Problems for Mapping Class Groups - Day 310 de julio, 2019

Problem 1. Apply the proof of the Dehn-Licorish Theorem to find an explicit set of generators for $\mathcal{P M C G}\left(S_{2}\right)$ starting with the two Dehn twists that generate $\mathcal{P M C G}\left(S_{1,1}\right)$.

Problem 2. Verify the lantern relation using the Alexander method.
Problem 3. Use the lantern relation, the change of coordinates principle, and the Dehn-Lickorish theorem to prove that $\mathcal{M C G}\left(S_{g}\right)$ has trivial abelianization for $g \geq 3$.

Problem 4. Assuming that $\mathcal{M C G}\left(S_{g}\right)$ is finitely presentable, deduce that $\mathcal{M C G}\left(S_{g, n, b}\right)$ is finitely presentable.

Problem 5. Show that the map $\mathcal{M C G}\left(S_{g}\right) \rightarrow \operatorname{Out}\left(\pi_{1}\left(S_{g}\right)\right)$ is well defined. Hint: consider the point pushing map $\pi_{1}\left(S_{g}\right) \rightarrow \mathcal{M C G}\left(S_{g, 1}\right)$ and the action of $\mathcal{M C G}\left(S_{g, 1}\right)$ on $\pi_{1}\left(S_{g}\right)$.
Problem 6. Derive the Dehn-Nielsen-Baer theorem for $S_{g, 1}$ from the Dehn-Nielsen-Baer theorem for S_{g}. Why can't the statement be true for $S_{g, n}$ for $n \geq 2$? Can you come up with a version of Dehn-Nielsen-Baer theorem that could be true for all $S_{g, n}$?

Problem 7. Recall the non-separating curve graph $\tilde{\mathcal{N}}(S)$ has vertices the set of (free homotopy classes of) non-separating simple closed curves on S and two such curves form an edge if they intersect exactly once. Let's construct $\widetilde{\mathcal{N}}(S)$ For the torus $S=T^{2}$, Represent the torus T^{2} by gluing opposite sides of the square $[0,1] \times[0,1]$ by translations.

- Show there is a one-to-one correspondence between a simple closed curve on T^{2}, which is always non-separating, and a fraction $p / q \in \mathbb{Q} \cup\{\infty\}$, where p and q are in reduced form. ($\infty=1 / 0$) as a fraction).
- Suppose α and β are curves represented by the fractions p / q and r / s respectively. Show $i(\alpha, \beta)=1$ if and only if $\left|\operatorname{det}\left(\begin{array}{ll}p & r \\ q & s\end{array}\right)\right|=1$.
- Let \mathbb{H}^{2} be the hyperbolic plane represented by upper half-space, with ideal boundary $\partial \mathbb{H}^{2}=$ $\mathbb{R} \cup\{\infty\}$. It is well know we can embed $\widetilde{N}(S)$ in $\mathbb{H}^{2} \cup \partial \mathbb{H}^{2}$ as follows. By above, the vertices of $\widetilde{N}(S)$ can be identified with $\mathbb{Q} \cup\{\infty\} \subset \partial \mathbb{H}^{2}$. If two vertices of $\widetilde{N}(S)$ are connected by an edge, we can realize that edge by a hyperbolic geodesic in \mathbb{H}^{2}. The picture we get is what is known as the Farey graph.

Problem 8. Prove the singular-value decomposition theorem for 2×2 matrices. That is, if A is 2×2 matrix with positive determinant, then we can write $A=r\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) s$, where r and s are rotations of \mathbb{R}^{2}, and $a, b>0$. Hint: Consider the symmetric matrix $B=A^{T} A$ and apply spectral theorem.
Problem 9. As above, $A=r\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ s. Assume $a>b$. $\operatorname{Call} d(A)=\frac{a}{b}$ the dilatation of A.

- By the decomposition, there are unit vectors u and v such that $A u=a v$. Show $u=\binom{1}{0}$ if and only if r is the identity matrix.
- Given two matrices A and B, show $d(A B) \leq d(A) d(B)$.
- Show $d(A B)=d(A) d(B)$ if and only if $s=r^{\prime-1}$, where $B=r^{\prime}\left(\begin{array}{cc}a^{\prime} & 0 \\ 0 & b^{\prime}\end{array}\right) s^{\prime}$.

Problem 10. Verify that the Teichmüller metric satisfies the triangle inequality and the symmetry axiom of a metric.

