The Grigorchuk and Grigorchuk-Machi Groups of Intermediate Growth

Levi Sledd

Vanderbilt University

July 20, 2019

References:

- 1. de la Harpe, Topics in Geometric Group Theory, Chapter VIII.
- 2. Grigorchuk, Machi, "A group of intermediate growth acting by homomorphisms on the real line."

If you want these slides you can email me: levi.sledd@vanderbilt.edu

Definition

Let A be a set. Then the *free monoid* on A, denoted A^* , is the set of all words over the alphabet A. More formally, the set of all finite sequences of elements of A.

Definition

Let A be a set. Then the *free monoid* on A, denoted A^* , is the set of all words over the alphabet A. More formally, the set of all finite sequences of elements of A.

For $w \in A^*$, the length of w is denoted |w|. The *empty word* ε is defined to be the unique word of length 0.

Definition

Let A be a set. Then the *free monoid* on A, denoted A^* , is the set of all words over the alphabet A. More formally, the set of all finite sequences of elements of A.

For $w \in A^*$, the length of w is denoted |w|. The *empty word* ε is defined to be the unique word of length 0.

If G is a group generated by a finite set S, then we can evaluate words in $(S \cup S^{-1})^*$ to elements of G. Notation: $w =_G g$.

Definition

Let A be a set. Then the *free monoid* on A, denoted A^* , is the set of all words over the alphabet A. More formally, the set of all finite sequences of elements of A.

For $w \in A^*$, the length of w is denoted |w|. The *empty word* ε is defined to be the unique word of length 0.

If G is a group generated by a finite set S, then we can evaluate words in $(S \cup S^{-1})^*$ to elements of G. Notation: $w =_G g$.

Definition

The word length of an element $g \in G$ with respect to S is

$$|g|_{\mathcal{S}} = \min\{|w| \mid w =_{\mathcal{G}} g\}.$$

Definition

Let G be a group generated by a finite set S. The growth of G with respect to S is the function $\gamma_{G,S} : \mathbb{N} \to \mathbb{N}$ given by

$$\gamma_{G,S}(n) = |\{g \in G \mid |g|_S \leq n\}|.$$

Definition

Let G be a group generated by a finite set S. The growth of G with respect to S is the function $\gamma_{G,S} : \mathbb{N} \to \mathbb{N}$ given by

$$\gamma_{G,S}(n) = |\{g \in G \mid |g|_S \leq n\}|.$$

Recall that up to the asymptotic equivalence discussed in Supun's talk, $\gamma_{G,S}$ is quasi-isometry invariant. In particular,

Definition

Let G be a group generated by a finite set S. The growth of G with respect to S is the function $\gamma_{G,S} : \mathbb{N} \to \mathbb{N}$ given by

$$\gamma_{G,S}(n) = |\{g \in G \mid |g|_S \leq n\}|.$$

Recall that up to the asymptotic equivalence discussed in Supun's talk, $\gamma_{G,S}$ is quasi-isometry invariant. In particular,

 γ_{G,S} is independent of the choice of *finite* generating set S.
 Therefore we drop S subscripts from now on.

Definition

Let G be a group generated by a finite set S. The growth of G with respect to S is the function $\gamma_{G,S} : \mathbb{N} \to \mathbb{N}$ given by

$$\gamma_{G,S}(n) = |\{g \in G \mid |g|_S \leq n\}|.$$

Recall that up to the asymptotic equivalence discussed in Supun's talk, $\gamma_{G,S}$ is quasi-isometry invariant. In particular,

- γ_{G,S} is independent of the choice of *finite* generating set S. Therefore we drop S subscripts from now on.
- If G is commensurate to H (G ~ H), then $\gamma_G \sim \gamma_H$.

Definition

Let G be a group generated by a finite set S. The growth of G with respect to S is the function $\gamma_{G,S} : \mathbb{N} \to \mathbb{N}$ given by

$$\gamma_{G,S}(n) = |\{g \in G \mid |g|_S \leq n\}|.$$

Recall that up to the asymptotic equivalence discussed in Supun's talk, $\gamma_{G,S}$ is quasi-isometry invariant. In particular,

- γ_{G,S} is independent of the choice of *finite* generating set S. Therefore we drop S subscripts from now on.
- If G is commensurate to $H(G \sim H)$, then $\gamma_G \sim \gamma_H$.

Exercise: $\gamma_{G \times H} \sim \gamma_G \gamma_H$.

Definition

Let G be a group generated by a finite set S. The growth of G with respect to S is the function $\gamma_{G,S} : \mathbb{N} \to \mathbb{N}$ given by

$$\gamma_{G,S}(n) = |\{g \in G \mid |g|_S \leq n\}|.$$

Recall that up to the asymptotic equivalence discussed in Supun's talk, $\gamma_{G,S}$ is quasi-isometry invariant. In particular,

- γ_{G,S} is independent of the choice of *finite* generating set S. Therefore we drop S subscripts from now on.
- If G is commensurate to H (G ~ H), then $\gamma_G \sim \gamma_H$.

Exercise: $\gamma_{G \times H} \sim \gamma_G \gamma_H$.

Lemma (VIII.61,63)

If $\gamma_{G} \sim \gamma_{G}^{2}$, then there exists an $\alpha \in (0,1)$ such that $e^{n^{\alpha}} \preceq \gamma_{G}$.

The Infinite Rooted Binary Tree

Let T be the infinite rooted binary tree.

The Infinite Rooted Binary Tree

Let T be the infinite rooted binary tree. $V(T) = \{0,1\}^*$ and $u \sim w$ if u = w' or w = u'.

The Infinite Rooted Binary Tree

Let $\alpha \in \operatorname{Aut}(T)$.

Since α preserves degrees of vertices, α fixes the root ε .

Let $\alpha \in \operatorname{Aut}(T)$.

Since α preserves degrees of vertices, α fixes the root ε .

Since α preserves distances (to ε), $\alpha(L_n) = L_n$ and $\alpha(T_n) = T_n$.

Let $\alpha \in \operatorname{Aut}(T)$.

Since α preserves degrees of vertices, α fixes the root $\varepsilon.$

Since α preserves distances (to ε), $\alpha(L_n) = L_n$ and $\alpha(T_n) = T_n$.

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

Let $\alpha \in \operatorname{Aut}(T)$.

Since α preserves degrees of vertices, α fixes the root ε .

Since α preserves distances (to ε), $\alpha(L_n) = L_n$ and $\alpha(T_n)$.

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

In particular, $|Aut(T)| = 2^{\aleph_0}$.

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

In particular, $|Aut(T)| = 2^{\aleph_0}$.

Let St_n be the *pointwise* stabilizer of T_n . Note:

•
$$\operatorname{Aut}(T)/\operatorname{St}_n \cong \operatorname{Aut}(T_n)$$
, so
 $[\operatorname{St}_n : \operatorname{Aut}(T)] < \infty$.

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

In particular, $|Aut(T)| = 2^{\aleph_0}$.

Let St_n be the *pointwise* stabilizer of T_n . Note:

•
$$\operatorname{Aut}(T)/\operatorname{St}_n \cong \operatorname{Aut}(T_n)$$
, so $[\operatorname{St}_n : \operatorname{Aut}(T)] < \infty$.

$$\blacktriangleright \bigcap_{n=1}^{\infty} \operatorname{St}_n = \{1\}.$$

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

In particular, $|Aut(T)| = 2^{\aleph_0}$.

Let St_n be the *pointwise* stabilizer of T_n . Note:

• $\operatorname{Aut}(T)/\operatorname{St}_n \cong \operatorname{Aut}(T_n)$, so $[\operatorname{St}_n : \operatorname{Aut}(T)] < \infty$.

$$\blacktriangleright \bigcap_{n=1}^{\infty} \operatorname{St}_n = \{1\}.$$

Therefore Aut(T) is residually finite.

The action of α on the 0 and 1 subtrees produce elements $\alpha_0, \alpha_1 \in Aut(T)$.

The action of α on the 0 and 1 subtrees produce elements $\alpha_0, \alpha_1 \in Aut(\mathcal{T})$.

This gives us a homomorphism $\psi_1 : \alpha \mapsto (\alpha_0, \alpha_1).$

The action of α on the 0 and 1 subtrees produce elements $\alpha_0, \alpha_1 \in Aut(T)$.

This gives us a homomorphism $\psi_1 : \alpha \mapsto (\alpha_0, \alpha_1).$

Similarly,

$$\psi_n : \operatorname{Aut}(T) \to \operatorname{Aut}(T)^{2^n}$$

 $\psi_n : \alpha \mapsto (\alpha_{0\dots 0}, \dots, \alpha_{1\dots 1})$

The action of α on the 0 and 1 subtrees produce elements $\alpha_0, \alpha_1 \in Aut(T)$.

This gives us a homomorphism $\psi_1 : \alpha \mapsto (\alpha_0, \alpha_1).$

Similarly,

$$\psi_n : \operatorname{Aut}(T) \to \operatorname{Aut}(T)^{2^n}$$

$$\psi_n : \alpha \mapsto (\alpha_{0\dots 0}, \dots, \alpha_{1\dots 1})$$

We have $\psi_1 : \operatorname{Aut}(T) \twoheadrightarrow \operatorname{Aut}(T)^2$ and $\operatorname{Ker}(\psi_1) \cong \operatorname{Aut}(T_1)$.

The action of α on the 0 and 1 subtrees produce elements $\alpha_0, \alpha_1 \in Aut(\mathcal{T})$.

This gives us a homomorphism $\psi_1 : \alpha \mapsto (\alpha_0, \alpha_1).$

Similarly,

$$\psi_n : \operatorname{Aut}(T) \to \operatorname{Aut}(T)^{2^n}$$

$$\psi_n : \alpha \mapsto (\alpha_{0\dots 0}, \dots, \alpha_{1\dots 1})$$

We have $\psi_1 : \operatorname{Aut}(T) \twoheadrightarrow \operatorname{Aut}(T)^2$ and $\operatorname{Ker}(\psi_1) \cong \operatorname{Aut}(T_1).$ $\psi_1|_{\operatorname{St}_1} : \operatorname{St}_1 \to \operatorname{Aut}(T)^2$ is an

isomorphism.

The action of α on the 0 and 1 subtrees produce elements $\alpha_0, \alpha_1 \in Aut(\mathcal{T})$.

This gives us a homomorphism $\psi_1 : \alpha \mapsto (\alpha_0, \alpha_1).$

Similarly,

$$\psi_n : \operatorname{Aut}(T) \to \operatorname{Aut}(T)^{2^n}$$

$$\psi_n : \alpha \mapsto (\alpha_{0\dots 0}, \dots, \alpha_{1\dots 1})$$

We have $\psi_1 : \operatorname{Aut}(T) \twoheadrightarrow \operatorname{Aut}(T)^2$ and $\operatorname{Ker}(\psi_1) \cong \operatorname{Aut}(T_1)$.

 $\psi_1|_{\mathsf{St}_1}:\mathsf{St}_1\to\mathsf{Aut}(\mathcal{T})^2$ is an isomorphism.

Therefore Aut(T) ~ Aut(T)².

The action of α on the 0 and 1 subtrees produce elements $\alpha_0, \alpha_1 \in Aut(T)$.

This gives us a homomorphism $\psi_1 : \alpha \mapsto (\alpha_0, \alpha_1).$

Similarly,

$$\psi_n : \operatorname{Aut}(T) \to \operatorname{Aut}(T)^{2^n}$$

 $\psi_n : \alpha \mapsto (\alpha_{0\dots 0}, \dots, \alpha_{1\dots 1})$

We have $\psi_1 : \operatorname{Aut}(T) \twoheadrightarrow \operatorname{Aut}(T)^2$ and $\operatorname{Ker}(\psi_1) \cong \operatorname{Aut}(T_1)$.

 $\psi_1|_{\mathsf{St}_1}:\mathsf{St}_1 o \mathsf{Aut}(\mathcal{T})^2$ is an isomorphism.

Therefore $\operatorname{Aut}(T) \sim \operatorname{Aut}(T)^2$. But $\operatorname{Aut}(T)$ is uncountable!

Using self-similarity, we recursively define $a, b, c, d \in Aut(T)$.

Using self-similarity, we recursively define $a, b, c, d \in Aut(T)$.

"Base case:" a switches first level and does nothing else.

Using self-similarity, we recursively define $a, b, c, d \in Aut(T)$.

"Base case:" a switches first level and does nothing else.

"Induction step:" $b, c, d \in \mathsf{St}_1$ and

$$b = (a, c)$$
 $c = (a, d)$ $d = (id, b)$

Using self-similarity, we recursively define $a, b, c, d \in Aut(T)$.

"Base case:" a switches first level and does nothing else.

"Induction step:" $b, c, d \in St_1$ and

$$b = (a, c)$$
 $c = (a, d)$ $d = (id, b)$
Grigorchuk's Group F

Using self-similarity, we recursively define $a, b, c, d \in Aut(T)$.

"Base case:" a switches first level and does nothing else.

"Induction step:" $b, c, d \in \mathsf{St}_1$ and

$$b=(a,c)$$
 $c=(a,d)$ $d=({\mathrm{id}},b)$

Γ via a Deterministic Finite Automaton

Γ via a Deterministic Finite Automaton

$$b(11) = 1c(1) = 11d(\varepsilon) = 11$$

Γ via a Deterministic Finite Automaton

$$b(11) = 1c(1) = 11d(\varepsilon) = 11$$

d(110101) = 1b(10101)

- = 11c(0101)
- = 110a(101)
- = 1100id(01)
- = 11000id(1)
- $= 110001 \mathrm{id}(\varepsilon)$
- = 110001

Notation: $g^h = hgh^{-1}$, $St_{1,\Gamma} = St_1 \cap \Gamma$.

Notation: $g^h = hgh^{-1}$, $St_{1,\Gamma} = St_1 \cap \Gamma$. Can check that $\langle b, c, d, b^a, c^a, d^a \rangle = St_{1,\Gamma}$, which has index 2 in Γ .

Notation: $g^h = hgh^{-1}$, $St_{1,\Gamma} = St_1 \cap \Gamma$. Can check that $\langle b, c, d, b^a, c^a, d^a \rangle = St_{1,\Gamma}$, which has index 2 in Γ . By recursive definition, $\psi_1 : St_{1,\Gamma} \to \Gamma^2$.

Notation: $g^h = hgh^{-1}$, $\operatorname{St}_{1,\Gamma} = \operatorname{St}_1 \cap \Gamma$. Can check that $\langle b, c, d, b^a, c^a, d^a \rangle = \operatorname{St}_{1,\Gamma}$, which has index 2 in Γ . By recursive definition, $\psi_1 : \operatorname{St}_{1,\Gamma} \to \Gamma^2$. Let $\psi_1 = (\varphi_0, \varphi_1)$. Can check that

Notation: $g^h = hgh^{-1}$, $\operatorname{St}_{1,\Gamma} = \operatorname{St}_1 \cap \Gamma$. Can check that $\langle b, c, d, b^a, c^a, d^a \rangle = \operatorname{St}_{1,\Gamma}$, which has index 2 in Γ . By recursive definition, $\psi_1 : \operatorname{St}_{1,\Gamma} \to \Gamma^2$. Let $\psi_1 = (\varphi_0, \varphi_1)$. Can check that

In particular, $\varphi_0 : \mathsf{St}_1 \to \Gamma$ is surjective. Therefore Γ is infinite.

Recall $\psi_1|_{\mathsf{St}_1}$ is injective. Lemma (VIII.28) $[\psi_1(\mathsf{St}_{1,\Gamma}):\Gamma^2] = 8.$ Recall $\psi_1|_{\mathsf{St}_1}$ is injective. Lemma (VIII.28) $[\psi_1(\mathsf{St}_{1,\Gamma}):\Gamma^2] = 8.$

Therefore Γ is commensurate to its square, and thus there exists $\alpha \in (0, 1)$ such that $e^{n^{\alpha}} \preceq \gamma_{\Gamma}$.

What about the upper bound?

What about the upper bound?

 Γ has the following *contracting property*.

What about the upper bound?

Γ has the following *contracting property*. Let $g \in St_{3,\Gamma}$. Then $\psi_3 : g \mapsto (g_{000}, \dots, g_{111})$, and

$$|g_{000}| + \cdots + |g_{111}| \le \frac{3}{4}|g| + 8.$$

What about the upper bound?

Γ has the following *contracting property*. Let $g \in St_{3,\Gamma}$. Then $\psi_3 : g \mapsto (g_{000}, \dots, g_{111})$, and

$$|g_{000}| + \cdots + |g_{111}| \le \frac{3}{4}|g| + 8.$$

Lemma (VIII.62)

The contracting property implies that there exists a $\beta \in (0,1)$ such that $\gamma_{\Gamma} \preceq e^{n^{\beta}}$.

What about the upper bound?

Γ has the following *contracting property*. Let $g \in St_{3,\Gamma}$. Then $\psi_3 : g \mapsto (g_{000}, \dots, g_{111})$, and

$$|g_{000}| + \cdots + |g_{111}| \le \frac{3}{4}|g| + 8.$$

Lemma (VIII.62)

The contracting property implies that there exists a $\beta \in (0,1)$ such that $\gamma_{\Gamma} \preceq e^{n^{\beta}}$.

Therefore for some 0 $<\alpha<\beta<$ 1,

$$e^{n^{lpha}} \preceq \gamma_{\mathsf{\Gamma}} \preceq e^{n^{eta}}$$

so Γ is a group of intermediate growth.

Theorem (Bartholdi '98, \leq_2 | Erschler, Zheng '18, \leq_1) Let λ be the positive root of $x^3 - x^2 - 2x - 4$, $\lambda \approx .7674...$ For all $\varepsilon > 0$,

$$e^{n^{\lambda-\varepsilon}} \preceq_1 \gamma_{\Gamma} \preceq_2 e^{n^{\lambda}}.$$

Theorem (Bartholdi '98, \leq_2 | Erschler, Zheng '18, \leq_1) Let λ be the positive root of $x^3 - x^2 - 2x - 4$, $\lambda \approx .7674...$ For all $\varepsilon > 0$,

$$e^{n^{\lambda-\varepsilon}} \preceq_1 \gamma_{\Gamma} \preceq_2 e^{n^{\lambda}}.$$

▶ $\langle b, c, d \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Γ is 3-generated, but not 2-generated.

Theorem (Bartholdi '98, \leq_2 | Erschler, Zheng '18, \leq_1) Let λ be the positive root of $x^3 - x^2 - 2x - 4$, $\lambda \approx .7674...$ For all $\varepsilon > 0$,

$$e^{n^{\lambda-\varepsilon}} \preceq_1 \gamma_{\Gamma} \preceq_2 e^{n^{\lambda}}.$$

⟨b, c, d⟩ ≅ ℤ₂ × ℤ₂. Γ is 3-generated, but not 2-generated.
Γ is not finitely presentable.

Theorem (Bartholdi '98, \leq_2 | Erschler, Zheng '18, \leq_1) Let λ be the positive root of $x^3 - x^2 - 2x - 4$, $\lambda \approx .7674...$ For all $\varepsilon > 0$,

$$e^{n^{\lambda-\varepsilon}} \preceq_1 \gamma_{\Gamma} \preceq_2 e^{n^{\lambda}}.$$

⟨b, c, d⟩ ≅ Z₂ × Z₂. Γ is 3-generated, but not 2-generated.
Γ is not finitely presentable.

Γ is torsion.

Theorem (Bartholdi '98, \leq_2 | Erschler, Zheng '18, \leq_1) Let λ be the positive root of $x^3 - x^2 - 2x - 4$, $\lambda \approx .7674...$ For all $\varepsilon > 0$,

$$e^{n^{\lambda-\varepsilon}} \preceq_1 \gamma_{\Gamma} \preceq_2 e^{n^{\lambda}}.$$

- ► $\langle b, c, d \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Γ is 3-generated, but not 2-generated.
- **Γ** is not finitely presentable.
- Γ is torsion. Not obvious: Aut(T) has elements of infinite order (exercise).

Theorem (Bartholdi '98, \leq_2 | Erschler, Zheng '18, \leq_1) Let λ be the positive root of $x^3 - x^2 - 2x - 4$, $\lambda \approx .7674...$ For all $\varepsilon > 0$,

$$e^{n^{\lambda-\varepsilon}} \preceq_1 \gamma_{\Gamma} \preceq_2 e^{n^{\lambda}}.$$

► $\langle b, c, d \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Γ is 3-generated, but not 2-generated.

Γ is not finitely presentable.

- Γ is torsion. Not obvious: Aut(T) has elements of infinite order (exercise). So,
 - Γ is a 2-group.
 - Γ is not orderable.
 - ► Γ is not bounded torsion (⇐ Zelmanov: bounded torsion + rf ⇒ finite).
- Γ is amenable (\Leftarrow subexp growth).

Can we get a group of intermediate growth which is also orderable?

Can we get a group of intermediate growth which is also orderable? Yes! (Grigorchuk, Machi '93).

Can we get a group of intermediate growth which is also orderable? Yes! (Grigorchuk, Machi '93).

The proof of left-orderability uses Cantor's Theorem.

Can we get a group of intermediate growth which is also orderable? Yes! (Grigorchuk, Machi '93).

The proof of left-orderability uses Cantor's Theorem.

Theorem

If X is a countable set with a total order \leq_X such that \leq_X is dense and contains no first or last element, then (X, \leq) is order-isomorphic to (\mathbb{Q}, \leq) .

Proof.

Exercise.

Let
$$\tilde{\Gamma} = \langle a, b, c, d \mid [a^2, b], [a^2, c], [a^2, d], [b, c], [b, d], [c, d] \rangle$$
.

Let $\tilde{\Gamma} = \langle a, b, c, d \mid [a^2, b], [a^2, c], [a^2, d], [b, c], [b, d], [c, d] \rangle$. Let \tilde{N} be the subgroup of $\tilde{\Gamma}$ generated by elements that can be written so that the sum of the exponents of *a* is equal to zero.

Let $\tilde{\Gamma} = \langle a, b, c, d \mid [a^2, b], [a^2, c], [a^2, d], [b, c], [b, d], [c, d] \rangle$. Let \tilde{N} be the subgroup of $\tilde{\Gamma}$ generated by elements that can be written so that the sum of the exponents of *a* is equal to zero.

Can check:

$$\blacktriangleright \ \tilde{N} \lhd \tilde{\Gamma}.$$

Let $\tilde{\Gamma} = \langle a, b, c, d \mid [a^2, b], [a^2, c], [a^2, d], [b, c], [b, d], [c, d] \rangle$. Let \tilde{N} be the subgroup of $\tilde{\Gamma}$ generated by elements that can be written so that the sum of the exponents of *a* is equal to zero.

Can check:

- $\blacktriangleright \ \tilde{N} \lhd \tilde{\Gamma}.$
- $\blacktriangleright \ \tilde{N} = \langle b, c, d, b^a, c^a, d^a \rangle.$

Let $\tilde{\Gamma} = \langle a, b, c, d \mid [a^2, b], [a^2, c], [a^2, d], [b, c], [b, d], [c, d] \rangle$. Let \tilde{N} be the subgroup of $\tilde{\Gamma}$ generated by elements that can be written so that the sum of the exponents of *a* is equal to zero.

Can check:

Ñ ⊲ Γ̃.
Ñ = ⟨b, c, d, b^a, c^a, d^a⟩.
Γ̃/Ñ = ⟨a⟩ ≅ ℤ.
Ñ ≅ ℤ³ * ℤ³.

Let $\tilde{\Gamma} = \langle a, b, c, d \mid [a^2, b], [a^2, c], [a^2, d], [b, c], [b, d], [c, d] \rangle$. Let \tilde{N} be the subgroup of $\tilde{\Gamma}$ generated by elements that can be written so that the sum of the exponents of *a* is equal to zero.

Can check:

Ñ ⊲ Γ̃.
Ñ = ⟨b, c, d, b^a, c^a, d^a⟩.
Γ̃/Ñ = ⟨a⟩ ≅ ℤ.
Ñ ≅ ℤ³ * ℤ³.

Now establish homomorphisms $\varphi_0, \varphi_1 : \tilde{N} \to \tilde{\Gamma}$, as follows.

Now establish homomorphisms $\varphi_0, \varphi_1 : \tilde{N} \to \tilde{\Gamma}$, as follows.

$$\varphi_{0} = \begin{cases} b & \mapsto a \\ c & \mapsto a \\ d & \mapsto 1 \\ b^{a} & \mapsto c \\ c^{a} & \mapsto d \\ d^{a} & \mapsto b \end{cases} \qquad \qquad \varphi_{1} = \begin{cases} b & \mapsto c \\ c & \mapsto d \\ d & \mapsto b \\ b^{a} & \mapsto a \\ c^{a} & \mapsto a \\ d^{a} & \mapsto 1 \end{cases}$$

Now establish homomorphisms $\varphi_0, \varphi_1 : \tilde{N} \to \tilde{\Gamma}$, as follows.

$$\varphi_{0} = \begin{cases} b & \mapsto a \\ c & \mapsto a \\ d & \mapsto 1 \\ b^{a} & \mapsto c \\ c^{a} & \mapsto d \\ d^{a} & \mapsto b \end{cases} \qquad \qquad \varphi_{1} = \begin{cases} b & \mapsto c \\ c & \mapsto d \\ d & \mapsto b \\ b^{a} & \mapsto a \\ c^{a} & \mapsto a \\ d^{a} & \mapsto 1 \end{cases}$$

Note: the images of φ_0, φ_1 escape \tilde{N} . For example $\varphi_0 \varphi_1(b^a)$ is not defined.
Now establish homomorphisms $\varphi_0, \varphi_1 : \tilde{N} \to \tilde{\Gamma}$, as follows.

Note: the images of φ_0, φ_1 escape \tilde{N} . For example $\varphi_0\varphi_1(b^a)$ is not defined. However, $\varphi_0\varphi_1$ is defined on a subgroup of \tilde{N} .

For each $w = i_1 \dots i_n \in \{0, 1\}^*$, let $\varphi_w = \varphi_{i_1} \dots \varphi_{i_n}$. Then φ_w is defined on a subgroup of \tilde{N} .

For each $w = i_1 \dots i_n \in \{0, 1\}^*$, let $\varphi_w = \varphi_{i_1} \dots \varphi_{i_n}$. Then φ_w is defined on a subgroup of \tilde{N} .

Let

 $\mathcal{K}_n = \{ g \in \Gamma \mid \varphi_w(g) \text{ is defined and equal to } 1$ for all $w \in \{0,1\}^*$ of length $n\}$.

For each $w = i_1 \dots i_n \in \{0, 1\}^*$, let $\varphi_w = \varphi_{i_1} \dots \varphi_{i_n}$. Then φ_w is defined on a subgroup of \tilde{N} .

Let

$$\mathcal{K}_n = \{g \in \mathsf{\Gamma} \mid arphi_w(g) ext{ is defined and equal to 1} \ ext{ for all } w \in \{0,1\}^* ext{ of length } n\}.$$

Not obvious, but $K_n \lhd \tilde{\Gamma}$ for all $n \in \mathbb{N}$. Let $K = \bigcup_{n=1}^{\infty} K_n$.

For each $w = i_1 \dots i_n \in \{0, 1\}^*$, let $\varphi_w = \varphi_{i_1} \dots \varphi_{i_n}$. Then φ_w is defined on a subgroup of \tilde{N} .

Let

$$\mathcal{K}_n = \{g \in \mathsf{\Gamma} \mid arphi_w(g) ext{ is defined and equal to 1} \ ext{ for all } w \in \{0,1\}^* ext{ of length } n\}.$$

Not obvious, but $K_n \lhd \tilde{\Gamma}$ for all $n \in \mathbb{N}$. Let $K = \bigcup_{n=1}^{\infty} K_n$. The Grigorchuk-Machi group Γ is defined to be $\tilde{\Gamma}/K$.

For each $w = i_1 \dots i_n \in \{0, 1\}^*$, let $\varphi_w = \varphi_{i_1} \dots \varphi_{i_n}$. Then φ_w is defined on a subgroup of \tilde{N} .

Let

$$\mathcal{K}_n = \{g \in \mathsf{\Gamma} \mid arphi_w(g) ext{ is defined and equal to 1} \ ext{ for all } w \in \{0,1\}^* ext{ of length } n\}.$$

Not obvious, but $K_n \triangleleft \tilde{\Gamma}$ for all $n \in \mathbb{N}$. Let $K = \bigcup_{n=1}^{\infty} K_n$. The Grigorchuk-Machi group Γ is defined to be $\tilde{\Gamma}/K$. Remark: Let $N = \tilde{N}/K$. φ_0, φ_1 are constructed so that $\psi := (\varphi_0, \varphi_1) : N \to \Gamma \times \Gamma$ is injective.

For each $w = i_1 \dots i_n \in \{0, 1\}^*$, let $\varphi_w = \varphi_{i_1} \dots \varphi_{i_n}$. Then φ_w is defined on a subgroup of \tilde{N} .

Let

$$\mathcal{K}_n = \{g \in \mathsf{\Gamma} \mid arphi_w(g) ext{ is defined and equal to 1} \ ext{ for all } w \in \{0,1\}^* ext{ of length } n\}.$$

Not obvious, but $K_n \triangleleft \tilde{\Gamma}$ for all $n \in \mathbb{N}$. Let $K = \bigcup_{n=1}^{\infty} K_n$. The Grigorchuk-Machi group Γ is defined to be $\tilde{\Gamma}/K$. Remark: Let $N = \tilde{N}/K$. φ_0, φ_1 are constructed so that $\psi := (\varphi_0, \varphi_1) : N \to \Gamma \times \Gamma$ is injective.

Theorem (Grigorchuk '84)

The Grigorchuk-Machi group is of intermediate growth.

Grigorchuk and Machi show that $\Gamma \leq Homeo_+(\mathbb{Q})$, which is stronger than left-orderability. Strategy:

► Construct an auxiliary countably-generated group *Q*.

- Construct an auxiliary countably-generated group Q.
- Show that $\Gamma \hookrightarrow Q$.

- Construct an auxiliary countably-generated group Q.
- Show that $\Gamma \hookrightarrow Q$.
- Construct a left order ≤_Q on Q which is dense and has no least or greatest element.

- Construct an auxiliary countably-generated group Q.
- Show that $\Gamma \hookrightarrow Q$.
- Construct a left order ≤_Q on Q which is dense and has no least or greatest element.
- ▶ By Cantor's Theorem, (Q, \leq_Q) is order-isomorphic to (\mathbb{Q}, \leq) .
- $Q \curvearrowright Q$ by left translations.

- Construct an auxiliary countably-generated group Q.
- Show that $\Gamma \hookrightarrow Q$.
- Construct a left order ≤_Q on Q which is dense and has no least or greatest element.
- ▶ By Cantor's Theorem, (Q, \leq_Q) is order-isomorphic to (\mathbb{Q}, \leq) .
- $Q \curvearrowright Q$ by left translations.
- Push this through the order-isomorphism to get Q ~ Q faithfully by order-preserving maps.

- Construct an auxiliary countably-generated group Q.
- Show that $\Gamma \hookrightarrow Q$.
- Construct a left order ≤_Q on Q which is dense and has no least or greatest element.
- ▶ By Cantor's Theorem, (Q, \leq_Q) is order-isomorphic to (\mathbb{Q}, \leq) .

•
$$Q \curvearrowright Q$$
 by left translations.

- Push this through the order-isomorphism to get Q ~ Q faithfully by order-preserving maps.
- Since $\Gamma \hookrightarrow Q$, we have $\Gamma \leq \text{Homeo}_+(\mathbb{Q})$.

Grigorchuk and Machi show that $\Gamma \leq \text{Homeo}_+(\mathbb{Q})$, which is stronger than left-orderability. Strategy:

- Construct an auxiliary countably-generated group Q.
- Show that $\Gamma \hookrightarrow Q$.
- Construct a left order ≤_Q on Q which is dense and has no least or greatest element.
- ▶ By Cantor's Theorem, (Q, \leq_Q) is order-isomorphic to (\mathbb{Q}, \leq) .

•
$$Q \curvearrowright Q$$
 by left translations.

- Push this through the order-isomorphism to get Q ~ Q faithfully by order-preserving maps.
- Since $\Gamma \hookrightarrow Q$, we have $\Gamma \leq \text{Homeo}_+(\mathbb{Q})$.

Corollary

Every left order on Γ is Conradian (and one exists).

Construction of Q

Start with $\tilde{Q} = \langle a, b, c, d, \xi_1, \xi_2, \dots | \text{ (relations of } \tilde{\Gamma} \text{)}, [a, \xi_i] \text{ for all } i \rangle.$

Construction of Q

Start with $\tilde{Q} = \langle a, b, c, d, \xi_1, \xi_2, \dots |$ (relations of $\tilde{\Gamma}$), $[a, \xi_i]$ for all $i \rangle$. Let $\tilde{P} = \langle b, c, d, \xi_1, \xi_2, \dots, b^a, c^a, d^a, \xi_1^a, \xi_2^a, \dots \rangle$.

Construction of ${\it Q}$

Start with

$$\tilde{Q} = \langle a, b, c, d, \xi_1, \xi_2, \dots |$$
 (relations of $\tilde{\Gamma}$), $[a, \xi_i]$ for all $i \rangle$.
Let $\tilde{P} = \langle b, c, d, \xi_1, \xi_2, \dots, b^a, c^a, d^a, \xi_1^a, \xi_2^a, \dots \rangle$.
Define $\varphi_0, \varphi_1 : \tilde{P} \to \tilde{Q}$ as before on the generators
 b, c, d, b^a, c^a, d^a . But now, set

$$\varphi_{0} = \begin{cases} \xi_{n} & \mapsto 1 \\ \xi_{1}^{a} & \mapsto a \\ \xi_{n+1}^{a} & \mapsto \xi_{n} \end{cases} \qquad \qquad \varphi_{1} = \begin{cases} \xi_{1} & \mapsto a \\ \xi_{n+1} & \mapsto \xi_{n} \\ \xi_{n}^{a} & \mapsto 1 \end{cases}$$

Construction of Q

Start with

$$\tilde{Q} = \langle a, b, c, d, \xi_1, \xi_2, \dots |$$
 (relations of $\tilde{\Gamma}$), $[a, \xi_i]$ for all $i \rangle$.
Let $\tilde{P} = \langle b, c, d, \xi_1, \xi_2, \dots, b^a, c^a, d^a, \xi_1^a, \xi_2^a, \dots \rangle$.
Define $\varphi_0, \varphi_1 : \tilde{P} \to \tilde{Q}$ as before on the generators
 b, c, d, b^a, c^a, d^a . But now, set

$$\varphi_{0} = \begin{cases} \xi_{n} & \mapsto 1 \\ \xi_{1}^{a} & \mapsto a \\ \xi_{n+1}^{a} & \mapsto \xi_{n} \end{cases} \qquad \qquad \varphi_{1} = \begin{cases} \xi_{1} & \mapsto a \\ \xi_{n+1} & \mapsto \xi_{n} \\ \xi_{n}^{a} & \mapsto 1 \end{cases}$$

Define R_n similarly to K_n , then set $R = \bigcup_{n=1}^{\infty} R_n$ and $Q = \tilde{Q}/R$ and $P = \tilde{P}/R$.

Construction of Q

Start with

$$\tilde{Q} = \langle a, b, c, d, \xi_1, \xi_2, \dots |$$
 (relations of $\tilde{\Gamma}$), $[a, \xi_i]$ for all $i \rangle$.
Let $\tilde{P} = \langle b, c, d, \xi_1, \xi_2, \dots, b^a, c^a, d^a, \xi_1^a, \xi_2^a, \dots \rangle$.
Define $\varphi_0, \varphi_1 : \tilde{P} \to \tilde{Q}$ as before on the generators
 b, c, d, b^a, c^a, d^a . But now, set

$$\varphi_{0} = \begin{cases} \xi_{n} & \mapsto 1 \\ \xi_{1}^{a} & \mapsto a \\ \xi_{n+1}^{a} & \mapsto \xi_{n} \end{cases} \qquad \qquad \varphi_{1} = \begin{cases} \xi_{1} & \mapsto a \\ \xi_{n+1} & \mapsto \xi_{n} \\ \xi_{n}^{a} & \mapsto 1 \end{cases}$$

Define R_n similarly to K_n , then set $R = \bigcup_{n=1}^{\infty} R_n$ and $Q = \tilde{Q}/R$ and $P = \tilde{P}/R$. We have that $\tilde{Q}/\tilde{P} \cong Q/P \cong \langle a \rangle \cong \mathbb{Z}$.

Order the cosets of P by

 $\cdots < a^{-1}P < P < aP < \ldots$

Order the cosets of P by

$$\cdots < a^{-1}P < P < aP < \dots$$

• Order elements of $\langle b, c, d \rangle \cong \mathbb{Z}^3$.

Order the cosets of P by

$$\cdots < a^{-1}P < P < aP < \dots$$

• Order elements of $\langle b, c, d \rangle \cong \mathbb{Z}^3$.

Order the generators of Q by

$$1 < d < \cdots < \xi_2 < \xi_1 < c < b < a.$$

Order the cosets of P by

$$\cdots < a^{-1}P < P < aP < \ldots$$

• Order elements of $\langle b, c, d \rangle \cong \mathbb{Z}^3$.

Order the generators of Q by

$$1 < d < \cdots < \xi_2 < \xi_1 < c < b < a$$
.

Order arbitrary elements within each coset by common induction on the length of, and highest-index ξ_n appearing in, a word representing the element.

Order the cosets of P by

$$\cdots < a^{-1}P < P < aP < \dots$$

• Order elements of $\langle b, c, d \rangle \cong \mathbb{Z}^3$.

Order the generators of Q by

$$1 < d < \cdots < \xi_2 < \xi_1 < c < b < a$$
.

 Order arbitrary elements within each coset by common induction on the length of, and highest-index ξ_n appearing in, a word representing the element.

Then prove that the order is dense and left-invariant.

Thank You!

Thank You!

If you are from the U.S., happy Independence Day! Otherwise, happy 4th of July!