Problem 1. Prove that $\hat{i}(a,b)$ depends only on the homology classes of the curves a and b in the surface S.

Problem 2. Show that $Homeo_0(S, \partial S)$, the path component of the identity in $Homeo^+(S, \partial S)$, is a normal subgroup.

Problem 3. Carefully show that the following are equivalent for $\phi, \psi \in Homeo^+(S, \partial S)$, quoting theorems from the lecture:

- ϕ and ψ are in the same path component of Homeo + $(S, \partial S)$ in the compact-open topology.
- ϕ and ψ are in the same coset of Homeo₀(S, ∂S), the path component of the identity.
- ϕ and ψ are homotopic.

Problem 4. Show that if S is a surface with nonempty boundary, then every homeomorphism of S that restricts to the identity on ∂S must also preserve the orientation of S.

Problem 5. Let S^1 be the unit circle in the plane. Show that every element of Homeo (S^1) is homotopic to either the identity or reflection about the x-axis. What does this tell us about the mapping class group of S^1 ?

Problem 6. An arc on a surface S is a map of an interval I to S. We demand that endpoints of I map to ∂S , and if an endpoint is missing, then the map is proper (so the missing "endpoint" maps to a puncture of S). Arcs are considered up to proper homotopy relative to endpoints. State and prove a bigon criterion for arcs, and for an arc and a curve.

Problem 7. State and prove a criterion for checking whether a single curve has the minimal number of self- intersections for its homotopy class.

Problem 8. Prove that any two nonseparating simple closed curves in a surface differ by a homeomorphism of the surface (a simple closed curve is nonseparating if it does not divide the surface into two pieces).

Problem 9. Prove the assertion that any two pairs of simple closed curves that intersect once differ by a homeomorphism of the surface.

Problem 10. Let $\mathcal{MCG}^{\pm}(S)$ be the version of the mapping class group that includes classes of orientation-reversing homeomorphisms, up to equivalence by isotopy. Show that $\mathcal{MCG}^{\pm}(S)$ is a semidirect product of $\mathbb{Z}/2\mathbb{Z}$ acting on $\mathcal{MCG}(S)$. Describe the action of $\mathbb{Z}/2\mathbb{Z}$ on the set of Dehn twists coming from some such decomposition.