2. The free group F_X is alternately defined by the *universal property* that: For any group G and any set map $\varphi_0: X \to G$ there is a unique group homomorphism $\varphi: F_X \to G$ extending φ_0 .
 - (a) Convince yourself that our definition of F_X above satisfies the universal property.
 - (b) Prove that group homomorphisms $F_X \to G$ are in bijective correspondence with set maps $X \to G$.

A graph is a 1-dimensional cell complex. This is formally defined as a tuple $(V, E, -, \iota)$ where V is the set of vertices, E is the set of oriented edges, $-: E \to E$ is a free involution (i.e $\bar{e} \neq e$ and $\bar{e} = e$ for all $e \in E$), and $\iota: E \to V$ is a function recording the initial vertex of each oriented edge.

A graph morphism is a cellular map $G \to G'$ that sends each open edge of G homeomorphically onto an open edge of G' (where we consider morphisms equivalent if they differ by a homeomorphism (of G and/or G') that is isotopic to the identity rel vertices). Formally, a morphism $(V, E, -, \iota) \to$ $(V', E', -, \iota)$ is a pair of maps $V \to V'$ and $E \to E'$ that commute with - and ι . You should convince yourself these are the same concept.

3. Show that a graph morphism $G \to G'$ is an *immersion* (i.e., locally injective) iff it satisfies:

$$\iota(e_1) = \iota(e_2)$$
 and $f(e_1) = f(e_2) \implies e_1 = e_2$ for any edges e_1, e_2 of G ,

- 4. Let $f: X \to Y$ be an immersion of finite graphs. Show that it is possible to attach finitely many 0 and 1 cells to X to obtain a graph \tilde{X} to which f extends to a morphism $\tilde{f}: \tilde{X} \to Y$ that is a covering map. Moreover, if Y has only one vertex, it is possible to build \tilde{X} by only attaching edges. Conclude that any immersion is a composition of an embedding and a covering map.
- 5. An elementary homotopy of an edge path e_1, \ldots, e_k is a move that inserts or deletes a consecutive pair of edges of the form e, \bar{e} .
 - (a) Show that every edge path can be transformed into a reduced edge path via a sequence of elementary homotopies. (This is called *tightening*.)
 - (b) Show that two reduced edge paths are homotopic rel endpoints iff they are equal.
 - (c) Show that edge paths are related by an elementary homotopy iff they are homotopic rel endpoints
 - (d) Show that for a graph G and vertex v, elements of $\pi_1(G, v)$ are in bijective correspondence with reduced edge paths that start and stop at v.

- 6. Show that an immersion between graphs is π_1 -injective. (That is, if $f: G \to G'$ is an immersion and $v \in G$ is a vertex, then $f_*: \pi_1(G, v) \to \pi_1(G', f(v))$ is injective.)
- 7. If e_1, e_2 are edges of a graph G such that $\iota(e_1) = \iota(e_2)$ and $e_2 \neq e_1 \neq \bar{e_2}$, we may fold (i.e. identify e_1 with e_2 and $\tau(e_1)$ with $\tau(e_2)$) to quotient graph morphism $G \to G'$. Prove that:
 - (a) if $\tau(e_1) \neq \tau(e_2)$ in G, then the fold $G \to G'$ is a homotopy equivalence.
 - (b) if $\tau(e_1) = \tau(e_2)$ in G, then the fold $G \to G'$ is π_1 -surjective but not π_1 -injective.
- 8. Prove Stalling's Theorem that every morphism $G \to G'$ of finite graphs factors as

$$G = G_0 \to G_1 \to \cdots \to G_k \to G',$$

where each map $G_i \to G_{i+1}$ is a fold and the last map $G_k \to G'$ is an immersion.

- 9. Prove/convince yourself that the fundamental group of any graph is a free group. Here are several routes you might take:
 - (a) Use a spanning tree T in G to show that elements γ of $\pi_1(G, v)$ can be put in a normal form that agrees with our definition of F_X where X is the set of edges of $G \setminus T$.
 - (b) Use van Kampen's theorem and the fact $\pi_1(S) \cong \mathbb{Z}$ to conclude that $\pi_1(G, v)$ satisfies the universal property of free groups.
 - (c) Directly show that $\pi_1(G, v)$ satisfies the universal property of free groups. (Use topology: Choose an appropriate subset $X \subset \pi_1(G, v)$ to serve as the free basis. For any other group H and set map $X \to H$, take a space Y with $\pi_1(Y, y) \cong H$ and build a map $G \to Y$ that induces the desired homomorphism $\pi_1(G, v) \to H$.)
- 10. Prove the Nielsen–Schreier Theorem: Every subgroup of a free group is free.
- 11. Let $F_1 = F_{\{a,b\}}$ and $H = \langle a^3 b, \bar{a}bab, a^2 \bar{b}a \rangle$. In class we saw how to used Stalling's folds to find a free basis of H.
 - (a) Try different factorizations / folding sequences. Check that the resulting graph is always the same.
 - (b) How do we know the result of this process indeed gives a free basis for H?

Recall that the *core* of a based graph Y is the smallest subgraph that contains the base vertex and to which Y deformation retracts.

- 12. Let G be a finite graph and $v \in G$ a vertex, so $\pi_1(G, v)$ is free. Let $H \leq \pi_1(G, v)$ be any finitely generated subgroup and $(Y_H, \tilde{v}) \to (G, v)$ the corresponding cover of this subgroup.
 - (a) Prove that the following are equivalent:
 - 1. The core of (Y_Y, \tilde{v}) .
 - 2. The largest connected finite subgraph of Y_H that contains \tilde{v} and has no valence 1 vertices (except possibly at \tilde{v}).
 - 3. The union of images of all reduced edge paths of Y_H that start and end at \tilde{v} .
 - 4. The union of the finitely many reduced edge paths representing the generators of H.
 - (b) Show that Y_H can be built from the core by attaching trees at the vertices.

- (c) Show the core of Y_H can be calculated via the Stalling's fold method described in lecture. (That is, prove the folding method always terminates with the core of Y_H .)
- 13. If $H \leq F_n$ is finitely generated and normal, prove that either $H = \{1\}$ or else $[F_n : H] < \infty$.
- 14. Given a generators of a finitely generated subgroup $H \leq F_n$:
 - (a) Can you compute its normalizer $N(H) = \{w \in F_n \mid wHw^{-1} = H\}$?
 - (b) What can you say about [N(H):H]?
 - (c) Given $w \in F_n$, can you algorithmically decide if $w \in H$?
 - (d) Given $w \in F_n$, can you algorithmically decide if w is conjugate to an element of H?
 - (e) Can you decide if H is normal in F_n ?
 - (f) Can you decide if $[F_n : H] < \infty$?
- 15. Let $F_2 = F_{\{a,b\}}$ and $H = \langle abab^{-1}, ab^2, babba^3b^{-1} \rangle$.
 - (a) What is the rank of the free group H? Find a free basis of H.
 - (b) Is $ab^2a^{-2}ba63b^{-1}$ and element of h? What about b?
 - (c) Does H have finite index in F_2 ?
 - (d) Is H normal in F_2 ?
- 16. Consider the subgroup $H = \langle a^2, b^2, aba^{-1}, ba^2b^{-1}, baba^{-1}b^{-1} \rangle$ of $F_2 = F_{\{a,b\}}$. Try to compute it's normalizer $N(H) = \{w \in F_2 \mid wHw^{-1} = H\}$. What is the index [N(H) : H]?
- 17. Show that the subgroup $H = \langle b^n a b^{-n} | n \in \mathbb{Z} \rangle$ of $F_2 = F_{\{a,b\}}$ is normal but not finitely generated. (Hint: try to build a covering that represents this subgroup).
- 18. Given a homomorphism $F_n \to F_m$, can you decide when h is injective/surjective/bijective?
- 19. Show that for any homomorphism $h: F_n \to F_m$, there is a free factorization $F_n = A * B$ such that h kills A (i.e., $h(A) = \{1\}$) and h is injective on B.
- 20. Prove Marshall Hall's Theorem: For every finitely generated $H \leq F_n$, there exits a finite-index subgroup $H' \leq F_n$ so that $H \leq H'$ with H a free factor of H'.
- 21. Prove that F_n is Hopfian, meaning that every epimorphism $F_n \to F_n$ is an automorphism. This says that F_n is not isomorphic to a proper quotient of itself. Conclude that any generating set of F_n of size n is a free basis.
- 22. Prove that F_n is residually finite: For any nontrivial $w \in F_n$, there exists a finite-index normal subgroup $H' \lhd F_n$ so that $w \notin H'$. (Hint: Build a smart covering of the rose.)
- 23. Show that F_n has the following property: If $H \leq F_n$ is a finitely-generated subgroup such that for every $w \in F_n$ there is some k = k(w) > 0 such that $w^k \in H$, then H has finite index in F_n . Note that this is not true for arbitrary groups! Indeed, there exists infinite finitely generated groups (e.g Burnside groups) where every element has finite order.
- 24. Show that for every finitely generated $H \leq F_n$ and elements $g_1, \ldots, g_k \in F_n \setminus H$, there is a finite-index subgroup $H' \leq F_n$ such that $H \leq H'$ with H a free factor of H' and so that $g_1, \ldots, g_k \notin H'$.

- 25. Show that if H is a finite index subgroup of F_n , then $\operatorname{rank}(H) 1 = [F_n : H](n-1)$.
- 26. In the statement of Nielsen's theorem that $\operatorname{Aut}(F_n)$ is finitely generated, verify that each of the maps $F_n \to F_n$ in the indicated generating set are in fact automorphisms of F_n . (Use the universal property.)
- 27. Prove that Aut(F_4), where $F_4 = F_{\{a_1,\dots,a_4\}}$ is generated by the following 4 elements:
 - Φ_1 , which sends $a_i \mapsto a_{i+1}$ (with indices taken mod 4)
 - Φ_2 , which sends $a_1 \mapsto a_2$, $a_2 \mapsto a_1$, $a_3 \mapsto a_3$, and $a_4 \mapsto a_4$.
 - Φ_3 , which sends $a_1 \mapsto a_1^{-1}$ and $a_i \mapsto a_i$ for i = 2, 3, 4.
 - Φ_4 , which sends $a_1 \mapsto a_1 a_1$ and $a_i \mapsto a_i$ for i = 2, 3, 4.
- 28. If T and T' are two spanning trees of a finite graph G, show there is a sequence $T = T_0 \rightarrow \cdots \rightarrow T_k = T'$ of spanning trees in G such that each move $T_i \rightarrow T_{i+1}$ is a single edge swap (i.e the symmetric difference of T_i and T_{i+1} is exactly 2 edges).

 $2 - \operatorname{Out}(F_n)$ and Outer Space

- 29. Show that the center $Z(F_n) = \{w \in F_n \mid wx = xw \text{ for all } x \in F_n\}$ is trivial. Conclude that $\operatorname{Inn}(F_n)$ is isomorphic to F_n .
- 30. For G a finite graph, let HE(G) be the set of homotopy equivalences $G \to G$. Put an equivalence relation on HE(G) by declaring elements to be equivalent iff they are homotopic. Show that the quotient $\text{HE}(G)/\sim$ is naturally a group isomorphic to $\text{Out}(\pi_1(G, v))$ for any $v \in G$.
- If X is a free basis of F_n , define the word length and conjugacy length with respect to X by

$$|w|_X = \min\{n \mid w = x_1 \cdots x_n \text{ with each } x_i \in X \cup X^{-1}\}$$
 and $||w||_X = \min_{g \in F_n} |gwg^{-1}|_{g \in F_n}$

The stretch factor of an element $\phi \in \text{Out}(F_n)$ is defined as $\log \lambda(\phi) = \sup_{\alpha \in F_n} \lim_{n \to \infty} \frac{1}{n} \log \|\phi^n(\alpha)\|_X$.

- 31. Show that the definition of the stretch factor $\lambda(\phi)$ is independent of the free basis X.
- 32. In lecture we defined Outer space X_n to be the space of equivalence classes of marked metric graphs of volume 1. Show that Outer space X_n may alternately be defined as the space of metric trees equipped with a minimal, isometric F_n action that has covolume 1, up to equivalence given by F_n -equivariant isometry.
- 33. For an automorphism $\phi \in \text{Out}(F_n)$ and point $\Gamma \in X_n$, suppose that $\sigma \colon \Gamma \to \Gamma \cdot \phi$ is an optimal difference of markings whose tension graph $\Delta = \Delta(\sigma) \subset \Gamma$ and associated illegal turn structure on Δ satisfy the conditions:
 - $\sigma(\Delta) \subset \Delta$,
 - σ sends each edge of Δ to a legal path, and
 - σ sends legal turns to legal turns.

Prove that Γ realizes $\tau(\phi)$ (i.e., $d(\Gamma, \Gamma \cdot \phi) = \inf\{d(\Gamma', \Gamma' \cdot \phi) \mid \Gamma' \in X_n\}$) and that $\lambda(\phi) = e^{\tau(\phi)}$.

- 34. Consider the automorphism of $F_2 = F_{\{a,b\}}$ defined by $\phi(a) = a$ and $\phi(b) = ab$. Show that ϕ acts parabolically on by finding a sequence $\Gamma_k \in X_2$ such that $d(\Gamma_k, \Gamma_k \cdot \phi)$ tends to 0.
- 35. Let us call an automorphism of F_n "positive" if it maps each generator a_i to a positive word in the alphabet $\{a_1, \ldots, a_n\}$ (i.e., without using any inverses a_j^{-1}). Show that if ϕ is positive, then obvious representative on the rose $\Phi: R_n \to R_n$ is a train track representative.
- 36. Consider the automorphism ϕ of $F_{\{a,b,c\}}$ defined by $\phi(a) = ac^2$, $\phi(b) = c$ and $\phi(c) = ab$. The previous problem says the obvious map $f: R_3 \to R_3$ of the rose is a train track representative.
 - (a) Verify that ϕ is an automorphism.
 - (b) Find the appropriate train track structure on R_3 . That is, define the illegal turns so that f maps edges to legal paths and legal turns to legal turns.
 - (c) Find the transition matrix M of f
 - (d) Compute the largest eigenvalue of M and its associated eigenvector λ .
 - (e) Put a metric on R_3 so that f stretches every edge by λ , and thus that the tension graph of f is all of R_3 .

- (f) What are the stretch factor $\lambda(\phi)$ and translation length $\tau(\phi)$? How do you know?
- (g) (Bonus thing to consider: Compute the inverse ϕ^{-1} and carry out this analysis for it.)
- (h) (More bonus: Now let ϕ_n be given by $\phi(a) = ac^n$, $\phi(b) = c$, and $\phi(c) = ab$. What happens to $\lambda(\phi_n)$, $\tau(\phi_n)$ and the metric on R_3 as $n \to \infty$? What about for ϕ_n^{-1} ?)
- 37. Suppose Γ is a finite core graph and that $\sigma: \Gamma \to \Gamma$ is a map that sends vertices to vertices and edges to nondegenerate immersed paths. Show that finding an invariant train track structure on Γ is algorithmic (when it exists). (Hint: Build a finite directed graph whose vertices are the directions at the vertices of Γ and whose edges record the action of the derivative $D\sigma$. How does this graph help to find a train track structure or else show that none exists?)
- 38. Here is a more elaborate example: Let ϕ be the automorphism of $F_3 = F_{\{x_1, x_2, x_3\}}$ given by $\phi(x_1) = x_2, \ \phi(x_2) = x_2^{-1} x_1^{-1} x_2 x_1 x_3$ and $\phi(x_3) = x_1$. Let Γ be the graph with (oriented) edge set $E^+ = \{a, b, c, d\}$, vertex set $V = \{v_0, v_1\}$, and attaching maps $\iota(a) = \iota(b) = \iota(d) = v_0$ and $\iota(\bar{a}) = \iota(\bar{b}) = \iota(\bar{d}) = \iota(c) = \iota(\bar{c}) = v_1$. Let $f \colon \Gamma \to \Gamma$ be a map sending vertices to vertices and edges to immersed edge paths as follows: f(a) = d, f(b) = a, $f(c) = \bar{b}a$ and $f(d) = b\bar{a}d\bar{b}ac$.
 - (a) Draw a picture of Γ with a labeling so that you can see the map f.
 - (b) Show that f represents ϕ : Find an identification $F_3 \cong \pi_1(\Gamma)$ for with $f_* = \phi$.
 - (c) Verify that ϕ is an automorphism. (Maybe try the folding method!)
 - (d) Find an illegal turn structure on Γ so that f becomes a train track map.
 - (e) Find the transition matrix M of f.
 - (f) Put a metric on Γ so that the tension graph of f is all of Γ .
 - (g) Find the stretch factor $\lambda(\phi)$ and translation length $\tau(\phi)$.

3 – Hyperbolicity

39. Let $K \ge 1$ and $C, B \ge 0$ be given. Prove there exist constants $K' \ge 1$ and $C', B', A \ge 0$ such that the following holds: If $f: (X, d) \to (Y, \rho)$ is any (K, C)-quasi-isometry whose image is B dense (meaning $\forall y \in Y \exists x \in X$ so that $\rho(y, f(x)) \le B$), then there exists a (K', C')-quasi-isometry $g: Y \to X$ that is B'-dense and such that $d(x, g(f(x))), \rho(y, f(g(y)) \le A$ for all $x \in X$ and $y \in Y$. (That is, prove every quasi-isometry has quasi-isometry coarse inverse).

By a geodesic in a metric space (X, d) we mean a map $\gamma: I \to X$ where $I \subset \mathbb{R}$ is an interval and $d(\gamma(s), \gamma(t)) = |s - t|$ for all $s, t \in I$. We often confuse the map γ with its image in X. For any point $y \in X$, the distance to γ and the closest-point-projection to γ are defined by

 $d(y,\gamma) = \inf\{d(y,p) \mid p \in \gamma\} \quad \text{and} \quad \pi_{\gamma}(y) = \{p \in \gamma \mid d(y,p) = d(y,\gamma)\} \subset \gamma.$

40. Let $\gamma \subset X$ be a geodesic and $y \in X$ any point.

- (a) Prove that the infimum $d(y,\gamma) = \inf\{d(y,p) \mid p \in \gamma\}$ is always realized. Thus $\pi_{\gamma}(y) \neq \emptyset$.
- (b) Prove that diam $(\pi_{\gamma}(y))$ is finite.

A geodesic γ in a metric space X is called *D*-strongly contracting, where $D \ge 0$, if for all $y, y' \in X$ with $d(y, y') \le d(y, \gamma)$ one has diam $(\pi_{\gamma}(y) \cup \pi_{\gamma}(y')) \le D$.

A geodesic γ in a metric space is *Morse* if for all $K \geq 1$ and $C \geq 0$ there exists N = N(K, C)such that for any (K, C)-quasi-geodesic $\rho: [a, b] \to X$ with $\rho(a), \rho(b) \in \gamma$, the Hausdorff distance $d_{\text{Haus}}(\rho, \gamma)$ between the sets γ and $\rho = \rho([a, b]) \subset X$ is at most N. We call the requisite function $N: [1, \infty) \times [0, \infty) \to \mathbb{R}$ a *Morse gauge* for γ and say that γ is "*N*-Morse."

- 41. Prove that for every $D \ge 0$ there exists a Morse gauge N such that any D-strongly contracting geodesic in any geodesic metric space X is N-Morse. (*Hint:* Pick some large constant M to be determined later. Argue that if ρ contains a long subsegment $\rho([c, d])$ that lies outside the M-neighborhood of γ , then closest-point-projection to γ contracts this subpath by a definite amount. If M is sufficiently large compared to K, then the geodesic concatenation from $\rho(c)$ to $\pi_{\gamma}(\rho(c))$ to $\pi_{\gamma}(\rho(d))$ to $\rho(d)$ will be significantly shorter than the quasi-geodesic $\rho([c, d])$. This will violate the fact that ρ is a quasi-geodesic, unless |d - c| is uniformly bounded.)
- 42. Let X be a δ -hyperbolic geodesic metric space.
 - (a) Prove that all geodesic quadrilaterals in X are 2δ -thin.
 - (b) Prove that if $y, y' \in X$ are such that $\operatorname{diam}(\pi_{\gamma}(y) \cup \pi_{\gamma}(y')) \ge 10\delta$, then $d(y, y') \ge d(y, \gamma) 2\delta$. (We sketched this in lecture.)
 - (c) Show that for any number r there exists a bound B such that $d(y, y') \leq r$ implies $\operatorname{diam}(\pi_{\gamma}(y) \cup \pi_{\gamma}(y')) \leq B$.
 - (d) Prove there exists $D \ge 0$ such that every geodesic in X is D-strongly contracting.
- 43. Let X be any geodesic metric space, γ be a geodesic, and $y \in X$ any point. Choose a point $z \in \pi_{\gamma}(y)$. Let ρ be a geodesic joining y to z. Let β be the concatenation of ρ with the subgeodesic of γ traveling away from z (either to the left or right); parameterize β by arclength. Prove that β is a (3,0)-quasi-geodesic.

- 44. Prove that for every $D \ge 0$ there exists $\delta \ge 0$ such that if X is a geodesic metric space in which every geodesic is D-strongly contracting, then X is δ -hyperbolic.
- 45. Cannon proved the amazing fact that if G is any hyperbolic group with finite generating set S, then the formal power series $p(x) = \sum_{k=0}^{\infty} \sigma_k x^k$ with coefficients $\sigma_k = \#\{g \in G : |g|_S = k\}$ is a rational function. Verify this in the case of the free group F_n with S its standard basis:
 - (a) Calculate the cardinality $\sigma_k = \#\{w \in F_n : |w|_S = k\}$ of the k-sphere in F_n .
 - (b) Form the formal power series $\sum_{k=0}^{\infty} \sigma_k x^k$ and determine what rational function it is. If the general case is too hard, try it for n = 2 or 3.