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The Free Monoid

Definition
Let A be a set. Then the free monoid on A, denoted A∗, is the set
of all words over the alphabet A. More formally, the set of all finite
sequences of elements of A.

For w ∈ A∗, the length of w is denoted |w |. The empty word ε is
defined to be the unique word of length 0.

If G is a group generated by a finite set S , then we can evaluate
words in (S ∪ S−1)∗ to elements of G . Notation: w =G g .

Definition
The word length of an element g ∈ G with respect to S is

|g |S = min{|w | | w =G g}.
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Growth of Groups

Definition
Let G be a group generated by a finite set S . The growth of G
with respect to S is the function γG ,S : N→ N given by

γG ,S(n) = |{g ∈ G | |g |S ≤ n}|.

Recall that up to the asymptotic equivalence discussed in Supun’s
talk, γG ,S is quasi-isometry invariant. In particular,

I γG ,S is independent of the choice of finite generating set S .
Therefore we drop S subscripts from now on.

I If G is commensurate to H (G ∼ H), then γG ∼ γH .

Exercise: γG×H ∼ γGγH .

Lemma (VIII.61,63)

If γG ∼ γ2
G , then there exists an α ∈ (0, 1) such that en

α � γG .
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The Infinite Rooted Binary Tree

Let T be the infinite rooted binary tree.

V (T ) = {0, 1}∗ and u ∼ w if u = w ′ or w = u′.

00

000 001 010 011 100 101 110 111

ε

01 10 11

0 1
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Automorphisms of T

00

000 001 010 011 100 101 110 111

ε

01 10 11

0 1

Let α ∈ Aut(T ).

Since α preserves degrees of vertices,
α fixes the root ε.

Since α preserves distances (to ε),
α(Ln) = Ln and α(Tn) = Tn.

Level by level, α independently switches
(s) or fixes (f ) the children of each vertex
w in the level.
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Automorphisms of T

s

s

f s s

s f

α

Let α ∈ Aut(T ).

Since α preserves degrees of vertices,
α fixes the root ε.

Since α preserves distances (to ε),
α(Ln) = Ln and α(Tn).

Level by level, α independently switches
(s) or fixes (f ) the children of each vertex
w in the level.



Automorphisms of T

s

s

f s s

s f

α
Level by level, α independently switches
(s) or fixes (f ) the children of each vertex
w in the level.

In particular, |Aut(T )| = 2ℵ0 .

Let Stn be the pointwise stabilizer of Tn.
Note:

I Aut(T )/Stn
∼= Aut(Tn), so

[Stn : Aut(T )] <∞.

I
⋂∞

n=1 Stn = {1}.
Therefore Aut(T ) is residually finite.
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Self-similarity of Aut(T)

s

s

f s s

s f

α

α0 α1

The action of α on the 0 and 1 subtrees
produce elements α0, α1 ∈ Aut(T ).

This gives us a homomorphism
ψ1 : α 7→ (α0, α1).

Similarly,

ψn : Aut(T )� Aut(T )2n

ψn : α 7→ (α0...0, . . . , α1...1)

We have ψ1 : Aut(T )� Aut(T )2 and
Ker(ψ1) ∼= Aut(T1).

ψ1|St1 : St1 → Aut(T )2 is an
isomorphism.

Therefore Aut(T ) ∼ Aut(T )2.

But Aut(T ) is uncountable!
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Grigorchuk’s Group Γ
Using self-similarity, we recursively define a, b, c , d ∈ Aut(T ).

“Base case:” a switches first level and does nothing else.

“Induction step:” b, c , d ∈ St1 and

b = (a, c) c = (a, d) d = (id, b)

f

f f f f f f f f

s

f f f

f f

a f

a c

f

a d

f

id b

b c d

Now let Γ = 〈a, b, c, d〉.
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Γ via a Deterministic Finite Automaton
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b(11) = 1c(1) = 11d(ε) = 11
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= 11c(0101)
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= 110001
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Self-similarity of Γ

Notation: gh = hgh−1, St1,Γ = St1 ∩ Γ.

Can check that 〈b, c , d , ba, ca, da〉 = St1,Γ, which has index 2 in Γ.

By recursive definition, ψ1 : St1,Γ → Γ2. Let ψ1 = (ϕ0, ϕ1). Can
check that

ϕ0 =



b 7→ a

c 7→ a

d 7→ 1

ba 7→ c

ca 7→ d

da 7→ b

ϕ1 =



b 7→ c

c 7→ d

d 7→ b

ba 7→ a

ca 7→ a

da 7→ 1

In particular, ϕ0 : St1 → Γ is surjective. Therefore Γ is infinite.
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Recall ψ1|St1 is injective.

Lemma (VIII.28)

[ψ1(St1,Γ) : Γ2] = 8.

Therefore Γ is commensurate to its square, and thus there exists
α ∈ (0, 1) such that en

α � γΓ.
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The Contracting Property

What about the upper bound?

Γ has the following contracting property. Let g ∈ St3,Γ. Then
ψ3 : g 7→ (g000, . . . , g111), and

|g000|+ · · ·+ |g111| ≤
3

4
|g |+ 8.

Lemma (VIII.62)

The contracting property implies that there exists a β ∈ (0, 1) such

that γΓ � en
β

.

Therefore for some 0 < α < β < 1,

en
α � γΓ � en

β

so Γ is a group of intermediate growth.
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Other Properties of Γ

Theorem (Bartholdi ’98, �2| Erschler, Zheng ’18, �1)

Let λ be the positive root of x3 − x2 − 2x − 4, λ ≈ .7674 . . .
For all ε > 0,

en
λ−ε �1 γΓ �2 en

λ
.

I 〈b, c , d〉 ∼= Z2 × Z2. Γ is 3-generated, but not 2-generated.

I Γ is not finitely presentable.
I Γ is torsion. Not obvious: Aut(T ) has elements of infinite

order (exercise). So,
I Γ is a 2-group.
I Γ is not orderable.
I Γ is not bounded torsion (⇐ Zelmanov: bounded torsion + rf
⇒ finite).

I Γ is amenable (⇐ subexp growth).
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The Grigorchuk-Machi Group

Can we get a group of intermediate growth which is also
orderable?

Yes! (Grigorchuk, Machi ’93).

The proof of left-orderability uses Cantor’s Theorem.

Theorem
If X is a countable set with a total order ≤X such that ≤X is
dense and contains no first or last element, then (X ,≤) is
order-isomorphic to (Q,≤).

Proof.
Exercise.
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The Grigorchuk-Machi Group

Let Γ̃ = 〈a, b, c , d | [a2, b], [a2, c], [a2, d ], [b, c], [b, d ], [c , d ]〉.

Let Ñ be the subgroup of Γ̃ generated by elements that can be
written so that the sum of the exponents of a is equal to zero.

Can check:

I Ñ C Γ̃.

I Ñ = 〈b, c , d , ba, ca, da〉.
I Γ̃/Ñ = 〈a〉 ∼= Z.

I Ñ ∼= Z3 ∗ Z3.
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Let Ñ be the subgroup of Γ̃ generated by elements that can be
written so that the sum of the exponents of a is equal to zero.

Can check:
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The Grigorchuk-Machi Group

Now establish homomorphisms ϕ0, ϕ1 : Ñ → Γ̃, as follows.

ϕ0 =



b 7→ a

c 7→ a

d 7→ 1

ba 7→ c

ca 7→ d

da 7→ b

ϕ1 =



b 7→ c

c 7→ d

d 7→ b

ba 7→ a

ca 7→ a

da 7→ 1

Note: the images of ϕ0, ϕ1 escape Ñ. For example ϕ0ϕ1(ba) is not
defined. However, ϕ0ϕ1 is defined on a subgroup of Ñ.
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defined.

However, ϕ0ϕ1 is defined on a subgroup of Ñ.
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The Grigorchuk-Machi Group

For each w = i1 . . . in ∈ {0, 1}∗, let ϕw = ϕi1 . . . ϕin . Then ϕw is
defined on a subgroup of Ñ.

Let

Kn = {g ∈ Γ | ϕw (g) is defined and equal to 1

for all w ∈ {0, 1}∗ of length n}.

Not obvious, but Kn C Γ̃ for all n ∈ N. Let K =
⋃∞

n=1 Kn.

The Grigorchuk-Machi group Γ is defined to be Γ̃/K .

Remark: Let N = Ñ/K . ϕ0, ϕ1 are constructed so that
ψ := (ϕ0, ϕ1) : N → Γ× Γ is injective.

Theorem (Grigorchuk ’84)

The Grigorchuk-Machi group is of intermediate growth.
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Remark: Let N = Ñ/K . ϕ0, ϕ1 are constructed so that
ψ := (ϕ0, ϕ1) : N → Γ× Γ is injective.

Theorem (Grigorchuk ’84)

The Grigorchuk-Machi group is of intermediate growth.



The Grigorchuk-Machi Group

For each w = i1 . . . in ∈ {0, 1}∗, let ϕw = ϕi1 . . . ϕin . Then ϕw is
defined on a subgroup of Ñ.
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Left-Orderability of Grigorchuk-Machi Group

Grigorchuk and Machi show that Γ 6 Homeo+(Q), which is
stronger than left-orderability. Strategy:

I Construct an auxiliary countably-generated group Q.

I Show that Γ ↪→ Q.

I Construct a left order ≤Q on Q which is dense and has no
least or greatest element.

I By Cantor’s Theorem, (Q,≤Q) is order-isomorphic to (Q,≤).

I Q y Q by left translations.

I Push this through the order-isomorphism to get Q y Q
faithfully by order-preserving maps.

I Since Γ ↪→ Q, we have Γ 6 Homeo+(Q).

Corollary

Every left order on Γ is Conradian (and one exists).
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Construction of Q

Start with
Q̃ = 〈a, b, c , d , ξ1, ξ2, . . . | (relations of Γ̃), [a, ξi ] for all i〉.

Let P̃ = 〈b, c , d , ξ1, ξ2, . . . , b
a, ca, da, ξa1, ξ

a
2, . . .〉.

Define ϕ0, ϕ1 : P̃ → Q̃ as before on the generators
b, c , d , ba, ca, da. But now, set

ϕ0 =


ξn 7→ 1

ξa1 7→ a

ξan+1 7→ ξn

ϕ1 =


ξ1 7→ a

ξn+1 7→ ξn

ξan 7→ 1

Define Rn similarly to Kn, then set R =
⋃∞

n=1 Rn and Q = Q̃/R
and P = P̃/R. We have that Q̃/P̃ ∼= Q/P ∼= 〈a〉 ∼= Z.
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Order on Q

I Order the cosets of P by

· · · < a−1P < P < aP < . . .

I Order elements of 〈b, c , d〉 ∼= Z3.

I Order the generators of Q by

1 < d < · · · < ξ2 < ξ1 < c < b < a.

I Order arbitrary elements within each coset by common
induction on the length of, and highest-index ξn appearing in,
a word representing the element.

Then prove that the order is dense and left-invariant.
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