
Problems for Mapping Class Groups – Day 3 10 de julio, 2019

Problem 1. Apply the proof of the Dehn-Licorish Theorem to find an explicit set of generators for
PMCG(S2) starting with the two Dehn twists that generate PMCG(S1,1).

Problem 2. Verify the lantern relation using the Alexander method.

Problem 3. Use the lantern relation, the change of coordinates principle, and the Dehn–Lickorish
theorem to prove that MCG(Sg) has trivial abelianization for g ≥ 3.

Problem 4. Assuming that MCG(Sg) is finitely presentable, deduce that MCG(Sg,n,b) is finitely
presentable.

Problem 5. Show that the mapMCG(Sg)→ Out(π1(Sg)) is well defined. Hint: consider the point
pushing map π1(Sg)→MCG(Sg,1) and the action of MCG(Sg,1) on π1(Sg).

Problem 6. Derive the Dehn-Nielsen-Baer theorem for Sg,1 from the Dehn-Nielsen-Baer theorem
for Sg. Why can’t the statement be true for Sg,n for n ≥ 2? Can you come up with a version of
Dehn-Nielsen-Baer theorem that could be true for all Sg,n?

Problem 7. Recall the non-separating curve graph Ñ (S) has vertices the set of (free homotopy
classes of) non-separating simple closed curves on S and two such curves form an edge if they
intersect exactly once. Let’s construct Ñ (S) For the torus S = T 2, Represent the torus T 2 by
gluing opposite sides of the square [0, 1]× [0, 1] by translations.

• Show there is a one-to-one correspondence between a simple closed curve on T 2, which is
always non-separating, and a fraction p/q ∈ Q ∪ {∞}, where p and q are in reduced form.
(∞ = 1/0) as a fraction).

• Suppose α and β are curves represented by the fractions p/q and r/s respectively. Show

i(α, β) = 1 if and only if
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• Let H2 be the hyperbolic plane represented by upper half-space, with ideal boundary ∂H2 =
R ∪ {∞}. It is well know we can embed Ñ(S) in H2 ∪ ∂H2 as follows. By above, the vertices
of Ñ(S) can be identified with Q ∪ {∞} ⊂ ∂H2. If two vertices of Ñ(S) are connected by an
edge, we can realize that edge by a hyperbolic geodesic in H2. The picture we get is what is
known as the Farey graph.

Problem 8. Prove the singular-value decomposition theorem for 2 × 2 matrices. That is, if A

is 2 × 2 matrix with positive determinant, then we can write A = r

(
a 0
0 b

)
s, where r and s are

rotations of R2, and a, b > 0. Hint: Consider the symmetric matrix B = ATA and apply spectral
theorem.

Problem 9. As above, A = r

(
a 0
0 b

)
s. Assume a > b. Call d(A) =

a

b
the dilatation of A.

• By the decomposition, there are unit vectors u and v such that Au = av. Show u =

(
1
0

)
if

and only if r is the identity matrix.



• Given two matrices A and B, show d(AB) ≤ d(A)d(B).

• Show d(AB) = d(A)d(B) if and only if s = r′−1, where B = r′
(
a′ 0
0 b′

)
s′.

Problem 10. Verify that the Teichmüller metric satisfies the triangle inequality and the symmetry
axiom of a metric.


