The Grigorchuk and Grigorchuk-Machi Groups of Intermediate Growth

Levi Sledd
Vanderbilt University

$$
\text { July 20, } 2019
$$

References:

1. de la Harpe, Topics in Geometric Group Theory, Chapter VIII.
2. Grigorchuk, Machi, "A group of intermediate growth acting by homomorphisms on the real line."
If you want these slides you can email me:
levi.sledd@vanderbilt.edu

The Free Monoid

Definition
Let A be a set. Then the free monoid on A, denoted A^{*}, is the set of all words over the alphabet A. More formally, the set of all finite sequences of elements of A.

The Free Monoid

Definition

Let A be a set. Then the free monoid on A, denoted A^{*}, is the set of all words over the alphabet A. More formally, the set of all finite sequences of elements of A.
For $w \in A^{*}$, the length of w is denoted $|w|$. The empty word ε is defined to be the unique word of length 0 .

The Free Monoid

Definition

Let A be a set. Then the free monoid on A, denoted A^{*}, is the set of all words over the alphabet A. More formally, the set of all finite sequences of elements of A.
For $w \in A^{*}$, the length of w is denoted $|w|$. The empty word ε is defined to be the unique word of length 0 .

If G is a group generated by a finite set S, then we can evaluate words in $\left(S \cup S^{-1}\right)^{*}$ to elements of G. Notation: $w={ }_{G} g$.

The Free Monoid

Definition

Let A be a set. Then the free monoid on A, denoted A^{*}, is the set of all words over the alphabet A. More formally, the set of all finite sequences of elements of A.
For $w \in A^{*}$, the length of w is denoted $|w|$. The empty word ε is defined to be the unique word of length 0 .

If G is a group generated by a finite set S, then we can evaluate words in $\left(S \cup S^{-1}\right)^{*}$ to elements of G. Notation: $w={ }_{G} g$.

Definition

The word length of an element $g \in G$ with respect to S is

$$
|g|_{s}=\min \left\{|w| \mid w={ }_{G} g\right\} .
$$

Growth of Groups

Definition

Let G be a group generated by a finite set S. The growth of G with respect to S is the function $\gamma_{G, S}: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
\gamma_{G, S}(n)=\left|\left\{\left.g \in G| | g\right|_{S} \leq n\right\}\right|
$$

Growth of Groups

Definition

Let G be a group generated by a finite set S. The growth of G with respect to S is the function $\gamma_{G, S}: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
\gamma_{G, S}(n)=\left|\left\{\left.g \in G| | g\right|_{s} \leq n\right\}\right|
$$

Recall that up to the asymptotic equivalence discussed in Supun's talk, $\gamma_{G, S}$ is quasi-isometry invariant. In particular,

Growth of Groups

Definition

Let G be a group generated by a finite set S. The growth of G with respect to S is the function $\gamma_{G, S}: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
\gamma_{G, S}(n)=\left|\left\{\left.g \in G| | g\right|_{S} \leq n\right\}\right|
$$

Recall that up to the asymptotic equivalence discussed in Supun's talk, $\gamma_{G, S}$ is quasi-isometry invariant. In particular,

- $\gamma_{G, S}$ is independent of the choice of finite generating set S. Therefore we drop S subscripts from now on.

Growth of Groups

Definition

Let G be a group generated by a finite set S. The growth of G with respect to S is the function $\gamma_{G, S}: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
\gamma_{G, S}(n)=\left|\left\{\left.g \in G| | g\right|_{s} \leq n\right\}\right| .
$$

Recall that up to the asymptotic equivalence discussed in Supun's talk, $\gamma_{G, S}$ is quasi-isometry invariant. In particular,

- $\gamma_{G, S}$ is independent of the choice of finite generating set S.

Therefore we drop S subscripts from now on.

- If G is commensurate to $H(G \sim H)$, then $\gamma_{G} \sim \gamma_{H}$.

Growth of Groups

Definition

Let G be a group generated by a finite set S. The growth of G with respect to S is the function $\gamma_{G, S}: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
\gamma_{G, S}(n)=\left|\left\{\left.g \in G| | g\right|_{S} \leq n\right\}\right| .
$$

Recall that up to the asymptotic equivalence discussed in Supun's talk, $\gamma_{G, S}$ is quasi-isometry invariant. In particular,

- $\gamma_{G, S}$ is independent of the choice of finite generating set S.

Therefore we drop S subscripts from now on.

- If G is commensurate to $H(G \sim H)$, then $\gamma_{G} \sim \gamma_{H}$.

Exercise: $\gamma_{G \times H} \sim \gamma_{G} \gamma_{H}$.

Growth of Groups

Definition

Let G be a group generated by a finite set S. The growth of G with respect to S is the function $\gamma_{G, S}: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
\gamma_{G, S}(n)=\left|\left\{\left.g \in G| | g\right|_{S} \leq n\right\}\right| .
$$

Recall that up to the asymptotic equivalence discussed in Supun's talk, $\gamma_{G, S}$ is quasi-isometry invariant. In particular,

- $\gamma_{G, S}$ is independent of the choice of finite generating set S.

Therefore we drop S subscripts from now on.

- If G is commensurate to $H(G \sim H)$, then $\gamma_{G} \sim \gamma_{H}$.

Exercise: $\gamma_{G \times H} \sim \gamma_{G} \gamma_{H}$.
Lemma (VIII.61,63)
If $\gamma_{G} \sim \gamma_{G}^{2}$, then there exists an $\alpha \in(0,1)$ such that $e^{n^{\alpha}} \preceq \gamma_{G}$.

The Infinite Rooted Binary Tree

Let T be the infinite rooted binary tree.

The Infinite Rooted Binary Tree

Let T be the infinite rooted binary tree.
$V(T)=\{0,1\}^{*}$ and $u \sim w$ if $u=w^{\prime}$ or $w=u^{\prime}$.

The Infinite Rooted Binary Tree

Let T be the infinite rooted binary tree.
$V(T)=\{0,1\}^{*}$ and $u \sim w$ if $u=w^{\prime}$ or $w=u^{\prime}$.

Automorphisms of T

Automorphisms of T

Let $\alpha \in \operatorname{Aut}(T)$.
Since α preserves degrees of vertices, α fixes the root ε.

Automorphisms of T

Let $\alpha \in \operatorname{Aut}(T)$.
Since α preserves degrees of vertices, α fixes the root ε.

Since α preserves distances (to ε), $\alpha\left(L_{n}\right)=L_{n}$ and $\alpha\left(T_{n}\right)=T_{n}$.

Automorphisms of T

Let $\alpha \in \operatorname{Aut}(T)$.
Since α preserves degrees of vertices, α fixes the root ε.

Since α preserves distances (to ε), $\alpha\left(L_{n}\right)=L_{n}$ and $\alpha\left(T_{n}\right)=T_{n}$.

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

Automorphisms of T

Let $\alpha \in \operatorname{Aut}(T)$.
Since α preserves degrees of vertices, α fixes the root ε.

Since α preserves distances (to ε), $\alpha\left(L_{n}\right)=L_{n}$ and $\alpha\left(T_{n}\right)$.

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

Automorphisms of T

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

Automorphisms of T

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

In particular, $|\operatorname{Aut}(T)|=2^{\aleph_{0}}$.

Automorphisms of T

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

In particular, $|\operatorname{Aut}(T)|=2^{\aleph_{0}}$.
Let St_{n} be the pointwise stabilizer of T_{n}. Note:

- $\operatorname{Aut}(T) / \mathrm{St}_{\mathrm{n}} \cong \operatorname{Aut}\left(T_{n}\right)$, so $\left[\mathrm{St}_{\mathrm{n}}: \operatorname{Aut}(T)\right]<\infty$.

Automorphisms of T

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

In particular, $|\operatorname{Aut}(T)|=2^{\aleph_{0}}$.
Let St_{n} be the pointwise stabilizer of T_{n}. Note:

- $\operatorname{Aut}(T) / \mathrm{St}_{\mathrm{n}} \cong \operatorname{Aut}\left(T_{n}\right)$, so $\left[\mathrm{St}_{\mathrm{n}}: \operatorname{Aut}(T)\right]<\infty$.
- $\bigcap_{n=1}^{\infty} \operatorname{St}_{n}=\{1\}$.

Automorphisms of T

Level by level, α independently switches (s) or fixes (f) the children of each vertex w in the level.

In particular, $|\operatorname{Aut}(T)|=2^{\aleph_{0}}$.
Let St_{n} be the pointwise stabilizer of T_{n}. Note:

- $\operatorname{Aut}(T) / \mathrm{St}_{\mathrm{n}} \cong \operatorname{Aut}\left(T_{n}\right)$, so $\left[\mathrm{St}_{\mathrm{n}}: \operatorname{Aut}(T)\right]<\infty$.
- $\bigcap_{n=1}^{\infty} \operatorname{St}_{n}=\{1\}$.

Therefore $\operatorname{Aut}(T)$ is residually finite.

Self-similarity of Aut(T)

The action of α on the 0 and 1 subtrees produce elements $\alpha_{0}, \alpha_{1} \in \operatorname{Aut}(T)$.

Self-similarity of Aut(T)

The action of α on the 0 and 1 subtrees produce elements $\alpha_{0}, \alpha_{1} \in \operatorname{Aut}(T)$.

This gives us a homomorphism $\psi_{1}: \alpha \mapsto\left(\alpha_{0}, \alpha_{1}\right)$.

Self-similarity of $\operatorname{Aut}(T)$

The action of α on the 0 and 1 subtrees produce elements $\alpha_{0}, \alpha_{1} \in \operatorname{Aut}(T)$.

This gives us a homomorphism $\psi_{1}: \alpha \mapsto\left(\alpha_{0}, \alpha_{1}\right)$.

Similarly,

$$
\begin{aligned}
& \psi_{n}: \operatorname{Aut}(T) \rightarrow \operatorname{Aut}(T)^{2^{n}} \\
& \psi_{n}: \alpha \mapsto\left(\alpha_{0 \ldots 0}, \ldots, \alpha_{1 \ldots 1}\right)
\end{aligned}
$$

Self-similarity of $\operatorname{Aut}(\mathrm{T})$

The action of α on the 0 and 1 subtrees produce elements $\alpha_{0}, \alpha_{1} \in \operatorname{Aut}(T)$.

This gives us a homomorphism $\psi_{1}: \alpha \mapsto\left(\alpha_{0}, \alpha_{1}\right)$.

Similarly,

$$
\begin{aligned}
& \psi_{n}: \operatorname{Aut}(T) \rightarrow \operatorname{Aut}(T)^{2^{n}} \\
& \psi_{n}: \alpha \mapsto\left(\alpha_{0 \ldots 0}, \ldots, \alpha_{1 \ldots 1}\right)
\end{aligned}
$$

We have $\psi_{1}: \operatorname{Aut}(T) \rightarrow \operatorname{Aut}(T)^{2}$ and $\operatorname{Ker}\left(\psi_{1}\right) \cong \operatorname{Aut}\left(T_{1}\right)$.

Self-similarity of $\operatorname{Aut}(\mathrm{T})$

The action of α on the 0 and 1 subtrees produce elements $\alpha_{0}, \alpha_{1} \in \operatorname{Aut}(T)$.

This gives us a homomorphism $\psi_{1}: \alpha \mapsto\left(\alpha_{0}, \alpha_{1}\right)$.

Similarly,

$$
\begin{aligned}
& \psi_{n}: \operatorname{Aut}(T) \rightarrow \operatorname{Aut}(T)^{2^{n}} \\
& \psi_{n}: \alpha \mapsto\left(\alpha_{0 \ldots 0}, \ldots, \alpha_{1 \ldots 1}\right)
\end{aligned}
$$

We have $\psi_{1}: \operatorname{Aut}(T) \rightarrow \operatorname{Aut}(T)^{2}$ and $\operatorname{Ker}\left(\psi_{1}\right) \cong \operatorname{Aut}\left(T_{1}\right)$.
$\left.\psi_{1}\right|_{\mathrm{St}_{1}}: \mathrm{St}_{1} \rightarrow \operatorname{Aut}(T)^{2}$ is an isomorphism.

Self-similarity of $\operatorname{Aut}(\mathrm{T})$

The action of α on the 0 and 1 subtrees produce elements $\alpha_{0}, \alpha_{1} \in \operatorname{Aut}(T)$.

This gives us a homomorphism $\psi_{1}: \alpha \mapsto\left(\alpha_{0}, \alpha_{1}\right)$.

Similarly,

$$
\begin{aligned}
& \psi_{n}: \operatorname{Aut}(T) \rightarrow \operatorname{Aut}(T)^{2^{n}} \\
& \psi_{n}: \alpha \mapsto\left(\alpha_{0 \ldots 0}, \ldots, \alpha_{1 \ldots 1}\right)
\end{aligned}
$$

We have $\psi_{1}: \operatorname{Aut}(T) \rightarrow \operatorname{Aut}(T)^{2}$ and $\operatorname{Ker}\left(\psi_{1}\right) \cong \operatorname{Aut}\left(T_{1}\right)$.
$\left.\psi_{1}\right|_{\mathrm{St}_{1}}: \operatorname{St}_{1} \rightarrow \operatorname{Aut}(T)^{2}$ is an isomorphism.
Therefore $\operatorname{Aut}(T) \sim \operatorname{Aut}(T)^{2}$.

Self-similarity of $\operatorname{Aut}(\mathrm{T})$

The action of α on the 0 and 1 subtrees produce elements $\alpha_{0}, \alpha_{1} \in \operatorname{Aut}(T)$.

This gives us a homomorphism $\psi_{1}: \alpha \mapsto\left(\alpha_{0}, \alpha_{1}\right)$.

Similarly,

$$
\begin{aligned}
& \psi_{n}: \operatorname{Aut}(T) \rightarrow \operatorname{Aut}(T)^{2^{n}} \\
& \psi_{n}: \alpha \mapsto\left(\alpha_{0 \ldots 0}, \ldots, \alpha_{1 \ldots 1}\right)
\end{aligned}
$$

We have $\psi_{1}: \operatorname{Aut}(T) \rightarrow \operatorname{Aut}(T)^{2}$ and $\operatorname{Ker}\left(\psi_{1}\right) \cong \operatorname{Aut}\left(T_{1}\right)$.
$\left.\psi_{1}\right|_{\mathrm{St}_{1}}: \operatorname{St}_{1} \rightarrow \operatorname{Aut}(T)^{2}$ is an isomorphism.
Therefore $\operatorname{Aut}(T) \sim \operatorname{Aut}(T)^{2}$.
But $\operatorname{Aut}(T)$ is uncountable!

Grigorchuk's Group 「

Using self-similarity, we recursively define $a, b, c, d \in \operatorname{Aut}(T)$.

Grigorchuk's Group 「

Using self-similarity, we recursively define $a, b, c, d \in \operatorname{Aut}(T)$.
"Base case:" a switches first level and does nothing else.

Grigorchuk's Group 「

Using self-similarity, we recursively define $a, b, c, d \in \operatorname{Aut}(T)$.
"Base case:" a switches first level and does nothing else.
"Induction step:" $b, c, d \in \mathrm{St}_{1}$ and

$$
b=(a, c) \quad c=(a, d) \quad d=(\mathrm{id}, b)
$$

Grigorchuk's Group 「

Using self-similarity, we recursively define $a, b, c, d \in \operatorname{Aut}(T)$.
"Base case:" a switches first level and does nothing else.
"Induction step:" $b, c, d \in \mathrm{St}_{1}$ and

$$
b=(a, c) \quad c=(a, d) \quad d=(\mathrm{id}, b)
$$

! ! ! !
! ! ! !

Grigorchuk's Group 「

Using self-similarity, we recursively define $a, b, c, d \in \operatorname{Aut}(T)$.
"Base case:" a switches first level and does nothing else.
"Induction step:" $b, c, d \in \mathrm{St}_{1}$ and

$$
b=(a, c) \quad c=(a, d) \quad d=(\mathrm{id}, b)
$$

$\begin{array}{llll}\square & ■ & ■ & ■ \\ ■ & ■ & \square & \square\end{array}$
$\because \quad . \quad!$
Now let $\Gamma=\langle a, b, c, d\rangle$.

「 via a Deterministic Finite Automaton

「 via a Deterministic Finite Automaton

$$
b(11)=1 c(1)=11 d(\varepsilon)=11
$$

「 via a Deterministic Finite Automaton

$$
b(11)=1 c(1)=11 d(\varepsilon)=11
$$

$$
\begin{aligned}
d(110101) & =1 b(10101) \\
& =11 c(0101) \\
& =110 a(101) \\
& =1100 \mathrm{id}(01) \\
& =11000 \mathrm{id}(1) \\
& =110001 \mathrm{id}(\varepsilon) \\
& =110001
\end{aligned}
$$

Self-similarity of Γ

Notation: $g^{h}=h g h^{-1}, \mathrm{St}_{1, \Gamma}=\mathrm{St}_{1} \cap \Gamma$.

Self-similarity of Γ

Notation: $g^{h}=h g h^{-1}, \mathrm{St}_{1, \Gamma}=\mathrm{St}_{1} \cap \Gamma$.
Can check that $\left\langle b, c, d, b^{a}, c^{a}, d^{a}\right\rangle=\mathrm{St}_{1, \Gamma}$, which has index 2 in Γ.

Self-similarity of Γ

Notation: $g^{h}=h g h^{-1}, \mathrm{St}_{1, \Gamma}=\mathrm{St}_{1} \cap \Gamma$.
Can check that $\left\langle b, c, d, b^{a}, c^{a}, d^{a}\right\rangle=\mathrm{St}_{1, \Gamma}$, which has index 2 in Γ.
By recursive definition, $\psi_{1}: \mathrm{St}_{1, \Gamma} \rightarrow \Gamma^{2}$.

Self-similarity of Γ

Notation: $g^{h}=h g h^{-1}, \mathrm{St}_{1, \Gamma}=\mathrm{St}_{1} \cap \Gamma$.
Can check that $\left\langle b, c, d, b^{a}, c^{a}, d^{a}\right\rangle=\mathrm{St}_{1, \Gamma}$, which has index 2 in Γ.
By recursive definition, $\psi_{1}: \mathrm{St}_{1, \Gamma} \rightarrow \Gamma^{2}$. Let $\psi_{1}=\left(\varphi_{0}, \varphi_{1}\right)$. Can check that

$$
\varphi_{0}= \begin{cases}b & \mapsto a \\ c & \mapsto a \\ d & \mapsto 1 \\ b^{a} & \mapsto c \\ c^{a} & \mapsto d \\ d^{a} & \mapsto b\end{cases}
$$

$$
\varphi_{1}= \begin{cases}b & \mapsto c \\ c & \mapsto d \\ d & \mapsto b \\ b^{a} & \mapsto a \\ c^{a} & \mapsto a \\ d^{a} & \mapsto 1\end{cases}
$$

Self-similarity of Γ

Notation: $g^{h}=h g h^{-1}, \mathrm{St}_{1, \Gamma}=\mathrm{St}_{1} \cap \Gamma$.
Can check that $\left\langle b, c, d, b^{a}, c^{a}, d^{a}\right\rangle=\mathrm{St}_{1, \Gamma}$, which has index 2 in Γ.
By recursive definition, $\psi_{1}: \mathrm{St}_{1, \Gamma} \rightarrow \Gamma^{2}$. Let $\psi_{1}=\left(\varphi_{0}, \varphi_{1}\right)$. Can check that

$$
\varphi_{0}=\left\{\begin{array}{ll}
b & \mapsto a \\
c & \mapsto a \\
d & \mapsto 1 \\
b^{a} & \mapsto c \\
c^{a} & \mapsto d \\
d^{a} & \mapsto b
\end{array} \quad \varphi_{1}= \begin{cases}b & \mapsto c \\
c & \mapsto d \\
d & \mapsto b \\
b^{a} & \mapsto a \\
c^{a} & \mapsto a \\
d^{a} & \mapsto 1\end{cases}\right.
$$

In particular, $\varphi_{0}: \mathrm{St}_{1} \rightarrow \Gamma$ is surjective. Therefore Γ is infinite.

Recall $\psi_{1} \mid \mathrm{St}_{1}$ is injective.
Lemma (VIII.28)
$\left[\psi_{1}\left(\mathrm{St}_{1, \Gamma}\right): \Gamma^{2}\right]=8$.

Recall $\psi_{1} \mid \mathrm{St}_{1}$ is injective.
Lemma (VIII.28)
$\left[\psi_{1}\left(\mathrm{St}_{1, \Gamma}\right): \Gamma^{2}\right]=8$.
Therefore Γ is commensurate to its square, and thus there exists $\alpha \in(0,1)$ such that $e^{n^{\alpha}} \preceq \gamma_{\Gamma}$.

The Contracting Property

What about the upper bound?

The Contracting Property

What about the upper bound?
Γ has the following contracting property.

The Contracting Property

What about the upper bound?
Γ has the following contracting property. Let $g \in \mathrm{St}_{3, \Gamma}$. Then $\psi_{3}: g \mapsto\left(g_{000}, \ldots, g_{111}\right)$, and

$$
\left|g_{000}\right|+\cdots+\left|g_{111}\right| \leq \frac{3}{4}|g|+8
$$

The Contracting Property

What about the upper bound?
Γ has the following contracting property. Let $g \in \mathrm{St}_{3, \Gamma}$. Then $\psi_{3}: g \mapsto\left(g_{000}, \ldots, g_{111}\right)$, and

$$
\left|g_{000}\right|+\cdots+\left|g_{111}\right| \leq \frac{3}{4}|g|+8
$$

Lemma (VIII.62)

The contracting property implies that there exists a $\beta \in(0,1)$ such that $\gamma_{\Gamma} \preceq e^{n^{\beta}}$.

The Contracting Property

What about the upper bound?
Γ has the following contracting property. Let $g \in \mathrm{St}_{3, \Gamma}$. Then $\psi_{3}: g \mapsto\left(g_{000}, \ldots, g_{111}\right)$, and

$$
\left|g_{000}\right|+\cdots+\left|g_{111}\right| \leq \frac{3}{4}|g|+8
$$

Lemma (VIII.62)

The contracting property implies that there exists a $\beta \in(0,1)$ such that $\gamma_{\Gamma} \preceq e^{n^{\beta}}$.

Therefore for some $0<\alpha<\beta<1$,

$$
e^{n^{\alpha}} \preceq \gamma_{\Gamma} \preceq e^{n^{\beta}}
$$

so Γ is a group of intermediate growth.

Other Properties of Γ

Other Properties of Γ

Theorem (Bartholdi '98, $\preceq_{2} \mid$ Erschler, Zheng '18, \preceq_{1})
Let λ be the positive root of $x^{3}-x^{2}-2 x-4, \lambda \approx .7674 \ldots$
For all $\varepsilon>0$,

$$
e^{n^{\lambda-\varepsilon}} \preceq_{1} \gamma_{\Gamma} \preceq_{2} e^{n^{\lambda}} .
$$

Other Properties of Γ

Theorem (Bartholdi '98, $\preceq_{2} \mid$ Erschler, Zheng '18, \preceq_{1})
Let λ be the positive root of $x^{3}-x^{2}-2 x-4, \lambda \approx .7674 \ldots$
For all $\varepsilon>0$,

$$
e^{n^{\lambda-\varepsilon}} \preceq_{1} \gamma_{\Gamma} \preceq_{2} e^{n^{\lambda}}
$$

- $\langle b, c, d\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Γ is 3-generated, but not 2-generated.

Other Properties of Γ

Theorem (Bartholdi '98, $\preceq_{2} \mid$ Erschler, Zheng '18, \preceq_{1})
Let λ be the positive root of $x^{3}-x^{2}-2 x-4, \lambda \approx .7674 \ldots$
For all $\varepsilon>0$,

$$
e^{n^{\lambda-\varepsilon}} \preceq_{1} \gamma_{\Gamma} \preceq_{2} e^{n^{\lambda}}
$$

- $\langle b, c, d\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Γ is 3-generated, but not 2-generated.
- Γ is not finitely presentable.

Other Properties of Γ

Theorem (Bartholdi '98, $\preceq_{2} \mid$ Erschler, Zheng '18, \preceq_{1})
Let λ be the positive root of $x^{3}-x^{2}-2 x-4, \lambda \approx .7674 \ldots$
For all $\varepsilon>0$,

$$
e^{n^{\lambda-\varepsilon}} \preceq_{1} \gamma_{\Gamma} \preceq_{2} e^{n^{\lambda}}
$$

- $\langle b, c, d\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Γ is 3-generated, but not 2-generated.
- Γ is not finitely presentable.
- Γ is torsion.

Other Properties of Γ

Theorem (Bartholdi '98, $\preceq_{2} \mid$ Erschler, Zheng '18, \preceq_{1})
Let λ be the positive root of $x^{3}-x^{2}-2 x-4, \lambda \approx .7674 \ldots$
For all $\varepsilon>0$,

$$
e^{n^{\lambda-\varepsilon}} \preceq_{1} \gamma_{\Gamma} \preceq_{2} e^{n^{\lambda}}
$$

$-\langle b, c, d\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Γ is 3-generated, but not 2-generated.

- Γ is not finitely presentable.
- Γ is torsion. Not obvious: Aut (T) has elements of infinite order (exercise).

Other Properties of Γ

Theorem（Bartholdi＇98，$\preceq_{2} \mid$ Erschler，Zheng＇18，\preceq_{1} ）
Let λ be the positive root of $x^{3}-x^{2}-2 x-4, \lambda \approx .7674 \ldots$
For all $\varepsilon>0$ ，

$$
e^{n^{\lambda-\varepsilon}} \preceq_{1} \gamma_{\Gamma} \preceq_{2} e^{n^{\lambda}}
$$

－$\langle b, c, d\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ ．Γ is 3－generated，but not 2－generated．
－Γ is not finitely presentable．
－「 is torsion．Not obvious：Aut (T) has elements of infinite order（exercise）．So，
－「 is a 2 －group．
－Γ is not orderable．
－「 is not bounded torsion（ \Leftarrow Zelmanov：bounded torsion +rf \Rightarrow finite）．
－Γ is amenable $(\Leftarrow$ subexp growth $)$ ．

The Grigorchuk-Machi Group

Can we get a group of intermediate growth which is also orderable?

The Grigorchuk-Machi Group

Can we get a group of intermediate growth which is also orderable? Yes! (Grigorchuk, Machi '93).

The Grigorchuk-Machi Group

Can we get a group of intermediate growth which is also orderable? Yes! (Grigorchuk, Machi '93).

The proof of left-orderability uses Cantor's Theorem.

The Grigorchuk-Machi Group

Can we get a group of intermediate growth which is also orderable? Yes! (Grigorchuk, Machi '93).

The proof of left-orderability uses Cantor's Theorem.
Theorem
If X is a countable set with a total order $\leq x$ such that \leq_{x} is dense and contains no first or last element, then (X, \leq) is order-isomorphic to (\mathbb{Q}, \leq).

Proof.
Exercise.

The Grigorchuk-Machi Group

$$
\text { Let } \tilde{\Gamma}=\left\langle a, b, c, d \mid\left[a^{2}, b\right],\left[a^{2}, c\right],\left[a^{2}, d\right],[b, c],[b, d],[c, d]\right\rangle \text {. }
$$

The Grigorchuk-Machi Group

Let $\tilde{\Gamma}=\left\langle a, b, c, d \mid\left[a^{2}, b\right],\left[a^{2}, c\right],\left[a^{2}, d\right],[b, c],[b, d],[c, d]\right\rangle$.
Let \tilde{N} be the subgroup of $\tilde{\Gamma}$ generated by elements that can be written so that the sum of the exponents of a is equal to zero.

The Grigorchuk-Machi Group

Let $\tilde{\Gamma}=\left\langle a, b, c, d \mid\left[a^{2}, b\right],\left[a^{2}, c\right],\left[a^{2}, d\right],[b, c],[b, d],[c, d]\right\rangle$.
Let \tilde{N} be the subgroup of $\tilde{\Gamma}$ generated by elements that can be written so that the sum of the exponents of a is equal to zero.

Can check:

- $\tilde{N} \triangleleft \tilde{\Gamma}$.

The Grigorchuk-Machi Group

Let $\tilde{\Gamma}=\left\langle a, b, c, d \mid\left[a^{2}, b\right],\left[a^{2}, c\right],\left[a^{2}, d\right],[b, c],[b, d],[c, d]\right\rangle$.
Let \tilde{N} be the subgroup of $\tilde{\Gamma}$ generated by elements that can be written so that the sum of the exponents of a is equal to zero.

Can check:

- $\tilde{N} \triangleleft \tilde{\Gamma}$.
- $\tilde{N}=\left\langle b, c, d, b^{a}, c^{a}, d^{a}\right\rangle$.

The Grigorchuk-Machi Group

Let $\tilde{\Gamma}=\left\langle a, b, c, d \mid\left[a^{2}, b\right],\left[a^{2}, c\right],\left[a^{2}, d\right],[b, c],[b, d],[c, d]\right\rangle$.
Let \tilde{N} be the subgroup of $\tilde{\Gamma}$ generated by elements that can be written so that the sum of the exponents of a is equal to zero.

Can check:

- $\tilde{N} \triangleleft \tilde{\Gamma}$.
- $\tilde{N}=\left\langle b, c, d, b^{a}, c^{a}, d^{a}\right\rangle$.
- $\tilde{\Gamma} / \tilde{N}=\langle a\rangle \cong \mathbb{Z}$.
- $\tilde{N} \cong \mathbb{Z}^{3} * \mathbb{Z}^{3}$.

The Grigorchuk-Machi Group

Let $\tilde{\Gamma}=\left\langle a, b, c, d \mid\left[a^{2}, b\right],\left[a^{2}, c\right],\left[a^{2}, d\right],[b, c],[b, d],[c, d]\right\rangle$.
Let \tilde{N} be the subgroup of $\tilde{\Gamma}$ generated by elements that can be written so that the sum of the exponents of a is equal to zero.

Can check:

- $\tilde{N} \triangleleft \tilde{\Gamma}$.
- $\tilde{N}=\left\langle b, c, d, b^{a}, c^{a}, d^{a}\right\rangle$.
- $\tilde{\Gamma} / \tilde{N}=\langle a\rangle \cong \mathbb{Z}$.
- $\tilde{N} \cong \mathbb{Z}^{3} * \mathbb{Z}^{3}$.

The Grigorchuk-Machi Group

Now establish homomorphisms $\varphi_{0}, \varphi_{1}: \tilde{N} \rightarrow \tilde{\Gamma}$, as follows.

The Grigorchuk-Machi Group

Now establish homomorphisms $\varphi_{0}, \varphi_{1}: \tilde{N} \rightarrow \tilde{\Gamma}$, as follows.

$$
\varphi_{0}= \begin{cases}b & \mapsto a \\ c & \mapsto a \\ d & \mapsto 1 \\ b^{a} & \mapsto c \\ c^{a} & \mapsto d \\ d^{a} & \mapsto b\end{cases}
$$

$$
\varphi_{1}= \begin{cases}b & \mapsto c \\ c & \mapsto d \\ d & \mapsto b \\ b^{a} & \mapsto a \\ c^{a} & \mapsto a \\ d^{a} & \mapsto 1\end{cases}
$$

The Grigorchuk-Machi Group

Now establish homomorphisms $\varphi_{0}, \varphi_{1}: \tilde{N} \rightarrow \tilde{\Gamma}$, as follows.

$$
\varphi_{0}= \begin{cases}b & \mapsto a \\ c & \mapsto a \\ d & \mapsto 1 \\ b^{a} & \mapsto c \\ c^{a} & \mapsto d \\ d^{a} & \mapsto b\end{cases}
$$

$$
\varphi_{1}= \begin{cases}b & \mapsto c \\ c & \mapsto d \\ d & \mapsto b \\ b^{a} & \mapsto a \\ c^{a} & \mapsto a \\ d^{a} & \mapsto 1\end{cases}
$$

Note: the images of φ_{0}, φ_{1} escape \tilde{N}. For example $\varphi_{0} \varphi_{1}\left(b^{a}\right)$ is not defined.

The Grigorchuk-Machi Group

Now establish homomorphisms $\varphi_{0}, \varphi_{1}: \tilde{N} \rightarrow \tilde{\Gamma}$, as follows.

$$
\varphi_{0}= \begin{cases}b & \mapsto a \\ c & \mapsto a \\ d & \mapsto 1 \\ b^{a} & \mapsto c \\ c^{a} & \mapsto d \\ d^{a} & \mapsto b\end{cases}
$$

$$
\varphi_{1}= \begin{cases}b & \mapsto c \\ c & \mapsto d \\ d & \mapsto b \\ b^{a} & \mapsto a \\ c^{a} & \mapsto a \\ d^{a} & \mapsto 1\end{cases}
$$

Note: the images of φ_{0}, φ_{1} escape \tilde{N}. For example $\varphi_{0} \varphi_{1}\left(b^{a}\right)$ is not defined. However, $\varphi_{0} \varphi_{1}$ is defined on a subgroup of \tilde{N}.

The Grigorchuk-Machi Group

For each $w=i_{1} \ldots i_{n} \in\{0,1\}^{*}$, let $\varphi_{w}=\varphi_{i_{1}} \ldots \varphi_{i_{n}}$. Then φ_{w} is defined on a subgroup of \tilde{N}.

The Grigorchuk-Machi Group

For each $w=i_{1} \ldots i_{n} \in\{0,1\}^{*}$, let $\varphi_{w}=\varphi_{i_{1}} \ldots \varphi_{i_{n}}$. Then φ_{w} is defined on a subgroup of \tilde{N}.

Let

$$
\begin{array}{r}
K_{n}=\left\{g \in \Gamma \mid \varphi_{w}(g) \text { is defined and equal to } 1\right. \\
\text { for all } \left.w \in\{0,1\}^{*} \text { of length } n\right\} .
\end{array}
$$

The Grigorchuk-Machi Group

For each $w=i_{1} \ldots i_{n} \in\{0,1\}^{*}$, let $\varphi_{w}=\varphi_{i_{1}} \ldots \varphi_{i_{n}}$. Then φ_{w} is defined on a subgroup of \tilde{N}.

Let

$$
\begin{array}{r}
K_{n}=\left\{g \in \Gamma \mid \varphi_{w}(g) \text { is defined and equal to } 1\right. \\
\text { for all } \left.w \in\{0,1\}^{*} \text { of length } n\right\} .
\end{array}
$$

Not obvious, but $K_{n} \triangleleft \tilde{\Gamma}$ for all $n \in \mathbb{N}$. Let $K=\bigcup_{n=1}^{\infty} K_{n}$.

The Grigorchuk-Machi Group

For each $w=i_{1} \ldots i_{n} \in\{0,1\}^{*}$, let $\varphi_{w}=\varphi_{i_{1}} \ldots \varphi_{i_{n}}$. Then φ_{w} is defined on a subgroup of \tilde{N}.

Let

$$
\begin{array}{r}
K_{n}=\left\{g \in \Gamma \mid \varphi_{w}(g) \text { is defined and equal to } 1\right. \\
\text { for all } \left.w \in\{0,1\}^{*} \text { of length } n\right\} .
\end{array}
$$

Not obvious, but $K_{n} \triangleleft \tilde{\Gamma}$ for all $n \in \mathbb{N}$. Let $K=\bigcup_{n=1}^{\infty} K_{n}$. The Grigorchuk-Machi group Γ is defined to be $\tilde{\Gamma} / K$.

The Grigorchuk-Machi Group

For each $w=i_{1} \ldots i_{n} \in\{0,1\}^{*}$, let $\varphi_{w}=\varphi_{i_{1}} \ldots \varphi_{i_{n}}$. Then φ_{w} is defined on a subgroup of \tilde{N}.

Let

$$
\begin{array}{r}
K_{n}=\left\{g \in \Gamma \mid \varphi_{w}(g) \text { is defined and equal to } 1\right. \\
\text { for all } \left.w \in\{0,1\}^{*} \text { of length } n\right\} .
\end{array}
$$

Not obvious, but $K_{n} \triangleleft \tilde{\Gamma}$ for all $n \in \mathbb{N}$. Let $K=\bigcup_{n=1}^{\infty} K_{n}$.
The Grigorchuk-Machi group Γ is defined to be $\tilde{\Gamma} / K$.
Remark: Let $N=\tilde{N} / K . \varphi_{0}, \varphi_{1}$ are constructed so that $\psi:=\left(\varphi_{0}, \varphi_{1}\right): N \rightarrow \Gamma \times \Gamma$ is injective.

The Grigorchuk-Machi Group

For each $w=i_{1} \ldots i_{n} \in\{0,1\}^{*}$, let $\varphi_{w}=\varphi_{i_{1}} \ldots \varphi_{i_{n}}$. Then φ_{w} is defined on a subgroup of \tilde{N}.

Let

$$
\begin{array}{r}
K_{n}=\left\{g \in \Gamma \mid \varphi_{w}(g) \text { is defined and equal to } 1\right. \\
\text { for all } \left.w \in\{0,1\}^{*} \text { of length } n\right\} .
\end{array}
$$

Not obvious, but $K_{n} \triangleleft \tilde{\Gamma}$ for all $n \in \mathbb{N}$. Let $K=\bigcup_{n=1}^{\infty} K_{n}$.
The Grigorchuk-Machi group Γ is defined to be $\tilde{\Gamma} / K$.
Remark: Let $N=\tilde{N} / K . \varphi_{0}, \varphi_{1}$ are constructed so that $\psi:=\left(\varphi_{0}, \varphi_{1}\right): N \rightarrow \Gamma \times \Gamma$ is injective.

Theorem (Grigorchuk '84)
The Grigorchuk-Machi group is of intermediate growth.

Left-Orderability of Grigorchuk-Machi Group

Grigorchuk and Machi show that $\Gamma \leqslant$ Homeo $_{+}(\mathbb{Q})$, which is stronger than left-orderability. Strategy:

Left-Orderability of Grigorchuk-Machi Group

Grigorchuk and Machi show that $\Gamma \leqslant$ Homeo $_{+}(\mathbb{Q})$, which is stronger than left-orderability. Strategy:

- Construct an auxiliary countably-generated group Q.

Left-Orderability of Grigorchuk-Machi Group

Grigorchuk and Machi show that $\Gamma \leqslant$ Homeo $_{+}(\mathbb{Q})$, which is stronger than left-orderability. Strategy:

- Construct an auxiliary countably-generated group Q.
- Show that $\Gamma \hookrightarrow Q$.

Left-Orderability of Grigorchuk-Machi Group

Grigorchuk and Machi show that $\Gamma \leqslant$ Homeo $_{+}(\mathbb{Q})$, which is stronger than left-orderability. Strategy:

- Construct an auxiliary countably-generated group Q.
- Show that $\Gamma \hookrightarrow Q$.
- Construct a left order \leq_{Q} on Q which is dense and has no least or greatest element.

Left-Orderability of Grigorchuk-Machi Group

Grigorchuk and Machi show that $\Gamma \leqslant$ Homeo $_{+}(\mathbb{Q})$, which is stronger than left-orderability. Strategy:

- Construct an auxiliary countably-generated group Q.
- Show that $\Gamma \hookrightarrow Q$.
- Construct a left order \leq_{Q} on Q which is dense and has no least or greatest element.
- By Cantor's Theorem, $\left(Q, \leq_{Q}\right)$ is order-isomorphic to (\mathbb{Q}, \leq).
- $Q \curvearrowright Q$ by left translations.

Left-Orderability of Grigorchuk-Machi Group

Grigorchuk and Machi show that $\Gamma \leqslant$ Homeo $_{+}(\mathbb{Q})$, which is stronger than left-orderability. Strategy:

- Construct an auxiliary countably-generated group Q.
- Show that $\Gamma \hookrightarrow Q$.
- Construct a left order \leq_{Q} on Q which is dense and has no least or greatest element.
- By Cantor's Theorem, $\left(Q, \leq_{Q}\right)$ is order-isomorphic to (\mathbb{Q}, \leq).
- $Q \curvearrowright Q$ by left translations.
- Push this through the order-isomorphism to get $Q \curvearrowright \mathbb{Q}$ faithfully by order-preserving maps.

Left-Orderability of Grigorchuk-Machi Group

Grigorchuk and Machi show that $\Gamma \leqslant$ Homeo $_{+}(\mathbb{Q})$, which is stronger than left-orderability. Strategy:

- Construct an auxiliary countably-generated group Q.
- Show that $\Gamma \hookrightarrow Q$.
- Construct a left order \leq_{Q} on Q which is dense and has no least or greatest element.
- By Cantor's Theorem, $\left(Q, \leq_{Q}\right)$ is order-isomorphic to (\mathbb{Q}, \leq).
- $Q \curvearrowright Q$ by left translations.
- Push this through the order-isomorphism to get $Q \curvearrowright \mathbb{Q}$ faithfully by order-preserving maps.
- Since $\Gamma \hookrightarrow Q$, we have $\Gamma \leqslant$ Homeo $_{+}(\mathbb{Q})$.

Left-Orderability of Grigorchuk-Machi Group

Grigorchuk and Machi show that $\Gamma \leqslant$ Homeo $_{+}(\mathbb{Q})$, which is stronger than left-orderability. Strategy:

- Construct an auxiliary countably-generated group Q.
- Show that $\Gamma \hookrightarrow Q$.
- Construct a left order \leq_{Q} on Q which is dense and has no least or greatest element.
- By Cantor's Theorem, $\left(Q, \leq_{Q}\right)$ is order-isomorphic to (\mathbb{Q}, \leq).
- $Q \curvearrowright Q$ by left translations.
- Push this through the order-isomorphism to get $Q \curvearrowright \mathbb{Q}$ faithfully by order-preserving maps.
- Since $\Gamma \hookrightarrow Q$, we have $\Gamma \leqslant$ Homeo $_{+}(\mathbb{Q})$.

Corollary

Every left order on Γ is Conradian (and one exists).

Construction of Q

Start with
$\tilde{Q}=\left\langle a, b, c, d, \xi_{1}, \xi_{2}, \ldots\right|($ relations of $\tilde{\Gamma}),\left[a, \xi_{i}\right]$ for all $\left.i\right\rangle$.

Construction of Q

Start with
$\tilde{Q}=\left\langle a, b, c, d, \xi_{1}, \xi_{2}, \ldots\right|$ (relations of $\left.\tilde{\Gamma}\right),\left[a, \xi_{i}\right]$ for all $\left.i\right\rangle$.
Let $\tilde{P}=\left\langle b, c, d, \xi_{1}, \xi_{2}, \ldots, b^{a}, c^{a}, d^{a}, \xi_{1}^{a}, \xi_{2}^{a}, \ldots\right\rangle$.

Construction of Q

Start with
$\tilde{Q}=\left\langle a, b, c, d, \xi_{1}, \xi_{2}, \ldots\right|$ (relations of $\left.\tilde{\Gamma}\right),\left[a, \xi_{i}\right]$ for all $\left.i\right\rangle$.
Let $\tilde{P}=\left\langle b, c, d, \xi_{1}, \xi_{2}, \ldots, b^{a}, c^{a}, d^{a}, \xi_{1}^{a}, \xi_{2}^{a}, \ldots\right\rangle$.
Define $\varphi_{0}, \varphi_{1}: \tilde{P} \rightarrow \tilde{Q}$ as before on the generators $b, c, d, b^{a}, c^{a}, d^{a}$. But now, set

$$
\varphi_{0}=\left\{\begin{array}{ll}
\xi_{n} & \mapsto 1 \\
\xi_{1}^{a} & \mapsto a \\
\xi_{n+1}^{a} & \mapsto \xi_{n}
\end{array} \quad \varphi_{1}= \begin{cases}\xi_{1} & \mapsto a \\
\xi_{n+1} & \mapsto \xi_{n} \\
\xi_{n}^{a} & \mapsto 1\end{cases}\right.
$$

Construction of Q

Start with
$\tilde{Q}=\left\langle a, b, c, d, \xi_{1}, \xi_{2}, \ldots\right|$ (relations of $\left.\tilde{\Gamma}\right),\left[a, \xi_{i}\right]$ for all $\left.i\right\rangle$.
Let $\tilde{P}=\left\langle b, c, d, \xi_{1}, \xi_{2}, \ldots, b^{a}, c^{a}, d^{a}, \xi_{1}^{a}, \xi_{2}^{a}, \ldots\right\rangle$.
Define $\varphi_{0}, \varphi_{1}: \tilde{P} \rightarrow \tilde{Q}$ as before on the generators $b, c, d, b^{a}, c^{a}, d^{a}$. But now, set

$$
\varphi_{0}=\left\{\begin{array}{ll}
\xi_{n} & \mapsto 1 \\
\xi_{1}^{a} & \mapsto a \\
\xi_{n+1}^{a} & \mapsto \xi_{n}
\end{array} \quad \varphi_{1}= \begin{cases}\xi_{1} & \mapsto a \\
\xi_{n+1} & \mapsto \xi_{n} \\
\xi_{n}^{a} & \mapsto 1\end{cases}\right.
$$

Define R_{n} similarly to K_{n}, then set $R=\bigcup_{n=1}^{\infty} R_{n}$ and $Q=\tilde{Q} / R$ and $P=\tilde{P} / R$.

Construction of Q

Start with
$\tilde{Q}=\left\langle a, b, c, d, \xi_{1}, \xi_{2}, \ldots\right|$ (relations of $\left.\tilde{\Gamma}\right),\left[a, \xi_{i}\right]$ for all $\left.i\right\rangle$.
Let $\tilde{P}=\left\langle b, c, d, \xi_{1}, \xi_{2}, \ldots, b^{a}, c^{a}, d^{a}, \xi_{1}^{a}, \xi_{2}^{a}, \ldots\right\rangle$.
Define $\varphi_{0}, \varphi_{1}: \tilde{P} \rightarrow \tilde{Q}$ as before on the generators $b, c, d, b^{a}, c^{a}, d^{a}$. But now, set

$$
\varphi_{0}=\left\{\begin{array}{ll}
\xi_{n} & \mapsto 1 \\
\xi_{1}^{a} & \mapsto a \\
\xi_{n+1}^{a} & \mapsto \xi_{n}
\end{array} \quad \varphi_{1}= \begin{cases}\xi_{1} & \mapsto a \\
\xi_{n+1} & \mapsto \xi_{n} \\
\xi_{n}^{a} & \mapsto 1\end{cases}\right.
$$

Define R_{n} similarly to K_{n}, then set $R=\bigcup_{n=1}^{\infty} R_{n}$ and $Q=\tilde{Q} / R$ and $P=\tilde{P} / R$. We have that $\tilde{Q} / \tilde{P} \cong Q / P \cong\langle a\rangle \cong \mathbb{Z}$.

Order on Q

- Order the cosets of P by

$$
\cdots<a^{-1} P<P<a P<\ldots
$$

Order on Q

- Order the cosets of P by

$$
\cdots<a^{-1} P<P<a P<\ldots
$$

- Order elements of $\langle b, c, d\rangle \cong \mathbb{Z}^{3}$.

Order on Q

- Order the cosets of P by

$$
\cdots<a^{-1} P<P<a P<\ldots
$$

- Order elements of $\langle b, c, d\rangle \cong \mathbb{Z}^{3}$.
- Order the generators of Q by

$$
1<d<\cdots<\xi_{2}<\xi_{1}<c<b<a .
$$

Order on Q

- Order the cosets of P by

$$
\cdots<a^{-1} P<P<a P<\ldots
$$

- Order elements of $\langle b, c, d\rangle \cong \mathbb{Z}^{3}$.
- Order the generators of Q by

$$
1<d<\cdots<\xi_{2}<\xi_{1}<c<b<a .
$$

- Order arbitrary elements within each coset by common induction on the length of, and highest-index ξ_{n} appearing in, a word representing the element.

Order on Q

- Order the cosets of P by

$$
\cdots<a^{-1} P<P<a P<\ldots
$$

- Order elements of $\langle b, c, d\rangle \cong \mathbb{Z}^{3}$.
- Order the generators of Q by

$$
1<d<\cdots<\xi_{2}<\xi_{1}<c<b<a .
$$

- Order arbitrary elements within each coset by common induction on the length of, and highest-index ξ_{n} appearing in, a word representing the element.
Then prove that the order is dense and left-invariant.

Thank You!

Thank You!

If you are from the U.S., happy Independence Day! Otherwise, happy 4th of July!

