PROPERTY (T) AND HAAGERUP PROPERTY TALIA FERNÓS Summer 2019

AMENABILITY

Let Γ be a discrete countable group.

Exercise 1. Show that $(\gamma f)(x) := f(\gamma^{-1}x)$ actually defines an action of Γ on $\ell^p(\Gamma)$ and that it preserves the norm $||f||_p^p = \sum_{x \in \Gamma} |f(x)|^p$ and hence is an isometric action for the associated metric.

Exercise 2. Let X be a discrete countable set with an action of Γ by permutations. Show that for a suitably chosen S and suitably chosen subgroups H_s , $s \in S$ we have that

$$\ell^2(X) \cong \bigoplus_{s \in S} \ell^2(\Gamma/H_s)$$

Exercise 3. Continuing with X as above, prove that $\ell^2(X)$ has a nonzero Γ -invariant vector if and only if the index $[\Gamma : H_s] < \infty$ for some $s \in S$.

Exercise 4. Assume that Γ is amenable, and $H \leq \Gamma$. Prove that H is amenable. Warning!! This is only true for Γ a discrete countable group. If we pass to the world of locally compact second countable groups, we must assume H is closed and then the result holds again. We will see how this fails when we study the Banach-Tarski Paradox.

Exercise 5. Let $1 \to N \to \Gamma \to Q \to 1$ be a short exact sequence. Prove that Γ is amenable if and only if N and Q are both amenable.

Exercise 6. Let $\{\Gamma_i\}_{i \in I}$ be a directed family of groups, and $\Gamma = \bigcup_{i \in I} \Gamma_i$ be the direct limit. Prove that Γ is amenable if and only if Γ_i is amenable for every $i \in I$.

Exercise 7. *Prove that the following classes of groups are amenable:*

- Finite groups
- Z
- *finitely generated abelian groups*
- *abelian groups*
- solvable groups

Exercise 8. Prove that groups of subexponential grown are amenable.

Exercise 9. Let Γ act on the discrete countable set X. If there is a finitely additive measure μ on X with $\mu(X) = 1$ and μ is Γ -invariant then X is not Γ -paradoxical.

Exercise 10. Prove that F_2 is not amenable. You get to pick which definition you use.

Exercise 11. When we defined amenability, many supposedly equivalent conditions were given. How many directions can you prove? One place to start is to prove the Følner condition implies the other ones.

Exercise 12. Let $\{a_n : n \in \mathbb{N}\}$ be a sequence of real numbers that is subadditive, i.e. for every $n, m \in \mathbb{N}$ we have that $a_{n+m} \leq a_n + a_m$. Prove that

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf_{n \in \mathbb{N}} \frac{a_n}{n}.$$

Exercise 13. Let $\{A_n : n \in \mathbb{N}\}$ be a sequence of positive real numbers that is submultiplicative, i.e. for every $n, m \in \mathbb{N}$ we have that $A_{n+m} \leq A_n \cdot A_m$. Prove that

$$\lim_{n \to \infty} A_n^{1/n} = \inf_{n \in \mathbb{N}} A_n 1/n.$$

Exercise 14. Assume that $N \leq G$ and let $\pi : G \to U(\mathcal{H})$ be a unitary representation of G. Prove that the subspace $\mathcal{H}_N := \{v \in H : \pi(n)v = v \text{ for all } n \in N\}$ is G-invariant and hence so is

$$\mathcal{H}_N^{\perp} := \{ v \in \mathcal{H} : \langle v, v' \rangle = 0 \text{ for all } v' \in \mathcal{H}_N \}.$$

Set π^{\perp} : $G \to \mathcal{U}(\mathcal{H}_N^{\perp})$ to be the restricted representation. Conclude that if (G, N) has relative property (T) then, π^{\perp} does not have *G*-almost invariant vectors.

Exercise 15. *Prove that if* Γ *is discrete countable amenable group and* $H \leq \Gamma$ *is an infinite subgroup then* (Γ, H) *does not have property* (*T*).

Exercise 16. (*Requires knowledge of Haar measure and induced representations.*) Assume G is a locally compact second countable amenable group and $H \leq \Gamma$. Prove that if (G, H) has relative property (T) then H is compact. Warning! H may have measure 0 in G.

Exercise 17. Let $1 \to A_0 \to A \to A_1 \to 1$ be a short exact sequence. Let $\Gamma \to Aut(A, A_0)$ be an action by automorphism of A preserving A_0 . Prove that $(\Gamma \ltimes A_0, A_0)$ and $(\Gamma \ltimes A_1, A_1)$ both have relative property (*T*) if and only if $(\Gamma \ltimes A, A)$ has relative property (*T*).

Exercise 18. Assume that $H \leq G$ is a closed subgroup with property (T). Prove that (G, H) has relative property (T).

Exercise 19. Let p be a prime. Recall that the p-adics \mathbb{Q}_p is the completion of \mathbb{Q} in the p-norm. If $x \in \mathbb{Q}_p$ then there is a $v \in \mathbb{Z}$ and integers $a_k \in \{0, \ldots, p-1\}$ such that:

$$x = \sum_{k=-v}^{\infty} a_k p^k.$$

It follows that $\mathbb{Z}[\frac{1}{p}] := \left\{ \frac{a}{p^k} : a, k \in \mathbb{Z} \right\}$ diagonally embeds in $\mathbb{R} \times \mathbb{Q}_p$. Prove that this makes $\mathbb{Z}[\frac{1}{p}]$ a discrete subgroup with pre-compact fundamental domain.

Exercise 20. Using the Ping-Pong Lemma prove that the following two elements generate a free group:

$$a := \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $b := \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$.

Hint: Consider the action on \mathbb{R}^2 let A (or B?) be $\{(x, y) : |y| > |x|\}$ and the other set (B or A) be $\{(x, y) : |y| < |x|\}$. Now, draw a picture of what is happening on $\mathbb{P}(\mathbb{R}^2) \cong S^1$. How many fixed points does a and b have on S^1 ?

BOUNDED GENERATION, AFFINE ACTIONS ON HILBERT SPACE, HAAGERUP PROPERTY

Exercise 21. Read the paper by Carter-Keller that SL_NO is boundedly generated by elementary matrices provided that $N \ge 3$ (or N = 2 and O has infinitely many units). (You may read through this assuming that $O = \mathbb{Z}$, and of course $N \ge 3$).

Exercise 22. Let Γ be a discrete countable group and $\mathcal{E}_1, \ldots, \mathcal{E}_M \leq \Gamma$ such that $\Gamma = \mathcal{E}_1 \cdots \mathcal{E}_M = \Gamma$, *i.e.* for every $\gamma \in \Gamma$ there exists $\gamma_i \in \mathcal{E}_i$ such that $\gamma = \gamma_1 \cdots \gamma_M$. Let $\varphi : \Gamma \to \text{Isom}(X)$ be an isometric action of Γ on the metric space X. Prove that if every \mathcal{E}_i orbit is bounded (for every $i = 1, \ldots, M$) then there is a bounded Γ orbit (and hence all Γ -orbits are bounded).

Exercise 23. Let $\pi : \Gamma \to \mathcal{U}(\mathcal{H})$ be a unitary representation and $b : \Gamma \to \mathcal{H}$ a set theoretic map. Prove that $\alpha_b(\gamma) : v \mapsto \pi(\gamma) + b(\gamma)$ is an action if and only if $b \in Z^1(\Gamma, \pi)$, i.e. b satisfies the 1-cocycle relation with respect to π :

$$b(\gamma_1\gamma_2) = b(\gamma_1) + \pi(\gamma_1)b(\gamma_2).$$

Exercise 24. Let Γ act by permutations on a set X and let $f : X \to \mathbb{C}$ be a function. As usual define $(\gamma \cdot f)(x) = f(\gamma^{-1}x)$. Prove that $b(\gamma) := \gamma \cdot f - f$ satisfies the cocycle relation above.

Exercise 25. Recall that $B^1(\Gamma, \pi) := \{b : \Gamma \to \mathcal{H} | \exists v \in \mathcal{H} \text{ s.t. } b(\gamma) = \pi(\gamma)v - v \ \forall \gamma \in \Gamma\}$. Prove that $B^1(\Gamma, \pi) \subset Z^1(\Gamma, \pi)$.

Exercise 26. Prove that the following are equivalent for a cocycle $b \in Z^1(\Gamma, \pi)$:

- (1) $b \in B^1(\Gamma, \pi);$
- (2) α_b as defined above has bounded orbits;
- (3) *b* is bounded
- (4) α_b is conjugate via a translation to π .

This requires the "Lemma of the Center" which can be stated for metric spaces but holds true for certain spaces such as Hilbert spaces: Given a nonempty bounded subset, there exists a unique closed ball of minimal radius containing the subset.

Exercise 27. Let T be a simplicial countable tree with vertex set V and oriented edge set $\mathcal{E} \subset V \times V$. Let $o(e), t(e) \in V$ denote the origin and terminal vertices of e respectively (so $e = (o(e), t(e)) \in V \times V$). Denote the reverse orientation on e by $\overline{e} := (t(e), o(e))$. Let $h_e = \{v \in V : d(v, t(e)) < d(v, o(e))\}$. Then

 $h_e \sqcup h_{\overline{e}} = V. \text{ Let } v \in V \text{ and consider the function } \mathbb{1}_v : \mathcal{E} \to \{0,1\} \text{ defined by } \mathbb{1}_v(e) = \begin{cases} 1 & \text{if } v \in h_e \\ 0 & \text{otherwise} \end{cases}.$

For Γ acting simplicially (and hence by isometries on the tree T, let $b(\gamma) := \mathbb{1}_{\gamma v} - \mathbb{1}_{v}$. As shown above, b formally satisfies the cocycle relation. Prove that $||b(\gamma)||^2 = \sum_{e \in \mathcal{E}} |b(\gamma)(e)|^2 = 2d(\gamma v, v)$ and con-

clude that $b \in Z^1(\Gamma, \ell^2(\mathcal{E}))$. Conclude that if Γ acts properly on T then Γ has the Haagerup property. Similarly, if Γ has property (T) then it has a bounded orbit in T (and hence a fixed vertex of preserved edge.

REFERENCES

- [BdlHV08] Bachir Bekka, Pierre de la Harpe, and Alain Valette. *Kazhdan's property (T)*, volume 11 of *New Mathematical Monographs*. Cambridge University Press, Cambridge, 2008.
- [BSV14] Mladen Bestvina, Michah Sageev, and Karen Vogtmann. Introduction. In *Geometric group theory*, volume 21 of *IAS/Park City Math. Ser.*, pages 1–5. Amer. Math. Soc., Providence, RI, 2014.
- [Bur91] M. Burger. Kazhdan constants for SL(3, **Z**). J. Reine Angew. Math., 413:36–67, 1991.
- [CDH10] Indira Chatterji, Cornelia Druţu, and Frédéric Haglund. Kazhdan and Haagerup properties from the median viewpoint. *Adv. Math.*, 225(2):882–921, 2010.
- [CK83] David Carter and Gordon Keller. Bounded elementary generation of $SL_n(\mathcal{O})$. Amer. J. Math., 105(3):673–687, 1983.
- [Fer06] Talia Fernós. Relative property (T) and linear groups. *Ann. Inst. Fourier (Grenoble)*, 56(6):1767–1804, 2006.
- [Sha98] Yehuda Shalom. The growth of linear groups. J. Algebra, 199(1):169–174, 1998.
- [Sha99] Yehuda Shalom. Bounded generation and Kazhdan's property (T). *Inst. Hautes Études Sci. Publ. Math.*, (90):145–168 (2001), 1999.