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Lecture 1

Definition 1. Let X any set, a free-group on X is the set

FX = {empty word} ∪ {freely reduced words on X ∪X−1}

with the operation contatenation and freely reduced.

Exercise 1. Check that the previous satisfies group axioms.

Definition 2. For any group G and set map φ0 : X → G there exists a
unique group homomorphism φ : X → G such that

X //

φ0
��

FX

∃!}}
G

Up to isomorphism FX is determined by cardinality.

We will denote by Fn = F{x1,··· ,xn} the free group of rank n.

Definition 3. A graph is a 1-dimensional cell complex with oriented edges.
There exists a reverse orientation map from the set of edges. We will denote
by e+ the initial and by e− the end points.

Definition 4. A morphism of graphs is a cellular map that sends each open
edge homeomorphically onto an open edge. Formally speaking, a graph
morphism from (V,E,−, ι) → (V ′, E′,−, ι) is a pair of functions V → V ′,
E → E′ conmuting with − and ι.
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Remark 5. Adjusting by a homeomorphism that is isotopic to identity at
vertices, we will regard as the same graph morphism.

Definition 6. A graph morphism is an immersion if its locally injective
(just need to check at vertices).

Exercise 2. Suppose that f : X → Y is an immersion of finite graphs.
Show that is possible to attach finitely many 1- and 0- cells to obtain a new
graph X̃ to which f extends (f̃ : X̃ → Y ) which is a graph morphism that
is a covering map.

Definition 7. An edge path in a graph G is a (possibly degenerated) edges
sequence e1, · · · , en such that e−i = e+

i+1.

Remark 8. An edge path is a morphism I → G where I is a graph homem-
omorphic to [0, 1] or {p}.

An edge path is tight (reduced) if I → G is an immersion to [0, 1] ( {p}).

Definition 9. An elementary homotopy of edge path is a map that in-
serts/deletes consecutive edges e, e.

Exercise 3. • Edges paths are related by elementary homotopy if and
only if homotopic (...) endpoints.

• Two reduced edge paths are homotopic if and only if are equal.

• Elements of π(G, v) are in bijection with reduced edge paths that start
and stop at v.

• An immersion b/w graphs is π1−injective.

0.1 Folding

Definition 10. If e1, e2 are edges such that e1 6= e2, e1 and e+
1 = e+

2 . Can
forma a new graph G′ with (quotient) morphism G → G′ by identifying e1

and e2, and e−1 with e−2 .

Example 11. Put im-
ages of
foldingsTheorem 12 (Stallings). Every morphism G→ G′ of finite graphs factors

as
G = G0 → G1 → · · · → Gh → G′

where each Gi → Gi+1 is a fold and Gh → G′ is an immersion.
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Definition 13. A tree is a graph with unique reduced edge path between
any two vertices. A spanning tree in a graph G is a subtree T ⊂ G that
contains all verticies of G.

Remark 14. • For any graph G, π1(G, v) is free.

• For T ⊂ G a spanning tree, choose orientation on each edge of G \ T.
Get isomorphism π1(G, v) → FX that send closed reduced loop at v
to a word in X tX−1.

Theorem 15 (Nielsen-Schreier). Every subgroup of a free group is free.

Given g1, · · · , gh ∈ Fn find free basis of H = 〈g1, · · · gh〉 ⊂ Fn.

Example 16. Let H = 〈a3b, abab, a2ba〉. Claim is subgroup of Fa,b.

Picture 1: Graph with two loops labelled a and b.
Picture 2: Graph with 3 loops and each loop labeled as generators of H
Picture 3: Graph each step to foldings where the graph morphism is not
injective.

From the pictures we can assure that H is free on 〈a3b, a2ba〉.

Definition 17. The core of a bassed graph (Y, v) is the smallest subgraph
that contains v and to which Y deformation retracts.

Proposition 18. For G a finitely generate subgroup of Fn = π1(G, v) and
let (YH , ṽ)→ (V,B) corresponding core. The following are equivalent:

1. The core of (YH , ṽ).

2. Results of folding algorithm.

3. The largest connected finite subgraph of YH that contains ṽ and has no
valence one vertices except at ṽ.

4. Union of all reduced edge paths in YH that start and stop at ṽ.

Q 1. Given w ∈ Fn, can we algorithmically decide if w ∈ H?

Definition 19. The group Aut(Fn) is the group of automorphisms of F.

Theorem 20 (Nielsen). We have that Aut(Fn) is finitely generated. In fact
by

1. Permutations: permute basis of elements.
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2. Sign change: send ai 7→ a±i .

3. Change of maximal tree: for some i send ai 7→ a±i and each i 6= j send
{aj , a±i aj , aja

±
i , a

±
i aja

±
i }.

The topological interpretation of the previous theorem:
We will identify Fn ' π1(G) by fixing: a spanning tree, orientation on

each e ∈ G \ T, bijection between edges on G \ F. If we change bijection we
obtain a type 1 automorphism. If we change orientations we obtain a type
2. Changing tree via T → T ′ via edge swap move (add one edge G \ T ′
remove one edge of T from T ′) we obtain a type 3.

Lecture 2

Let e ∈ G \T, then there exists Tve has a unique cycle. Let f ∈ T be a edge
in the cycle and let T ′ = T ∪ e \ f spanning tree.

Remark 21. Observe that under this identification we have that:

• e↔ f

• For ei on the side both trees, via T−rule for ei as a Y. If f 6∈ Y,
ei → ei. If f ∈ Y, assume f is oriented away from base point: if
f ∈ { base, left, right} of Y, then ei 7→ {feif−1, fei, eif}.

finish
the im-
age with
two span-
ning trees
chang-
ing in the
square

Exercise 4. If T and T ′ are spanning tree of G there is a sequence T =
T0 → T1 → · · · → Tn = T ′, where each Ti → Ti+1 is a single edge swap.

Proof of Theorem 20. Let α : Fn → Fn be any automorphism. Let R be a
rose corresponding to the basis a1, · · · , an. Let X be subdivided n−pedal
rose with pedals labeled by words α(a1), · · · , α(an). Get an automorphism
% : X → R. Notice that the π1−image under % is the group generated by
〈α(ai)〉 = Fn.

Factor as a sequence of folds X = X1 → X2 → · · · → Xh = R with the
last identification an homeomorphism.

Identify π1(X) ' Fn via maximal tree T (implying that %∗ = α). Analyse
folds Xi → Xi+1 :

Case 1 Fold 2 embedded edges, changing the max tree Ti → T ′i such that both
edges in T ′i . The T ′i induces spanning tree Ti+1 of Xi+1 such that fold
Xi → Xi+1 is id : Fn → Fn.
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Case 2 Fold embedded edge over loop, changing Ti → T ′i such that embedded
edge belong to T ′i , then we fold Xi → Xi+1 such that Ti+1 of Xi+1

induces a type 3 automorphism of π1(Xi)→ π1(Xi+1).

Last map Xh → R homeomorphism so correspond to a signed permuta-
tion.

0.2 Out(Fn) and Outer space

Definition 22. The group of outer automorphism is defined as

Out(Fn) = Aut(Fn)/Inn(Fn),

where Fn ∈ Inn(Fn) is via conjugation.

Exercise 5. The topological interpretation of outer automorphism to think
of is that if G is a finite graph, π1(G, v) ' Fn. Prove that the homotopy
equivalences of G→ G quotient homotopy is isomorphic to Out(π1(G, v)).

An anology from the other course, if Σ is a surface, we have that the
mapping class group can be represented into Out(π1(Σ)). In the case that
Σ is closed this representation is an isomorphims. For the case that Σ is not
closed, π1(Σ) is free and MCG±(Σ) → Out(Fn) is not an isomorphism but
is injective.

We have to mention that Out(Fn) acts on the sets:

• Conjugacy classes in Fn.

• Conjugacy classes of free factors.

Basic init(...) of φ ∈ Out(Fn) is stretch factor λ(φ) is defined as

log λ(φ) = sup
α∈Fn

lim sup
m→∞

log ‖φm(x)‖
m

where ‖ · ‖ is conjugated to length in Fn with respect to a basis.
An issue is to How calculate λ? A good representative of φ is via the

core graph Γ (a graph of valence ≥ 2 at each vertex). Fix n−pedal rose Rn
and π1(Rn) ' Fn. Marking Γ is a homotopy equivalence f : Rn → Γ, a self
map σ : Γ→ Γ of marked core graph represents φ ∈ Out(Fn) is σ∗ = φ.

Definition 23. Let φ reducible if some representative leaves a homotopi-
cally non-trivial proper subgraph invariant up to homotopy (or equivalently
φ fixes conjugacy classes of some proper free factor). Otherwise we say that
φ is irreducible.
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We can give a metric to Γ, if we choice a length `(e) > 0 for each edge
e. The volume is equal to sum of edge length. The `(c) (where c is a path
or a loop in Γ) is equal to the length of geodesic/reduced representative up
to homotopy.

A direction at x ∈ Γ is a germ of isometric embeddings [0, ε) → Γ with
0 7→ x.

A turn at x is a unordered pair (d, d′) of distinct directions.

Definition 24 (Illegal Turn Structure). The ITS is an equivalence relation
on the set of direction at each point, such that (d, d′) is illegal is d ∼ d′ and
otherwise is legal. We will call the equivalence classes under this equivalence
as gates.

A path is legal if only takes legal turns.

Definition 25 (Train Track Structure). A TTS is an ITS with ≥ 2 gates
at each point.

Definition 26. A train track representative of φ ∈ Out(Fn) is a rep σ :
Γ→ Γ with a TTS such that:

1. Edges map to immersed legal paths.

2. legal turns map to legal turns.

Notice that legality is preserved under iterating, in particular if α is a
legal loop then σh(α) is legal and immersed for all h. The previous imply
that we can calculate λ(φ). We can use the transition matrix M(σ) whit
entries

mij = # times σ(ei) crosses ej in either direction.

We can deduce that λ is the largest egenvalue of transition matrix.

Q 2. How can we find a good representative?

Definition 27. Caller-Vogtmann outer space is defined asXn = {(Γ, f, `)} / ∼
where Γ is a core graph, f is a marking, ` is a metric of volume one.

We say that (Γ, f, `) ∼ (Γ′, f ′,∼′) if there exists an isometro σ : Γ → Γ
such that the following diagram conmutes via homotopy

Γ

��

RΓ

f
>>

f ′   
Γ′
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Xn decomposes into open simplices.

Example 28. X2 and take the rose R2, we can make cells blowing up
vertices and changin orientation of loops. put image

of this
simplexDefinition 29. Let Γ ∈ Xn and let α ∈ Fn a conjugacy class. Then

α ∈ Fn ' π1(Rn) → π1(Γ). We define `Γ(α) as the geodesic length in
homotopy class.

Remark 30. We can define a topology on Xn as the one where all `(α) :
Xn → Rn are continuous.

Lecture 3

Definition 31. A difference of markins from Γ to Γ′ is a map σ such that:

1. σf ' f ′

2. σ is linear on edges.

Definition 32. Set L(σ) is defined as the Lipschitz costant of σ and is
equal to maximal edge slope.

Definition 33. The tension graph ∆(σ) ⊂ Γ is the union of edges of max-
imal slope such that:

1. σ ∼ Dxσ : {directions at x} → {directions at σ(x)}.

2. induces a ITS, if we declare d ∼ d′ is Dσ(d) = Dσ(d′).

Proposition 34. We have that

inf{L(σ) : σ : Γ→ Γ′ d.o.m1} = sup
α∈Fn

`Γ′(α)

`Γ(α)

and both are realized.

Proof. For any σ continuous map, let `Γ′(α) ≤ L(σ)`Γ(α) then by Arzela-
Ascoli theorem the infimum is realized and let say by σ : Γ→ Γ′.

If ITS on ∆(σ) induced by Dσ, this is not a TTS, then some vertex
v ∈ ∆(σ) has only one gate. We can homotope σ in a way to decrease ∆(σ).

So we can assume that Dσ induces a TTS on ∆(σ) (a core graph). Then
for any loop α immersed in ∆(σ). If α is legal then σ(α) is immersed and
`(σ(α)) = L(σ)`Γ.
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Remark 35. To achive supremum may assume that α crosses each edge of
Γ cut at most twice.

Definition 36. A difference of markings σ is optimal if:

1. Realizes L(Γ,Γ′) = inf{L(σ) : σ is a d.o.m.}.

2. ∆(σ) is a core graph with induced TTS.

Definition 37. Lipschitz distance on Xn is d(Γ,Γ′) = log(L(Γ,Γ′)).

Proposition 38. The Lipschitz distance is a symmetric metric on Xn.

He have that Out(Fn) acts on Xn by changing the marking on

[Γ, f, `]φ = [Γ, fΦ, `].

One can convince itself that this action is by isometry with respecto to d.

Definition 39. Let φ ∈ Out(Fn). The translation length τ(φ) is defined as
infΓ d(Γ,Γφ). Have three possibilities:

1. φ is elliptic if τ(φ) = 0 and realized.

2. φ is hyperbolic if τ(φ) > 0 and realized.

3. φ is parabolic if τ(φ) is not realized.

Proposition 40. After an arbitrary small perturbation of Γ, σ, maintaining
d(Γ,Γφ) = log(λ). We may assume that

1. σ(∆) = ∆.

2. σ sends edges of ∆ to legal paths.

3. σ sends turns to legal turns.

Example 41. Consider F2 and φ(a) = ab and φ(b) = bab. Take Γ = R2.
We put a length such that `(a) + `(b) = 1, by the map φ we need that

λ`(a) = `(a) + `(b) and λ`(b) = `(a) + 2`(b). We can show that λ = 3+
√

5
2 .

And there is only one illegal turn (turn from negative direction of a to
positive direction of b).
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Lecture 4

0.3 Hyperbolic spaces

Definition 42. A geodesic γ in a metric space X is D−strongly contracting
if d(y, y′) ≤ d(y, γ) then Diam(πγ(y), πγ(y′)) ≤ D.

Definition 43. A geodesic γ is Morse if for all k ≥ 1, C ≥ 0 there exists
N = N(k, c) such that for any (k,C)−quasi-geodesic ρ : [a, b] → X4 with
ρ(a), ρ(b) ∈ γ and

dHaus(γ|[a,b], ρ) ≤ N.

Call N : [1,∞)× [1,∞)→ R a Morse gauge

Remark 44. In a δ−hyperbolic space there exists a Morse gauge N such that
every geodesic is N−Morse.

Exercise 6. For all D, there exists a Morse gauge N such that every
D−strongly contracting geodesic is N−Morse.

Theorem 45. For X a geodesic metric space. The following are equivalent:

1. There exists δ such that X is δ−hyperbolic.

2. There exists D such that every geodesic in X is D−strongly contract-
ing.

3. There exists a Morse gauge N such that every geodesic is N−Morse.

Ideas of the Proof:

1. (1) implies (2): Notice that if X is δ−hyperbolic, we have that all
quadrilaterals are 2δ−thin. Let say that γ is a geodesic such that
Diam(πγ(y), πγ(y′)) ≥ 10δ. Then we can assure that d(y, y′) ≥ d(y, γ)−
2δ and by contrapositive we have the claim.

2. (2) implies (3):

3. (3) implies (1):

Consider the following lemma

Lemma 46. Let X be any geodesic space, γ a geodesic, y ∈ X and
z ∈ πγ(y). The concatenation path [y, z]∪ γ is a (3, 0)−quasi-geodesic.

This lemma implies that the triangles are thin.
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Remark 47. Strongly contracting geodesic behave like geodesics in hyper-
bolic spaces. Even if the space is not δ−hyperbolic it may have some strongly
contracting geodesics.

Example 48. Let G = 〈a, b, c : ab = bc〉. We have that G is not hyperbolic.

Definition 49. A map γ : I → X is a L−local geodesic if the restriction
to each length ≤ L subinterval of I is geodesic.

Lemma 50. In a hyperbolic space, every local geodesic is a quasi-geodesic.

Proof. Given δ, let N = N(2, 0) be a Morse constant for (2, 0)−quasi-
geodesics and take L

4 > 2N + 2δ. We claim that every L−local geodesic
γ : I → X is a (2, 0)−quasi-geodesic.

Nts (?)

(t− s) ≥ d(γ(s), γ(t)) ≥ (t− s)
2

fot s < t.
Induct on (t− s) :
Suppose it holds for all t− s ≤ R. Show it holds for R < t− s ≤ R+ L.

We can find some w with d(w, z) ≤ δ for some z ∈ [x, y] and such that:

d(x, y) ≥ d(x,w) + d(w, y)− 2δ

Remark 51. Let G = 〈S〉 is an hyperbolic group such that there exists L
such that s1 · · · sn = 1 with si ∈ S then some subword of length ≤ L is NOT
a geodesic.

Definition 52 (Dehn’s algorithm for word problem). Look for subwords of
length ≤ L that are not geodesic, and decide: if you find one, reduce and
repeat, if none exists the word is not the identity.

Remark 53. The previous paragraph imply that the Hyperbolic groups are
finitely generated.

Remark 54. Hyperbolic groups have linear isoperimetric inequality area(w) ≤
lenght(w).

Theorem 55 (Gromov). If a finitely presented group has a subquadratic
isoperimetric inequality then the group is hyperbolic.
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0.4 Extensions

Q 3. How can we build new hyperbolic spaces out of old ones?

Theorem 56 (Bestvina-Feighn Combination Theorem). Suppose X is a
finite graph of spaces such that:

1. Universal covr X̃e and X̃v of edge and vertex spaces are δ−hyperbolic.

2. Gluings X̃e → X̃v are quasi-isometric embeddings.

3. The “flaring condition”2 is satisfied.

Then the universal cover X̃ is a Gromov hyperbolic.

Remark 57. This theorem can be apply to graphs of hyperbolic groups.
The proof uses flaring to conclude that it is satisfied the subquadratic

isoperimetric inequality and by Gromov it follows.

Definition 58. For K,Q groups, an extension of K by Q is any group
fitting into a short exact sequence 1→ K → G→ Q→ 1.

Q 4. If K and Q are hyperbolic, when G is hyperbolic?

It depends! For example is we take the stupid extension G = K ×Q is
never hyperbolic if |K|, |Q| =∞.

For example, the “monodromy” ρ : Q → Out(K). For G to be hyper-
bolic, ρ must be “complicated”, i.e., if there exists q ∈ Q, k ∈ K of infinite
orders such that ρ(q) fixes conjugacy classes of k we get Z⊕ Z ≤ G.

Lecture 5

0.5 Hyperbolic Extensions

Let S be a finite generating set of G, that contains the generating set of K.
We have the word length | · | on G and the conjugacy length ‖ · ‖ on K.

There is a “bungle map” of Cayley graphs as

Cay(K) // Cay(G)

��
Cay(Q)

2The lecturer doesn’t provide a definition but in the later will talk about it.
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We have Cay(G) have vertical and horizontal edges.
The monodromy Q → Out(K). Also, we have a Q action on the set of

conjugacy classes of K.

Theorem 59 (Mj-Sardar Combination Theorem). The group Q is hyper-
bolic provided flaring condition holds, if there exists λ > 1, M ∈ N such
that for any non-trivial α ∈ K and geodesics g−n, · · · , g0, · · · , gn in G with
n ≥M

λ‖g−1
0 α‖ ≤ max{‖g−1

−nα‖, ‖g−1
n α‖}.

Remark 60. The JSJ theory of hyperbolic groups implies that if K is torsion
free, G is hyperbolic, must have K is a free product of surface or free groups.

Example 61. Historically the first example of extension is the following.
Let Σ a closed surface and f : Σ→ Σ homeomorphism, consider the mapping
torus of (Σ, f) then we have

1→ π1(Σ)→ π1(Mf )→ Z→ 1.

Remember by Thurston’s theorem, if f is a pseudo-Anosov then Mf admits
a hyperbolic Riemannian metric. Therefore π1(Mf ) is an hyperbolic group.
Even more, from the previous we have that if π1(Mf ) is hyperbolic then f
is a pseudo-Anosov.

Example 62. Let φ ∈ Out(Fn) and consider Fn oφ Z defined as

〈Fn, t : t−1wt = φ(w), w ∈ Fn〉.

We have the short exact sequence

1→ Fn → Fn oφ Z→ Z→ 1

and by Brinkmann say that FnoφZ is hyperbolic if and only if φ is atoroidal.3

Remark 63. Some work of Farb-Masher, Kent-Leninger, Hamerstadt about
theory of hyperbolic extensions of surfaces group is related to properties of
convex-cocompact subgroups of MCG(Σ).

3No power φk fixes conjugacy classes.
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0.6 Free Group Extensions

Folding paths: Let Γ,Γ′ ∈ Xn with optimal map σ : Γ→ Γ′ with TTS on
tension graph ∆ ⊂ Γ.

Assume ∆ is all of Γ (If not, move Γ to Γ0 by stretching metric on ∆
and shrinking other edges to maintain volume is 1, until all edges in ∆).

For 0 ≤ t < ε small, deform Γ to Γt by folding all illegal turns for length
t. σ descends to σt : Γt → Γ′ with TTS.

Theorem 64. This process yields a path {Γt}t∈[0,1) from Γ to Γ′ may
parametrize such that a directed geodesic in Xn

d(Γs,Γt) = t− s

for s < t. This path comes with a TTS on Γt for all t.

Remark 65. Train track representative of φ ∈ Out(Fn), gives a bi-infinite
folding axis for φ acting on Xn.

Definition 66 (Free Factor Complex). Simplicial simplex graph F with:

• Vertices: conjugacy classes of cyclic free factor.

• Edges: [α]− [β] if α and β may be jointly part of a basis.

Definition 67 (Lipschitz Projection). Let π : Xn → F given by Γ maps
to shortest conjugacy class of Γ.

Theorem 68 (Bestvina-Feighn). F is δ−hyperbolic.

Sketch of proof: Use folding paths γ : {Γt}t∈[0,L]. For α ∈ F look at the cre
of subgroup 〈α〉 over Γt with pull-back TTS.

Fact: Any legal subpath with length ≥ 3 grows exponentially.
As you fold, illegal turns can disappear or illegal turns can collide and

combine. Therefore the number of illegal turns can only decrease.

Definition 69.

leftγ(α) = inf{t : α|Γt has legal segment of length ≥ 3}.
rightγ(α) = sup{t : α|Γt has a long segment without llegal subsegment of length ≥ 3}.

Proposition 70. π (γ([leftγ(α), rightγ(α)]) ⊂ F has uniform bounded di-
ameter.
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The family {π(γ) : γ is a folding path} of paths in F with projections
p : F → π(γ) given by α 7→ π(γ(leftγ(α)). The key is that these projections
are uniformly strongly contracting and therefore F is hyperbolic.

For γ ⊂ Xn folding path, define the map Lγ : Xn → γ given by H 7→
leftγ(π(H)).

Theorem 71 (Bestvina-Feighn). Given (K,C), there exists D such that if
γ : I → Xn is a folding path such that πγ : I → F is a (K,C)−quasi-
geodesic. Then γ is D−strongly contracting in Xn with respect to Lγ .

Theorem 72 (D.-Taylor). Given (K,C) there exists D such that if γ :
I → Xn is any (K,C)−quasi-geodesic such that πγ : I → F is also a
(K,C)−quasi-geodesic then the closest point projection Xn → γ is D−strongly
contracting.

Definition 73. Say 1→ Fn → E → G→ 1 an extension:

1. is convex cocompact if the orbit map G → Out(Fn) y F is a quasi-
isometric embedding.

2. is properly atoroidal if no infinite order element of G fixes any non-
trivial conjugacy class.

Theorem 74 (D-Taylor). If 1 → Fn → E → G → 1 is convex cocompact
and purely atoroidal the E is hyperbolic.
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