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Lecture 1

Locally compact second countable groups, for example:

• Γ be a discrete countable group

• G =
⋃
nKn, where Kn ⊂ Kn+1, compact.

Definition 0.1. Let Γ be a group and p ∈ [0,∞]. We will define

`p(Γ) = {f : Γ→ C‖f‖p
∑
x∈Γ

: |f(x)|p <∞}.

The set of p−sumable groups. For the case of p = ∞ we will take
supremum norm.

We can make this spaces into a metric space.

Definition 0.2. For f, g ∈ `p(Γ), we will define the distance function by

d(f, g) = p

√
‖f − g‖p (1)

There are several definitions for amenable groups, we will list few of them
just to give examples. We encourage the lector to proof some equivalences.

Definition 0.3. A group Γ is amenable if and only if one of the following
equivalent conditions hold:

1. There exists a left-invariant probability finitely add measure on 2Γ.

2. There exists a sequence of Folner sets.

1



3. `2(Γ) � IΓ, i.e., has almost invariant vectors

4. K compact metrizable Γ → Homeo(K), there exists a µ probability
measure such that γ?µ(E) = µ(E).

5. Γ does not admit a Ponzi scheme.

6. Γ is not paradoxical.

Definition 0.4. A sequence {Fn}n of Folner sets means Fn ⊂ Fn+1,Γ =⋃
n Fn and

|Fn∆γFn|
|Fn|

→ ∞

as n tends to infinity.

Definition 0.5. Let H be a Hilbert space, U(H) is the unitary group. Let
π : Γ → U(H) a group homomorphism. We will say that π have almost
invariant vectors if there exists vn ∈ H such that

||π(γ)vn − vn||
||vn||

→ 0

as n tends to infinity.

Definition 0.6. Let P : Γ→ Γ is a Ponzi scheme if #|P−1(γ)| ≥ 2.

Definition 0.7. A group Γ is paradoxical if there exists X a discrete count-
able set such that Γ y X and partitions X = A t B, where A =

⊔n
i=1Ai

and B =
⊔n
j=1Bj and some elements g1, · · · gn, h1, · · ·hn ∈ Γ such that

X =

n⊔
i=1

giAi =

n⊔
j=1

hjBj .

Definition 0.8. We say that Γ is linear is there exists % : Γ→ GLn(R)

Locally compact linear groups that are amenable are:

• On the orthogonal group.

• Solvable groups (conjugated to upper-triangle group).

• Block upper triangular matrices, where the diagonal blocks could be
orthogonal groups or diagonal groups, and the ranks of the diagonals
have to sum the rank of the whole group.
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Q 1. Which linear groups preserve a measure on RP2 ?

We recall that RPn is a compact metric space.
There is a similar space related to projective spaces. The Gr(k, n) is the

set of equivalence classes of k−subspaces of Rn. In particular, for k = 1 the
set Gr(k, n) = RPn.

Lemma 0.9 (Furstenberg Lemma). Let µ be a probability measure on RPn

and Γ a subgroup of PGLn(R). If µ is Γ−invariant then either:

• Γ is pre-compact,

• Exists 0 ( V0 ( Rn subspace such that µ([V0]) > 0 and Γ0 a finite
index subgroup such that Γ0[V0] = [V0].

Proof. Assume Γ is not precompact, i.e., it means that there exists γn →∞
in PGLn(R). Choose lifts of γn in GLn(R) such that ‖γ̃‖ = 1 for the max-
norm. From the fact that the set of squared real matrices space is locally
compact, it follows that there exists a sequence of γ̃n → g and g 6∈ GLn(R).
From this fact, we can assure that ker(g̃) 6= 0 and im(g̃) 6= 0.

Lecture 2

We have to mention that γn([ker tildag]) → [V ] up to subsequence. We
claim that µ([V ] ∪ [im(g̃)]) = 1. It is clear that [V ] ∪ [im(g̃)] is closed.

Let us denote by A0 = [V ]∪ [im(g̃)]. Fix a metric on RPn and define the
function DA0 : RPn → R defined as DA0 = dist(x,A0) based in the fixed
metric. It is easy to prove that DA0(γnx)→ 0 for all point x ∈ RPn.

We have that RPn \ A0 =
⋃
m∈N{x : DA0(x) > 1

m}. Let Am denote the
elements of the previous partition.

We claim that µ(Am) = 0 for each m ∈ N. We have the following in-
equalities

1

m
µ(Am) ≤

∫
Am

DAm(x)dµ ≤
∫
RPn

DA0(x)dµ

Since µ is a Γ−invariant, we obtain that

1

m
µ(Am) ≤

∫
RPn

DA0(γn(x))dµ.

The claim follows from the dominated convergence theorem.
The rest follows from the fact that µ(A0) = 1.
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With the Furstenberg lemma we can answer question: If there is a
PGLn(R) amenable subgroup, how it looks like? Since we have that for
Γ there exists Γ0 that stabilizes some V0. If we take the quotient represen-
tation, in which Γ0 is amenable and taking this process a finite number of
times, we can ensure that Γ contains a finite index subgroup Γ′ which is
conjugated to a block upper triangular with diagonal blocks compact.

0.1 Relative Property (T) ans semi-direct products.

Let π : G→ U(H) a strongly continuous unitary representation.

Definition 0.10. We will say that π has almost invariant vectors (π < IG)
if there exists vn non-zero element of H such that

sup
γ∈K

‖π(γ)vn − vn‖
‖vn‖

→ 0

as n→∞ for all K ⊂ G compact.

Definition 0.11. We will say that π has invariant vectors if there exists a
non-zero vector v such that π(γ)v = v for all element of G.

Definition 0.12. Let G a locally compact second countable group, and
H < G be a closed subgroup. We will say that (G,H) has relative property
(T ) if π : G→ U(H) such that π < IG then π|H ≥ IH .

Example 0.13. Consider the groups SL2(Z) n Z2 and Z2 has rel(T).

Exercise 0.14. Consider Γ be an amenable group and H < Γ such that
|H| =∞. (Γ, H) does not has rel(T).

Definition 0.15. We will say that G has property (T), if (G,G) has rel(T).

Lemma 0.16. Let G be a compact group, then G has property (T).
Using
that the
group has
a finite
Haar mea-
sure you
can prove
that there
are in-
variant
vector.

Exercise 0.17. Assume that H has property (T) and H < G is closed.
Then (G,H) has rel(T).
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Lemma 0.18. Consider the following short exact sequence

1→ A0 → A→ A1 → 1.

Let Γ → Aut(A,A0), where the later one is the subgroup of Aut(A) that
stabilizes A0. (ΓnA0, A0) and (ΓoA1, A1) has rel(T) if and only if (ΓnA,A)
has rel(T).

The idea
of the
proof is
to look at
the prop-
erties of
the short
exact se-
quence

Lecture 3

Exercise 0.19. Show that if H < G is a closed subgroup such that H has
(T). Then (G,H) has (T).

Example 0.20. Consider Γ → SLnZ, A = Zn, V = Rn and T = V/A.
Satisfies the previous lemma.

Example 0.21. Consider Γ → SLnZ[1
p ], A = (Z[1

p ])n and V = Rn × Qn
p ,

with T = V/A satisfies the lemma.

Theorem 0.22. Let Γ → SLnZ is a group homomorphism. Then (Γ n
Zn,Zn) has Rel(T) if and only if (Γ nRn,Rn) has Rel(T).

The previous theorem prove has relation with Burger’s criterion. We
recall that Burger’s criterion says that for a ψ : Γ→ GLnR such that there
are no Γ−invariant probability measures on P(R̂n), then (Γ nψ Rn,Rn) has
Rel(T).

Recall that R is a local field (locally compact with respect the norm and
is a countable union of compact sets). There is an isomorphism between
R̂n := {π : Rn → U(H) : π is irred.} and Hom(Rn, S1).

Remark 0.23. In the previous paragraph that in definition of dual unitary
space of Rn we look for representation in any Hilbert space, but the irre-
ducibility of the representation will assure that this Hilbert space has to be
one dimensional.

If there is a unitary representation π : Γ n Rn → U(H), there exists a
map P : B(R̂n)→ Proj(H), where B(R̂n) is the set of Borel sets and Proj(H)
is the set of orthogonal projections of H. We will call P a projection valued
measure, it is clear that depends on π and have the following properties:

• P (R̂n) = id

• For every v ∈ H, B 7→ 〈P (B)v, v〉 is a positive Borel measure.

5



• For all γ ∈ Γ, we have π(γ−1)P (B)π(Γ) = P (γ∗B)

Example 0.24. Consider π : R→ C×C given by π(x)(v1, v2) = (eixv1, e
2ixv2).

In this case, we have that

P (ψ) =

{
Proj(vj) if ψ = j

0 otherwise

Proof of Theorem 0.22. Let π : Γ n Rn → U(H) an unitary representation
with almost invariant unit vectors {vn}. Then there exists a projection val-
ued measure P : B(R̂n)→ Proj(H) such that P ({0}) is the projection onto
the Rn−invariant vectos. Assume that P ({0}) = {0} the zero-subspace of
H.

Define µn(B) = 〈P (B)vn, vn〉 a Borel measure. We have that µn({0}) =
0. If we look at the push-forward measure from R̂n \ {0} → P(R̂n) given by
µn 7→ µn From this it follows that

‖γ∗µn − µn‖ := 2 sup
B∈B(R̂n)

|γ∗µn(B)− µn(B) ≤ 2‖π(γ)vn − vn‖ → 0

From the previous, we obtain a sequence (µn) of almost invariant mea-
sures on P(R̂n). From the Banach-Alaoglu theorem, we have that (µn) has a
weak-* limit point up to passing to some subsequence. Denote by µ∞ which
is a Γ−invariant and by Burguers criterion, (Γ nRn,Rn) has Rel(T).

Example 0.25. Let Γ ≤ SL2Z and Γ n R2 an amenable group. Then
(Γ nR2,R2) has Rel(T) and also (Γ n Z2,Z2) has Rel(T).

Lecture 4

The previous example able us to claim that SLnZ has property (T) for n ≥ 3.
Notice that SL2ZnZ2 ↪→ SL3Z in several ways, but in particular of the

form (
A b
0 1

)
where A ∈ SL2Z and b ∈ Z2. Also, we recall that SL3Z = 〈Eij(1) : i 6= j〉.

Furthermore, inside SL3Z, they are all conjugate, what implies (SL3Z, 〈Eij(1)〉)
has Rel(T) for all i 6= j.
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Theorem 0.26 (Carter-Keller). Let SLnZ with n ≥ 3. We have that SLnZ
is boundedly generated by elemental matrices.

Definition 0.27. We understand that SLnZ is boundedly generated if there
exists B ∈ N and ϕ : {1, · · · , B} → {(i, j) : i 6= j, i, j = 1, · · ·n} such that
SLnZ = 〈Eϕ(1)〉 · · · 〈Eϕ(B)〉.

Lemma 0.28. Let Γ = SLnZ acting by isometries on X and let A1, · · ·AB
be subgroups of Γ such that:

1. SLnZ = A1 ·A2 · · ·AB

2. Every Ai−orbit is bounded for every i = 1, · · · , B.

Then SLnZ has a bounded orbit.

Theorem 0.29 (Delone-Guichardet). Γ has (T) if and only if every affine
isometric action on Hilbert has a fixed point.

Remark 0.30. In the previous theorem we can change fixed point by bounded
orbit.

Theorem 0.31 (Relative Version of previous theorem). (Γ, A) has Rel(T)
if and only if every affine Γ−action on a Hilbert space has an A−fixed point.

Let us fix π : Γ → U(H) if H is a C−vector space (for the real vector
space we change by O(H)). Fix b : Γ → H set theoretically such that
α(γ)(v) = π(γ)v + b(γ).

Q 2. Is α an action of Γ on H?

The answer is yes if and only if b(γ1, γ2) = b(γ1) + π(γ1)b(γ2) (?) is a
1-cocylcle relation.

Definition 0.32. Consider the following sets

Z1(Γ, π) = {b : Γ→ H, b satisfies (?)} (2)

B1(Γ, π) = {b : Γ→ H, b(γ) = π(γ)v − v} (3)

Exercise 0.33. Let Γ � X by permutations and f : X → C. Define b(γ) =
γf − f. Prove that b satisfies (?)

It is easy to prove that B1(Γ, π) ⊂ Z1(Γ, π).
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Definition 0.34. The first cohomology group of Γ with π−coefficients is
the group defined as

H1(Γ, π) =
Z1(Γ, π)

B1(Γ, π)
.

Remark 0.35. The first cohomology group of Γ with π−coefficients is ”parametriz-
ing affine actions of Γ, with linear part π, modulo those with fixed points”.

Exercise 0.36. The following are equivalent:

Lemma 0.37. If X ⊂ H is a bounded set. Then there exists a unique closed
ball of minimal radius containing X.

With the previous paragraphs we can obtain the has (T) is equivalent
that all affine actions on H have fixed point and that the first cohomology
group of Γ with π−coefficients is trivial for all π.

Exercise 0.38. Let T denote a tree with V its vertex set and E ⊂ V ×V its
oriented edges set. Notice that under this conditions any edge is uniquely
determined by its initial and end point e = (e−, e+).

Fix an edge e ∈ E and consider the set

he = {v ∈ V : d(v, e+) < d(v, e−)}.

For each e ∈ E denote that V = he t he, where e denotes the inverse
orientation on e.

Fix v ∈ V and define 1v(e) = 1 if v ∈ he and 0 otherwise, which is the
characteristic function of the set {e : v ∈ he}.

Assume Γ y T by isometries define b(γ) = 1γv−1v is a 1-cocycle. Prove
that

‖b(γ)‖2 =
∑
e∈E
|b(γ)(e)|2 = 2d(γv, v) <∞.

From this exercise we can conclude that if Γ has (T) and it acts on a
simplicial tree then:

• Γ have bounded orbits.

• Γ has a fixed vertex or an invariant edge, called the property (FA).

Q 3. ‖b(γ)‖2 →∞ if γ →∞?
There are
few lines
mistaken
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Lecture 5

Remember that a group has (T) if and only if for all π < IΓ, which the
later one implies that π ≥ IΓ. Another equivalent definition is that the
representation has (FH) which means that every affine isometric action on
H has a fixed point.

Also remember that a group has the Haagerup property is and only if
there exists π < IΓ and π is C0, i.e.,

〈π(γ), w〉 → 0

as γ → ∞ for all v, w ∈ Hπ. Another equivalent definition is that b ∈
H1(Γ, π) is proper.

In the case of median spaces (think in trees) that (T) and Haagerup
property looks as:

• (T) if and only if every isometric action on median space has a bounded
orbit.

• Haagerup if and only if there exists a proper action on a median space.

Consider Γ y (X,µ) with µ(X) = 1 measure preserving then Γ →
U(L2(X,µ)) ergodic. In this scenario, Γ has (T) if and only if every measure
preserving ergodic action on (X,µ) is strongly ergodic, which means that
for all En ⊂ X means µ(γEn M En)→ 0 as n tends to infinity for all γ, then
µ(En)(1− µ(En))→ 0

Also, Γ has Haagerup if and only if there exist Γ y (X,µ) a measure pre-
serving ergodic action such that there exists a sequence En ⊂ X measurable
sets such that

µ(γEn M En)

µ(En)
→ 0

for all γ ∈ Γ and strongly mixing (µ(γA ∩ A) → µ(A)µ(B) as γ tends to
infinity).

Definition 0.39. Let X be a discrete countable set. We say that Φ :
X ×X → C is a Kernel of positive type if

1. Φ(x, x) ≥ 0

2. Φ(x, y) = Φ(y, x)
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3. for all x1, · · · , xn ∈ X and c1, · · · , cn ∈ C it is hold

n∑
i=1

n∑
j=1

cicjΦ(xi, xj) ≥ 0

Theorem 0.40. Φ if and only if f : X → H such that Φ(x, y) = 〈f(x), f(y)〉.

Definition 0.41. Let X be a discrete countable set. We say that Ψ :
X ×X → R is a Kernel of conditionally negative type if

1. Ψ(x, x) = 0

2. Ψ(x, y) = Ψ(y, x)

3. for all x1, · · · , xn ∈ X and r1, · · · , rn ∈ R it is hold

n∑
i=1

n∑
j=1

rirjΨ(xi, xj) ≤ 0

when
∑n

i=1 ri = 0.

Theorem 0.42. There exist f : X → H, Ψ(x, y) = ‖f(x)− f(y)‖2.

Theorem 0.43 (Schoenberg). Let Ψ : X × X → R such that Ψ(x, x) = 0
and Ψ(x, y) = Ψ(y, x), the following are equivalent

1. Ψ is conditional negative type kernel

2. e−tΨ is a kernel of positive type for all t > 0.

Proposition 0.44. Let π : Γ→ O(H) and b ∈ Z1(Γ, π) such that α = π+b.
For t > 0 take (Ht, πt) and Φt : H → Ht into the unit sphere, such that

1. 〈Φt(v),Φt(w)〉 = e−t‖v−w‖
2

for all v, w.

2. πt(γ)Φt(v) = Φt(α(γ)v) for all γ ∈ Γ and v ∈ H.

3. if ‖vn‖ → ∞, then Φt(vn)→ 0 weakly.

4. α has a fixed point if and only if πt has a fixed unit vector for every t.

5. Let π :=
⊕
π1/n : Γ→ O(

⊕
H1/n), then π < IΓ.

Lemma 0.45. Let π : Γ → U(H) such that π 6≥ IΓ and π < IΓ if and only
if B1(Γ, π) 6= B1(Γ, π).
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Corollary 0.46. If π 6≥ IΓ and π < IΓ, then H1(Γ, π) 6= 0

Proof of Delome Guichardet. Assume that Γ does not have (T), then there
exists π < IΓ and π 6≥ IΓ, wich implies that H1(Γ, π) 6= 0, and it follows
that Γ does not have (FH).

Assume that Γ does not have (FH), which implies that H1(Γ, π0) 6= 0
for some π0, i.e., there exists α : Γ→ Isom(H) without fixed points. We can
conclude that π1/n 6≥ IΓ which implies that

⊕
π1/n < IΓ and

⊕
π1/n 6≥ IΓ.

So we can conclude that Γ does not have (T).

(Metric)Median Spaces

Let (M,d) be a metric space. We will say that M is a median space if
for all (x, y, z) there exists a unique point m = m(x, y, z) such that m =
I(x, y)∩I(y, z)∩I(z, x) where I(x, y) = {u ∈M : d(x, u)+d(u, y) = d(x, y).}

Example 0.47. Consider R2 with the `1−metric. Put the
figure of
squares
with me-
dian

Example 0.48. Z and M1 ×M2 with d = d1 + d2, so Z2. CAT(0)-cube
complexes.

Theorem 0.49 (Chatterji-Drutu-Haglund). Every median space (M,d) can
be isometrically embed into L1[0, 1].

Theorem 0.50 (Chatterji-Drutu-Haglund). There are Kernels of median
type if and only if there exists embedding into median spaces.

From the previous theorem, we can claim the (T) and Haagerup property
are characterized by isometric action on Median spaces.

So, we can ask us: if we select our favourite Γ with the Haagerup prop-
erty, what is the ”simplest” median space necessary? In order to answer
this question we have to consider if we want simplicity as finite dimension
or simplicial vs not.
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