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Lecture 1

Consider G be a countable group, and a total order ≤ on it. We can define
some properties on the order.

Definition 0.1. Let (G,≤) be an orderable group. We will say that ≤ is a
left-invariant if for f < g implies hf < hg for all elements h ∈ G.

Example 0.2. Some examples of countable ordered groups are:

• Zn with the lexicographic order.

• F2 is a left-orderable group, even more it is bi-orderable.

• π1(Σ) is bi-orderable, where Σ is an orientable surface.

• MCG(Σ) is left-orderable.

• Braid groups are left-orderable.

• Thompson’s groups are left-orderable.

Exercise 0.3. If ≤ is a left-invariant total order, then f > g doesn’t not
imply f−1 < g−1. Give an example of this.

Remark 0.4. IfG is left-orderable, thenG is torsion-free. We take an element
f 6= e, either f > e or f < e. If happens that f has finite order, in some
point e = fm > e or e = fm < e.

Exercise 0.5. Give an example of a torsion-free group which is NOT left-
orderable.

Exercise 0.6. Give an example of a left-orderable group (G,≤) and f > e
such that gfg−1 < e for some g ∈ G.
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Definition 0.7. The Archimedean Property : We say that (G,≤) has the
Archimedean property if for all f > e and for all g ∈ G there exists n > 0
such that fn > g.

Theorem 0.8 (Hölder Theorem). G admits an Archimedean order if G ↪→
(R,+) ordered embedding.

Definition 0.9. A left-orderable ≤ on G is conradian if for all f > e, g > e
there exists n such that fgn > g.

Exercise 0.10. If this happens then for all f > e and g > e it holds fg2 > g.

Theorem 0.11 (Conrad-Brodsky). G is Conrad ordenable if and only if
G is locally indicable, i.e., for all G0 ⊂ G finitely generated there exists
φ : G0 → (R,+) non-trivial group homomorphism.

Theorem 0.12 (D Withi Morris). Let G be an ordenable group. G is left-
orderable if and only G is locally indicable.

Exercise 0.13 (*). Give an example of a left-orderable group which is NOT
locally indicable.

Theorem 0.14 (Hyde-Lodhie; Mattebon-Triestino). There exists G a finitely
generated, left-orderable and simple group.

0.1 The dynamical approach

Afirmation 0.15. We will say G is left-orderable if and only if acts faith-
fully on a totally ordered space (Ω,≤Ω) by order-preserving bijections.

Proof. One implication is obtained by the action of the group on itself with
the left-order of the hypothesis.

The converse consider Ω = {ω1, ω2, . . .}. We will say that f > g if
f(ω1) > g(ω1) or f(ω1) = g(ω1) and f(ω2) > g(ω2) and so on.

Theorem 0.16. If G is countable and left-ordered then G ↪→ Homeo+(R).
Conversely, if G ↪→ Homeo+(R) then G is left-orderable.

Proof. Let G whit list of elements is {g1, g2, g3, . . .}. Define p(g1) as a fixed
point in R and define p(g2) depending on the orders on g1 and g2 by adding
o substracting one. In the case that some point of the list be between two
predecesors of the list we define p(gi) as the middle-point of the segment
p(gi−2) and p(gi−1).

By this process, we can assure that G have an action on the set of points
obtained by the process in R. We can extend continuously this action to
R.
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Q 1. Assume that ≤ is bi-invariant. What kind of action you get?

Definition 0.17. The space of left-orders for a group G will be denoted by
LO(G). This space is a topological space with the Chabauty topology whose
basis elements are defined in the following way:

Consider ≤ be a left-order on G and assume fi > gi for some 1 ≤ i ≤
n <∞. The set N≤,(fi,gi) = {≤′: fi >′ gi ∀i}.

Exercise 0.18. LO(G) is totally disconnected and compact. HINT: use
Tychonov’s theorem.

When the group G = 〈g1, · · · , gk〉. We can define balls over the group as
B(m) = {g : g = gl1g

l
2 · · · glm,m ≤ n, l = ±1}. Using this balls we can define

a distance function over the set of left-orders by the following:

d(≤,≤′) =
1

n
,

if n is the smallest number such that the orders does not coincide in B(n).

Lecture 2

We began this lecture with a characterisation of the orderable groups.

Theorem 0.19. Let G be group, G is left-orderable if and only if G =
P t P−1 t {1}, where P is a semigroup.

Proof. If G is left-orderable with order ≤ . Consider the set P = {g : g > 1}
is a semigroup that holds the conditions.

If for G there exists a semigroup P such that G = P tP−1 t{1}. Define
the order ≤ as follows, we will say that g > h if and only if h−1g ∈ P. It is
easy to prove that (G,≤) is a total ordered group.

From this characterisation, it is clear that the cones on a group define
the orders on the group.

Example 0.20. Consider the group Z2. Consider the set P = {(a, b) : a >
0 or a = 0, b > 0}. It is easy to prove that P is a cone for the lexicographic
order. Cayley

graph of
Z2

Another example of cones in Z2 is take a line passing through 1, and
decide a positive side of the line and one ”positive” region.

Example 0.21. Consider G = 〈a, b : bab = a〉 the fundamental group of
the Klein bottle.
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Remark 0.22. G can be obtained by the following generated semigroups.

〈a, b〉 t 〈a, b〉− t {1}

〈a, b−1〉 t 〈a, b−1〉− t {1} Cayley
graph of
G

The Cayley graphs pictures reminiscence the picture of the cones in Z2

with the lexicographic order.

Exercise 0.23. Prove that in the case of Z2 with the lexicographic order,
P is NOT finitely generated.

Corollary 0.24. Let G be the fundamental group of the Klein bottle. Then
G admit only four orders.

Proof. Consider that G has a left order ≤ . From this we know that there are
four possible comparisons between the generators and the identity. Assume
that a > 1 and b < 1, it is imply that the semigroup 〈a, b−1〉 ⊆ P where P
is the positive cone of the order ≤ . And similarly, we can assure that the
negatives of the previous semigroup is contained in the negative semigroup.
By the remark, we have that P has to be the semigroup and the order
coincides with the defined by the semigroup partition.

Theorem 0.25 (Torosin). A complete class of groups with finitely many
left-orders is

〈a, b, c : aba−1 = b−1, bcb−1 = c−1, a = ca〉.

Remark 0.26 (Linnell). Let ≤ be a left-order on G such that P≤ is finitely
generated. Then ≤ is an isolated point of LO(G).

Example 0.27. Consider the braid group B3 = 〈s1, s2 : s1s2s1 = s2s1s2〉.

Exercise 0.28. Let K denote the Klein bottle surface. Find x > y in π1(K)
such that x2 < y2.

0.2 Free Groups

Using the ping-pong lemma, we can prove that F2 is subset of Homeo+(R).
From the fact that every countable left-orderable group is inside the home-
omorphisms of the real line.

Let (G,≤) be an ordered group. We can provide a G action on R induced
by the left-order. Consider a ordered morphism p : G → R and the action
of G will be of the form g · p(h) = p(gh). In the case that ≤ is a bi-order,
we can prove that for a positive element g, g(x) ≥ x for all x ∈ R and for a
negative element g, g(x) ≤ x for all x ∈ R.
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Exercise 0.29. Conversely, assume that G ⊂ Homeo+(R) is such that for
all g 6= id either g(x) ≥ x or g(x) ≤ x for all x ∈ R. Then G is bi-orderable.

Example 0.30. Some examples of bi-orderable groups are:

• F2 is bi-orderable.

• PL+([0, 1]) is bi-orderable, the group of piecewise-linear automor-
phims of [0, 1].

Lecture 3

Some remarks about left-orderable groups:

1. If G1, G2 two left-ordered groups, then G1 ×G2 is left-orderable. It is
also hold for semi-direct products.

An example about this is the group F2 n Z2 ⊂ SL2(Z) n Z2, this is a
left-orderable group that has Rel(T).

2.

Theorem 0.31 (Vinagradov). Let G1, G2 two bi-ordenable groups,
then G1 ∗G2 (the free-product) is bi-ordenable.

In the same spirit.

Theorem 0.32 (Rivers). LO(G1 ∗G2) is a Cantor set.

Which in particular implies that LO(F2) is a Cantor set.

3.

Theorem 0.33 (Linnell). If LO(G) is infinite, then it is uncountable.
In particular, contains a Cantor set.

Remark 0.34. The interest to determine if the space of left-orders in
a group is a Cantor set or not, is based in the fact that if there is an
isoleted point in the space of left-orders, this order is determine by a
finite number of inequalities which made it a really interesting order.

4. A group G is left-orderable if and only if for a finite set {gi, i =
1, · · · ,m} of elements different to the identity, there exists powers in
ki ∈ {−1, 1} such that the identity does not belong to 〈gk11 , · · · , gkmm 〉+
the semigroup generated by this powered elements.
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Exercise 0.35. Prove the converse, HINT: use Tychonov’s theorem.

There is a similar result, i for a group G we have that is Bi-orderable
if an only if there are finite elements such that the identity does not
belong to the normal semigroup generated by some powers of the ele-
ments. Search for

normal
semigroup
definition

The dynamical realization

How does the properties of a left-ordered group looks like under the injection
of G into Homeo+(R)?

Consider (G,≤) a left-ordered group. Remember that, in order to obtain
an Homeo+(R) of G we need an ordered map p : G→ R with the tautological
action of G.

Remark 0.36. If ≤ is Archimedian, then the G action is free.

Theorem 0.37 (Hölder). Every free action by homeomorphisms on R is
semiconjugate to an action by translations.

Proof. Consider (G,≤) an Archimedian left-ordered group and fix f > id.
Define the function

φ(g) : lim
q→∞

p(q)

q

such that f q < gp(q) < f q+1. It is clear that φ(G) ' Z and it is dense. Define

ψ(x) := sup{φ(g) : g(0) ≤ x}.

We claim that ψ is a non-decreasing function, ψ(h(x)) = ψ(x) +φ(h) for all
h ∈ G and ψ is continuous.

We have that ψ(h(x)) = sup{φ(g) : g(x) ≤ h(x)} = sup{φ(hg′) : g′(0) ≤
x} = φ(h) + sup{φ(g′) : g′(0) ≤ x}.

The mysterious Conrad’s property

The following are equivalent definitions of Conrad’s property

1. For all f, g > 1 there exists n such that fgn > g.

2. For all f, g > 1 one has fg2 > g.

3. The following cannot happen h1 < fh1 < fh2 < gh1 < gh2 < h2

A visualization of the action of (Z2,≤lex) by homeomorphisms on R.
Image of the action: a acts translation, b acts as homeo on the intervals
with boundary fixed
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Lecture 4

This lecture is about to solve the most natural question about left-orderable
group theory.

Consider the group Γ = 〈a, b : a2ba2 = b, b2ab2 = a〉. This group is
a crystallographic group, i.e., Γ acts freely and co-compactly on R3. The
action of Γ is given by:

a(x, y, z) = (x+ 1, 1− y,−z)
b(x, y, z) = (−x, y + 1, 1− z)
c(x, y, z) = (1− x,−y, z + 1)

The group Γ is a torsion-free group. One have to notice that the group
〈a2, b2, c2〉 is isomorphic to Z3. One can prove that Z3 in Γ has finite index
and the quotient Γ/Z3 is the Klein group.

If we take an element w ∈ Γ, we have that this element have the form
w = a2ib2jc2ka where i, j, k are integers. Notice that if we take the squared
power of a generic element w we have that is of the form w2 = a4ia2 which
is not the identity.

We claim that Γ is an example of a torsion-free group which is no left-
orderable.

Exercise 0.38. Let ε, δ ∈ {−1, 1}. Then (aεbδ)2(bδaε)2 = 1.

Exercise 0.39. If G is a torsion-free group with an index-3 left-orderable
normal subgroup, then G is left-orderable.

Definition 0.40 (Unique product property (UPP)). A group G has the
(UPP) if for all S ⊂ G finite, there exists s ∈ S ⊗ S that ”appears only on
Ga.

It is not difficult to prove the following property, if G has the (UPP),
then G is torsion-free. But the converse is NOT true, the proof was given
by Rips-Sagecu and PRomislow independently.

Definition 0.41. For a group G, one can define the group algebra, denoted
by RG, whose elements are of the form

∑
rigi of finite products real numbers

and group elements. The product is the natural.

From this, if fn = 1 implies that fn − 1 = 0 in RG. The last statement
is equivalent that (f − 1) and (fn−1 + · · · + 1) are zero divisors. From
Kaplansky, we have the conjecture that if the group algebra of the group
has non-trivial zero divisors, then there exists fn = 1.
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Example 0.42 (Thurston/Bergman). A left-ordered finitely generated group
G such that there is non-trivial φ : G→ R.

Consider the group 〈a, b, c : a2 = b3 = c7 = 1〉 ⊂ PSL(2,R), which is a
triangular group with triangular domain angles (π2 ,

π
3 ,

π
7 ).

If we look at the lift to R of the previous group. We have an example of
this.

There is another characterization of the Conrad’s property as if the group
has an action on the line with no resilient pairs (Solodov, Plante).

Theorem 0.43. A left-order ≤ on G is Conradian if and only if this cannot
happen: h1 < fh1 < fh2 < gh1 < gh2 < h2.

Proof. If ≤ is Conradian, the claim follows from the dynamical realization.
...

Theorem 0.44 (Plante-Solodov). If G ⊆ Homeo+(R) is finitely generated
and has no resilient pair. Then there exists a σ−finite measure µ on R.

Put draw
of resilient
pair:
pairs of
points
that stay
close to-
gether by
group left
action

Before we state the proof, we will define the translation number homo-
morphism, as the map τ : G→ (R,+) given by

τ(g) =

{
µ([x, gx)) if gx > x
−µ([gx, x)) if gx < x

The previous function is independent of the choice of x, and it is not
difficult to prove that this map is an homomorphism.

Remark 0.45. If G is left-orderable and has sub-exponential growth. Then
every order on G is Conradian.

Exercise 0.46. Assume that f, g > 1 such that fgn > g for all n ∈ N. Then
letting u = 1, v = f−1g, w = g2 the following hold:

1. u < w < v.

2. gn(u) < v and fn(v) > u for all n ∈ N.

3. There exists M,N such that fNv < w < gMw.

Lecture 5

Exercise 0.47. LetG a finitely generated left-orderable group with |LO(G)| =
2 if and only if G ' Z.
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Remember, if G is finitely generated and ≤ is a Conrad on G then there
exists φ : G→ R order preserving homeomorphism.

Example 0.48. Consider Z2 and ≤ order on Z2, from the fact that Z2

is abelian we can conclude that ≤ is Conradian. Therefore there exists
φ1 : Z2 → R.

For φ1 can happen:

• ker(φ1) = {0} which is ok.

• ker(φ1) 6= {0}, then for ≤ |ker(φ) there exists φ2 : ker(φ1) → R and
ker(φ2) = {0}.

In general, the homeomorphism φ1 is of the form (m,n) 7→ am + bn.
From this we can claim that O(Z2) is a Cantor set. Figure of

a hemi-
plane de-
noting
positivity
based on
(a,b) and
the or-
thogonal
space.

Theorem 0.49 (Rivas). The space of Conradian orders CO(G) is either
finite or a Cantor set.

Example 0.50. The Braid group BS(1, 2) = 〈a, b : aba−1 = b2〉 has 4
Conrad orders.

Theorem 0.51 (N, Rivas-Tessera). If G is solvable left-orderable and |LO(G)| =
∞, then LO(G) is a Cantor set.

Q 2. When we have an analogue result to above theorem in the case of G
amenable?

Theorem 0.52 (Dove-Witle-Morris). If G is amenable and left-orderable,
then G is Conrad orderable.

Proof. Let us consider that G is finitely generated and the natural action
(induced by conjugations inequalities) of G in LO(G) which is a compact
metric space. Then, there exists µ a probability measure on LO(G) which
is G−invariant.

For the sake of completeness, we will recall Poincaré’s recurrence theo-
rem.

Theorem 0.53. Let T y (X,µ) an action and µ is a probability T−invariant
measure. Let A ⊂ X such that µ(A) > 0, then for almost every x ∈ A there
exists m ∈ N such that Tn(x) ∈ A.

Claim µ(Conrad orders) = 1.
Consider the following notation g 6= 1, then Vg = {≤: g > 1}.
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For f ∈ G denote by Bg(f) := Vg \
⋃
n>0 f

−n(Vg). By Poincaré’s recur-
rence theorem, we have that µ(Bg(f)) = 0.

Let’s take B :=
⋃
g 6=1Bg.

We claim that Bc ⊂ Conrad orders. We have that µ(Bc) = 1. Suppose
that ≤ that belongs to Bc and let f, g > 1, such that ≤∈ Vg and ≤6∈ Bg(f).
Then there exists n > 0 such that ≤∈ f−n(Vg). By this, ≤fn belongs to
Vg and for this we have that g >fn 1 and from this it follows the Conrad
property.

Exercise 0.54. Let G = F2 n Z2. Prove that

1. G has a Conrad order.

2. For all left-order ≤ on G there exists f, g > 1 such that gfn < fn for
all n ∈ N.

Q 3 (Open Problem). Let G be a left-orderable group, if G has no free
subgroup in two generators. Is it true that G is Conrad orderable?

Q 4. Can be Gy LO(G) minimal?

Theorem 0.55 (McCleary,Rivas). In LO(F2) there is ≤ with a dense orbit.
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