Problem 1. Classify all separating curves on a surface S_g up to homeomorphism.

Problem 2. Show that if $i(a,b) \neq 0$ and with T_a , T_b nontrivial. Verify that $[T_a, T_b] \neq 1$. Do this by drawing pictures.

Problem 3. Given a surface S with n punctures. Let Σ_n be the permutation group. Recall a mapping class of S is allowed to permute the punctures. Prove that the natural map $\mathcal{MCG}(S) \to \Sigma_n$ is a well-defined surjective homomorphism. The kernel is called the pure mapping class group of S.

Problem 4. Verify the claim that if a and c are nonseparating curves with i(a, c) equal to 0 or 2 then there is a curve b with i(a, b) = i(b, c) = 1.

Problem 5. What conditions must a set of Dehn twists satisfy in order for the intersection of their centralizers to be trivial?

Problem 6. Show that the center of every finite-index subgroup of $\mathcal{MCG}(S_q)$ is trivial for $g \geq 3$.

Problem 7. Suppose that a group G acts on a connected graph X by automorphisms, transitively on vertices and edges. Fix two vertices $u, v \in X$ and let $h \in G$ be such that h(v) = u. Show G is generated by G_u (the stabilizer of u) and h.

Problem 8. Prove that the mapping class group of the torus is isomorphic to $SL_2(\mathbb{Z})$. Also do this for the mapping class group of the once-punctured torus.

Problem 9. For a surface S of genus $g \ge 2$, prove there are at most 3g - 3 pairwise disjoint (free homotopy class of) essential simple closed curves on S.

Problem 10. For the Klein bottle K^2 , find all the free homotopy classes of essential simple closed curves. Hint: there are only finitely many! What is the curve graph of K^2 ?

Problem 11. In the curve graph of a surface, what does it mean for two vertices to have distance 2? Find a path of length 3 in the curve graph of S_2 .