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Lecture 1

The following sections will be a reminder of Topology of Surfaces.

0.1 Classification of Surfaces

Any compact oriented connected surface, possibly with boundary is home-
ormophic to S2#T 2# · · ·#T 2 of genus g (g−copies of T 2) with b open disk
removed.

Definition 1. A finite-type surface: is a connected, compact, oriented sur-
face S with n points removed (punctures).

Put sur-
face im-
age.

Remark 2. Sometimes we can think in marked points instead of removed
points.

Remark 3. • Surfaces can be endowed with a differential structure.

• X(S) ≤ 0, which means ∂S = ∅.

• Any S can be endowed with a Riemannian metric (complete of finite
area) with constant curvature.

S Euler Characteristic k

S2 X(S) > 0 +1

T 2 X(S) = 0 0

else X(S) < 0 −1

We have to remark that in this classification we are thinking that S is
not the annulus or the disk.
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Definition 4. A closed curve on S is a continuous map α : S′ → S. We will
say that α is simple if it has no self-intersections.

We often work with free homotopy classs of α. We will say that α is
essential if its not null-homotopic.

Some facts: Every continuous curve is freely homotopic to a smooth
curve. Transversallity, can put curves in general position. We understand
general position for α1, · · · , αn, if their intersections are transverse, are iso-
lated and no triple intersections allowed.

Definition 5. Let a, b two free homotopic class of α and β. The geometric
intersection number of a and b is defined as:

0 ≤ i(a, b) = min{α ∩ β : α ∈ a, β ∈ b} <∞

It is clear by definition that i(a, a) = 0.

Definition 6. Let −→a ,
−→
b two oriented curves. The algebraic intersection

number is defined as

î(−→α ,
−→
β ) =

∑
p∈−→α∩

−→
β

index(p)

where index(p) is equal to 1 if the oriented pair of velocity vectors agree with
surface orientation and -1 otherwise. For free homotopic classes î(a, b) =

î(−→α ,
−→
β ) and is independent of choice of representatives.

Exercise 1. Prove the following equations

1. i(a, b) = i(b, a).

2. î(a, b) = −î(b, a).

3. i(a, b) ≥ |̂i(a, b)|.

4. i(a, b) = î(a, b) mod 2.

Definition 7. Let α, β representatives of a and b. We say that α and β are
in minimal position if i(α, β) = i(a, b)

How ca tell if two curves are in minimal position? The Bigon criterion
is one who tells. Put image

of Bigon
criterion

Lemma 8. Let α, β two curves, they are in minimal position if and only if
there are no bigons.
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Definition 9 (Change of Coordinate Principle). Suppose we are given 2 sets
of curves A = {α1, · · · , αn} and B = {β1, · · · , βn}. Suppose after cutting
S along A and cutting S along B. We see that the complementary regions
“match up” Then there exists an orientation-preserving homeomorphism of
S taking the set A to B.

put image of 3-genus surface cutting in one handle equator and other
handle anulli.

Remark 10. • Modulo the following examples: disk, annulus, disk with
one puncture, open disk, open disk with one puncture. Homotopic
homeomorphisms are isotopic [Baer].

• Every homeomorphism is homotopic to a diffeomorphism [Munkres,
Smale,...].

Let S = S(g, n, b) of finite-type. Let

Homeo+(S, ∂S) = {g : S → S : is a orientation-preserving homeomorphismg(∂S) = ∂S}

It is a group under composition and a topological group with the compact-
open topology.

Definition 11 (Mapping Class Groups).

MCG(S) = π0
(
Homeo+(S, ∂S)

)
= Homeo+(S, ∂S)/Homeo0(S, ∂S)
= Homeo+(S, ∂S)/isotopy
= Homeo+(S, ∂S)/path component of identity

Remark 12. Can replace Homeo by Diffeo in the definition of MCG(S). Also
MCG(S) is discrete.

Example 13. Some examples of elements of the MCG(S) are:

1. Any homeomorphism, i.e., change of coordinate homeomorphism.

2. Symmetries

3. Dehn twists

4. Pseudo-Anosovs.

Example 14. 1. S = R2, S2,R2 \ {p}, MCG(S) = 1.

2. S = D2, D2 \ {p}, MCG(S) = 1 by Alexander lemma.
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3. S = S2 \ {p, q}, MCG(S) = Z/2.

4. S = A, MCG(S) = Z.

5. S = T 2, T 2 \ {p}, MCG(S) = SL2Z.

Definition 15. Consider the annulus A = I × R. Let T : A → A the map
given by T (a) intersecting b transversally will give a “turn”. We will call
this map T the left Dehn twist about b.

Let S be a surface and b a curve in S. Let Nb be a cylindrical neigh-
bourhood and φ : A→ Nb an homeomorphism. Define Tb(x) = φTφ−1(x) if
x ∈ Nb and identity otherwise.

Remark 16. 1. Tα is non-trivial in MCG(S).

2.

Theorem 17. MCG(T 2)→ Aut+(H1(T
2)) ' SL2Z.

Remark 18. Some elements in MCG(T 2) are of the form
Type Example Trace

Finite order

[
0 1
−1 0

]
Change-orientation |tr(A)| < 2

Reducible

[
1 0
1 1

]
Dehn Twist |tr(A)| = 2

Anosov

[
3 1
2 1

]
, λ±, e± eigenvalues and eigenvectors |tr(A)| > 2

Lecture 2

We will remember that for a surface Sg,n,b, for Homeo+(S, ∂S) the set with
elements f : S′ → S′ preserving orientation such that f(x) = x for every
x ∈ ∂S′ where S′ is the surface Sg,0,b and the set of puncture is preserved.

Exercise 2. Prove that there exists a short exact sequence of the form

1→ PMCG(S)→ MCG(S)→ Σn → 1

where is the permutation group of n−elements and PMCG(S) is the pure
mapping class group.
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Figure 1: Iteration of Dehn twists

0.2 Basic Facts about Dehn Twists

Let a, b curves and f ∈ MCG(S).

1. For k ∈ Z, i(T ka (b), b) = |k|i(a, b)2.

Corollary 19. 〈Ta〉 = Z.

This image present the idea of the proof. draw pic-
ture of
Dehn
twist it-
eration

Remark 20. It follows that î(T ka (b), b) = kî(a, b).

2. Ta = Tb if an only if a = b

3. fTaf
−1 = Tf(a).

4. fTa = Taf if and only if f(a) = a.

Proof. We have that fTaf
−1 = Ta and by the previous, Tf(a) = Ta

and by (1), f(a) = a.

5. i(a, b) = 0 if and only if TaTb = TbTa. Equivalently Ta(b) = b.

6. If i(a, b) = 1 then TaTbTa = TbTaTb.

Proof. It is easy to convince that TaTb(a) = b, from the fact that the
intersection number is 1 we have that the curves are in a subsurface
which is a torus.

If we take (TaTb)Ta(TaTb)
( − 1) = Tb.

Exercise 3. Prove that the converse is true.

7. Alexander’s Method

Recall that MCG(D2, ∂D) = {1} and MCG(D2 \ {p}, ∂D) = {1}.
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Theorem 21. Let S be a surface of finite type and {α1, · · · , αn} a
collection of simple closed curves and proper arcs on S that fill S
(complementary regions are disk or once-puncture disks) which are
all in minimal position (no triangles allowed). Suppose f ∈ MCG(S)
that fixes the oriented homotopy class of each αi. Then f = Id.

Remark 22. Real application often set oriented homotopy for free.

8. Center of MCG(S)

Proposition 23. If g ≥ 3, then Z(MCG(Sg)) is trivial.

Proof. By the property 4, if f ∈ Z(MCG(Sg)), then f(a) = a for
all unoriented class of curves. Assume that there is a set of essential
curves where α belongs, even more, assume that we can set that α be
have more curves on one side of α.

Up to homotopy, f fixes a graph (made with a set of essential curves,
acting as an automorphism of the graph. But this graph has no auto-
morphism that change the orientation of α where alpha is a curve in
the graph.

Propagating this, f fixes the oriented orientations of every curve. Now
apply Alexander’s method and f = Id.

If f is the hyperelliptic involution such that f(a) = a but f(−→a ) =←−a .
In this case the center is non-trivial and is of the form

S = Sg,b,n Z(MCG(S)

b = 0 then (g, n) = (0, 2), (1, 0), (1, 1), (1, 2), (2, 0) Z/2
(0, 4) Z/2× Z/2

0.3 Finite Generation

Observe that a Dehn twist cannot permute punctures.

Theorem 24. PMCG(S) is generated by finitely many Dehn twists.

Corollary 25. MCG(S) is countable and is generated by finitely many Dehn
twists and half twists.

Remark 26. Using the capping homeomorphism we can forget about ∂S

1→
∏
c∈∂S
〈Tc〉 → PMCG(Sg,n,b)→ PMCG(Sg,n+b)→ 1
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Lemma 27. Suppose that G acts on a connected graph X by automorphisms
transitively on edges and vertices. Let v, w ∈ X(·) is connected by an edge
and if h ∈ G such that h(w) = v. Then G = 〈Gv, h〉.

Definition 28. The curve complex C(S), is the graph with set of vertices
the homotopy classes of simple closed curves, it will be an edge between two
vertices is i(a, b) = 0. The n−simplex is the set of n+ 1 disjoint curves.

Theorem 29 (Harvey). Let ζ(Sg,n) = 3g−3+n ≥ 2 then C(S) is connected.
Where ζ(Sg,n) is the complexity of the surface.

Definition 30. S is a surface with a marked point ∗ and possibly with
other punctures. There is a homomorphism MCG(S, ∗).

push : π1(S, ∗)→ MCG(S, ∗).

Exercise 4. push(α) = Tα1T
−1
α2
.

Theorem 31 (Birman). Let forget : MCG(S, ∗)→ MCG(S) the map given
by f maps to the homotopy class of f not fixing ∗. Then the following is a
short exact sequence

1 // π1(S, ∗)
push//MCG(S, ∗)forget //MCG(S) // 1

Lecture 3

Proof of theorem 31. Base Steps:

1. For g = 0, n = 3, we have

1 // π1(S0,3) // PMCG(S0,4) // PMCG(S0,3) // 1 ,

but π1(S0,3) = F2 and PMCG(S0,3) = 1. So we claim the PMCG(S0,4)
is finitely generated and apply Birman exact sequence assure the claim
for n ≥ 4.

2. For g = 1, n = 0, we have PMCG(T 2) = MCG(T 2) = SL2(Z) which
is finitely generated. For the case g = 1, n = 1, PMCG(T 2, ∗) is also
equal to SL2(Z).

Now we can induct for g and n with allg ≥ 2.
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Remark 32. The previous proof is constructive. In particular there are Dehn
twists and half-twists on MCG(Sg,n,b).

For a closed surface of genus g, there are 3g − 1 non-separating curves
known as the Lickorish generators. We can reduce this set of generators to
2g − 1, known as Humphries generators.

0.4 Some Relations

1. If f, g ∈ Homeo+(S) with disjoint support, then their classes commute.

2. If i(a, b) = 1, then TaTbTa = TbTaTb

3. Lantern Relation For a, b, c, d, x, y, z we have that TxTyTz = TaTbTcTd. Put the
Lantern
relation
picture

We can apply the Lantern relation to prove that MCG(Sg)
ab = 1 for

g ≥ 3 and Gab = G/[G,G].

4. Root of Dehn Twists: Assume that i(a, b) = 1. This means that we
can obtain T 2 with a boundary component inside our surface. Then
(TaTb)

6 = Tc.

The proof is inspired in the fact that if we change the boundary com-
ponent by a once-punctured torus. Ta and Tb are triangular matrices
such that TaTb has order six.

Theorem 33 (McCool). MCG(S) is finitely presentable.

0.5 Nielsen-Thurston Classification of Mapping Classes

Our goal is find a nice normal from for an element of Mapping class group.

0.5.1 Structures on Surface

Definition 34. An hyperbolic structure on a surface Sg with g ≥ 2 is:

1. an atlas of charts to H2 which a transitions maps isometries of H2.

2. There are a complete Riemann metric with constant curvature κ = 1.

3. is homeomorphic to H2/Γ where Γ is a discrete group of isometries of
H2 and Γ ' π1(S).

Remark 35. The previous are equivalent definitions.

Definition 36. A complex structure on a surface S is an atlas of charts to
C with transitions maps are biholomorphisms.
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Remark 37. The Hyperbolic structure on a surface induce a complex struc-
ture because H2 ⊂ Ĉ and isometries of H2 are biholomorphism of the Rie-
mann sphere.

Definition 38. A measured foliation on a surface S is an atlas of charts
on S \ P to R2 which transitions maps preserve vertical lines and spacing
between them, where P are “singular points”.

By this we mean, that the pull back of x = a gives a foliation F on S.
Pull back of |dx| give a measure on arcs transverse to F. At a point p ∈ P
the foliation have a k−prong singularity with k ≥ 3.

Definition 39. A half-translation structure on a surface S are charts on
S \ P to R2 = C, which transitions maps are z 7→ ±z + c.

By this we mean, that the transitions maps preserve a pair of measured
foliation (vertical-horizontal). The singularities look like two singular points
of measured foliations. The previous definition is often known as a quadratic
differential on S.

Some connections about the previous structures over surfaces. There is
an equivalence between hyperbolic structures and complex structure. In the
case to obtain an hyperbolic structure based on a complex structure is due
to the Riemann uniformization theorem. Also given an measured lamination
we can obtain a measured foliation and viceversa.

Theorem 40 (Nielsen-Thurstons). Let f ∈ MCG(S). Then one of the fol-
lowing situations occurs:

1. f is periodic / finite order.

2. f is reducible, i.e., there exists a multicurve C on S such that f(C) =
C setwise.

3. f is homotopic to a pseudo-Anosov homeomorphism φ, that is, there
exists λ > 1 and 2 tranverse measured foliation F s, F u on S such that:

(a) φ(F s) = 1
λF

s.

(b) φ(F u) = λF u.

Remark 41. If f is of type 3, then cannot be of types 1 and 2.
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Lecture 4

0.6 Teichmüller Space

Teichmüller space or Deformation space of hyperbolic structures. We have
to think in deformation of a “fundamental domain”.

Definition 42. Let Sg a surface of g ≥ 2. The Teichmüller space of Sg is
the set

T (Sg) = {Hyperbolic structure}/Diffeo0(S)

An equivalent definition

T (S) = {(X, f) : X hyperbolic surface, f : S → X homeomorphism}/ ∼

where (X, f) ∼ (Y, g) if there exists an isometry I : X → Y such that
I ∼ gf−1.

If we ask that X be a Riemann surface and I be a biholomorphism, we
obtain the Deformation of Riemann structure on S.

The mapping class group MCG(S) acts on T by change of marking, i.e.,
φ · (X, f) = (X, fφ−1).

Definition 43. The Riemann’s Moduli Space is the set

M(S) = T (S)/MCG(S).

Remark 44. T (S) is manifold, MCG(S)−action is properly discontinuous,
not-free, and M(S) is an orbifold.

Example 45. Let S = T 2, T (S) = H2, MCG(S) = SL2Z. and the action is
by linear fractional transformations.

The space M(S) is the modular orbifold.

0.6.1 Topology on T (S)

Let S = {set of simple closed curves on S up to free homotopy}. For a ∈
S , define `α : T (S)→ R>0 given by (X, f) 7→ `α(X) which is the length of
the geodesic representing of f(α) in the hyperbolic metric on X.

We can obtain an embedding from T (S)→ RS
>0 with the weak topology.

Theorem 46. The image of the embedding is homeomorphic to R6g−6.

In the case of measured foliations structure.
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Definition 47.

MF(S) = {Measured foliations on S}/{isotpy and whitehead moves}.

As in the hyperbolic case, we can embed MF(S) on RS
>0 given by F 7→

(α → i(α, F ), where i(α, F ) is the arc length measured with transverse
measure of F.

Theorem 48 (Thurston). MF(S) ∼= R6g−6 and PMF(S) ∼= S6g−7, where
PMF(S) is the projectivization of MF(S).

Theorem 49 (Thurston). The following are true:

1. The closure T (S) = S ∪ PMF(S).

2. The action of MCG(S) on T (S) extends continuously to T (S).

Corollary 50. Every φ ∈ MCG(S) must have a fixed point in T (S).

In higher genus, Thurston: ϕ ∈ MCG(S) is not periodic or reducible
if and only if ϕ has exactly 2 fixed points [F+], [F−] such that F s and F u

together give a half-translation on S.

0.6.2 Tiechmuller Metric on T (S)

Let X,Y two Riemann surfaces, and let h : X → Y an orientation preserving
diffeomorphism. Let p ∈ X, we have that (Dh)p : Tp(X) → Th(p)(Y ) is an
R−linear map. By the Sigular Value decompositon, we can rewrite (Dh)p
as rDiag(a, b)s where r, s are rotations of R2.

Definition 51. For h and p as in the previous paragraph. Let

(Kh)p =
max{a, b}
min{a, b}

.

The dilatation of h is defined as Kh = sup(Kh)p ≥ 1.

Remark 52.

1. Kh−1 = Kh.

2. Khg ≤ KhKg. The equality holds if and only if s = (r′)−1 in the SVD.

Definition 53. Let (X, f), (Y, g) ∈ T (S). Define

d(X,Y ) =
1

2
inf
{
Kh : h ∼ gf−1

}
11



Definition 54. Let h : X → Y is called a Teichmüller map if there exists
a half-translation structure qX on X and qY on Y such that

x+ iy 7→ Kx+
1

K
y.

Theorem 55 (Bers). Given (X, f), (Y, g) ∈ T (S)

1. There exists a Teichmüller map h : X → Y such that h ∼ gf−1.

2. For all h ∼ h′, Kh′ ≥ Kh and equality holds if and only if h = h′.

Lecture 5

Theorem 56 (Grölsch, Baby Case of Teichmüller’s Extremal Thm). Sup-
pose R and R′ are rectangles, with sides (a, b) and (a′, b′), and h : R → R′

taking the sides of R to sides of R′. Then Kh ≥ Kh′ where h′ = Diag( aa′ ,
b
b′ )

and equality holds if and only if h = h′.

Definition 57. LetX be a metric space, g ∈ Isom(X) and τg = infx∈X dX(x, gx).
Then:

1. g is called elliptic if τg is realized.

2. g is called parabolic if τg is not realized.

3. g is called hyperbolic if τg is positive and realized.

Theorem 58 (Bers). For g ∈ MCG(S), we have that the following are true:

1. if g is elliptic, then g is of finite order.

2. if g is parabolic, then g is reducible.

3. if g is hyperbolic, then g is pseudo-Anosov.

The following are preliminary facts that we will need in order to prove
the classification theorem.

Theorem 59 (Collar Lemma). There exists ε0 such that for all hyperbolic
surface X and all single closed curves α, β on X. If `x(α) and `x(β) are less
or equal than ε0, then i(α, β) = 0.
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Theorem 60 (Wolpert’s Lemma). Let h : X → X a k−casi-conformal
map, then

1

k
≤ `Y (α)

`X(α)
≤ k

for all α single closed curve on X.

Definition 61. Let M(S). The ε−thick part Mε(S) = {X ∈ M(S) :
the length of the shortest s.c.c. is ≥ ε}.

Theorem 62 (Mumford’s Compactness Theorem). M2(S) is compact.

Proof of Theorem 58. (2).
Suppose g is parabolic, and Xn ∈ T (S) such that d(Xn, gXn)→ τg but

not realizing.
We have that Xn ∈ M(S) must exit every compact set. Then we can

choose for any sufficiently small ε � ε0 and X = Xn on which there exists
α that is ε−short and moreover, the lengths of {α, gα, · · · , g3g−3α} are still
bounded and by the Collar lemma we have that they are all simultaneously
disjoint. But there are at most 3g − 3 simultaneously disjoint curves on a
surface of genus g. So for some i and j we have that gi(α) = gj(α) and
the set curve C = {α, gα, · · · gi−jα} must be a reducible curve. Therefore
g(C) = C.

(3).
Let h : X → X be the Teichmüller map such that h ∼ fgf−1, i.e., there

exists q, q′ half translations structures on X on which h = Diag(k, 1k ) where
k = e2τg that send the q−coordinate to q′−coordinates.

To finish, we want q′ = q, i.e., h∗q = q.
Let G be the Teichmüller geodesic through X and gX. Let Y be the

morphism between X and gX, and gY between gX and g2X. From this we
have

τg ≤ d(Y, gY ) ≤ d(Y, gX) + d(gX, gY ) = d(Y, gX) + d(X,Y ) = τg.

From the previous we can imply that g2X must be on G , and then h2 is
the Teichmüller extremal map X to X in fg2f−1.

This shows q = q′.
(1).
By definition, if g is elliptic then g fixes a point X ∈ T (S). Therefore

g ∼ φ ∈ Isom(X). It is a fact that Isom(X) is a finite group of order at most
84(g−1). Thus g is represented by a finite order element, hence g is of finite
order map class.
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Exercise 5. Prove that if g is pseudo-Anosov then g is irreducible and of
finite order, then hyperbolic.

Prove that if g is periodic, then g elliptic.

Theorem 63 (Kerckhoff). Every finite group if MCG(S) can be realized as
a subgroup of isometries of some hyperbolic surface.

Remark 64. Some historical remarks about the previous paragraphs:

1. In 1959, Kravetz proved Teichmüller metric is negatively curve, and
from it he derived Nielsen-Realization for finite subgroups of MCG(S).

2. Linch discovered the proof was wrong.

3. 1975: Masnr proved Teichmüller metric is in fact NOT negatively
curved.

4. 1996: Minsky proved that certain parts of Teichmüller space (Thin
part) actually looks like the sup metric over a product of lower di-
mension Teichmüller spaces. So Teichmüller metric is far from being
negatively curved.

Theorem 65 (Tits Alternative, Ivanov, McCarthy). Every G < MCG(S)
either contains F2 or is virtually abelian.

Q 1. MCG(S) is linear?

There are fast algorithms to detect the Nielsen-Thurston type of φ ∈
MCG(S), we can refer to [Bestvina-Hendel], [Margalit-Strenner-et.al], [Bell-
Webb] and the Bell’s Flipper algorithm.

0.6.3 Conjugacy Problem for MCG(S)

Given f, g ∈ MCG(S) there is an algorithm to decide if they’re conjugate.
[Tao, et. al.]

Q 2. Describe complete conjugacy invariants for MCG(S).

0.6.4 Connections to 3-manifolds

The Mapping Torus Mf = Sg → I/ ∼ where (x, 0) ∼ (φx, 1) and φ ∈
Homeo+(S). The homeomorphism type only depends on mapping lcass of φ
(f).
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Theorem 66 (Thurston). Mf can be equipped with a hyperbolic metric if
and only f is pseudo-Anosov.

Theorem 67 (Virtual Fiber Thm, Agol, Wise). Every hyperbolic closed
3-manifold has a cover which is a mapping torus.

Q 3. Does MCG(S) have (T)?
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