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PROPERTY (T) AND HAAGERUP PROPERTY
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AMENABILITY

Let Γ be a discrete countable group.

Exercise 1. Show that (γf)(x) := f(γ−1x) actually defines an action of Γ on `p(Γ) and that it preserves
the norm ‖f‖pp =

∑
x∈Γ

|f(x)|p and hence is an isometric action for the associated metric.

Exercise 2. Let X be a discrete countable set with an action of Γ by permutations. Show that for a suitably
chosen S and suitably chosen subgroups Hs, s ∈ S we have that

`2(X) ∼= ⊕
s∈S

`2(Γ/Hs)

Exercise 3. Continuing with X as above, prove that `2(X) has a nonzero Γ-invariant vector if and only if
the index [Γ : Hs] <∞ for some s ∈ S.

Exercise 4. Assume that Γ is amenable, and H 6 Γ. Prove that H is amenable. Warning!! This is only
true for Γ a discrete countable group. If we pass to the world of locally compact second countable groups,
we must assume H is closed and then the result holds again. We will see how this fails when we study the
Banach-Tarski Paradox.

Exercise 5. Let 1 → N → Γ → Q → 1 be a short exact sequence. Prove that Γ is amenable if and only if
N and Q are both amenable.

Exercise 6. Let {Γi}i∈I be a directed family of groups, and Γ = ∪
i∈I

Γi be the direct limit. Prove that Γ is

amenable if and only if Γi is amenable for every i ∈ I .

Exercise 7. Prove that the following classes of groups are amenable:

• Finite groups
• Z
• finitely generated abelian groups
• abelian groups
• solvable groups

Exercise 8. Prove that groups of subexponential grown are amenable.

Exercise 9. Let Γ act on the discrete countable set X . If there is a finitely additive measure µ on X with
µ(X) = 1 and µ is Γ-invariant then X is not Γ-paradoxical.

Exercise 10. Prove that F2 is not amenable. You get to pick which definition you use.

Exercise 11. When we defined amenability, many supposedly equivalent conditions were given. How many
directions can you prove? One place to start is to prove the Følner condition implies the other ones.

Exercise 12. Let {an : n ∈ N} be a sequence of real numbers that is subadditive, i.e. for every n,m ∈ N
we have that an+m 6 an + am. Prove that

lim
n→∞

an
n

= inf
n∈N

an
n
.

Exercise 13. Let {An : n ∈ N} be a sequence of positive real numbers that is submultiplicative, i.e. for
every n,m ∈ N we have that An+m 6 An ·Am. Prove that

lim
n→∞

A1/n
n = inf

n∈N
An1/n.
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RELATIVE PROPERTY (T) AND SEMIDIRECT PRODUCTS

Exercise 14. Assume that N P G and let π : G→ U(H) be a unitary representation of G. Prove that the
subspaceHN := {v ∈ H : π(n)v = v for all n ∈ N} is G-invariant and hence so is

H⊥N := {v ∈ H :< v, v′ >= 0 for all v′ ∈ HN}.
Set π⊥ : G→ U(H⊥N ) to be the restricted representation. Conclude that if (G,N) has relative property (T)
then, π⊥ does not have G-almost invariant vectors.

Exercise 15. Prove that if Γ is discrete countable amenable group and H 6 Γ is an infinite subgroup then
(Γ, H) does not have property (T).

Exercise 16. (Requires knowledge of Haar measure and induced representations.) Assume G is a locally
compact second countable amenable group and H 6 Γ. Prove that if (G,H) has relative property (T) then
H is compact. Warning! H may have measure 0 in G.

Exercise 17. Let 1→ A0 → A→ A1 → 1 be a short exact sequence. Let Γ→ Aut(A,A0) be an action by
automorphism of A preserving A0. Prove that (Γ n A0, A0) and (Γ n A1, A1) both have relative property
(T) if and only if (Γ nA,A) has relative property (T).

Exercise 18. Assume that H 6 G is a closed subgroup with property (T). Prove that (G,H) has relative
property (T).

Exercise 19. Let p be a prime. Recall that the p-adics Qp is the completion of Q in the p-norm. If x ∈ Qp

then there is a v ∈ Z and integers ak ∈ {0, . . . , p− 1} such that:

x =
∞∑

k=−v
akp

k.

It follows that Z[1
p ] :=

{
a
pk

: a, k ∈ Z
}

diagonally embeds in R×Qp. Prove that this makes Z[1
p ] a discrete

subgroup with pre-compact fundamental domain.

Exercise 20. Using the Ping-Pong Lemma prove that the following two elements generate a free group:

a :=

[
1 2
0 1

]
and b :=

[
1 0
2 1

]
.

Hint: Consider the action on R2 let A (or B?) be {(x, y) : |y| > |x|} and the other set (B or A) be
{(x, y) : |y| < |x|}. Now, draw a picture of what is happening on P(R2) ∼= S1. How many fixed points
does a and b have on S1?

BOUNDED GENERATION, AFFINE ACTIONS ON HILBERT SPACE, HAAGERUP PROPERTY

Exercise 21. Read the paper by Carter-Keller that SLNO is boundedly generated by elementary matrices
provided that N > 3 (or N = 2 and O has infinitely many units). (You may read through this assuming
that O = Z, and of course N > 3).

Exercise 22. Let Γ be a discrete countable group and E1, . . . , EM 6 Γ such that Γ = E1 · · · EM = Γ, i.e.
for every γ ∈ Γ there exists γi ∈ Ei such that γ = γ1 · · · γM . Let ϕ : Γ→ Isom(X) be an isometric action
of Γ on the metric space X . Prove that if every Ei orbit is bounded (for every i = 1, . . . ,M ) then there is a
bounded Γ orbit (and hence all Γ-orbits are bounded).

Exercise 23. Let π : Γ→ U(H) be a unitary representation and b : Γ→ H a set theoretic map. Prove that
αb(γ) : v 7→ π(γ) + b(γ) is an action if and only if b ∈ Z1(Γ, π), i.e. b satisfies the 1-cocycle relation with
respect to π:

b(γ1γ2) = b(γ1) + π(γ1)b(γ2).
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Exercise 24. Let Γ act by permutations on a set X and let f : X → C be a function. As usual define
(γ.f)(x) = f(γ−1x). Prove that b(γ) := γ.f − f satisfies the cocycle relation above.

Exercise 25. Recall that B1(Γ, π) := {b : Γ → H| ∃v ∈ H s.t. b(γ) = π(γ)v − v ∀γ ∈ Γ}. Prove that
B1(Γ, π) ⊂ Z1(Γ, π).

Exercise 26. Prove that the following are equivalent for a cocycle b ∈ Z1(Γ, π):

(1) b ∈ B1(Γ, π);
(2) αb as defined above has bounded orbits;
(3) b is bounded
(4) αb is conjugate via a translation to π.

This requires the ”Lemma of the Center” which can be stated for metric spaces but holds true for certain
spaces such as Hilbert spaces: Given a nonempty bounded subset, there exists a unique closed ball of minimal
radius containing the subset.

Exercise 27. Let T be a simplicial countable tree with vertex set V and oriented edge set E ⊂ V × V . Let
o(e), t(e) ∈ V denote the origin and terminal vertices of e respectively (so e = (o(e), t(e)) ∈ V × V ).
Denote the reverse orientation on e by e := (t(e), o(e)). Let he = {v ∈ V : d(v, t(e)) < d(v, o(e))}. Then

he t he = V . Let v ∈ V and consider the function 1v : E → {0, 1} defined by 1v(e) =

{
1 if v ∈ he
0 otherwise

.

For Γ acting simplicially (and hence by isometries on the tree T , let b(γ) := 1γv − 1v. As shown
above, b formally satisfies the cocycle relation. Prove that ‖b(γ)‖2 =

∑
e∈E
|b(γ)(e)|2 = 2d(γv, v) and con-

clude that b ∈ Z1(Γ, `2(E)). Conclude that if Γ acts properly on T then Γ has the Haagerup property.
Similarly, if Γ has property (T) then it has a bounded orbit in T (and hence a fixed vertex of preserved edge.
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