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Foreword

Mathematicians have ambiguous relations with the history of their discipline.
They experience pride in describing how important new concepts emerged grad-
ually or suddenly, but sometimes tend to prettify the history, carried away with
imaginings of how ideas might have developed in harmonious and coherent fash-
ion. This tendency has sometimes irritated professional historians of science, well
aware that the development has often been much more tortuous.

It is our implicit belief that the uniformization theorem is one of the major
results of 19th century mathematics. In modern terminology its formulation is
simple:

Every simply connected Riemann surface is isomorphic to the complex plane,
the open unit disc, or the Riemann sphere.

And one can even find proofs in the recent literature establishing it by means
of not very complicated argumentation in just a few pages (see e.g. [Hub2006]).
Yet it required a whole century before anyone managed to formulate the theorem
and for a convincing proof to be given in 1907. The present book considers this
maturation process from several angles.

But why is this theorem interesting? In the introduction to his celebrated 1900
article [Hil1900b] listing his 23 most significant open problems, David Hilbert
proposed certain “criteria of quality” characterizing a good problem. The first
of these requires that the problem be easy to state, and the uniformization theo-
rem certainly satisfies this condition since its statement occupies only two lines!
The second requirement — that the proof be beautiful — we leave to the reader
to check. Finally, and perhaps most importantly, it should generate connections
between different areas and lead to new developments. The reader will see how
the uniformization theorem evolved in parallel with the emergence of modern
algebraic geometry, the creation of complex analysis, the stirrings of functional
analysis, the blossoming of the theory of linear differential equations, and the
birth of topology. It is one of the guiding principles of 19th century mathematics.
And furthermore Hilbert’s twenty-second problem was directly concerned with
uniformization.
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We should give the reader fair warning that this book represents a rather mod-
est contribution. Its authors are not historians — many of them can’t even read
German! They are mathematicians wishing to cast a stealthy glance at the past of
this so fundamental theorem in the hope of bringing to light some of the beautiful
— and potentially useful — ideas lying hidden in long-forgotten papers. Further-
more, the authors cannot claim to belong to the first rank of specialists in modern
aspects of the uniformization theorem. Thus the present work is not a complete
treatise on the subject, and we are aware of the gaps we should have plugged if
only we had had the time.

Our exposition is perhaps somewhat unusual. We don’t so much describe the
history of a result as re-examine the old proofs with the eyes of modern math-
ematicians, querying their validity and attempting to complete them where they
fail, first as far as possible within the context of the background knowledge of the
period in question, or, if that turns out to be too difficult, then by means of modern
mathematical tools not available at the time. Although the proofs we arrive at as a
result are not necessarily more economical than modern ones, it seems to us that
they are superior in terms of ease of comprehension. The reader should not be
surprised to find many anachronisms in the text — for instance calling on Sobolev
to rescue Riemann! Nor should he be surprised that results are often stated in a
much weaker form than their modern-day versions — for example, we present
the theorem on isothermal coordinates, established by Ahlfors and Bers under the
general assumption of measurability, only in the analytic case dealt with by Gauss.
Gauss’ idea seems to us so limpid as to be well worth presenting in his original
context.

We hope that this book will be of use to today’s mathematicians wishing to
glance back at the history of their subject. But we also believe that it can be used
to provide masters-level students with an illuminating approach to concepts of
great importance in contemporary research.

The book was conceived as follows: In 2007 fifteen mathematicians fore-
gathered at a country house in Saint-Germain-la-Forét, Sologne, to spend a week
expounding to one another fifteen different episodes from the history of the uni-
formization theorem, given its first complete proof in 1907. It was thus a week
commemorating a mathematical centenary! Back home, the fifteen edited their
individual contributions, which were then amalgamated. A second retreat in the
same rural setting one year later was devoted to intensive collective rewriting,
from which there emerged a single work in manuscript form. After multiple fur-
ther rewriting sessions, this time in small subsets of the fifteen, the present book
ultimately materialized.

We are grateful for the financial support provided by the grant ANR Symplexe
BLANO6-3-137237, which made the absorbing work of producing this book fea-
sible.
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We wish to thank also Mark Baker, Daniel Bennequin, Catherine Goldstein,
Alain Hénaut, Christian Houzel, Frédéric Le Roux, Pierre Mounoud, and Ahmed
Sebbar for useful conversations, Frangois Poincaré for translating the Klein—Poin-
caré correspondence, Arnaud Chéritat and Jos Leys for producing the diagrams,
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General introduction:
The uniformization theorem

The study of plane curves is one of the chief preoccupations of mathematicians.
The ancient Greeks investigated in detail straight lines, circles, as well as the
conic sections and certain more exotic curves such as Archimedean spirals. A
systematic study of general curves became possible only with the introduction of
Cartesian coordinates by Fermat and Descartes during the first half of the 17th
century [Fer1636, Desc1637], marking the beginning of algebraic geometry. For
the prehistory of algebraic geometry the reader may consult [BrKn1981,Chal837,
Diel974, Weil1981].

Two ways of representing a curve

A plane curve can be modelled mathematically in two — in some sense dual —
ways:

— by an implicit equation F(x,y) = 0, where F : R> — R is a real function of
two real variables;

— as a parametrized curve, that is, as the image of amap y : R — R2.

We shall see that the uniformization theorem allows one to pass from the first
of these representations to the second. If F is a polynomial, the curve is said
to be algebraic (formerly such curves were called “geometric”), otherwise tran-
scendental (formerly “mechanical”). A significant part of this book is concerned
with algebraic curves but, as we shall see, the uniformization theorem in its final
version provides an entrée into the investigation of (almost) all curves.
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Among transcendental curves we find various kinds of spirals and catenaries,
the brachistochrone and other tautochrones, which played a fundamental role in
the development of mathematics in the 17th century.

Figure 1: Some transcendental curves

Formerly the study of algebraic curves consisted in a case-by-case examina-
tion of a large number of examples of curves with complicated names (lemnis-
cates, cardioids, folia, strophoids, cissoids, etc.) which used to be found among
the exercises in undergraduate textbooks and which continue to give pleasure to
amateur mathematicians!.

SE ==

Figure 2: Some algebraic curves

The first invariant that suggests itself for an algebraic curve is the degree of
the polynomial F, readily seen to be independent of the system of plane (Carte-
sian) coordinates to which the curve is referred. It is clear that straight lines are
precisely the curves of degree 1, and it is not difficult to show that the venerable
conic sections of the ancient Greeks are just the curves of degree 2. In a cel-
ebrated work [New1704] Newton took up the task of producing a “qualitative”

1See e.g. http://www.mathcurve.com/ or http://www.2dcurves.com/.
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classification of the curves of degree 3, concluding that there are 72 different
types2. Evidently it would be difficult if not impossible to continue in this fashion
since the number of possible “types” increases very rapidly with the degree and
the situation soon becomes impenetrable.

Three innovations

Three major mathematical innovations led to significant clarification of the situa-
tion. First came the understanding that the projection from a point in 3-dimensional
space of one plane onto another, both situated in that space and neither contain-
ing the point of projection, transforms an algebraic curve in one plane into an
algebraic curve on the other, moreover of the same degree, said to be projectively
equivalent to the first. For example, every non-degenerate conic section is the im-
age of a circle under a suitable such projection; hence from the projective point of
view the distinction between ellipses, parabolas, and hyperbolas disappears: there
now exists just a single equivalence class of non-degenerate conic sections. Simi-
larly, after having defined a diverging parabola to be a curve given by an equation
of the form y? = ax® + bx? + cx + d, Newton states that:

Just as the circle lit by a point-source of light yields by its shadow all curves
of the second degree, so also do the shadows of diverging parabolas give all
curves of the third degree.

Here we are at the beginning of projective geometry, initiated by Girard De-
sargues [Desal639]. Rather than considering a curve F(x,y) = 0 in the plane
coordinatized by pairs (x,y), one considers it in the projective plane, coordina-
tized by means of homogeneous coordinates [X : Y : Z], where now the curve
is given by a homogeneous polynomial F(X,Y,Z) = 0. Each set of points of the
projective plane with Z # 0 and fixed values for the ratios X/Z and Y/Z corre-
sponds to the point of the affine plane with coordinates x = X/Z and y = Y/Z,
so that the projective plane is in effect the ordinary affine plane with a line at in-
finity adjoined, each of whose points corresponds to a line through [0 : 0 : 0]
in XY Z-space with Z = 0 and with [0 : O : 0] omitted. It follows that the two
branches of a hyperbola in the affine plane join up at two points on the line at
infinity, namely the points of that line determined by its two asymptotes, while a
parabola is actually tangential to the line at infinity. Thus utilization of projective

2Note however that he “missed” 6, his definition of “type” in this context was criticized by Euler,
and Pliicker, using a different criterion, distinguished 219 types.
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geometry simplifies the geometrical picture in a significant way, reducing appar-
ently distinct cases down to an examination of the relative positions of a projective
algebraic curve and a (projective) line. The adjunction of the line at infinity has
other advantages: for instance, every pair of distinct projective lines intersects in
a point, which will be at infinity precisely when the corresponding affine lines are
parallel.

The second major innovation, dating back to the turn of the 19th century, was
the systematic use of complex numbers in geometry, leading to the need to con-
sider the complex points of the algebraic curve under investigation, that is, the
complex solutions of the equation F(x,y) = 0, where furthermore the polyno-
mial F(x,y) is, naturally, now allowed to have complex coefficients. The fact
that the field of complex numbers is algebraically closed — awareness of which
grew gradually until it was finally established in the 19th century — entails a sub-
stantial consolidation of geometrical statements. Clearly projective geometry and
complex geometry represent natural enlargements of the original context of the
study of plane curves, and indeed until relatively recently were together taken as
providing the most natural framework for algebraic geometry.

To take a simple example, the straight line y = 0 now meets every “parabola”
y = ax® + bx + ¢ (with not all of a,b,c zero) in two points. The sign of the
discriminant is no longer of any importance — indeed it no longer really has a
sign! — but if it vanishes then the two roots merge into one. If a = 0,5 # 0 one of
the points is at infinity and if a = b = 0,¢ # 0 there is a “double root at infinity”3.
(The case @ = b = ¢ = 0 is exceptional.) Thus does one see the unifying power
of complex projective algebraic geometry. An even more compelling example
concerns the cyclic points, which are both imaginary and on the line at infinity.
These are just the points [1 : i : O] and [1 : —i : 0]. It is not difficult to see that a
conic section in the Euclidean plane is a circle if and only if, considered as a conic
in the complex projective plane, it passes through the cyclic points. From this fact
many of the properties of circles can be inferred, since they in fact reduce to the
question of the position of a conic relative to two points.

Even if we study complex algebraic curves only up to projective coordinate
changes, a systematic classification still eludes us except in small degrees. To
see this it suffices to note, as Cramer did in 1750, that the vector space of alge-
braic curves of degree d has dimension d(d + 3)/2, while the group of projective
transformations has “only” dimension 8 [Cral750].

The third major innovation, due to Poncelet, Pliicker, and Steiner [Ponc1822,
Plii1831, Ste1832] among others, rested on the discovery that one can investigate
curves by means of non-linear coordinate changes. Among such coordinate trans-

3To see this rewrite the equation in terms of homogeneous coordinates.
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formations inversion plays an important role. (Up until the 1960s many chapters
of high school geometry textbooks used to be devoted to inversion.) One very sim-
ple algebraic version is the transformation (to which the name De Jonquiéres is
attached) sending each point with affine coordinates (x, y) to the point (1/x,1/y),
or, in its “homogenized” variant, mapping the point with projective coordinates
[X:Y:Z]to[YZ : XZ : XY]. This prompts two remarks. First, this “transfor-
mation” o is not everywhere defined. When two of the homogeneous coordinates
are zero — the three such points forming the vertices of a triangle with one side
on the line at infinity — the image is not defined (since [0 : 0 : O] does not
correspond to a point of the projective plane). Secondly, the transformation is
not injective: the line at infinity Z = 0 is sent entirely to the point x = y = 0.
However, apart from such “details”, which hardly bothered our predecessors, this
transformation may be regarded as a legitimate change of variables. It is “almost”
bijective in view of the fact that it is involutory: if o is defined both at a point p
and its image o (p), then (0 o 0)(p) = p. On transforming an algebraic curve
via o we obtain another algebraic curve but of different degree. For example, the
image of the straight line x + y = 1 is the conic 1/x + 1/y = 1, or, to be precise, a
conic with certain points removed.

The non-linear transformations we have in mind form a group (named after
Cremona) which is much larger that the projective group, so that one can hope
for a precise and at the same time tractable classification of algebraic curves
up to such a non-linear transformation. Here we have the beginnings of bi-
rational geometry, one of Riemann’s great ideas. We say that two projective
algebraic curves F(X,Y,Z) = 0 and G(X,Y,Z) = O are birationally equiva-
lent if there is a (possibly non-linear) transformation of the form (X,Y,Z) +—
(p(X,Y,2),q(X,Y,Z),r(X,Y,Z)) where the coordinates p,q,r are homogeneous
polynomials of the same degree, which maps the first curve “bijectively” to the
second. Here the quotation marks are meant to indicate that, as in the above ex-
ample, the transformation may not be defined everywhere. One insists only that
each of the two curves has a finite set of points such that the transformation sends
the complement of the finite subset of the first curve bijectively to the complement
of the subset of the second.

A signal virtue of birational transformations is that they allow us to avoid the
problem of singular points. Early geometers were soon confronted with the need
to study double points, cusp points, etc. In the real domain the theory of such
points is relatively simple, at least in its topological aspects. Every point of a real
algebraic curve has a neighbourhood in which the curve is made up of an even
number of arcs. Such a curve cannot have an end-point, for instance.
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On the other hand for complex algebraic curves, local analysis of their singu-
lar points has established that they can have an extraordinarily intricate structure:
investigations begun by Newton and continued by Puiseux [New1671, Puil850,
Puil851] show that their topological structure is connected with the theory of
knots, which theory does not, however, come within the compass of the present
book. For us it suffices to know that every algebraic curve is birationally equiva-
lent to a curve possessing only especially simple singular points, namely ordinary
double points (Noether, Bertini [Noel1873, Bert1882]) — in other words, points
in a neighbourhood of which the curve consists of two smooth arcs with distinct

SRS

Figure 3: Some types of singular points

To summarize, geometers have progressively reduced the study of algebraic
plane curves to that of algebraic curves which, to within a birational transforma-
tion, have only ordinary double points.

Rational curves

The introduction of complex numbers had consequences far beyond projective
geometry: the beginning of the 19th century also witnessed the advent of the geo-
metric theory of holomorphic functions, which are at one and the same time func-
tions of a single complex variable and of two real variables. Gauss not only knew
that it is useful to coordinatize the plane with the complex numbers, but under-
stood equally well that any surface in space can be coordinatized by the complex
numbers conformally (see Chapter I). Thus a surface is locally determined by a
single number. The step had been taken: a real surface can be considered a com-
plex curve. Some thirty years later Riemann understood that there is, reciprocally,
some advantage in regarding a complex curve as a real surface (see Chapter II).
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We are now in a position to address the question of parametrized curves. A
curve is called rational if it is birationally equivalent to a straight line. (Formerly
such curves were called unicursal, meaning that they could be “traced out with a
single stroke of the pen”.) More concretely, a curve F(x,y) is rational if it can be
parametrized by means of rational functions

"o TRy

where p, g and r are polynomials in a single (complex) variable ¢, and the parametr-
ization is a bijection outside a finite subset of values of . Here are some simple
examples.

Non-degenerate conics are rational. To see this it suffices to take a point m on the
conic C and a projective line D not passing through m (see Figure 4). Then for
each point ¢ on D, the line determined by m and ¢ meets the conic in two points,
of which one is of course m. Denoting the other point by y(#), one readily checks
that the map y : D — C is a birational equivalence.

Figure 4: Parametrization of a conic and a singular cubic

A cubic curve with a double point is also a rational curve. For this it suffices to
choose a straight line not passing through the singular point, and consider for each
point p of that line the line through p and the singular point (see Figure 4). Each
such line meets the conic in three points, two of which coincide with the double
point of the cubic. The third point of intersection then determines a birational
equivalence between the initially chosen line and the given cubic. For example,
the origin is a double point of the curve y?> = x?(1 — x). We choose x = 2 as
our parametrizing line. The line passing through the origin and the point (2,¢) has
equation y = rx/2, so intersects the given cubic where r>x%/4 = x>(1 — x), which
has the expected double root x = 0 and the third solution x = 1 — ¢?/4, yielding
the desired rational parametrization y = (1 — t>/4)/2 of the curve.
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Although rational curves are of considerable interest, they represent just a
small proportion of all algebraic curves. We do not know exactly when math-
ematicians became fully aware of this, that is, of the fact that most algebraic
curves are not rational. There are several elementary means of convincing one-
self of it, and later on we shall give a topological argument rendering it “obvi-
ous”. Or one can argue as follows. Note first that a curve given in the form
x =p@®)/r(t),y = q(t)/r(¢) is of degree d where d is the largest of the degrees
of the polynomials p,q,r: one can see this by counting the number of points of
intersection with a generic straight line, which points will be given as the solu-
tions of an equation of degree d. The vector space of triples of polynomials of
degree d has dimension 3(d + 1). However multiples of p,q,r by any non-zero
scalar yield the same curve, and replacement of ¢ by a suitable rational function
of ¢ (depending on at least three parameters) will also leave the curve unchanged.
Thus the space of rational curves of degree d depends on at most 3d — 1 param-
eters. As noted earlier, a count of the number of coefficients of a polynomial of
degree d in two variables yields d(d + 3)/2 for the number of parameters. Since
d(d+3)/2 >3d—-1ford > 3, we conclude that in general algebraic curves of
degree at least three are not rational curves.

JANE AN

Figure 5: Some rational curves

Elliptic curves

It is completely natural that effort should first be concentrated on the cubics. As
we have seen, Newton himself produced an initial classification which was neither
projective nor complex, even though he found hints of certain features of projec-
tivity and the complex numbers. His aim was to understand in some fashion the
possible topological dispositions of cubic curves in the plane: the positions of
asymptotes, singular points, etc. We saw above that singular cubics are rational.
However non-singular cubics are never rational; we recommend that the reader
attempt to prove this by elementary means.
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We limit ourselves here to a brief overview of the principal results. First,
every smooth cubic curve is projectively equivalent to a curve with equation in
the following normal form (named for Weierstrass although it should properly be
attributed to Newton):

y22x3+ax+b,

where a, b are complex numbers. If 4a® + 27b* # 0, this cubic is smooth. From
the inception of the theory mathematicians struggled to evaluate integrals of the
form

R
y Vi3 tax+b

They called such integrals “elliptic” since evaluation of the length of an arc of an
ellipse leads to such a formula. Difficulties arise when one tries to make sense of
such integrals with x and y allowed to be complex. The first problem is that the
value of the integral depends on which square root one chooses for the denomi-
nator of the integrand. The second, linked to the first, consists in the dependence
of the integral on the path of integration. Faced with these difficulties, one is
forced to the conclusion that one must resign oneself to regarding f as a “many-
valued* function”, that is, that each point x may have several images, all denoted
by f(x) however — a situation somewhat distasteful to present-day mathemati-
cians, brought up as they are on the modern set-theoretic definition of a function.

Gauss, Abel, and Jacobi conceived the ingenious idea (to be expounded in
Chapter I) that it is not so much the function f that is of interest but its inverse.
They were perhaps led to this by the analogy with the circle

x2+y2=1

(which is certainly a rational curve) and the integral

fd—x—fL—arcsinx
y V1 - x2 '

The “function” arcsin as so defined is multivalued, but it is the inverse function of
sin, a function in the strict sense of the word — each point x has a uniquely defined
image sinx. The many-valuedness of arcsin arises from the periodicity of the
sine function, and in like manner the inverse ¢ of f is a “genuine” meromorphic

4The French term is “multiforme”.



XXii General introduction

function (to emphasize that the modern interpretation of the word “function” is the
one intended, the adjective single-valued® is sometimes used), and the fact that f
is many-valued is explained by the periodicity of the single-valued function g.

It is important to stress this periodicity. While the sine function is periodic of
period 27, the periodicity of the meromorphic function ¢ is much richer: it has
two linearly independent periods. In more precise terms, there is a subgroup A
of C of rank 2 (depending on a and b) such that

Yw € A, 9p(2) = p(z+ w).

(In fact the elements of A are just the integrals of dx/y around closed curves in the
x-plane.) It follows that we may regard g as defined on the quotient of C by the
lattice A. Topologically, the quotient space C/A is a 2-dimensional torus. Locally,
each point of the torus is associated with a complex number in such a way that
it inherits the structure of a holomorphic manifold of complex dimension 1, an
example of a Riemann surface (see Chapter II).

Since g is periodic, its derivative ¢’ = dgp/dz is also, and we then obtain a
map (g, ¢’) from the Riemann surface C/A with the poles of  and g’ removed,
to C2. Itis not difficult to prove® that this map extends from C/A to the original cu-
bic curve in the complex projective plane (with the three excluded points restored,
now sent to three points at infinity). In this way one obtains an identification of
the projective cubic curve and the torus C/A.

A few remarks are apropos. First, it now becomes topologically clear why
such cubics are not rational: a complex projective line is homeomorphic to a
sphere (the Riemann sphere) and the removal of finitely many points will not
make it homeomorphic to a torus.

We also see from the above that every smooth cubic, considered as a real sur-
face (in the complex projective plane), is homeomorphic to the torus. On the other
hand, considered as Riemann surfaces, these tori are not holomorphically equiva-
lent to one another: given two distinct lattices A1, A, in C, there is in general no
holomorphic bijection between C/A| and C/A;. (There is such a bijection if and
only if A, = kA for some non-zero k.) Hence in contrast with rational curves,
which are all parametrized by the complex projective line (the Riemann sphere),
smooth cubics are not all parametrized by the same complex torus C/A: each of
them is parametrized by a complex parameter (determined by a lattice in C defined
to within a homothety?), called a modulus.

5The French term is “uniforme”. “Uniformization” is thus the process of representing many-
valued functions by single-valued ones. Translator

6Using the fact that (¢")2 = 9> + agp + b. Trans

"That is, defined to within a similarity.
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The reader may now take the measure of the progress achieved since Newton’s
attempt at classification: the birational equivalence classes of smooth cubic curves
also depend on a single complex parameter.

Figure 6: Uniformization of an elliptic curve

Even though the domain C/A of the parametrization of a smooth cubic de-
pends on the cubic, it should be noted that the universal cover of C/A, the complex
line C considered as a Riemann surface, is in fact independent of the cubic. We
shall now elaborate on this point — at the expense of perpetrating an anachronism
since the concept of the universal cover evolved only gradually in the course of
the 19th century, and reached final form only in the 20th. (In this connection one
should also mention that some of the motivation for the development of topology
came from the study of curves.) A topological space X is said to be simply con-
nected if every loop ¢ : R/Z — X can be contracted to a point, that is, if there is
a continuous family of loops ¢;,t € [0, 1], with ¢y = ¢ and ¢, a constant loop. It
can be shown that provided X is a “reasonably well-behaved space” — which is
certainly the case for manifolds — there exists a simply-connected space X and a
projection map 7 : X — X whose fibres are the orbits of a discrete group I' acting
on X (fixed point) freely and properly®. The space X is then called the universal
covering space of X, and I the fundamental group of X. In the case where X is
the torus C/A, it is obvious from its very construction that its universal cover is C
and its fundamental group is A, which is isomorphic to the group Z>. When X
is endowed with the additional structure of a Riemann surface, such a structure

8That is, with the map I' x X — X x X given by (g,x) + (gx,x) proper, meaning that complete
inverse images of compact sets are compact.
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is naturally induced on its universal cover, most often non-compact, so from the
above it follows that the universal cover of every non-singular cubic curve is iso-
morphic to the complex line C. Thus even though the isomorphism classes of
smooth cubic curves depend on a modulus, their universal covers are all isomor-
phic. We summarize this, bringing in for the first time the term “uniformization”:

Every smooth cubic curve C in the complex projective plane has a holomor-
phic uniformization r : C — C which parametrizes the curve in the sense that two
points of C have the same image under n if and only if their difference belongs to
a certain lattice A of C.

And the converse rounds off the theory into a harmonious whole: correspond-
ing to each lattice A of C, there exists a smooth cubic curve that is holomorphically
isomorphic to C/A.

Beyond elliptic curves

Our Chapter II constitutes an invitation to read the papers of Riemann devoted
to algebraic functions and their integrals. These texts, so important for the his-
tory of mathematics, are difficult of access, and it took a considerable time for
them to be finally assimilated. Although there are historical articles commenting
on these, our approach is quite different, in particular in not at all attempting to
be exhaustive. Riemann’s great contribution was to turn Gauss’ idea on its head:
although it is useful to think of real surfaces as complex curves, it turns out to
be more fruitful to think of a complex curve — with equation P(x,y) = 0, say
— as a real surface. It is on this that Riemann bases his theory of surfaces, in
which one-dimensional and two-dimensional notions become associated with one
another. For example, he makes no bones about cutting a surface along a real
curve, thereby introducing topological methods into algebraic geometry. Regard-
ing an algebraic curve — that is, an object of one complex dimension situated
in the complex projective plane — as a real two-dimensional surface presents no
difficulties if the given curve is smooth, since then the real surface is also smooth.
However, as we have already seen, this is far from representing the general sit-
uation since singular points arise frequently. In this case, however, one can to
within a birational equivalence assume that the singularities are ordinary double
points, and then it is not difficult to make the surface smooth: for this it suffices
to regard the double point as actually two distinct points, on separate branches,
and one constructs in this way a smooth surface associated with the original al-
gebraic curve. This is how Riemann associates with each given algebraic curve
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a Riemann surface, that is, a holomorphic manifold of dimension 1, or, to put it
another way, a real manifold of dimension 2 endowed with a complex structure.
(We shall revisit this theme throughout the book.) Riemann went on to (almost)
prove the following two statements:

— Two algebraic curves are birationally equivalent if and only if their associ-
ated Riemann surfaces are holomorphically isomorphic.

— Every “abstract” compact Riemann surface is holomorphically isomorphic
to the Riemann surface of some algebraic curve.

Thus the algebraic problem of describing algebraic curves is transformed into
the transcendental one of describing Riemann surfaces. The first invariant derived
by Riemann was a purely topological one (and had a major impact on the devel-
opment of topology since, among other things, it was in attempting to generalize
it that Poincaré was led to the modern form of that discipline). It is well known
that every compact orientable surface is homeomorphic to a sphere with a cer-
tain number of handles attached, which number is nowadays termed the genus of
the surface. It follows that every algebraic curve has a specific associated genus
which is invariant with respect to birational equivalence and so of much greater
significance than the degree.

=
=

Figure 7: Topological surfaces of genus 1, 2, and 3
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Here are some of the results concerning the genus that we shall encounter
later on.

Having genus zero means that the curve’s associated Riemann surface is home-
omorphic to the 2-sphere. It does not then follow immediately that it is holomor-
phically isomorphic to the Riemann sphere. This fact was established in two dif-
ferent ways by Alfred Clebsch (see Chapter II) and Hermann Schwarz (see Chap-
ter IV): every Riemannian metric on the sphere is globally conformally equivalent
to that of the standard sphere. In other words (closer to those of Schwarz) every
Riemann surface homeomorphic to the sphere is holomorphically equivalent to
the Riemann sphere. In yet other words:

The algebraic curves of genus zero are precisely the rational curves.

This represents a further stage on the way to general uniformization: a sin-
gle topological datum about a curve determines whether or not it has a rational
parametrization.

Having genus 1 signifies that the Riemann surface is homeomorphic to a torus
of two real dimensions. It follows, although not obviously — Clebsch proved it in
1865 — that it is holomorphically isomorphic to a quotient of the form C/A (see
Chapter II). Thus:

The algebraic curves of genus I are precisely those birationally equivalent to
smooth cubics (the so-called “elliptic” curves).

The case of genus greater than or equal to 2 is more complicated, and it is to
this case that the present book is devoted. Before summarizing the situation, we
clarify the connection between genus and degree: it can be shown that if C is a
curve of degree d with k singular points, all ordinary double points, the genus is
given by the formula

ALY N

2

It is then immediate that straight lines and conics have genus zero, smooth cubics
genus 1, singular cubics genus zero, and smooth quartics genus 3.

Riemann demonstrates great mastery by the manner in which he generalizes
from the case of elliptic curves. For instance, for each fixed value g > 2 of the
genus, he seeks to describe the space of moduli of the curves of that genus —
that is, the space of algebraic curves of genus g considered to within a birational
transformation — showing it has complex dimension 3g — 3. Among other re-
sults of Riemann, we should also mention the celebrated one asserting that every
non-empty simply connected open subset of C is biholomorphically equivalent
to the open unit disc — a result of fundamental importance, although Riemann’s
proposed proof leaves a little to be desired (see Chapter II). It sometimes happens
that this result, albeit an important special case, is confused with the “great” uni-
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formization theorem forming the theme of the present book, which has to do not
just with open sets of C but, much more impressively, with a/l Riemann surfaces.

Riemann’s work in this field exerted a considerable influence on his immediate
successors. In Chapter IV we describe Schwarz’s attempts to establish explicitly
certain particular cases of the conformal representation theorem while skirting the
technical difficulties on which Riemann’s proof founders.

Among the best expositions of Riemann’s ideas, that of Felix Klein, another
hero of the present work, stands out. In 1881 he wrote up what he believed to be
the idea behind Riemann’s intuition, even though Riemann’s actual articles make
no mention of it. We will never know if Klein was right in this, but the resulting
new approach, via Riemannian metrics, seems to us especially illuminating. It
relies on an electrostatic or perhaps hydrodynamic interpretation, making it par-
ticularly accessible to the intuition. We describe this way of looking at the subject
and its modern developments in Chapter II1.

Uniformizing algebraic curves of genus greater than 2

The question of parametrizing curves of general genus g remained open, or, more
precisely, no one suspected that every algebraic curve might be parametrizable
by single-valued holomorphic functions. However, following Riemann’s work,
evidence for this began to accumulate from the examination of certain remarkable
examples.

In a marvellous article Klein studied the curve C given by the homogeneous
equation x3y + y’x + z3x = 0 as a Riemann surface, showing that it is isomor-
phic to the quotient of the upper half-plane by an explicit group of holomorphic
transformations. In other words, he constructed a (single-valued) holomorphic
function 7 with domain the upper half-plane H and with fibres the orbits of a
group I" of holomorphic transformations acting freely and properly. The analogy
with the situation of elliptic curves was striking: the half-plane replaces the com-
plex line and the group I' of Mobius transformations replaces the group A acting
via translations. Thus is Klein’s quartic uniformized by n.

Even though this remarkable specimen was actually the first example of uni-
formization in higher genus, it was nonetheless taken at the time for an unparal-
leled gem, as it were, incapable of generalization like the regular polyhedra. As
such it marked an interlude prior to attempts at establishing general uniformiza-
tion. We shall expound Klein’s example in Chapter V.

Motivated by quite different considerations arising in the theory of linear dif-
ferential equations, Poincaré was led to the systematic investigation of the dis-
crete subgroups I' of the group PSL(2,R), which he called Fuchsian, and the
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quotients H/I" obtained from them. He saw that among such quotients there are
compact Riemann surfaces of genus at least 2. He showed that there is some lati-
tude in the choice of the group, depending on certain parameters (see Chapter VI).

In light of Poincaré’s results, Klein realized that the algebraic curves uni-
formized by H are in fact not isolated examples as he had thought, but form con-
tinuous families depending on parameters to be determined. Almost simultane-
ously Klein and Poincaré saw that the latter’s constructions might be of sufficient
flexibility for all compact Riemann surfaces to be uniformizable by H. A di-
mensional count quickly showed that the space of Poincaré’s Fuchsian groups,
considered up to conjugation, yielding a surface of genus g depends on 6g — 6 real
parameters — highly suggestive given Riemann’s result that Riemann surfaces
of genus g depend on 3g — 3 complex moduli. The race was on between Klein
and Poincaré to prove the theorem. We encourage the reader to read the impas-
sioned correspondence on this topic between our two heros reproduced at the end
of the book. Here Klein and Poincaré introduce a new method of proof, namely
by continuity.
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Figure 8: Klein’s Fuchsian group (shown here as a group of automorphisms of the
unit disc rather than the upper half-plane).

To us neither Klein’s proof nor Poincaré’s is totally convincing. In Chap-
ter VII we try to resurrect Klein’s proof?; to obtain a rigorous proof we had to use
modern tools derived from quasiconformal techniques, which Klein and Poincaré
certainly did not have at their disposal. Then in Chapter VIII we make an attempt
to resuscitate — at least in part — Poincaré’s approach, which was not motivated

9The matter is actually more complex; in fact some parts of the proof given in Chapter VII are
closer to certain of Poincaré’s arguments than to those of Klein.
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by uniformization but rather by the desire to solve linear differential equations.
The reader will observe there the emergence for the first time of a great number of
concepts familiar to modern mathematicians. Chapter IX is devoted to the explicit
investigation of some examples of uniformization of surfaces of higher genus.

By 1882 Klein and Poincaré had become fully convinced of the truth of the
following uniformization theorem:

Theorem. Let X be any compact Riemann surface of genus > 2. There exists
a discrete subgroup T of PSL(2,R) acting freely and properly on H such that X
is isomorphic to the quotient H/T'. In other words, the universal cover of X is
holomorphically isomorphic to H.

To summarize, Klein and Poincaré had now effectively solved one of the main
problems handed down by the founders of algebraic geometry: to parametrise an
algebraic curve F(x,y) = 0 (of genus at least 2) by single-valued meromorphic
functions x,y : H — C. This magnificent result rounded out the theory deal-
ing with the particular cases of rational and elliptic curves. Thus Fuchsian func-
tions were now seen to be the appropriate generalizations of elliptic functions.
Of course, as in the case of the elliptic functions, it was now necessary to admit
new transcendental functions into the menagerie of basic mathematical objects,
find their (convergent) series representations, etc. In fact Poincaré subsequently
devoted a number of papers to such questions.

Beyond algebraic curves

But why should we confine ourselves to algebraic curves? What is the situa-
tion with “transcendental” curves? Spurred by his success with algebraic curves,
Poincaré went on to address the problem of non-compact Riemann surfaces, which
a priori have no relation to algebraic geometry. Although the method of continuity
could no longer be applied, nonetheless already by 1883 Poincaré had managed to
show that every Riemann surface admitting a non-constant meromorphic function
can be uniformized in a certain weakened sense of the word “uniformize”: one has
now to allow parametrisations that may not be locally injective, that is, with ram-
ification points. This result is the subject of Chapter XI. The question of the uni-
formization of non-algebraic surfaces seems to have stagnated for a while there-
after, until, in 1900, Hilbert stressed the incomplete nature of Poincaré’s result,
and encouraged mathematicians to re-apply themselves to it; this was Hilbert’s
twenty-second problem. At last, in 1907, Poincaré and Koebe arrived indepen-
dently at the general uniformization theorem:

Theorem. Every simply connected Riemann surface is holomorphically isomor-
phic to the Riemann sphere C, the complex plane C, or the upper half-plane H.
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Koebe’s and Poincaré’s approaches to this theorem are described in Chap-
ters XII and XIII.

Of course, this classification of simply connected Riemann surfaces yields im-
mediately a characterisation of all Riemann surfaces, since every Riemann surface
is a quotient of its universal cover by a group acting holomorphically, freely, and
properly. Thus by the theorem of Koebe and Poincaré every Riemann surface is
identical with either the Riemann sphere or a quotient of C by a discrete group
of translations, or a quotient of the half-plane H by a Fuchsian group. The work
of Poincaré and Koebe, occupying Part C, allowed a new page to be turned in
potential theory, and represents the end of an important epoch in the history of
mathematics.

Meanwhile, over the decade 1890-1900, Picard and Poincaré worked out
a new proof of the uniformization theorem based on a suggestion by Schwarz,
valid in the compact case at least, and depending of the solution of the equation
Au = e*. We present this in Chapter X.

The uniformization theorem was at the centre of the evolution of mathematics
in the 19th century. In the diversity of its algebraic, geometric, analytic, topo-
logical, and even number-theoretic aspects it is in some sense symbolic of the
mathematics of that century.

Our book ends in 1907, even though the story of the uniformization theorem
continues. Among later developments, one might mention Teichmiiller’s work on
moduli spaces, or those of Ahlfors and Bers in the 1960s relating to the concept of
quasiconformal mappings (see for example [Hub2006]). There is also the progress
in higher dimensions, in particular Kodaira’s classification of complex surfaces,
that is, of 2 complex dimensions. But that’s another story!
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Riemann surfaces






Chapter 1

Antecedent works

Any account of the evolution of the uniformization theorem must begin with a
description of the methods of Riemann and his immediate successors!. The aim
of this first part is to provide such a description.

Of all mathematicians of the middle of the 19th century, it was without doubt
Riemann who left the deepest imprint on the theory of algebraic curves. Here, for
example, are the first few sentences of Hermite’s preface to Riemann’s complete
works:

Bernhard Riemann’s oeuvre is the greatest and the most beautiful of our era:
it has received unanimous acclaim and will have a permanent influence on
scientific development. The work of present-day geometers is inspired by
his ideas whose significance and fruitfulness are reconfirmed every day in
their discoveries.

In this preliminary chapter we give a succinct exposition of two topics which
in Riemann’s time (around 1851) had emerged quite recently and which may well
have served as “detonators” for his work on algebraic curves:

— Gauss’ application of complex numbers to cartography, and the “local”
uniformization theorem allowing local parametrization of any surface by a
“conformal map”.

— the rise of the theory of elliptic functions, initiated by Euler and reaching
maturity with the work of Abel and Jacobi just prior to Riemann’s thesis.

However before discussing cartography and elliptic functions, we consider
very briefly the birth of the geometric interpretation of the complex numbers as
points of the plane.

'Even though the correspondence between Klein and Poincaré reproduced at the end of the
present book shows clearly that when Poincaré began his investigations of Fuchsian functions he
had not read Riemann!
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I.1. On the development of the complex numbers

The story of the complex numbers is a rather involved one and there are many
detailed histories devoted to them, such as, for instance [Mar1996, Neuel981].
Our present aim is certainly not to recount their history, but rather to recall just a
few of the more important stages in their development in order for the reader to
appreciate more fully the innovatory character of the works of Gauss, Abel, and
Jacobi described below. (For additional details we refer the reader to [Mar1996],
pp- 121-132.)

Although in 1777 Euler had indeed coordinatized the points of the plane with
complex numbers x + iy, this geometric interpretation received its full formaliza-
tion only at the turn of the 19th century (by Wessel in 1799, and Argand and Buée
in 1806), and it took some time before the geometric point of view was taken for
granted.

Of course, Gauss understood many things before anyone else... His first
“proof” of the Fundamental Theorem of Algebra, in 1799, cannot be understood
without an appreciation of the geometric and topological way of viewing the com-
plex numbers?. According to [Mar1996] it was only following the publication of
Gauss’s 1831 article “Theoria residuorum biquadraticorum” that the notion of a
complex number as a point of the plane gained universal recognition.

The theory of analytic, or holomorphic, functions also took a long time to
crystallize out, at least in its geometric aspect. Here the great instigator in the
development of the theory was Cauchy. According to [Mar1996], the path he
followed was long and tortuous. In 1821 he was still talking of imaginary expres-
sions: “An imaginary equation is merely a symbolic representation of two equa-
tions in two variables.” It took till 1847 for him to largely shed such terminology,
speaking instead of “geometric quantities”, and reach the point of conceiving a
function visually as we do today, that is, as transforming a variable point in the
input plane to another variable point in the output plane.

The concept of the complex integral f f(z)dz along a path, the dependence
of the integral on the path, and residue theory: all of these familiar results also
underwent a long period of gestation, primarily at the hands of Cauchy. His first
paper on these questions appeared in 1814 but the theory of residues dates from
1826-1829.

Here also Gauss was ahead of his time, but refrained from publishing his ideas.
A letter from him to Bessel dating from 1811 shows that he had a clear idea of the
integral along a path and that he had already grasped the concept of the residues
at the poles of the functions being integrated.

2In order to show that a non-constant polynomial P vanishes somewhere in the complex plane,
he studies the behavior towards infinity of the curves Re P = 0 and Im P = 0, deducing that they
must of necessity cross.
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In sum, in 1851 Riemann has at his disposal a geometric theory of holomor-
phic functions just recently created. By introducing the concept of a Riemann
surface, he will now liberate holomorphic functions from the coordinates x and y,
and the theory will assume a fundamentally geometric form. By contrast, twenty-
five years earlier, Abel and Jacobi had none of the basic concepts of complex
function theory — such as for example Cauchy’s residue formula — at their dis-
posal.

L.2. Cartography

The pursuit of the science of cartography, both terrestrial and celestial, led schol-
ars of antiquity to pose the question as to how a portion of a sphere might be
represented by a planar map. Ptolemy’s Geography contains several possible so-
lutions. It soon became clear that distortions are inevitable, whether of shapes,
distances, areas, etc.

In 1569 Mercator proposed a projection which he used to produce a map of the
world with properties especially convenient for navigation. Although his method
of drawing the map was empirical, the underlying idea nonetheless paved the way
for the application of mathematical analysis to cartography. It was in the 18th
century that these two disciplines came together in a series of works by Johann
Heinrich Lambert, Leonhard Euler, and Joseph Louis Lagrange. Lambert’s work,
published in 1772, heralded the birth of modern mathematical cartography. Ac-
cording to Lagrange, Lambert was the first to formulate the basic problems as-
sociated with the representation of a region of the sphere on a plane in terms of
certain partial differential equations.

In 1822, inspired by cartographical problems and methods, the Royal Society
of Copenhagen set as the subject of a prize essay the problem of “representing
parts of a given surface on another surface in such a way that the representation
be similar to the original in infinitely small regions”. This was a prime oppor-
tunity for Gauss, greatly interested as he was in both the theory and practice of
cartography, to prove the existence of a locally conformal representation of any
real analytic surface on the Euclidean plane, the first step towards uniformization.
The main goal of the present section is to expound this theorem.

I.2.1. From practice to theory

First constructions. — Written by Ptolemy in the 2nd century AD, the famous
geographical treatise Geography maintained its authority till the Renaissance. It
describes (and applies) several methods of representing the then known world as
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precisely as possible on a planar map. Of course, the geometers and astronomers
of antiquity were aware that it is impossible to represent a part of a sphere on a flat
surface so as to preserve all pertinent geometrical information (distances, angles,
areas, etc.) — that is, isometrically.

This impossibility is due to the curvature of the sphere, in modern terminology
— that is, in the precise sense of “curvature of a surface” as defined by Gauss. Of
course, ancient astronomers had no such sophisticated mathematical artillery at
their disposal, but they must surely have been aware of simple manifestations of
that curvature. For example, a geodesic triangle forming an exact eighth part of
the sphere, with its angles all right angles, readily occurs to the imagination, and
shows clearly that not all spherical triangles can be faithfully represented on a
plane (see Figure I.1).

Figure I.1: A spherical triangle

We might also mention that although Ptolemy and his forerunners (Eratos-
thenes in the 3rd century BC, Hipparchus in the following one) did indeed take
the Earth to be spherical in their model of the world, the attempt to obtain a useful
planar representation of the celestial sphere of fixed stars presents in any case the
same difficulty independently of the question of the shape of the Earth.

Of course, constraints on the planar representation of large parts of a sphere
will depend on the intended use of the map. A sovereign exacting taxes propor-
tional to areas of land under cultivation, a sailor navigating with compass and
astrolabe, or an astronomer observing the heavens — these all have different re-
quirements. Leaving aside (important) questions of aesthetics, it would seem rel-
evant to demand, for example, one or more of the following:

— that areas be preserved (or, rather, be in a fixed proportion to the originals);
in this case one calls the map equivalent;
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— that angles be preserved (a conformal map);

— that the distances from a particular reference point be preserved (an equidis-
tant map;

— that certain distinguished curves be mapped onto straight line segments. In
this connection it is natural to think of geodesics ( geodesic maps), but a
sailor would naturally tend to give priority to routes of constant heading
(loxodromic maps).

There are obviously many other constraints that one might impose on the pla-
nar map, yielding as many different problems to solve or to be shown incapable of
solution. The book [Sny1993] is a good introduction to such aspects of the history
of cartography.

Box I.1: Conformal mappings

In this book we shall often have occasion to revisit the concept of conformal
maps so it may be appropriate to give the precise terminology. For a linear
operator L on a Euclidean vector space (E, || - ||) the following properties are
equivalent:

— L preserves angles;

— L is a similarity, that is, there exists a positive constant ¢ such that

[|L(v)|| = cl||v|| for every vector v of E.
The word “similarity” conveys preservation of shape; in German one finds the
adjective winkeltreu, directly conveying the preservation of angles.

A diffeomorphism between two open sets of the Euclidean plane is said
to be conformal if its differential map has the above two properties at every
point. The expression “similar in infinitesimally small regions” also used to
be current in both French and German. Later on we shall see that once the
plane has been made over into the complex plane C, one is in a position to
speak of a given diffeomorphism as being holomorphic or not holomorphic.
Note also the analogous meanings of the Greek and Latin roots morph and
form, and likewise how the prefixes holo- and con- both convey the sense of
preservation.

Even before Ptolemy various projections had been used by ancient Greek
scholars. An intermediate step, crucial both theoretically and practically, was the
introduction of the idea of latitude and longitude, already familiar to Hipparchus.
This provided in effect a means of pinpointing the positions of two distant towns,
say, using a single system of coordinates. Astronomical criteria — most notably
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observations of the stars — could be used to ascertain position. A fairly typical
example: if two towns A and B in the northern hemisphere are such that a partic-
ular star is visible the whole night through by an observer at A, while an observer
at B sees it rise and set, one can infer that the town A is more northerly than B.

One method of drawing a map is therefore to impose constraints on the im-
ages on the map of the circles of constant latitude — called parallels — and the
great half-circles of fixed longitudes — the meridians. Cartographers call the
network of images of lines of latitude and longitude a graticule. Thus rectangu-
lar maps are those where the parallels and meridians are represented by horizontal
and vertical straight lines respectively: here the graticule is made up of rectangles.
Among these we find the equirectangular map (often known also by the French
name plate carrée (squared flat [projection]), dating from before Ptolemy’s Geog-
raphy, generally signifying a constant spacing of the equal jumps in latitude and
longitude. In this case, therefore, the graticule is a grid of squares of fixed size
(Figure 1.2).
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Figure 1.2: The plate carrée

Another natural method of producing maps is to apply certain simple geo-
metric operations to the space in which the sphere is situated in order to obtain
a planar image: one might apply an orthogonal projection onto a suitably posi-
tioned plane, or a projection from some point, or indeed map the sphere onto a
surface such as a cone or cylinder, and then develop the resultant image onto a
flat surface. One very old such method is stereographic projection, known to Hip-
parchus and probably earlier. This involves projecting the Earth’s surface onto the
tangent plane to one of its points (the South Pole, for instance) from the antipo-
dal point (Figure 1.3). This procedure yields a planar map representing the whole
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of the Earth’s surface except for the point of projection. Clearly, the distortion
occasioned by this method increases with the distance from the point of tangency.

An essential property of this map is its conformality: angles drawn on the
sphere remain the same on the map. This property, as important for celestial maps
as for terrestrial or maritime ones, seems to have been noticed and proved for the
first time by the famous English astronomer Edmond Halley towards the close of
the 17th century [Hal1695]. The book [HiC01932] contains an elegant proof of
this fact.

Figure 1.3: The stereographic projection

Although the stereographic and equirectangular projections are still in use
(the first in producing maps of the celestial sphere and the second as affording the
simplest means of sketching a map by computer from knowledge of the latitude
and longitude of certain towns), they have largely yielded in importance to other
projections. The most familiar projection is that invented by Mercator in 1569.

Mercator’s aim was to produce a rectangular map, like the plate carrée, with
the difference that now routes of constant heading? on the sphere are represented
on the map by straight lines, making the map suitable for maritime navigation.
However, this constraint entails a wider and wider spacing of the images of the
parallels of latitude as one approaches the poles, resulting in the familiar distor-
tion of areas. Mercator actually constructed a model of his map, probably by
calculating graphically the necessary spacing between pairs of parallels differing

3That is, constant bearing relative to true north.
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by ten degrees latitude. Mercator’s is the second conformal projection after the
stereographic projection.
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Figure 1.4: Mercator’s projection

i

Introduction of the differential calculus. From a mathematical point of view the
18th century marked a renascence in both the conception and study of geograph-
ical map-making through the application of the differential calculus. The pioneer
in this development was Johann Heinrich Lambert.

Equally well known for his work in the physical sciences (the Law of Beer—
Lambert describes the absorption of light by a chemical solution as a function
of its concentration) and especially for giving the first proof of the irrationality
of m, in his work Beytrdge zum Gebrauche der Mathematik und deren Anwen-
dung*, and especially Anmerken und Zusdtze zur Entwerfung der Land und Him-
melscharten’ [Lam1772], written between 1765 and 1772, Lambert described nu-
merous methods of obtaining cartographical representations and opened the way
to a systematic analytic study of the various constraints, notably equivalence and
conformality. On the practical side, it is to him that we are indebted for Lam-
bert’s conformal conical projection., the present-day official projection used for
the maps of France, but he also gave the first analytic proofs of the conformal-
ity of the stereographic and Mercator projections, re-proved by Euler in 1777
in [Eull1777].

Inspired by Lambert’s translation of cartographical questions into mathemat-
ical language, Lagrange [Lagl779] saw that the subject suggests more general

4Contributions to the utilization of mathematics and its application.
5Notes and comments on the construction of terrestrial and celestial maps.
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questions than just those associated with the production of conformal maps and
the verification of their properties. The problem occurred to him of determining
all conformal maps that one can make of the Earth’s surface, but with a refinement
of the model of the Earth commonly used: he assumed a “spheroidal” shape for
the Earth — more precisely, that it is a surface “generated by the revolution of
some curve about a fixed axis”.

In summarizing the history of cartography, Lagrange observes, without citing
Mercator explicitly, that the possibility of producing conformal maps other than
by direct projection of the terrestrial sphere onto a tangential cone or cylinder
leads one to a more general and fruitful perspective on the problem, allowing its
transformation from a purely practical question into a mathematical one:

This investigation [of conformal maps], as interesting for the analytical
techniques it requires as for its potential application to the drawing of geo-
graphical maps, seems to me a topic worthy of the attention of geometers
and appropriate subject-matter for a memoir.

Thus he proposes determining all conformal planar representations of a sur-
face of revolution. His idea is to imitate Mercator’s projection in the sense of
identifying the constraints on the spacing of parallels ensuring conformality.

We first introduce appropriate notation: the surface in question is obtained by
revolving a planar arc about the axis joining its end-points, the poles of the surface.
Each point of the surface is then naturally coordinatized by the longitude ¢ and the
length s of the arc of the generating curve from the point to one of the poles. (In
the case of a sphere of radius 1, the coordinate s is 77/2 minus the latitude.) Each
point (¢, s) of the surface lies on a horizontal circle (representing a parallel) of
radius g(s), say. (In the case of the unit sphere this radius is sin s, or, equivalently,
the cosine of the latitude.)

In this notation the Riemannian metric® — also called “the first fundamental
form” — of the surface is easily seen to be ds® + q(s)>dg®.” Representing the
surface conformally on the plane then comes down to expressing the rectangular
Cartesian coordinates x and y as functions of s and ¢ in such a way that the
elements of distance computed in terms of x,y on the one hand and ¢,s on the
other satisfy the proportionality relation

dx* + dy* = n(g,s)*(ds® + q(s)*dg?),

6We don’t hesitate to call this metric “Riemannian” even though it considerably predates Rie-
mann.

7This is the square of an infinitesimal element of length on the surface, considered em-
bedded in Euclidean space. Thus the length of a smooth arc (¢(z),s(¢)), a < t < b, is

fab \/(ds/dt)2 + q(s(t))z(dgo/dt)zdt. Trans
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where # is a non-vanishing function representing the dilation factor of distances
at each point.

Figure 1.5: A surface of revolution

Lagrange finds a system of coordinates u«, v solving this equation for x and y,
and representing a generalization, within the limits of his investigation, of Merca-
tor’s projection. The functions u, v in question are given by

S do
u(S):fo 20 V=g,

which satisfy

ds? 1
di® + dv? = ot dg? = W(dsz +q(s)2dg?),

and therefore define (locally, away from the poles) a conformal coordinate system
for the surface of revolution.

Having found one conformal coordinate system, Lagrange goes on in his
memoir to consider the problem of determining the other possible such systems,
in particular, for practical reasons in the case where the graticule — the network
of images of the parallels and meridians — is made up of circles. In the evolution
of cartography this theoretical result represents the first occasion where conformal
coordinates are found for a relatively general class of surfaces.
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L.2.2. Gauss’s view of conformal representation

In 1822 the Royal Danish Academy of Sciences and Letters in Copenhagen pro-
posed as a prize problem that of representing portions of a given surface on an-
other in such a way that the representation be “similar to the original in infinites-
imally small regions.” In 1825 Gauss published in Schumacher’s Astronomische
Abhandlungen his famous memoir on the topic [Gaul825], also to be found in his
collected works [Gaul863].

The term “conformal representation” was introduced by Gauss only in 1844
in Section I of the first part of his memoir on higher geodesy. This work largely
bypasses the particular theme of geographical maps, playing in the theory of func-
tions a role analogous to that of his Disquisitiones generales circa superficies cur-
vas in the theory of surfaces.

To return to Gauss’s result of 1825: he shows that every (analytic) surface
is locally conformally equivalent to the Euclidean plane (whence it is immediate
that any two analytic surfaces are locally conformally equivalent)®. A local system
of coordinates (x,y) € R? on a surface is called conformal if in terms of x,y the
metric has the form m(x, y)(dx* + dy?). Gauss’s theorem then states that:

Theorem 1.2.1 (Gauss). Ler g be a real analytic Riemannian metric defined in a
neighborhood of a point p of an analytic surface. Then there exists a conformal
map V — R? from some open neighborhood V of p to the Euclidean plane.

We shall now sketch Gauss’s marvellous proof of this theorem.

We first choose coordinates in some neighborhood of p; expressed in terms
of these coordinates the metric on the surface may be considered as defining an
analytic metric g in an open neighborhood U of the origin in R,

To ease understanding we first prove the exact analogue of Gauss’s theorem in
the case where the open set U is endowed with a Lorentzian metric g. This means
that at each point of U there is given a quadratic form of signature (+,—), and we
wish to show that this Lorentzian metric is conformal to the standard Lorentzian
metric dx*> — dy* on R — in the sense of the obvious extension of conformal-
ity to the Lorentzian situation. One proceeds as follows. At each point of U the
metric g determines two directions where it vanishes — the two “isotropic” di-
rections of the metric. Hence locally one obtains two non-singular vector fields
determined by these directions, and on integrating them one obtains two fami-
lies of isotropic curves intersecting transversely. For example, in the case of the
standard Lorentzian metric dx? — dy? these curves will clearly be just the lines of
slopes +1.

8Note that for Gauss the surfaces in question are embedded in Euclidean space, from which they
inherit their metric.
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We now choose the origin O as base point in U and denote by Py any par-
ticular point of R2. Denote by C; and C, the two isotropic curves through O of
the Lorentzian metric g and by 9; and D, the isotropic lines through Py of the
standard Lorentzian metric on R2. Let f; : U — R? be any diffeomorphism send-
ing C; onto D, and f; a diffeomorphism sending C, onto D,. Now let m be an
arbitrary point of U close to the origin, and let C; and G, be the two isotropic
curves of the metric g passing through it. By replacing U by a smaller open set V
if necessary, we may assume that C; intersects C, in a single point p; and likewise
that G, intersects C; in just one point p;.

The map ¢ that we seek is then that sending each such point m of V? to the
point of intersection M = y(m) € R? of the isotropic lines of R? through the
points P; = fi(p1) and P, = f2(p2). The map ¢ so defined sends g-isotropic
directions in V to those of the standard Lorentzian metric on R?.

We now appeal to the crucial, and easily seen, fact that two quadratic forms of
signature (+,—) on a real vector space of dimension 2 are proportional
if and only if they have the same isotropic directions. We must therefore have
W.g = m(x,y)(dx* — dy*) for some non-vanishing function m(x,y). In other
words, ¢ is a conformal map, and Gauss’s theorem is thus established in the
Lorentzian case — and moreover without the assumption of analyticity.

Figure 1.6: The Lorentzian version of Gauss’s theorem

In the case where g is a real analytic Riemannian metric, although certainly
one no longer has isotropic directions to play with, nevertheless the same under-
lying idea can be made to work given sufficient imagination.

Where now V is an open subset contained in U all of whose points have the property pertaining
to the point m. Trans
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We first express the basic ideas of the argument in modern terminology. That
argument begins with the complexification of the open set U into an open set
U c C?; this is just an open neighborhood of U considered as a subset of C2. We
write g9 = dx* + dy? for the standard “complex Riemannian” metric on C2, with x
and y now the standard (complex) coordinates of C2. (Strictly speaking this is
not a Riemannian metric since the underlying quadratic form takes on complex
values.) Since by assumption the coefficients of the metric g are real analytic
functions we can, by restricting U if need be, extend g uniquely to a complex ana-
lytic — that is, holomorphic — metric § on the open set U. Furthermore, since the
coefficients of g are real the metric g will be invariant under complex conjugation
(x,y) = (%7%). Now in C? one does have two transverse families of isotropic
complex lines of the metric gy, with equations of the form y = +ix + const., while
on U the metric g likewise gives rise to two families of holomorphic vector fields,
which one integrates to obtain two families of holomorphic curves intersecting
transversely. (Note that these holomorphic complex curves in C> correspond to
surfaces in R*.)

Next one maps the origin O of U to an arbitrary real point Py of R> ¢ C2.
Through O there passes a complex isotropic curve C; and the complex curve C»
obtained by complex conjugation of the curve C;. By means of these curves
one defines, exactly as in the Lorentzian situation, a mapping ¢ of a suitable
neighborhood V of O contained in U, with image in C2. The diffeomorphism
has the additional property of being invariant under complex conjugation, so that it
induces a diffeomorphism ¢ from V = VNR? to its image ¢ (V) NR?. The fact that
the complexification of the diffeomorphism ¢ preserves the isotropic directions of
the complexification of the metric g means precisely that the map is conformal.
This completes the proof of Gauss’s theorem. O

Gauss does not set out his proof exactly as above, although his method is
essentially the same.
First he writes g out as

g = a(x,y)dx? + 2b(x, y)dxdy + c¢(x,y)dy?*, ac > b*.

Then he factors the quadratic form as a product of two conjugate linear forms
(defining the isotropic directions):

! (adx + (b +iVac = bay) (adx + (b =i Vac = D))

1
= —wa.
a

8

Here w is what is now called a “holomorphic 1-form” in the complex variables x, y.
The equation w = 0 may be regarded as a differential equation whose solutions
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are locally of the form f(x,y) = const. where f is defined in some neighbor-
hood of the origin — in other words, w has the form Adf for some function A.1°
Resolving f into its real and imaginary parts, we have

w = h(du + idv) (whence also @ = h(du — idv)),

whence, finally,
hh
g= —(a’u2 + dvz).
a

Here the coordinates u,v are real by construction and the similarity coefficient

m:= ha—h is obviously a real analytic function of x, y, so Theorem 1.2.1 is proved. O

Conformal maps i are certainly not unique, but of course any two of them
differ by a conformal self-map of the Euclidean plane. Thus in order to classify all
locally conformal maps one needs to ascertain those coordinate transformations
(x,y) — (X,Y) between open sets of R? that are conformal, that is, for which
dX?+dY? = m(x,y)(dx? + dy?) for an appropriate function m — in other words,
it is necessary and sufficient that the differential map determine a similarity at
each point. If one assumes in addition that orientation is preserved — that the
similarity is “direct” — then the condition is expressed by the formulae

0X 3 oY o0X 3 oY

dx  dy’ dy  ox’
familiar as the so-called “Cauchy-Riemann” equations expressing the holomor-
phicity of X + iY as a function of x + iy. In fact this way of expressing the

conformality of a map in terms of dx + idy was known to Euler as long ago as
1777!

Here then in modern terminology is what Gauss showed:

Every (oriented and analytic) surface can be represented by a map to the
Euclidean plane (identified with the complex plane) that is locally conformal and
orientation-preserving. Any two such maps differ by a holomorphic change of
coordinates.

It follows from this theorem that any surface endowed with a (real analytic)
Riemannian metric is a “Riemann surface”, as defined in Chapter II below.

Gauss’s theorem, established here only in the situation of a real analytic met-
ric, remains true under the weaker assumption that the metric is C* or even just
measurable, but the proof is then much more difficult. The C* case was proved

10This is because w and df both vanish exactly on vectors tangent to the curves f(x,y) = const.,
thus must be proportional. Trans
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by Korn in 1914 and Lichtenstein in 1916, and, finally, in 1960, Ahlfors and Bers
established the theorem in the measurable case (see [Ahl12006]).

Gauss does not rest content with merely proving his theorem, but illustrates
it with many examples: he begins by showing how to represent the surface of a
certain solid on the plane, and then a cone and a sphere. He does not lose sight of
the particular question prompting the Danish Academy’s choice of problem, and
ends his memoir with a treatment of the case of an ellipsoid of revolution. The
determination of conformal maps of a more general ellipsoid requires the use of
elliptic integrals, which form the theme of the next section.

L.3. Overview of the development of elliptic functions

By the end of the 19th century elliptic functions were at the center of mathematics.
They turned up everywhere: in geometry, algebra, number theory, analysis, and
even mechanics, and assumed the status of an indispensable accessory of mathe-
matical culture.

Elliptic functions proved useful in allowing certain algebraic curves (those of
genus 1) to be uniformized, and they are therefore important in relation to the
theme of this book. However, they played a more important role in providing a
source of inspiration for Riemann, Klein, and Poincaré — among others — in
their investigations of general algebraic curves. Poincaré, for example, presented
his theory of Fuchsian functions as a “simple” generalization of that of elliptic
functions, and for this reason we now describe the latter theory and its develop-
ment.

There are many excellent books on elliptic functions, including those taking
a historical tack. Among those we prefer, the reader may consult for example
[McKMo01997, Bos1992, Houl978]. In view of the treatments in such works as
these, rather than going into the detailed history we shall confine ourselves here
to describing just the main developments, concentrating on just those aspects we
shall be needing in the sequel.

At the beginning of the 19th century analysts had essentially just a small num-
ber of types of elementary functions at their disposal': polynomials and rational
functions, of course, algebraic functions y(x), that is, satisfying a polynomial
equation F(x,y) = 0 (even if many-valued), and also the exponential and trigono-
metric functions. Early attempts to “find new transcendental functions with which
to enrich analysis” consisted in studying the anti-derivatives of functions already

1Although in the 18th century Euler had introduced the zeta and gamma functions, for instance,
as well as the idea of a general function as being defined by a power series. Trans
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at hand. This method had already proven itself in connection with the “discovery”

of the natural logarithm

dx
logx= | —.
X

Euler, Gauss, Legendre, Abel, and Jacobi, among others, began the general in-
vestigation of Abelian integrals, as Jacobi called them, that is, integrals of the

form
f R(x,y)dx,

where R is a rational function of x and y with y an algebraic function of x. We
present here their respective contributions to this subject.

1.3.1. Euler

The first step consisted in a somewhat “magical” calculation performed by Euler
in commenting on an article by Fagnano. This concerned one of the very simplest
of anti-derivatives not expressible in terms of the known elementary functions,
namely

f dx

Vi—x¥

which conforms to the preceding definition of an Abelian integral with y* = 1 —x*
and R(x,y) = 1/y. This integral arises in the attempt to evaluate the length of an
arc of the lemniscate with equation, in polar coordinates, r> = cos 26 (the last of

the curves depicted in Figure 2 in the General Introduction).!?
In 1752 Euler proved the following “addition theorem”:

fx dt +fy dt _fz dt
0 V1-¢ 0 V1-r4 o Vi—i#

where

x1=y*+y V1 —x?
1+ x2y? ’

He was doubtless led to this by the analogy with the integral

f" dt .
————— = arcsinux,
0 V1-172
2Arc length in polar coordinates is calculated by means of the integral f \ (dr/d)? + r2de,
which reduces to f \/%zgdé) for the lemniscate (so that the length of a loop of the lemniscate is
cos

obtained by evaluating this integral from 6 = —x/4 to 8 = n/4). The substitution x := tan§ then
yields the above indefinite integral. Trans
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for which the formula
sin(a + b) = sinacosb + sinbcosa

yields the addition formula

fx dr | fy e fz dt
0 V1-¢2 0 V1-1¢2 o Vi—-g2
where

z2=x+/1=y2+yV1—x2

It should be observed that at this stage in the development these identities are
considered as holding for x,y in the interval [0, 1]. For values of x and y outside
this interval the problem of choice of square root arises. Note also that Euler
makes no explicit use of complex variables in this work.

1.3.2. Gauss

Although during his lifetime Gauss published nothing on this topic, his letters
show that he had a clear understanding of the issue as early as 1796. His first idea
was to invert the function

fx dt
a =
0o VI1-r4

and consider x as a function of a, which he denotes by x = sinlemn a. The
analogy with the circular functions doubtless again played a role: the sine and
cosine are convenient for parametrizing the circle by arc length. He translates
Euler’s addition formula into an addition formula for sinlemn (a + b), but does
not stop there. Even though he is still, at that early stage of the game, hesitant
about letting x be complex in the above integral, he is tempted to choose x purely
imaginary, of the form iy, and to consider the integral

f Y idt

0o VIi—i4

This leads him to conclude that sinlemn (ib) = isinlemn b, and this in turn,
in view of the addition formula, allows him to define sinlemn (a + ib) in terms

of sinlemn a and sinlemn b. Thus is the elliptic function sinlemn of a complex
variable a + ib born.
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Gauss continues his investigation of this function using the analogy with the
sine function. Starting from the addition formula, now conveniently extended to
all of R, he shows that the function sin lemn is periodic of period

1
dt
2w:4f B
0 V1-¢4

By the same means he finds a second period equal to 2iw.!® Thus the function
sin lemn has two linearly independent periods, subsequently the defining property
of elliptic functions. The adjective “elliptic” originates from the fact that these
new transcendental functions arise not only in attempting to calculate arc length
of a lemniscate but also that of an ellipse.

Although the rest of Gauss’s work on this theme is of equal significance, it
would take us too far out of our way to discuss it. However, we cannot but mention
such marvellous expressions for sinlemn z involving doubly infinite products, as

[T (1= 52)

Am,n

1= ,
[T (1= )

sinlemn z =

where []” denotes the product over all pairs (m,n) € Z2 \ {(0,0)}, Umn =
(m+in)w,and B, = (2m —1) +i(2n — 1))@ /2. Note here the appearance of
the famous “Gaussian integers”.

1.3.3. Abel and Jacobi

We mentioned above that Gauss never published his discoveries on this theme.
Twenty-five years later Abel and Jacobi, in ignorance of Gauss’s work, retraced
his steps, until around 1827 they began to go well beyond him, in part indepen-
dently and in part mutually stimulated by a relatively protracted rivalry. On this
subject there has survived a lively correspondence between the young Jacobi and
an aging Legendre sometimes assuming the role of intermediary [LeJal875].
The mention of Legendre’s name affords an opportunity to note that he also
must be considered one of the precursors of the theory, having dedicated forty
years of his life to it, beginning in 1786. His labors culminated in the publication
in 1830 of the three volumes of his Traité des fonctions elliptiques. In this connec-
tion one should mention, however, that Legendre’s elliptic functions are functions

BBThe notation is explained by the fact that the quantity 2w is the length of the lemniscate in
question.
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of a single real variable, and that one of his chief motivations was to establish
numerical tables, with a view to applications. And moreover he never penetrated
to the double periodicity of the inverse of the anti-derivative of 1/ V1 — ¢4,

We remind the reader that anti-derivatives of the form f p(x)/ g(x)dx,
where p is a polynomial of any degree and g one of degree at most 2, can be
explicitly evaluated in terms of logarithms and rational functions. Geometrically,
this comes down to the fact that the curve defined by the equation y*> = g(x) is
a conic, which therefore admits a rational parametrization, by means of which
the problem is reduced to that of anti-differentiating a rational function, and for
these there is the well known standard procedure involving logarithms arising as
integrals of expressions cognate to 1/x.14

One of Legendre’s contributions was a systematic classification of integrals of
the form f (p(x)/ \/q(x)) dx when the degree of g is 3 or 4. He shows that in
this case the calculation reduces to three precise types of anti-derivative playing
in some sense a logarithm-like role, whose values he tabulates.

Be that as it may, Abel and Jacobi investigated integrals of the form

”_fx dt
0 VA=A (T-7)

in connection with which both hit on the good idea of considering x as a function
of u — unaware that Gauss had had the same idea earlier. The parameter k is
called the “modulus”, and since it is a parameter not varying within the integral,
they denoted the inverse function simply by x = sinam u. They “showed”, more
or less, that x is a single-valued meromorphic doubly-periodic function of u sat-
isfying a certain addition formula, and they went on to obtain a great number of
series expansions of such functions.

A central theme of their investigations concerned certain “transformations” —
rather magical-seeming formulae relating values of sin am « for different values of
the parameter k, some of which had been found earlier by Euler. This marked the
début of the theory of modular equations, which, however, we shall not broach
here, even though they will turn up in the course of our discussion of Klein’s
quartic.

1.3.4. Jacobi and the J-functions

In 1835-36 Jacobi developed extremely powerful tools for constructing elliptic
functions as ratios of holomorphic functions. These are the so-called “9-functions”.

14 And also trigonometric functions. Trans
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They are relatively simply defined: taking w to be a complex parameter, and writ-
ing p :=exp(inz), q := exp(inrw), we may define them as follows:

1 (z) = th(zlw)

Z( Hp 2n-1 (n 1/2)2

n=-—oo

(9]

i Z p2n—1q(n—1/2)2’

n=—oo

i i pann2

n=-—o0o

Z( l)n 2nn

n=—oo

B2(2) = 92(z]lw)

¥3(2) = 93(zlw)

V4(z) = V4(z|lw)

For Im w > 0 these series converge and define 1-periodic functions of z. Although
they themselves are not elliptic functions — having only the single basic period 1
— all the same ¢;(z + w) can be expressed very simply in terms of ¢#;(z). For
example,

91z +w) = —p~q 01 (2).

The point is then that ratios of two ¢-functions may be doubly periodic. Thus
?1/94 is an elliptic function with periods 1 and w. The ¥-functions satisfy a
tremendous number of identities each more astonishing than the one before, and
their applications — notably in number theory — continue to prove their worth.

To learn much more on this theme, one may consult for example [McKMo1997,
Mum1983, Mum1999].

L.3.5. Bringing the theory into final form: Eisenstein, Liouville, and
Weierstrass

From 1840 onwards the theory of elliptic functions stabilized, taking on the form
familiar to us today. From that time on an elliptic function is defined as any
meromorphic function f of the complex plane admitting two independent periods
w1, W

f(z+mw; +nwy) = f(2)

for all z € C and all integers m, n.

The functions obtained by Abel and Jacobi as inverses of anti-derivatives of
1/4/(1 = £2)(1 — k2¢2) are examples of such functions, but are there any others?
Is there an elliptic function for every choice of the two periods? Here again we
must limit ourselves to merely stating the main results, obtained independently by
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Eisenstein, Liouville, and Weierstrass — results one may consider known when
Riemann began working on his thesis.

Given two complex numbers w; and w», linearly independent over R, the
lattice A they generate is the set of points of the form mw; + nw, € C, m,n € Z.
These form a discrete subgroup of C, and the fact that a function has periods w
and w, means that it is in fact defined on the quotient torus C/A, which is, as we
shall soon see, a basic example of a Riemann surface.

The Weierstrass p-functions are elliptic functions with prescribed periods, de-

fined by
1 1 1
p) =5+ (—2__2)'
¢ wg\:{m (z-w)”

It can be shown that each such series converges where defined and defines a mero-
morphic function with lattice of periods precisely A. It has a pole of order 2 at the
origin of C/A and is holomorphic everywhere else.

His next step was to show that this function satisfies a differential equation,
namely

(9)? =49’ — 9290 - g3,

where g, and g3 are the Eisenstein series

@) = 60 > W
weA\{0}
g(A) = 140 Y

He establishes this equation using a method due to Liouville: the difference be-

tween the two sides represents a (meromorphic) elliptic function, and one then

chooses the coeflicients in such a way as to eliminate the pole, thus obtaining a

holomorphic function. Since the only holomorphic elliptic functions are constants

(in view of the compactness of C/A and Liouville’s theorem), we have the result.
It follows that the projective algebraic curve C with affine equation

Y =4x —gx—g
is uniformized by the torus C/A via the parametrization

z€C/A - (p(2),9'(2)) € C.

5]t can be shown that every meromorphic doubly periodic function with basic periods w; and
wy is a rational expression in g, o’ with coefficients in C, so that the totality of such functions is the
algebraic function field C(gp, 9’). Trans
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It remains to show that, conversely, for any g, and g3 such that the curve C is
non-singular, that is, satisfying gg - 27g32 # 0, there is a lattice A with Eisenstein
invariants equal to g and g3. This can be achieved in several ways, the simplest
of which is to consider the integral

f dz

VA gz g3

and imitate Gauss, Abel, and Jacobi by inverting it. The periods of the elliptic
function thus obtained are then the required ones.

Furthermore, one can also show that every smooth curve of degree 3 in the
complex projective plane is projectively equivalent to a curve of the above form
(named after Weierstrass, although it was Newton who originally discovered this):
this is done effectively by projecting to infinity a tangent line at a point of inflec-
tion of the given cubic curve.

The upshot of our discussion is thus that:

Every smooth curve of degree 3 in the complex projective plane is isomor-
phic to a torus of the form C/A, and furthermore by means of an isomorphism
determined by an elliptic function.

A final point to end this preliminary chapter: since C/A is an Abelian group,
the same group structure is induced on the smooth cubic curve it parametrizes.
The addition formula discovered by Euler reflects this. It turns out that the rule of
addition on the cubic is extremely simple. First one chooses a point of inflection to
represent the identity (or zero) element, and then one declares that the three points
of intersection of the curve with any straight line have sum zero. This defines
the rule of addition completely. The proof that this geometric construction does
indeed yield an addition defining a group is an interesting exercise in projective
geometry (see for example [McKMo1997]).

It may be of interest to remark that the simple projective definition of this
group structure appears to have been unknown to the heroes of this chapter. From
[Cat2004, Schal991] it appears that perhaps even Poincaré had no clear idea that
the rational points of a cubic curve defined over Q form an Abelian group (even
though he spoke of it as having “finite rank”™).



Chapter I1

Riemann

In this chapter we examine two of Riemann’s memoirs: his doctoral thesis [Rie1851]
defended in Gottingen in 1851, where he develops the theory of holomorphic
functions and proves the “Riemann mapping theorem”, and his article on Abelian
functions [Riel857] published in Crelle’s journal six years later. In the latter
work Riemann applies the techniques developed in his thesis to the construction
of a general theory of algebraic functions and their associated Abelian integrals.
Recall that a function s(z) is called algebraic if it satisfies a polynomial equation
P(s(z2),z) = 0, and that an Abelian integral is one of the form f F(s(2),2)dz
where F is a rational function of two variables.

Subsequently the paper [Rie1857] came to be considered as initiating major
directions of mathematical research, including the topology and analytical ge-
ometry of compact Riemann surfaces, their moduli spaces, the Riemann—Roch
theorem, birational geometry, the theory of general theta-functions and Abelian
varieties, the Dirichlet problem, Hodge theory, etc. Over just the 25 years follow-
ing the publication of this article, we see its results geometrized by Clebsch, and
then by Brill and Noether, then arithmetized by Dedekind and Weber — and a
start made by Clebsch and Noether on extending the results to algebraic surfaces.

It has been an absorbing task to bring to light the seeds of all of these devel-
opments contained in this single article.

I1.1. Preliminaries: holomorphic functions and Riemann surfaces

I1.1.1. Holomorphic functions

We begin by explicating Riemann’s work on the uniformization of simply con-
nected open sets of the plane, contained in his thesis [Rie1851] published in 1851.
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We describe first of all how Riemann defines the concept of a holomorphic
function in the very first section of this memoir. He considers a complex-valued
function w(z) = u(z) + iv(z) of a quantity z = x + iy varying over an open set U
of the complex plane, and studies the differential quotient:

dw . w(z) —w(Z)

= lim
dz -z z—2z

observing that:

When the dependence of the magnitude w on z is chosen arbitrarily, the

: du+idv
quotient 7=~ ay

will generally vary with the values of dx and dy.
This may be unpacked as follows: if we denote by
dw, : C ~R?> - C ~ R?
the differential map at a point z of the function w considered as a real differentiable

function R? — R2, and consider an infinitesimal increment dz = ge'¥ of the
variable z, then we have!

duo(ee) 1 (00 o) | (3v o
gelv 2 \\ax 0y ox dy

+l @_@ +i @4_@ €—2i<p
2 \\ox dy dx Oy '

@_8_\} +1 ﬂ_'_a_l/l
ox dy ox dy

. . . iy . . i
does not vanish at the point z, the quantity % will vary with e'¢. However,

as Riemann observes, for all functions w obtained from z by means of “elementary

d ip .
dwe(e¢™) joes not depend on dz = ge'®.
ce

If the term

computational operations”, the quantity

This can be seen as follows. Suppose for simplicity that z = 0 and w(z) = w(0) = 0. The
differentiability of w(z) considered as a function of the two real variables x,y means that there
exist numbers «, 8 — in fact these are just dw/dx and dw/dy at z = 0 such that w(z) =

ax+ By +1n(z)z where n(z) — 0as z — 0. Rewriting this as w(z) = (_a—zi,B) z+ (CHZI'B) Z+n(2)z,

it follows thgt @ = (#) + (#) % + 1(z). Taking the limit as z — 0, that is, setting
7z = dz = ge'¥ (and noting that d7/dz = e~219), we obtain the formula that follows. Trans
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He therefore proposes taking the vanishing of this term as the defining condition
of what he calls a function of a complex variable:

A variable complex quantity w is called a function of another variable com-
plex quantity z when it varies with z in such a way that the value of the
derivative % is independent of the value of the differential dz.
In other words, for Riemann the term “function of a complex variable” always
means a holomorphic function. Thus such functions are by definition just those
satisfying the Cauchy—Riemann equations

ou Ov ou ov
— = — d —=—-——, 1.1
ox 0Oy an oy 0x {1

which is equivalent to the closure of the complex differential 1-form

w(z)dz = (u +iv)(dx + idy).
It can be shown that then the function w’(z) := ‘fl—”; is well-defined and again
holomorphic, so that w is in fact infinitely differentiable.?

If a function w = u + iv is holomorphic, it follows from the Cauchy—Riemann
equations and the fact that it is twice differentiable that the functions u and v
satisfy

Au=Av =0,

2 2 . . . . N
where A := % + aa_yZ is the Laplacian associated with the complex coordinate z.
Functions of two variables annihilated by the Laplacian are said to be harmonic.

Thus the real and imaginary parts of a holomorphic function are harmonic.

Conversely, given a function u defined and harmonic on a simply connected
open set U C C, there exists a holomorphic function f,, : U — C, uniquely
defined to within a purely imaginary additive constant, such that u = Re(f,). The
function f, is in fact simply a primitive of the holomorphic 1-form

du—iduoi.

The function u* = Im(f, ), defined only up to an additive constant, is called the
conjugate function of u.

This close affinity between holomorphic and harmonic functions is central
to the methods used in [Riel851, Rie1857], since his proofs of the conformal

2Even more, a function holomorphic in a neighborhood of a point z is analytic, that is, equal to
its Taylor series expansion, in some neighborhood of zg. Trans
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representation theorem (or “Riemann mapping theorem”) and the existence of
certain Abelian integrals are based on a close study of harmonic functions, and
especially “Dirichlet’s principle”.

We recall also the following “mean-value” property of harmonic functions. If
D(zo,7) = {z € Cl||z — z0| < r}is a disc contained in U, then

1 2 ]
u(zo) o f u(zo + re'?)do
0

= Lz u(x,y)dxdy.
re JD(zo,r)
In fact this property characterizes harmonic functions: a continuous (or even just
measurable) function is harmonic if and only if it has the above mean value prop-
erty on closed discs in U. It follows that harmonic functions satisfy the maximum
principle: if a harmonic function u has a local extremum at a point zg of U, then
it must be constant in some neighborhood of zy. Another consequence is that a
function v : U — R that is a uniform limit of harmonic functions defined on
compact subsets of U is itself harmonic.

It is noteworthy that, in contrast with Abel, whose approach is essentially
algebraic, consisting of manipulations of functions of several variables and of
algebraic and differential equations, Riemann works with functions independently
of specific formulae, basing his argumentation on their defining properties, as he
explains in the introduction to [Riel1857]:

I shall consider as a function of x + yi any quantity w that varies with the
first quantity in such a way as to satisfy the equation

0w 0w
i— = —
dx 0y’

without resorting to an expression for w in terms of x and y.3

This desire to avoid starting out with particular expressions for his functions
is taken up again a little further on:

By a known theorem, mentioned earlier, the property of a function of being
single-valued comes down to the possibility of developing it by means of
positive or negative integer powers of increments of the variables, while
the many-valuedness of a function reduces to the impossibility of doing so.
However it does not appear to be useful to express properties independent
of the mode of representation by means of symbols based on an explicit and
determinate form of expression for the function.

3The reader will recognize here an alternative formulation of the Cauchy—Riemann equations.
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In order to read Riemann’s article the following must be kept in mind: by a
“function of x and y” he means a function without implicitly understood proper-
ties; but by a “function of x +iy” he means a holomorphic function, in both cases
allowing the function to be many-valued or even discontinuous. The following
excerpt from his thesis [Rie1851, §5] clarifies the type of discontinuities he had
in mind, and is also interesting for the light it sheds on the meaning he gives the
phrase “in a general manner”:

A variable quantity which, in a general manner, that is, without excluding
exceptional isolated points or lines, at every point O of a surface T takes on a
definite value varying in a continuous way with the position of the point, can
clearly be regarded as a function of x,y, and henceforth whenever functions
of x,y are being discussed, this definition is to be understood.

I1.1.2. Riemann surfaces

The modern definition. — Nowadays a Riemann surface is defined as a complex
manifold of dimension 1:

Definition I1.1.1 (Riemann surface). A Riemann surface is a (connected, Haus-
dorft) topological space X endowed with an atlas {(U,,d )} 1en Where (Up)en
is an open cover of X and the maps ¢, : Uy — V, are homeomorphisms to open
sets of C (the charts of the atlas), such that the composite maps*

$10 ¢, 1 du(UaNUy) = (U NU)

are biholomorphic transformations (that is, holomorphic bijections).

Furnished with this definition one can immediately extend local properties and
objects from C to any Riemann surface; in particular the concepts of a holomor-
phic or meromorphic® function or form on a Riemann surface, and holomorphic
and biholomorphic mappings (isomorphisms) between such surfaces now acquire
meaning.

Gauss’s theorem of Chapter I now provides us with a plentiful supply of ex-
amples: we can re-interpret that theorem as asserting that every analytic real Rie-
mannian metric on an analytic surface furnishes it with the structure of a Riemann
surface. The interplay between this structure and the geometry arising from the
metric will play a leading role in the work of Klein considered in the next chapter.

4Coordinate changes. Trans
A meromorphic function is a function that is locally the quotient of two holomorphic functions.
It can be interpreted as a holomorphic function taking its values in C. Trans
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The Riemann sphere. — Apart from C and its open subsets the first examples of
Riemann surfaces that come to mind are the tori C/A met with in the introduction,
and the Riemann sphere: indeed, one can cover the unit sphere

2 ={(X,Y,2) eR} | X>+Y*+ Z* = 1)

by the two open sets S2\ N and S?\ S (where S = (0,0,—1) and N = (0,0, 1) are
the south and north poles), on which one defines the stereographic projections

ON SZ\ N - RZ=xC
P=(X.Y,2) » XX
and
Ps S2\S§ - R*=C
— X-iY
P=(XY,2) » XLX

For a point P of the sphere other than the poles, one checks that ¢n(P) =
1/¢s(P); since z — 1/z is a holomorphic function on C*, this furnishes the sphere
with the structure of a Riemann surface, denoted by C, which can be thought of
as the natural compactification of C by a point at infinity, or, equivalently, as the
complex projective line CP!. These two notations for the Riemann sphere will
recur throughout the book.

As recounted in [Cho2007, p. 98], the construction of the Riemann sphere by
means of stereographic projections appeared first in print in [Neum1865], the first
textbook devoted to the theory of Riemann surfaces. In the introduction to his
book Neumann mentions that Riemann taught the above construction, which was
then handed down only orally.

The disc, the plane, the sphere, and their automorphisms. — It follows from
the uniformization theorem that the disc D, the plane C, and, lastly, the Riemann
sphere C are, up to isomorphism, the only simply connected Riemann surfaces.
We now describe the automorphism groups of these three surfaces.

Firstly, taking
D:={zeC|lz] <1},

the map

d+z
P W=l

(IL.2)
—Z

is a holomorphic isomorphism from D onto the upper half-plane

H:={weC|Imw > 0}.
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It follows that the automorphism groups of D and H are isomorphic. Thus by
means of conjugation by the transformation (II.2) one can pass from the action
of an automorphism on D to that of the corresponding automorphism on H. The
model H has the advantage that one can easily see that its group of automorphisms
is isomorphic to PSL(2,R) := SL(2,R)/{=x1}. The precise action is as follows: an

element ( Z z ) € SL(2,R) acts on H on the left according to the rule

c d T ew+d

( a b ) aw+b
The automorphism group of C is simply the group Aff(C) of complex affine
transformations of C:

(a,b) -z =az+ b,

where a € C* and b € C.
In the case of C, the automorphism group is PSL(2,C), acting on the left by
the rule

c d T cz+d

The latter transformations are called homographies.®
These three automorphism groups are variously transitive:

(a b) az+b

1. Aut(D) is 1-transitive and each of its elements is completely determined by
its action on an arbitrary point of D and an arbitrary point of the boundary
0D (to which the group action extends by continuity).

2. Aut(C) is 2-transitive and each of its elements is completely determined by
its action on any two distinct points of C.

3. Aut(C) is 3-transitive and each of its elements is completely determined by
its action on any three distinct points of C.

Many-valued functions and Riemann surfaces. — Our definition (above) of a
Riemann surface is anachronistic: for Riemann these surfaces arose as a means for
handling many-valued functions. Starting from a holomorphic function defined on
an open subset of the plane, he sought to extend its domain of definition by means
of analytic continuation. The first sentence of the following quotation announces
the procedure of analytic continuation and the second explains how one may by
such means be confronted with the problem of many-valuedness. It is precisely
this situation that justifies the introduction of the term “many-valued function”,
which is really not a function at all in the modern set-theoretic sense.

6Or “Mobius transformations” or “linear-fractional transformations”. Trans
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A function of x + yi given on a part of the (x,y)-plane can be extended
continuously beyond [that region] in just one way. [...] Now, depending on
the nature of the function being extended, either it will or will not always
take on the same value at a single z-value independently of the path along
which the continuation was performed.

In the first case I call the function single-valued: such a function is then
precisely determined for each value of z and it never becomes discontinuous
along any line. In the second case, where we call the function many-valued,
one must first of all, in order to grasp how it develops, pay attention to
certain points of the z-plane around which the function extends onto another
[plane]. Such a point is, for example, the point a for the function log(z — a).

The points at which the value of the function varies with the path along which
analytic continuation is carried out are so important in the sequel that Riemann
gives them a name:

We will call the various extensions of a single function over the same region
of the z-plane the branches? of the function, and a point near which one
branch extends onto another a branch point of the function. Wherever there
is no branching the function is to be called monodrome or single-valued.

After explaining the types of functions he will be considering, he introduces
the surfaces now bearing his name, repeating a construction appearing in his the-
sis [Riel851]. What’s novel here are the intuitive pictures he proposes, of an
“infinitely thin body” and of a “helicoid” of “infinitely narrow thread”:

Imagine a surface extended above the (x, y)-plane and coincident with it (or
if one likes a body infinitesimally thin [spread] over the plane), which ex-
tends exactly as far as the function is given. When the function is extended,
this surface is to be continued equally far. In a region of the plane where
the function has two or several continuations this surface will be double or
multiple. It is thus made up of two or more sheets each of which corre-
sponds to a branch of the function. Near a branch point of the function one
sheet of the surface extends onto another in such a way that in a neighbor-
hood of this point the surface can be considered as a helicoid with infinitely
narrow thread and with axis perpendicular to the (x,y)-plane at that point.
However, if the function, after z has traced several turns about the branch
point, should again take on its initial value (just as, for example, (z — a)%,
m,n relatively prime, does after z has executed n turns about a), one must
assume that the uppermost sheet reconnects with the bottom sheet, passing
through the others.

7Or “ramifications”. Trans
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The last few lines show that Riemann did indeed picture the surface situated
in the 3-dimensional space of common intuition. Or did he use such language
merely to facilitate the understanding of his readers, while himself conceiving
the surface as an abstract manifold? Whatever the case may be, as is mentioned
in [Cho2007, p. 59], Hensel and Landsberg [HeLLa1902, p. 91] continue describing
the situation in a manner close to that of Riemann:

Imagine n coordinate planes placed one above the other at an infinitesimally
small distance [...] in such a way that their origins and axes are superim-
posed [...]

Riemann’s description of the surface as situated in a space of dimension 3
forces him to talk of sheets which cross each other, which has historically been a
source of difficulty for those trying to learn his theory. The fact that these intersec-
tions need not and should not be considered is implied by the following property
of such a surface:

A many-valued function admits at each point of a surface which so repre-
sents its mode of branching, a single determinate value, and can therefore
be regarded as a function uniquely determined at the place (of a point) on
that surface.

From this it is clear that the surface associated with a many-valued function is
considered as a means of resolving the problem of its many-valuedness.

Box II.1: The Riemann surface of a germ of a function

We explain here how one nowadays constructs a Riemann surface as-
sociated with a germ of a holomorphic function f : (C,x) — C.* Let
G = {germs of holomorphic functions (C,x) —» C | X € C}. We first define a
Hausdorft topology on this set. For each open set U of C and each holomorphic
function f : U — C, we define

UWU,f) = {germsfx 1 (C,x) —>C|x € U}

and we endow G with the topology generated by the U (U, f).

%That is, the set (equivalence class) of all holomorphic functions g agreeing with f on some
open neighborhood (depending on g) of x. Trans
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It is then immediate that the map

i dB G = €
"(fx:(C,x) > C) > «x

is continuous and that its restriction to each open set U (U, f) defines a local
homeomorphism. These local homeomorphisms then allow us to endow G
with the structure of a one-dimensional complex manifold (leaving aside for
the moment the requirement of a countable open basis).

This topology is Hausdorff. To see this, note first that two germs based at
distinct points are already separated by the continuous function m. Consider
two germs f, : (C,x) » Cand g : (C,x) — Cat x, and let U be a connected
open set of C containing x such that f, and g, are the germs of f,g: U — C.
If there were a germ hy : (C,y) — C in the intersection U (U, f) N U (U, g),
the functions f and g would coincide on an open set contained in the domain
of h, whence fy = g,. Thus if f, # g, the open sets U (U, f) and U (U, g)
must be disjoint, and so serve to separate the two germs.

Now let f, : (C,x) — C be a germ of a holomorphic function. The Rie-
mann surface of fy is then defined to be the connected component S(f,) of G
containing fy. The germs g, : (C,y) — Cin S(f) are obtained by analytic
continuation of (f, : (C,x) — C) along a path joining x to y. In particular, if
fx : (C,x) — Cis a germ of a function f that is many-valued in a neighbor-
hood of x, the surface S(f,) will contain a point “above” x (that is, in 7~ {x})
for each value of f at x. Thus the surface S(fy) comes with a (single-valued)
holomorphic map f : S(f) — C determining f.

The Poincaré—Volterra theorem guarantees that the surface S(f) has a
countable open basis (see Box XI.1).

One can imitate the above construction of S(f) for other regularity classes
of germs. For example, one may construct in the same way the maximal mero-
morphic continuation. More generally, this procedure can be extended to a
sheaf on a topological space” and what was called around 1950 the associated
“étale space” of the sheaf.

“A “sheaf” on a topological space X is a structure associating with each open set U of X an
Abelian group or ring (usually of functions defined on U), equipped with a restriction operation
satisfying certain conditions. Trans

The Riemann surface associated with an algebraic function. — In this section we
consider the Riemann surface associated with an algebraic function s(z). The
graph of s, in C, x Cy, is determined by an irreducible polynomial equation
F(z,s) = 0; such an equation defines an irreducible algebraic curve in C, x Cs.
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Although Riemann never used such geometrical terminology in his article,
he must have been aware of the geometric interpretation, as Klein explains in
[Kle1928].

From the beginning Riemann recognized the importance of his theory for
algebraic geometry. However, in his courses he went into detail only in the
case of quartics. This came out only much later from an examination of his
lecture notes. It required a much more extroverted nature to establish his
results on a broader basis and introduce them to a wider readership. It was
Clebsch who understood this.

Riemann proposed “determining the mode of branching of the function s or
of the surface T representing it”. Initially T is the Riemann surface of the regular
part of the function, that is, the maximal analytic continuation of any of its regular
(single-valued and holomorphic) germs. Next he shows that there exists a unique
smooth compactification of T obtained as follows. He first defines the simplest
possible branch points on the surface 7"

A point of the surface T where just two branches of a function join in such
a way that near this point the first branch continues into the second and the
second into the first, I will call a simple branch point.

(We recognize here a branching like that of the two-valued function +/z at the
origin.) Every other branch point is regarded as the limit of simple branch points:

A point around which the surface turns about itself (x+ 1) times can then be
considered as consisting of u coincident (or infinitely close) simple branch
points.

He then introduces local parameters (or, as we also call them nowadays, local
uniformizing parameters) in a neighborhood of every point of the closed surface 7',
choosing them explicitly as functions of z. Thus in a neighborhood of a point
z = a where the surface T does not branch, he chooses z — a, and then:

For a point where the surface T turns about itself u times, when z is equal to
1 . 1 .

a finite value a, [we choose] (z —a)» [...]; butat z = oo, itis (1)¥, which

becomes infinitely small to the first order.

He next explains how to use such a local parameter to develop in series “the
functions we shall be dealing with here”, which is to say meromorphic functions
and their integrals.
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Here we see that Riemann desingularizes the curve defined by the equation
F(z,s) = 0 using only local monodromy?® of the values taken on by s as z varies
around each branch point a: a set of u branches around a are given simultane-
ously by one and the same meromorphic function of (z — a)HL. Each irreducible
local component of the curve is thus parametrized by a disc, namely the image
of {|z — a| < &} under the map (z - a)ﬂl. Of course, a point has been added to T
above a in order to compactify the irreducible local component. In this way Rie-
mann by-passes the so-called algorithm of Newton—Puiseux (which, moreover, he
does not refer to). The uniqueness of the resulting compactification is immedi-
ate from another theorem of Riemann, namely that on removable singularities,
according to which a holomorphic function bounded on a punctured disc can be
extended holomorphically to the missing point.

From all this it follows that the Riemann surfaces associated with two bira-
tionally equivalent algebraic curves (see Subsection I1.3.1) are isomorphic: after
the removal of a finite number of points on each of them, the given birational map
will define an isomorphism between the punctured surfaces, which then extends
automatically to an isomorphism between compact surfaces.

Thus does Riemann open the way to the modern abstract notion of a Riemann
surface, with all local parameters obtained from each other by means of biholo-
morphisms considered equivalent.

Algebraicity of compact Riemann surfaces. — We saw in Box II.1 that every
germ of a holomorphic function f can be associated in a natural way with a Rie-
mann surface S(f). When the function is algebraic, this surface compactifies
into a compact Riemann surface — its maximal meromorphic analytic continua-
tion. We now wish to consider the converse: if the maximal meromorphic analytic
continuation of f is compact, then f is algebraic.

In anticipation of the Riemann—Roch theorem (see Section I1.2.4, Coro-
llary 11.2.13) we remark that every (abstract) Riemann surface carries enough
meromorphic functions to separate its points. This allows one to prove the fol-
lowing theorem.

Theorem I1.1.2. — Every compact Riemann surface T is isomorphic to the Rie-
mann surface of an algebraic function.

Proof. — Let f) be a non-constant meromorphic function on 7', and consider f;
as defining a branched covering of C of degree d.® Let {Py,..., P4} be a generic
fiber of the covering, and f, a meromorphic function separating these d points.

8“Monodromy” is a general term for the change in an appropriate mathematical object with
variation around a singularity. Trans

°This is a consequence of the compactness of 7, which allows one to trace the various branches
of the inverse. Trans
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The image of S under (f1, f2) is an analytic curve C in C, xC,,,. We wish to show
that this curve is algebraic.

Since the non-constant function f; : T — C, defines a branched covering,
the fiber f| 1(z) over z always consists of the same number d of points of T ex-
cept for a finite number of points zj,...,zx of @Z. For 7z € 62 —A{z1,..., 2k},
we write fl‘] (z) = {P1(2),...,Pq(z)}. It is important to observe that the P;(z)
are many-valued: the set {P;(z),...,P4(z)} is well-defined but it is not possible
to arrange the preimages so as to obtain d holomorphic functions globally de-

fined on @Z —{z1,...,zx}. The ordinates of the d points where the line {z} X C,,
meets C are w;(z) = f2(P;(z)), i varying from 1 to d. Once again we obtain d
“functions” w;, many-valued on C, — {z1,...,zx}. We now consider the basic

symmetric expressions in the w;(z):

Si(z) = wi(z) + -+ wg(z2),
$2(2) wi(2)w2(z) + -+ + wa_1(D)wa(2),

Sa(z2) wi(z) - wa(z).

These functions are meromorphic on C,, whence they are rational functions' of the
variable z. The polynomial F(z,w) obtained from w? =S (z)w? 1+ - +(=1)S,(2)
by multiplying by a suitable polynomial in z to cancel the denominators, vanishes
precisely on the curve C. The Riemann surface 7T is then just the Riemann sur-
face of any germ at which the above polynomial vanishes: these surfaces are both
compact and coincide except for a finite number of points. O

Observe that we have shown here that the field C(fi, f2) has degree pre-
cisely d over the subfield C(f7). The same argument shows that for every mero-
morphic function g, the field C(f1, g) has degree at most d over the same subfield.
It follows by the primitive-element theorem!, that the field generated by fi, f
and g is the same as that generated by f; and f,. We conclude, finally, that the
field of meromorphic functions on T is precisely C( fi, f2).

One infers from this that if we choose two other functions f| and f] as in
the above proof, then the resulting curve C’ is birationally equivalent to C —
effectively since f| and f; can be expressed as rational functions of f; and f>. We
conclude that two isomorphic compact Riemann surfaces give rise to birationally

VA meromorphic function from the Riemann sphere to itself is a holomorphic function with a
finite number of poles, possibly including co, and so, by an easy extension of Liouville’s theorem
that a bounded holomorphic function is constant, must be a rational function. Trans

UAsserting that if K 2 F is a finite field extension and (in particular) the characteristic is zero
then there is an element a € K such that K = F(a)(= F[a]). Trans
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equivalent algebraic curves. It is this that Riemann expounds in Sections XI and
XII of [Rie1857], the point of departure for his investigation of moduli.

Theorem II.1.2 can be made more precise:

Theorem I1.1.3. — Every compact Riemann surface S can be immersed? in
CP?, injectively apart from a finite number of points, and with image an algebraic
curve C having as singularities only double points at which the two tangents are
distinct.

To see this one first embeds the given Riemann surface in some projective
space CP". Such an embedding is given, in projective coordinates, by

2 (1 fi(2): fo(2) 1o+t fu(2))

where we have supplemented the earlier functions f| and f, with further mero-
morphic functions f; on § in order to ensure injectivity:

— if all of the f; have the same value at some two points of S, one adds another
function taking distinct values at those points;

— if all the f; have a common critical point on S, one adds a function regular
at that point.

One may construct such functions directly from f; and f> (working in the
field they generate), or, better yet, by appealing to the Riemann—Roch theorem.
This achieved, a suitable projection CP" — CP? affords us the desired immersion.

In fact the Riemann—Roch theorem provides a privileged representation of a
compact Riemann surface as an algebraic curve in a projective space. In genus
p > 2, the dimension of this space is p — 1 for all non-hyperelliptic curves (com-
pare for example [GrHa1978]).

I1.1.3. Theorems of ‘“‘Analysis Situs”

There remains the major problem of actually defining meromorphic functions and
forms on a given Riemann surface. This will be the main goal of Section II1.2
below.

Riemann bases his construction of meromorphic functions and forms on what
he calls “Dirichlet’s principle”, which plays a role also in his thesis [Riel1851].
To that end he needs to integrate a closed form Xdx + Ydy (that is, for which
‘Z—}yf = g—l;), the integration to be carried out along paths on a surface above the
(x,y)-plane. He begins this section by declaring that he will be needing results
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from Analysis Situs (that is, topology). What is at issue here is nothing less than a
major conceptual leap: to investigate the construction of an algebraic function on
a surface using topological methods in relation to the surface. We now expound
these ideas.

By means of a special case of Stokes’ theorem, Riemann first of all shows
that:

[...] the integral f (Xdx+Ydy),evaluated along two different paths joining
two fixed points, yields the same value when the the union of these two
paths forms the complete boundary of part of the surface 7.

In modern terminology, the integral of a closed form along a path with fixed
end-points depends only on the homology class of the path.

Riemann next introduces a measure of the connectivity of a surface, giving the
extent of its departure from simple-connectedness. His definition is the forerunner
of that of the Betti numbers with integer coefficients. Here he implicitly assumes
his surfaces are compact and connected with non-empty boundary. Faced with a
surface without boundary, he begins by removing a disc.

Figure II.1: “Riemann surfaces” (pp. 99, 100 of [Rie1857])

For him a simply connected surface (homeomorphic to a disc) is one with
degree of connectivity 1. When a surface is not simply-connected, he performs
cuts along sections of it until it becomes simply connected:

2An immersion of a manifold M in a manifold N is a differentiable map f : M — N such that
the induced map between tangent spaces (the derivative as linear transformation) is injective at each
point. Such a map f is an embedding if it is also injective. Trans
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A multiply connected surface can be transformed, by means of cuts, into a
simply connected surface. [...]

When one can trace n closed curves ai,as, ...,a, on a surface F which,
whether one considers them separately or united, do not form the complete
boundary of a portion of the surface, but which, when supplemented by
any other closed curve do form the complete boundary of a portion of the
surface, the surface is said to be (n + 1) times connected.

Riemann provides four diagrams intended to aid comprehension of the notions
of a multiply connected surface and its degree of connectivity. These are the only
diagrams in the article [Rie1857]!

How does all this apply to the integration of a closed form of degree 1?7 Af-
ter having cut along certain curves of section!® he obtains a surface representing
a simply connected region of the original, so that the closed form is now exact
on that region, that is, is the differential of a single-valued function. In passing
across each curve of section this function undergoes constant jumps of disconti-
nuity, which Riemann calls moduli of periodicity. Nowadays one talks rather of
periods as the integrals of the closed form around loops, representing, therefore, a
concept dual to Riemann’s moduli of periodicity. Thus in Figure I1.2 the modulus
of periodicity corresponding to the transverse section X X’ is equal to the period
taken along the dual loop Ix (X = A, B).

Box I1.2: Simple connectedness

Note how the terminology has evolved: today a surface is called simply
connected if every loop on the surface is homotopic to a constant loop. How-
ever the definition Riemann used is different:

This gives rise to a distinction among surfaces into simply connected
ones, where every closed curve completely bounds a portion of the sur-
face [...] and multiply connected ones, where this is not the case.

A modern reader will see here a homological definition: a surface is sim-
ply connected if every loop bounds a subsurface. In higher dimensions this
definition (which is just that H;(X,Z) = 0) is weaker than that given above
(equivalent to 71 (X) = 0 — weaker since we know that H;(X,Z) is always
the Abelianization of 71(X)). However for a surface the two definitions are
equivalent.

BThat is, simple closed paths on the surface. Trans
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An important consequence of simple connectedness is the vanishing of the
first homology group: every closed 1-form on a connected and simply con-
nected surface is exact.

To conclude this parenthetical terminological discussion, we note that in
1905 Poincaré was still not using the term “simply connected” in its modern
sense. For him a compact manifold of dimension 3 is “simply connected”
if it is homeomorphic to a ball. Thus, as he stated it, the famous Poincaré
conjecture sounds rather odd to a modern ear:

Is it possible for the fundamental group of V to reduce to the identity
substitution, and yet V not be simply connected?

Here is what Riemann says:

When the surface T [...] is n-connected, one can decompose it into a simply
connected surface 7’ by means of n transverse sections. [...] one obtains a
function of x, y, z = f (Xdx + Ydy) completely determined at every point
of T” and varying continuously throughout the interior of 7”, but which in
crossing one of the transverse sections varies in general by a finite amount
all along the line leading from one vertex of the network of sections to the
next.

Figure 11.2: Moduli/periods

Here we are confronted with a second method (the first being that described
above of constructing the associated Riemann surface) for passing from a many-
valued function to a single-valued one, namely, just that of making a choice of a
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particular value of the function on each sub-region of the full domain of definition.
Both methods are used throughout the article, the first in dealing with an algebraic
function and the second in dealing with an Abelian integral.

One might well ask what prevents Riemann from applying the first method
in the context of Abelian integrals. In this case he would have had to describe
a branched covering of the complex plane of infinite degree, which situation he
might have illustrated with the example of log(z—a), used in Section 2.1 to explain
the phenomenon of many-valuedness. However when he explains how one should
think about branched coverings, his illustrative examples are just the coverings of
finite degree associated with expressions of the form (z — a)n . Was he in some
sense wary of infinite-degree coverings?

Note also that in the same section he considers differentials Xdx + Ydy as
real objects, while never throughout the article talking of the analogous complex
objects (that is, of holomorphic or meromorphic forms). Further on, when he
turns to Abelian integrals, the problem is, in modern language, that of finding
(many-valued) primitives of meromorphic forms on the surface in question.

For the particular case of a closed surface — that is, compact, connected and
without boundary — Riemann introduces the topological invariant that today we
call the genus.

Let us imagine [...] we have decomposed that surface into a simply con-
nected surface 7’. Since the boundary curve of a simply connected surface
is uniquely determined, whereas a closed surface has, as the result of an odd
number of sections, an even number of bounded regions, and as a result of
an even number of sections an odd number of bounded regions, in order to
effect this decomposition of the surface it is necessary to execute an even
number of sections. Let 2p be the number of such transverse sections.

Box I1.3: Degree of connectivity, genus, and Euler characteristic

For any compact, connected, orientable (topological) surface S there are
two particular topological invariants available: the Euler characteristic y(S)
and the genus g(S) > 0.

When S is without boundary these two invariants are linked by the formula

X(S8) =2-2g(5).

The genus g(S) has the following interpretations:
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o as equal to Srankz H, (S);*

e as the largest number of homologically independent, pairwise disjoint,
simple closed curves that can be drawn on S.

If the boundary of S is non-empty, the genus g(S) is defined as the lat-
ter number after S has been modified as follows: for each component of the
boundary dS of S, attach a disc with boundary identified with that component.
One then has the formula

X(S) =2-2g(8) = b(S),

where b(S) denotes the number of components of 9S.
Using this formula one can show that, if c¢(S) denotes the degree of con-
nectivity of S introduced by Riemann, then

c(S) =24+2g(S) = b(S).

Figure II.3 shows the c¢(S) — 1 steps of the surgery yielding a disc in Rie-
mann’s fourth example (in Figure II.1 above), whence one sees via the latter
formula that S is a surface of genus 1.

Many details on the evolution of the notion of genus may be found in
[Pop2012].

“The rank of the Abelian group H/ (S). Trans

Here Riemann is tacitly assuming that the surfaces he considers are all ori-
entable. In fact in the case of a non-orientable surface, if one cuts along a sim-
ple closed curve along which the orientation reverses, one obtains just one “part
bounded by the curve”. Such a curve has a neighborhood that is a Mobius band,
which surface was described explicitly only many years later, in [M6b1886] (see
also [Pont1974, p. 108]). In Riemann’s article the opposition orientable/non-
orientable (or two-sidedfone-sided as it came to be called for a certain time) is
never mentioned.

Note the use of the letter p, still largely in use nowadays to denote various
notions of genus arising in geometry and algebraic geometry (mainly in the form
of arithmetic and geometric genera of curves and surfaces). Riemann himself does
not name this invariant; it seems to have been Clebsch who introduced the term
“genus” in [Cle1865a].

We now return to the surface 7" associated with an algebraic function w(z) de-
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fined by an irreducible polynomial equation F'(z,w) = 0. Riemann now proposes
calculating its genus g, to which end he establishes the special case of what we
now call the Riemann—Hurwitz theorem (see Box I1.4) where the target surface
of the function is the Riemann sphere. He shows that if the irreducible algebraic
curve of bi-degree m,n defined by F(z,w) = 0 in C, x C,, has as singularities
only r double points with distinct tangents, then T has genus g = (n—1)(m—1)—r.

Figure I1.3: “Cuts” (or “sections”)

It follows in much the same way that a curve in CP? defined by a polynomial of
degree n having as its only singularities r double points at which the two tangents
are distinct, has genus

(n-1H®r-2)
g=—"—-r.

> (I1.3)

Box I1.4: The Riemann-Hurwitz theorem

Let S and S’ be two compact, connected Riemann surfaces and f a holo-
morphic mapping from S to S’. A point s € S at which df = 0 is called a
critical point of f, and the image of such a point under f a branch point of f.

With each point s € S we associate its ramification index v(s) > 1, de-
fined as the local degree” of f in a neighborhood of s. There then exist local
coordinates z in some neighborhood of s and w in some neighborhood of f(s),

“That is, the number of preimages of individual points in f(U), U some small neighborhood
of s. Trans
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where f takes the form w = z”(*). The critical points of S are then just those
points of ramification index at least 2.

If f has no critical points (in which case the covering defined by f is un-
ramified) the genera g of S and g’ of S” and the global degree d of f are linked
by the simple formula 2 — 2g = d(2 — 2g’).

The Riemann—Hurwitz theorem generalizes this to the situation where there
are critical points (finite in number in view of the compactness of §):

2-2¢=d@2-2g") - ) (v(s) - D).

seS

A straightforward proof starts from a triangulation of S” whose vertices include
all the ramification points of f. One then lifts this to a triangulation of S, and
shows that the Euler characteristic of the latter triangulation equals the right-
hand side of the above formula. We have already seen that it coincides with
the left-hand side expression.

I1.2. Dirichlet’s principle and its consequences

I1.2.1. Dirichlet’s problem

Given an open set U C C and a function 4 : 0U — R — continuous, for example
— the Dirichlet problem is that of finding a harmonic function u : U — R defined
throughout U and continuously extending u.

We begin with a basic construction using the fact that the imaginary part Im w
of a holomorphic function w is harmonic and identically zero on the real axis. By
means of the biholomorphismH - D; w — z = x: , which maps the upper half-
plane H = {z € C|Im z > 0} onto the unit disc D = D(0, 1), we obtain a harmonic
function defined on the disc, namely z +— 11_ _'i:i, which is thus automatically
harmonic and extends onto dD \ {1} as the zero function there. By the mean-value

property of harmonic functions we must have, for any disc D(0,r), 0 <r < 1,

[ y=ro=1

r Jop(o,r)

Our function f is thus harmonic on the open unit disc and seems to extend contin-
uously to the zero function on the boundary with the point 1 deleted, while at the
same time having integral 1 over that boundary. We have here a “point charge” or
“Dirac mass” at 1.
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This observation together with the linearity of the Dirichlet problem allows us
to retrieve Poisson’s formula, providing the solution to the Dirichlet problem for
the unit disc.'* Indeed, given a continuous function ¥ : D — R, an harmonic
extension u of u to the whole of D is:

1 2 1= |Z|2 ‘0
= — ———u(e') do. 114
u(z) = 5 fo ) (IL4)

And when the boundary function u is not continuous but merely integrable, the
extension u will still satisfy, for radial limits,
lim u(re'®) = u(e')
r—l -
for almost all angles 6 (in the sense of Lebesgue measure).

Our present aim is to solve the Dirichlet problem for a simply connected open
set U of the plane with boundary AU a smooth Jordan curve, and for any continu-
ous functionu : 0U — C.

We begin by remarking that there exists at most one solution. For if u; and u;
are two solutions, the function u; — uy : U — R is bounded and harmonic on U.
Let zo be a point of U satisfying:

lu1(z0) — u2(z0)| = max |uy — us|.
U

If zo € U, u; — up must be constant by the maximum principle for harmonic
functions (see earlier), so equal to zero since it vanishes on the boundary of U.
If zo is on the boundary of U, then u;(zo) = u2(z0), and it is immediate from the
maximality property of |u;(zo) — uz(zo)| that u; = up on U.

From Section 16 to Section 18 of [Riel851], Riemann explains how to solve
Dirichlet’s problem by minimizing a certain functional. He starts with a smooth
function @ : U — C satisfying @ = u on the boundary of U. Then he adds a
function A vanishing on the boundary and seeks to arrange that @ + A be harmonic.
Such a function A4 will minimize the integral

da 9A\> [(da 8A\
Q(a/+/l):f (—0‘+—) +(—“+—) dxdy.
y\0x  0Ox ady 0Oy
Thus the problem arises as to whether the functional 4 — Q(a + A) has a mini-
mum. Write L = fU (g—j’c)2 + (g—;l)zdxdy. We quote from Riemann’s text where

14Poisson’s formula seems to have been unknown to Riemann and his immediate successors.
Schwarz presents the formula as if new in [Schw1870a]. According to [Die1978], Green was the
first to show, in 1828, that a continuous function of the points of any (simple, closed) curve extends
to a harmonic function in the interior. In the case of a sphere Poisson gave an explicit formula “in
1820”. Prym, in his 1871 commentary on Riemann’s works mentions that the only known method
of extending a function harmonically into the interior of a circle is by developing it in a Fourier
series, even though the convergence of the series is not guaranteed by continuity alone [Pry1871].
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he justifies the existence of such a minimum of the functional Q:

For each function 4, Q takes on a finite value tending to infinity with L and
varying in a continuous manner with the form of A, but is bounded below
by 0; hence for at least one value of the function @ + A, the integral Q attains
a minimum value.

It is the purported existence of a function realizing this minimum that Rie-
mann calls the “Dirichlet principle”. We must stress here the conceptual leap
that this form of the principle represents: a function is considered implicitly as a
particular point of an infinite-dimensional space.

Riemann next shows that for every function Ay minimizing the integral
Q(a + A), the function @’ = a + A is harmonic. He thinks he has thus solved the
Dirichlet problem.

Riemann’s argument concerning the existence of a minimum is, however, not
rigorous — and not only in the eyes of a 21st century reader: Weierstrass criticized
the argument already in [Weie1870]. The reader may also consult Volume II of the
Traité d’analyse [Pic1893d, p. 38] where Picard revisits Weierstrass’s criticisms,
as well as giving the counter-example appearing in [Weiel870] of a functional
which does not attain its greatest lower bound. As Picard says ([Pic1893d, p. 39]):

One cannot be certain a priori that there exists a function u satisfying conti-
nuity conditions, at which the integral actually attains its lower limit. This is
a serious objection and M. Weierstrass has shown by means of a very simple
example the danger of this kind of reasoning.

Here is Weierstrass’s counter-example. He considers the space of func-
tions y(x) of class C' on the interval [-1, 1] with values at the end-points equal to
a and b (with a # b), and introduces the functional defined by

1 dy 2
— 2127
J(y)—[lx (dx) dx.

It is not difficult to check that, for the family of functions

a+b (b—a)arctan (fg—‘)
+ s
2 2 arctan ( 1)

&

Ye(x) =

one has that J(y.) tends to O with €. The greatest lower bound of J is thus O,
which is not attained at any function in the given space since a # b. This is made
possible by the fact that the space C'([—1, 1]) is not complete. Note that the space
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of functions with which Riemann is working here — consisting of the functions
continuous on U and smooth in the interior — is likewise not complete.

The modern method of skirting this obstacle, conceived in a famous 1900
paper of Hilbert [Hil1900a], is to work in a larger space of functions which is
complete; see for example [Jos2002].

I1.2.2. The Riemann mapping theorem (or conformal representation
theorem)

We first quote Riemann’s own statement of the conformal representation theorem:

Any two given simply connected, planar surfaces can always be mapped
one to the other in such a way that to each point of one there corresponds a
unique point of the other whose position varies in a continuous manner with
that of the first, and such that the smallest corresponding portions of the
surfaces are similar; furthermore, for a point of the interior and for a point
of the boundary of one surface, the corresponding points of the other surface
may be given arbitrarily; but then this determines the correspondence for all
points.

The modern statement of this theorem is more general since it incorporates
regularity conditions on the boundaries. Recall that a Jordan curve is any contin-
uous embedding of the circle in the plane.

Theorem I1.2.1. — Let U be any simply connected open set in the plane, not
equal to the whole plane. Then there exists a biholomorphic mapping f : U — D.
Furthermore if the boundary of U is a Jordan curve, then f extends to a homeo-
morphism from the closure of U onto the closed unit disc.

Note that Riemann implicitly assumes that the boundary — which he calls
the “frame” of the surface — is a Jordan curve since he defines the images of
the boundary points. In the present subsection we give a proof of the confor-
mal representation theorem (or “Riemann mapping theorem’) directly inspired by
Riemann’s ideas. We shall always assume the boundaries to be Jordan curves —
in fact even smooth Jordan curves. (The methods of proof when the boundary is
not a Jordan curve are different; see for example [Rud1987, Chapter 4].)

Proof of the first statement of the Riemann mapping theorem (assuming we know
how to solve the Dirichlet problem): Let U c C be open and simply connected
and let zg be any particular point of U. We begin with a definition.
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Definition I1.2.2.5 — A Green’s function for U relative to the point zg is a func-
tionu : U \ {z0} — R with the following properties:

1. u is harmonic on the open set U \ {zo};

2. the function z € U\{zp} — u(z)+log|z—z0| extends to a function harmonic
at zo;

3. u(z) tends to O as z approaches the boundary of U.

Note that there exists at most one such function: this follows in much the same
way as the uniqueness of a solution of Dirichlet’s problem. A similar argument
shows also that a Green’s function u must be strictly positive on U. Indeed, if u
assumed a non-positive value at a point z; of U, then by invoking the facts that
lim;,;, u(z) = +co and lim;,sy u(z) = 0, we could infer that u attained its
minimum on U \ {zp}, whence, by virtue of its harmonicity u would be constant,
which is absurd in view of the fact that it has a logarithmic pole at zg.

We now show how to construct a Green’s function relative to a point zg € U
under the assumption that we know how to solve the Dirichlet problem.

Consider the function v : U — R defined by v(z) = log|z — zo|. Since
the Dirichlet problem is assumed to have a solution on U, we have an harmonic
extension v : U — R. Write uy(z,20) = v(z) —log|z — zo| for zin U \ {z0}. Then
since v is continuous on U, the function ug (-, zo) approaches 0 on the boundary
of U. Hence uy (-, z0) is the Green’s function of U relative to the point zg.
Example I1.2.3. — For the unit disc D = {z € C||z| < 1}, the Green’s function
relative to the point zg = 0 is

up(z,0) = —log|z|.

Resuming our proof, we denote by v* a harmonic conjugate'® of v, and con-
sider the holomorphic function on U defined by

$(2) = (z = zg)e” VT,
Since (z — zg) = el?201*1a8(z=20) this may be rewritten “formally” as

#(z) = e~ (z,20)+iuy (z,20)")

where uy (z,20)" := v* — arg(z — zo). Since, as we have already observed, the
Green'’s function is strictly positive, the function ¢ takes its values in the unit disc.
It can be inferred from the condition

uy(z,z0) — 0as z — dU,

50ne may find in [Taz2001] many details on the historical development of this notion.
6That is, such that v + iv* is holomorphic. See earlier. Trans
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that ¢ is proper.”” Hence it is surjective (its image being both open and closed)
and the cardinality (including multiplicities) of its fibres is constant. Since the
fibre above 0 is just {z¢}, of cardinality 1, the map ¢ is injective, and we have the
desired biholomorphism between U and D.

Remark I1.2.4. — The second part of the theorem was proved by Carathéodory
in 1916 (see [Coh1967] for example). It is interesting that his proof yields the
solution of the Dirichlet problem in the case where the boundary of U is a Jor-
dan curve. The Riemann mapping theorem and Carathéodory’s theorem are thus
equivalent to the solvability of the Dirichlet problem on U. m|

I1.2.3. Abelian integrals

Recall that our aim is to construct meromorphic functions on a given surface.
Riemann seeks such functions as primitives of meromorphic forms.

We have seen above how to associate a given Riemann surface 7' with an
algebraic function.

A similar system of algebraic functions with the same ramifications and
integrals of the functions will be first of all the object of our study.

In other words, once the surface T has been constructed, one investigates the
space of meromorphic forms on 7 (having the same ramifications as the equation
used to construct 7') and their primitives.

Here is the title chosen by Riemann to present his vision of the construction
of such functions:

Determination of a function of a variable complex quantity by the conditions
it satisfies relative to the boundary and discontinuities.

Thus the functions in question should be determined by their values on the
boundary and by their behavior in the neighborhood of discontinuities. The holo-
morphicity of the function being sought renders all other data superfluous. And it
is once again the “Dirichlet principle” which allows one to construct the desired
functions starting from a “system of independent conditions among them”.

"That is, that the preimage of every compact set in D is compact in U. It follows that ¢ is a
closed map; it is also open since holomorphic. Trans
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Here is the theorem on which Riemann bases the whole of his theory of func-
tions of a complex variable — a theorem already present in his thesis [Rie1851]:

If on a connected surface T, decomposed by means of transverse sections

into a simply connected surface 7", one gives a complex function a + Si of
x,y for which the integral

da 0B\ [(da 0B\
f[(ﬂ_a_y) *(a_ﬂa)

evaluated over the whole surface, has a finite value, this function can al-

drT, {1.5)

ways, and in a unique manner, be transformed into a function of x + yi by
the subtraction of a function u + vi of x,y satisfying the following condi-
tions:

1. On the contour u = 0, or at least differs from zero only at isolated
points; at one point v is given arbitrarily.

2. The variation of g on T and of v on T” is discontinuous only at isolated
points, and then only in such a way that the integrals

S (22 arama [ ][22 (2

over the whole surface, remain finite; furthermore the variations of v

dT  (IL6)

along a transverse section should be equal on the two sides.

The steps in the proof sketched by Riemann have been explicated in intrin-
sically modern terminology by Ahlfors in [Ahl1953]. These involve harmonic
analysis, and we shall return to them in Section III.1. We now explain briefly the
above passage.

To ease our explanation of Riemann’s text we denote by the lower-case Ro-
man letters a, b, m,n the differentials (closed but not exact) of the discontinuous
functions a, S, i, v introduced by Riemann.

If T is a Riemann surface (ultimately with boundary), its real tangent bun-
dle is furnished with an operator J of square —1: multiplication by i. If a is
a real differential form of degree 1 on 7, its conjugate differential is defined by
*a = —a o J. A form is said to be co-closed if its conjugate is closed. We write
also Dla] = fT a A *a, the norm (also called the Dirichlet energy) of a. One
then sees that the three integrals in the above excerpt from Riemann’s paper are
respectively D[a + *b], D[m], D[n].

Given a real closed differential form a on T with its periods, (isolated) singu-
larities, and prescribed values on the boundary, we assume there exists a closed
differential form b such that the energy D[a + *b] is finite. One then chooses an
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exact form m whose restriction to the boundary is zero and whose distance from
a + b in terms of the norm is least.

Here one encounters difficulties in proving the existence of such a form m
analogous to those we described in Section II.2.1 in connection with the “proof”
of Dirichlet’s principle via minimization. As there, so also here in order to cir-
cumvent these difficulties one needs to work in a more appropriate function space
not available to Riemann.

The existence of m is equivalent to the existence of an orthogonal decom-
position a + *b = m + *n with m exact and n closed, whence it follows that
a —m = xn — xb is both closed and co-closed, therefore harmonic.

From this the existence of a holomorphic form on 7 follows: the harmonic
form a — m has the prescribed periods, singularities, and values on the boundary
(those of a), and writing # := a — m and v := b — n, we see that u + iv is a holo-
morphic form whose integrals yield the “functions of x + yi”” on T in Riemann’s
statement.

Riemann now uses his result on the existence of harmonic forms on a given
surface to construct meromorphic forms. Starting with a closed Riemann sur-
face T he takes a finite number of points Py,..., P, of T and in a neighborhood
of each of these he takes as principal part a finite sum expressed in terms of local
parameters z;:

(Aizi' + Biz;> + Gz + -+ )dz; (IL.7)

He chooses 2g cuts (not passing through any of the P;) yielding a simply con-
nected surface, and then establishes the existence theorem, which, in modern ter-
minology, is as follows:

Theorem II.2.5 (The existence of meromorphic 1-forms on a surface). —
Assuming the sum of the residues A; is zero, for each choice of 2g real numbers
there exists a unique meromorphic form on T with poles at just the points P; and
the given principal parts, and with periods evaluated along the 2g cuts having as
real parts those prescribed 2g numbers.

The importance of this theorem was recognized well before a perfectly rig-
orous proof was given. It had a great influence on Riemann’s successors, in the
forefront of whom were Hermann Schwarz and Felix Klein, whose work will be
considered in the following chapters. A modern proof in the spirit of Riemann
may be found in [Coh1967], and we shall give another (inspired by [Spr1957]) in
Subsection II1.2.1.

Certain of the forms figuring in this theorem were destined to play a special
role, the so-called forms of the first, second, and third kind. Nowadays a form is
said to be of the first kind if it is holomorphic, of the second kind if it is mero-
morphic with all residues zero, and, finally, of the third kind if it is meromorphic
and has only simple poles. The simplest forms of the second kind are then those
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with just one pole P on T': their many-valued primitives are what Riemann called
integrals of the second kind, denoted by tp. The simplest forms of the third kind
are those with just two simple poles Py, P, and in this case Riemann called their
primitives integrals of the third kind @ p, p,. His motivation in using such terms
derives from their use by Legendre in his classification of elliptic integrals.

We now turn to Riemann’s proof. He first shows using Theorem I1.2.5 that the
complex vector space of integrals of the first kind has dimension g+1 (1 more than
that of the space of holomorphic forms on account of the constant of integration).
This affords an analytic interpretation of the genus g, originally defined topolog-
ically. He also shows that such an integral is uniquely determined to within an
additive constant by the real parts of the moduli of periodicity relative to a system
of transverse sections rendering the surface simply connected.

Similarly, an integral of the third kind is uniquely determined to within an
additive constant by the data of the poles, the residues of its differential at these
poles, and the real parts of its moduli of periodicity relative to the transverse
sections (chosen so as to avoid the poles).

The existence of meromorphic I-forms on an algebraic curve. — It took until the
beginning of the 20th century before Dirichlet’s principle and the “proof” imag-
ined by Riemann of the existence of meromorphic 1-forms with prescribed poles
on the surfaces bearing his name were given a rigorous foundation. However,
then the question had become that of defining such forms on abstract Riemann
surfaces. In actuality, following on the work of Abel and Jacobi, 19th century
mathematicians knew how to construct meromorphic 1-forms explicitly (or rather
their many-valued integrals — Abelian integrals) on Riemann surfaces defined as
algebraic curves; we will now explain how they did this.

We begin with a compact Riemann surface 7. By Theorem I1.1.3, 7" can be
immersed in CP? as an algebraic curve C with all of its singular points double
with distinct tangents. For a suitable choice of affine coordinates we may arrange
that the curve C is transverse to the line at infinity, and that in a neighborhood of
each double point the first projection x : C — CP! is a coordinate on each branch
of the curve.

First we construct holomorphic 1-forms on 7. Denote by E the vector space
of polynomials P € C[x,y] of degree at most d — 3'® which vanish at the double
points of C. For each point P € E we write wp for the lift onto T of the Abelian

differential
dx

P(x,y)F, (IL.8)
y

r — OF 19
wherer =3y

18Where d is the degree of C. Trans
YHere F(x,y) = 01is the polynomial equation (of degree d) defining the algebraic curve C. Trans
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Proposition I1.2.6. — 1. For every polynomial P in E, the form wp is holomor-
phiconT.

2. The map P — wp from E to the space Q' (T) of holomorphic 1-forms on T
is linear and injective.

3. The dimension of E is greater than or equal to g, the genus of T.

Proof. — 1. The formula (I1.8) defines a priori a holomorphic 1-form on C from
which have been removed:

— the points where the first projection x : C — CP! does not define a holo-
morphic local coordinate, that is, the points of intersection of C with the
line at infinity, and the branch points of x : C — CP!;

— the points where Fy vanishes, that is, the double points of C and the branch
points of x : C — CP';

— the points where F(x,y) becomes infinite, that is, the points of intersection
of C with the line at infinity.

Figure I1.4: A symplectic basis for the homology

Next observe that the 1-form given by (I1.8) extends holomorphically to the
ramification points of x : C — CP'; indeed it follows from the identity F/dx +
Fjdy = 0 that (I1.8) can be rewritten as

P(x,
o= (x,y)dy
Fy
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(where this makes sense), and this expression defines a holomorphic 1-form in the
neighborhood of every ramification point of x. Then since at each double point
of C the polynomial Fy has a zero of order 1 and the polynomial P(x,y) also
vanishes, the lift of the 1-form defined by (I1.8) extends to the double points of 7.
Finally, by means of the change of variables X = % and Y = %, one sees that the
1-form defined by (I1.8) extends holomorphically to the points of intersection of C
with the line at infinity since the polynomial P has degree at most d — 3 (using
here the fact that C is transverse to the line at infinity).
2. This statement is immediate.

3. We count dimensions. The polynomials in x, y of degree at most d — 3 form
a vector space of dimension W' In order for such a polynomial to vanish at
all of the r, say, double points of C, its coefficients must satisfy r linear equations.
Hence the dimension of the space E is at least

(d-2)d-1)
— "
which by (I1.3) is equal to the genus of 7'. O
We shall now show that in fact the dimension of E is precisely g. As does
Riemann, we fix on 2g simple closed paths on T and cut along them so as to obtain
a simply connected surface. These are loops representing homology classes on 7.
Reverting to modern terminology, we consider the intersection product de-

fined by these loops:
H\(T,Z) x H|(T,Z) - Z.

Being bilinear and antisymmetric, it defines a symplectic form. Moreover
H{(T,Z) has a basis which is symplectic relative to the intersection product, that
is, a basis (ay,...,ag,b1,...,bg) such thatfori,j =1,...,g:

ai-aj:O, bi'bj=0, Cli'bjzéij

(see Figure 11.4). Each such basis corresponds to a dissection of 7" into a 4g-sided
polygon. Riemann next shows — with the aid of Stokes’s theorem — that for
every symplectic basis (ay,...,ag,b1,...,bg) of H|(T,Z) and two given closed
1-forms 1 and ” on T, one has

g
"= = ' : 1.9
anAn ;(Lnfbin fain fbin) (1L.9)

It follows from this that the linear map

Qi@ — < II.10
w — (fa, w)l_l .8 ( ‘ )
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is injective. It follows in particular from (II.9) that a non-zero holomorphic

1-form w satisfies
if wAw>0.
T

That is essentially the proof given by Riemann in Section 20 of [Rie1857]; and
it is also the first half of the proof establishing the bilinear relations of Riemann
(see [Bos1992] for further details).

Instead of ¥ we might have considered the linear map

{Ql(T) — (RxR)2
(D .

o = (Re([,w).Re(f,0)), -

The injectivity of this map follows in much the same way, giving the uniqueness
assertion of Theorem I1.2.5. As far as holomorphic forms are concerned, the exis-
tence claim — problematic for Riemann — is made good by Proposition I1.2.6 and
its proof. The linear map ¥ is thus an isomorphism and we have Theorem 11.2.5
in the case of holomorphic forms:

Proposition I1.2.7. — For each g-tuple n = (ny,...,ng) of complex numbers,
there exists a unique holomorphic I-form wy on T whose integral along the
loop «; is equal to n; fori =1,...,g.

Furthermore the I-form wy depends linearly (so certainly holomorphically)
on the g-tuple n = (ny,...,ng).

It remains to construct meromorphic forms on T. We choose fixed loops
ai,...,ag representing the classes ay,...,ag, and denote their union by A. We
shall now prove Theorem II.2.5 for forms of the second and third kind.

We first consider the case of meromorphic 1-forms having only simple poles.
Such a form can always be expressed as a linear combination of meromorphic 1-
forms each with precisely two simple poles at which the residues are +1 and —1.
Moreover by adding suitable holomorphic 1-forms if necessary, in view of Propo-
sition I.2.7 we can assume without loss of generality that the integrals of these
1-forms around the loops «1i,...,ag are all zero. We are thus left to prove the
following result:

Proposition I1.2.8 — Corresponding to any two distinct points p,q € T \ A, there
exists a unique meromorphic 1-form wp 4 on T, having simple poles at p and q
with residues respectively +1 and —1, and without any other poles, and such that
the integral around each of the loops ay,. . .,ag is zero.

Proof. — Consider the vector space €, , of meromorphic 1-forms on T" with
simple poles at p and ¢ and no other poles. Write ® : Q, , — C& *1 for the
linear map associating with each element of Q,, , its integrals around the loops
ay,...,ag and its residue at p (the residue at g being the negative of that at p).
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Proving the above proposition is then equivalent to showing that @ is bijective. We
know it’s injective since any two elements in the kernel differ by a holomorphic
I-form whose integral around each of the loops a1, . .., is zero. It thus suffices
to prove that the dimension of the vector space Q,, , is at least g + 1.

The proof of this is similar to that of Proposition I1.2.6: as in the proof of
that proposition one constructs the desired forms on the curve C of degree d of
Theorem II.1.3 — the image under an immersion of 7 in CP?>. We may assume
that the images of the points p and g in C do not coincide with any singular point
and do not lie on the line at infinity; we continue denoting them by p and q.

Let D denote the line of CP? determined by p and g. We choose an equation
(ax + by + ¢ = 0) for D and consider those elements of Q,, , expressible in the
form

o= Py »
(ax +by +o)F)

(IL.11)

for some polynomial P(x,y). The line D intersects the curve C in d points,
counted according to their multiplicities; to simplify the argument we shall as-
sume these points pairwise distinct and off the line at infinity. The formula (IL.11)
defines a priori a holomorphic 1-form on the curve C from which the ramification
points of the map x : C — CP!, the points of intersection of C with the line at
infinity, the double points of C, and the points of intersection of C with the line D
have been removed. The same reasoning as in the proof of Proposition I1.2.6 then
shows that the formula (IL.11) lifts to an element of Q,, ,, if and only if:

— the polynomial P has degree at most d — 2;
— the polynomial P vanishes at each double point of C; and

— the polynomial P vanishes at each of the d — 2 points of intersection of C
with D distinct from p and gq.

The polynomials in the variables x, y of degree at most d — 2 form a vector space
of dimension w The vanishing of a polynomial at the » double points of C
and the d — 2 points of C N D distinct from p and ¢, yields r + (d — 2) linear
equations in its coefficients. Hence the dimension of the space Q, , is greater
than or equal to

M_r_(d_z)zw_r

+1,
2 2

which by (II.3) is equal to g + 1.
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A similar (but trickier to expound) count of dimensions yields the same out-
come in the case where D has multiple intersection points with C. O

The 1-form w,, , given by Proposition I1.2.8 “depends holomorphically on the
points p,q”. A precise meaning can be given to this assertion as follows. Choose
an open set U C T on which the coordinate x defines an injective map. Then on U
the form w4, can be expressed as:

1 1
Wp,q(r) = ( - + G;’q(r)) dx,,

Xr—Xp  Xp—Xg

where x,, x,, x, are the values of the coordinate x at the points p, g, r. Then
for every pair (p,q) € (U \A)? of distinct points, the function r Gg, q() is
holomorphic on U. In fact:

Proposition I1.2.9. — The function (p,q,r) = G 4(r) with p # q is holomor-
phic in the three variables as a map to

{(p,q,r) € (UNA) X (UNA) xUlp # q}.

Furthermore it extends holomorphically to the diagonal p = q.

Proof. — We first repeat the construction of the 1-form w),  in the proof of the
previous proposition: that 1-form was given in terms of the x-coordinate by

_ Ppa(xy) .
~ (ax+by+o)F)

Wp,q

where (ax + by + ¢ = 0) was an equation of the line determined by the points
p, q, and P, ,(x,y) was a polynomial of degree at most d — 2. The coeflicients
of this polynomial satisfy a system of affine equations made up of the following:
d(d —3)/2- (g — 1) + (d — 2) linear equations deriving from the fact that w,
belongs to the space Q,, ,, then g linear equations expressing the condition that
the integral of w), , around each of the loops aj,. .., is zero, and finally one
equation from the condition that the residue of w, , at p should be 1. Clearly
the coefficients in these affine equations depend holomorphically on p and ¢. It
follows via the uniqueness of w, , and therefore of the polynomial P, , that this
system has maximal rank?°, whence it follows in turn that the polynomial P, ,
itself depends holomorphically on the points p and g. The first assertion of the
proposition is then immediate.

20Since there are altogether d(d — 1)/2 equations in the same number of coeflicients of Pp .
Trans
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We now show that the function (p,q,r) = G, 4(r) extends holomorphically
to the diagonal p = ¢. For pairwise distinct p,q,t € U \ A, the uniqueness asser-
tion of Proposition I1.2.8 implies that

Wpg =Wpr+twrg and Gy 4(r) = Gp (r) + Gy 4(r).

As the points p and g are allowed to merge into a single point (different from 1),
the quantity G, ;(r) + G 4 (r) extends holomorphically; hence the same is true of
Gpq(r). O

The same sort of arguments as above allow the construction of meromorphic
1-forms with poles of orders greater than or equal to 2. Not pretending to exhaus-
tiveness, we merely state a typical result in this direction:

Proposition I1.2.10. — Given a point p € T \ A, there exists a unique meromor-

phic 1-form on T having a pole of order 2 at p, with principal part ﬁ, and
P

with no other poles, and whose integral around each of the loops ay,. .. ,ag is

zero.

Proof. — This follows as in the proof of Proposition I1.2.8, except that the role of
the line D is now played by the tangent to the curve C at p. m|

Remark I1.2.11. — In the statements of Propositions 11.2.7, 11.2.8, and I1.2.9,
one may — as in the statement of Theorem I1.2.5 — replace the condition “whose
integral around each of the loops aj,...,a, is zero” by the condition “whose
integral around each of the loops a,...,a.,B1,..., B is purely imaginary. To
see this, it suffices to consider the map ® defined earlier in place of the map V.

I1.2.4. The Riemann-Roch theorem

In Section V of his memoir, Riemann begins his investigation of the space of
meromorphic functions on a given compact surface 7. He proposes determin-
ing the functions by means of their poles: this is the Riemann—Roch problem.
(According to Gray [Gral998], this name was bestowed by Brill and Noether
in [BrNo1874].)

Riemann first considers a given set { Py, . . ., Py, } of points, candidates for sim-
ple poles, the case of poles of greater order to be dealt with subsequently by pass-
ing to a limit where several poles merge. This procedure is used several times by
Riemann, and it is not always easy to make it work formally, even if it is clear
enough intuitively.

The set of meromorphic functions having at most simple poles at the points
Py,..., P, is obviously a complex vector space. Riemann quickly shows that it
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has finite dimension, and obtains an upper bound for the dimension by considering
such meromorphic functions as particular cases of many-valued functions of a
special kind (in the following quote we have taken the liberty of changing some
of the notation):

The general expression of a function s, which becomes infinitely large of
the first order at m points Pj, Py, . .., P, of the surface T is, by virtue of the
above,

s = ,3]I1 +ﬂ21‘2+"'+,8ml‘m tawr+aowy + -+ @gwy + const.,

where ¢; is any function ¢p, and where the quantities @ and § are constants.

If we wish to avoid using many-valued functions on 7', we may instead couch
our argument in terms of the differentials of the functions in question: if f is
one of the functions under study, then its differential df is a linear combination
of differentials of the second kind associated with each point P; (the dt;) and of
differentials of the first kind (the dw;).

The existence of these forms and the fact that those of the first kind constitute a
space of dimension exactly g constitute a special case of Theorem I1.2.5. In taking
their (many-valued) primitives, one should not forget to add 1 to the dimension on
account of the constant of integration.

Next one needs to distinguish the differentials without periods, that is, those
that integrate to yield meromorphic functions, the object of the investigation. By
considering a basis for the first homology group, one obtains 2g conditions for
the vanishing of the periods, which one interprets as 2g linear conditions on the
space of forms in question. It follows that altogether their dimension is at most 2g,
whence the following:

Theorem I1.2.12 (Riemann’s inequality). — Let T be a compact Riemann sur-
face of genus g. The vector space of meromorphic functions having at most simple
poles at the points Py,. .., P, has dimension at leastm — g + 1.

By varying the set of poles imposed, we infer the following corollary:

Corollary I1.2.13 (Riemann). — A compact Riemann surface admits infinitely
many meromorphic functions linearly independent over C.

It was Gustav Roch, a student of Riemann — deceased, alas, very young, in
the same year as his supervisor — who subsequently succeeded, in [Roc1865], in
interpreting the difference between the dimension sought and the quantity m—g+1.

Here is the full statement, embracing also the case of multiple poles:

Theorem I1.2.14 (Riemann-Roch). — Let T be a compact Riemann surface of
genus g, and let Py, ..., Py, be points with which are associated “multiplicities”
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ni, ..., ny from N*, and write m = ), n;, the sum of these multiplicities. Then the
difference between the dimension of the vector space of functions having a pole
of order at most n; at the point P; and (m — g + 1) is equal to the dimension of
the vector space of holomorphic forms having a zero of order at least n; at the
point P;.

Application to the uniformization of curves of genus 0 and 1. — It is difficult
to overestimate the importance of the Riemann—Roch theorem for the modern
approach to the theory of algebraic curves. In particular, it is this theorem that is
regularly invoked in order to prove that every compact, simply connected Riemann
surface is isomorphic to the Riemann sphere.

Theorem I1.2.15. — A compact Riemann surface of genus zero is biholomorphic
to the Riemann sphere.

Proof. — 1t follows directly from the Riemann—Roch theorem that such a sur-
face S admits a meromorphic function with just one, simple, pole, that is, there
exists a holomorphic mapping S — C of degree 1. Since S has genus zero, by the
Riemann—-Hurwitz theorem this mapping can have no ramification points, so that
it is an isomorphism. O

Despite the simplicity of this proof, this result was most probably not thought
of by Riemann or Roch, whose interest, it must be recognized, was not centered
on the genus zero case. In Chapter IV we shall give an analytic proof of this
theorem due to Schwarz, and a little further on in the present section a proof due
to Clebsch using birational geometry.

In much the same way, the Riemann—Roch theorem allows one to uniformize
curves of genus 1.

Theorem I1.2.16. — A compact Riemann surface of genus 1 is biholomorphic to
a quotient of C by a lattice of translations.

Proof. — Applied to the case m = 0, g = 1, the Riemann—Roch theorem tells
us that on a surface S of genus 1 there exists a nowhere vanishing holomorphic
form w. Consider now the vector field dual to w, that is, the non-singular vector
field X such that w(X) = 1. Integration of this field affords an action of C on
the surface S. Since X is non-singular, every (complex) integral curve of X —
the orbits of the action, in other words — are open. Then since the complement
of an orbit is a union of orbits, these must also be closed. Moreover since S is
connected, the action is transitive, so S can be identified with C/A, where A is the
stabilizer of a point, a closed subgroup of C. Since § is compact and has the same
dimension as C, A must necessarily be a lattice in C. O

Once again it seems that Riemann never wrote this result down explicitly, even
if, as seems likely, he had at some time conceived it.
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Box IL.5: The Riemann—Roch theorem and Serre duality

A word on how the Riemann—Roch theorem is formulated nowadays. The
system of multiplicities »; attached to the points P; of the surface T is called
a divisor D := ), n;P;. The sum ) n; is then defined to be the degree deg(D)
of D.

The (germs of) functions having at most a pole of order n; at the point P;
form a sheaf, denoted by O(D). The two cohomology groups H 9(O(D)) and
H'(O(D)) of this sheaf are naturally endowed with the structure of finite-
dimensional complex vector spaces, with dimensions denoted respectively by
Kh2(O(D)) and h'(O(D)). In the literature the dimension A°(O(D)) is also
often denoted by /(D).

The first vector space H 0(O(D)) can be interpreted as that consisting of the
meromorphic functions in question with poles of order at most D and defined
globally on T. The second can be interpreted globally only via the Serre duality
theorem, affirming that there is a canonical isomorphism

H'(O(D)) = (H(Q(-D)))",

where Q(—D) is the sheaf of holomorphic forms vanishing at least to the or-
der D. If K is the divisor of a global holomorphic (or meromorphic) differen-
tial form, then the sheaf Q(—D) becomes identified with the sheaf O(K — D),
whence the following version of the Riemann—Roch theorem (for curves):

[(D)-I(K—-D)=deg(D)—g+1.

The Euler characteristic y(O(D)) of the sheaf O(D) is by definition the
difference h°(O(D)) — h' (O(D)). Thus the Riemann—Roch theorem may also
be stated in the form

x(O(D)) = deg(D) — g + 1.

Thus, via Serre duality, one retrieves the version 11.2.14 of the theorem.
Viewed this way, the above modern version might seem to be merely a tauto-
logical reformulation. However, the significance of this reformulation derives
from the fact that it allows the statement to be extended to higher dimensions,
as was shown by Kodaira, Hirzebruch, Serre, and Grothendieck in the 1950s:
the Euler characteristic y (¥ ) of a sheaf ¥ of sections of an algebraic
fibre bundle over a compact algebraic variety or of a holomorphic bundle
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over a compact analytic manifold is expressed uniquely in terms of topological
invariants of the bundle in question and the tangent bundle of the manifold; and
the vector spaces H'(¥ ) entering into the definition of y(F) are naturally
isomorphic to (H" 7 (Q(F *)))*, where n is the dimension of the variety or
manifold.

We shall now prove the preceding two results using an idea due to Cleb-
sch [Cle1865a, Cle1865b]. This method has the advantage of being completely
algebraic in the sense that it uses no analysis (unlike the proof of Riemann—Roch
via the Dirichlet principle). On the other hand, it has the shortcoming that it deals
only with Riemann surfaces assumed a priori to be algebraic.

By Theorem II.1.3 the surface S can be so immersed in CP? that its image is
an algebraic curve C having as its only singularities double points with distinct
tangents.

Let n be the degree of C. Recall from the formula (II.3) that the genus of S is
equal to w — k, where k is the number of double points.

Curves of genus zero. — Suppose S has genus zero. Then the curve C has N =
(n—1)(n —2)/2 double points xy,x3,...,xn, say. Choose any particular n — 3
other points yy,. . .,y,—3 on C. Recall that the projective space of curves of a given
degree d has dimension d(d + 3)/2, so that the projective space E of curves of
degree n —2 passing through the N points x; and the n—3 points y; has dimension
at least

(n=-2)(n+1)

> N-(n-3)=1.

Let z; and z, be any two distinct points of C. Through each of these there passes
at least one curve from E. By replacing E by the line in E determined by a curve
through z; and a curve through z; (considered as points of the projective space FE),
we may suppose that £ has dimension precisely 1.

By Bézout’s theorem, each curve of degree n — 2 meets C in n(n — 2) points,
counted according to their multiplicities. Thus apart from the x; and the y;, the
curves in E meet C in

nn—-2)—2N-(n-3)=1

points. This affords us a rational map from E to C. It is not constant since z;
and z; are distinct points in the image. It is even birational since the preimage of a
point is a proper projective subspace of the one-dimensional space E, so consists
of a single point.
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Curves of genus 1. — Now suppose the genus of S is 1. In this case the curve C
has N = (n — 1)(n — 2)/2 — 1 double points x1,x»,...,xy. Choose any particular
n — 3 other points yj,...,y,—3 on C. The space E consisting of curves of degree

n — 2 passing through the N points x; and through the y; has projective dimension

at least:
n-2)(n+1) B

2
Analogously to the case of genus 0, if £ happens to have dimension greater than 2,
we replace it by a generic subspace of dimension precisely 2. By Bézout’s theo-
rem, apart from the x; and y;, the curves from E each meet C in

nn-2)-2N-(n-3)=3

N—-(n-3)=2.

points. It follows that corresponding to each generic point x of C, there exists
exactly one curve from E tangent to C at x (and passing through the x; and y;).
This defines a rational map from the curve C to the projective plane E. We shall
now show that the image of this map is a cubic curve.

To this end we consider the pencil of curves in the projective space E deter-
mined by two of its elements, and find the condition that a curve in this pencil
be tangent to C. The condition takes the form of an equation of degree 3 since it
involves the vanishing of the discriminant of a polynomial of degree 3. The cubic
thus obtained must be non-singular since we know that a singular cubic has genus
zero. We have thus established a birational equivalence between the curve C and a
smooth cubic, which may now in turn be projectively transformed into Weierstrass
normal form.

I1.3. The Jacobi variety and moduli spaces

After having investigated his surfaces individually, Riemann seeks to comprehend
them collectively. This represents the birth of the “space” of moduli. Difficul-
ties in defining this space notwithstanding, this opens the way to a topological
approach to the uniformization theorem: the method of continuity, forming the
theme of the second part of the present book.

I1.3.1. Moduli spaces of Riemann surfaces

Birational equivalence. — At the beginning of his investigation, Riemann con-
siders the surface T to bE associated with an algebraic function s(z) as a branched
covering of the sphere C, associated with the plane of the complex variable z.2!

2!More precisely, above that plane. The use of the Riemann sphere is made explicit subsequently
in work of Neumann [Neum1865].
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However he next envisages changing the variable z employed to represent 7'

A function z; of z, ramified like 7', which becomes infinite to the first order
at n; points of that surface [...], takes each of its values at n; points of the
surface T. Consequently, when one imagines each point of T represented by
a point of a plane representing geometrically the value of z; at that point, the
totality of these points forms a surface 7} everywhere covering the z;-plane
n; times, a surface which is, one understands, a representation, similar to
it in its smallest parts, of the surface 7. To each point of either of these
surfaces there then corresponds a unique point of the other.

Mathematicians later learned to say that T and T} are isomorphic as Riemann
surfaces, and, in particular, homeomorphic. However, in order to begin using such
language, it would be necessary to come to the recognition that various sorts of
mathematical objects have internal structures defining their form, and it was to
this realization that in fact the work of Riemann contributed in no small measure.

After having represented 7" in a new way with the aid of a meromorphic func-
tion z1, one can go on to consider the representation one obtains by means of a
further meromorphic function:

If one denotes by s; any other function whatever of z, ramified like 7' [...],
then (§V) s, and z; will be linked by an equation of the form Fj(s;,z;) = 0,
where F) is a power of an irreducible entire function of s;,z;, and when
this power is the first, one can express every function of z; ramified like 7
rationally in terms of s; and z;, and, consequently, all rational functions of
s and z (§VIII). The equation F(s,z) = 0 can thus, by means of a rational
transformation, be transformed into F;(sy,z1) = 0 and vice versa.

The equivalence relation that he introduces stemming from such considera-
tions represents the point of departure of birational geometry (see Klein [Kle1928,
Chapter VII]):

We now consider as forming part of the same class, all irreducible algebraic
equations in two variable quantities that can be transformed one to the other
by means of rational substitutions [... ].

The choice of an equation F(s,z) = 0 in such a class, and of one of the two
variables s say, as representing, via this equation, an algebraic function of the
other variable z, allows us to define “a system of identically ramified algebraic
functions”, or, in modern terminology, a finite extension of the field C(z), that is,
the field of rational functions over the curve defined by the equation F(s,z) = 0
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(which may also be thought of as the field of meromorphic functions on the asso-
ciated Riemann surface). One thus arrives at the present definition: two algebraic
curves are birationally equivalent if their fields of rational functions are isomor-
phic as field extensions of C. And in fact two non-singular curves are birationally
equivalent if and only if they are biholomorphic.

Counting moduli. — At this point Riemann introduces the moduli problem for
Riemann surfaces of genus g — the problem of studying the birational equivalence
classes for each fixed topological type of Riemann surface, that is, for each fixed
value of the genus.

Riemann explains that, for g > 2:22

[...] aclass of systems of functions identically ramified and (2p + 1)-
connected and the class of algebraic equations belonging to it, depend on
3p — 3 quantities varying in a continuous manner, which will be called the
moduli of the class.

Nowadays we speak of the moduli space, but here we see that Riemann refers
only to the number of parameters needed to determine the points of the space,
that is, its complex dimension, without any mention of the possibility of a global
construction of such a “space”. Nonetheless he has thought of this possibility, as is
shown by the following excerpt from his habilitation address [Riel1854, pp. 282—
283], delivered three years earlier:

Concepts of size are possible only where there exists a general concept al-
lowing different modes of determination. According to whether it is or is
not possible to pass from one of these modes of determination to another
in a continuous manner, they form a continuous or discrete manifold [...]
the occasions giving rise to concepts whose modes of determination form a
continuous manifold are so rare in everyday life that the positions of sensi-
ble objects and their colours are practically the only simple concepts whose
modes of determination form a manifold of several dimensions. It is only
in higher mathematics that occasions for the formation and development of
such concepts become more common.

Such investigations have become necessary in many areas of mathematics,
notably in the study of analytic many-valued functions, and it is primarily
on account of their imperfection that Abel’s celebrated theorem, as well as
works of Lagrange, Pfaff, and Jacobi on the general theory of differential
equations, have remained sterile for so long.

22]n the following quotations the genus is denoted by p.
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Riemann proposes two methods for calculating the number of moduli, the first
valid only for g > 1, and the second for g > 1. (We saw in the preceding chapter
that a Riemann surface of genus g = 0 is isomorphic to C, ~ CP'.)

First method. — Here for each u > 2g Riemann considers the set of meromor-
phic functions on 7 with exactly u poles (counted according to their multiplic-
ities). In other words he considers the space of holomorphic maps of degree u
from T to CP'. It follows from the Riemann—Roch theorem (Theorem I1.2.14 and
Box I1.5) that this space has dimension 2y — g + 1.

By the Riemann—Hurwitz theorem (see Box I1.4) a function from 7 to CP!
with p poles has 2(u + g — 1) ramification values, that is, the set of images of its
critical points is a finite subset of points of the Riemann sphere of this cardinality.
By allowing the function to vary (by varying the “arbitrary constants” on which it
depends), this finite set can be varied. And then:

These constants can be given values in such a way that the 2y — p + 1
ramification points take on any prescribed values provided the functions
determined by these constants are independent, which can be achieved in
only finitely many ways since the equations expressing this condition are
algebraic.

Riemann now asserts that the condition that the functions be independent is
satisfied provided g > 1. In this case, by choosing the meromorphic function
on T so that the 2u — g + 1 “ramification points take on any prescribed values”,
there remain 3g — 3 unused ramification values, which therefore afford a complete
system of parameters for the moduli of 7.

Second method. — Rather than considering, as in the above approach, properties
of meromorphic functions on T, the second method exploits properties of inte-
grals w of holomorphic forms (“integrals of the first kind”) — or, more precisely,
of their periodicity moduli relative to a fixed system of sections transforming T
into a simply connected surface 7’ and their values at the zeros of the associated
holomorphic form, that is, the critical values of w|z-.

The calculation yielding the desired 3g — 3 moduli of the surface 7 is then as
follows:

[...] we can, in the quantity w = ayw; + aowy + -+ - + apwp + ¢, treated
as an independent variable, determine both the quantities @, where of 2p
periodicity moduli p can be given prescribed values, and the constant c,
provided p > 1, and in such a way that one of the 2p — 2 ramification
values of the periodic functions of w take on a prescribed value. In this
way w is completely determined, and consequently the remaining 3p — 3
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quantities on which depend the mode of ramification and the periodicity of
these functions of w likewise [...].

The question that suggests itself next is whether the set of isomorphism classes
of Riemann surfaces of a fixed genus g can be naturally endowed with supplemen-
tary structures. Is there, for example, a topology on that set with respect to which
the parameters considered by Riemann in the above two approaches become con-
tinuous functions? It is only when one has imposed on the set of isomorphism
classes some sort of structural concepts of a geometrical nature that one can speak
of the space of moduli. The problem of moduli, as it arose following Riemann,
is that of defining such structures reflecting the properties of the objects under
examination.

For example, if we consider compact Riemann surfaces as complex algebraic
curves, we may ask if the space of moduli can itself be regarded as a complex
algebraic variety. Contemporary research has shown that this is indeed the case
(see the book [HaMo01998)).

Proposition I1.3.1. — There exists an irreducible quasi-projective complex vari-
ety Mg (hence connected) that is a moduli space for the compact complex smooth
algebraic curves of genus g.

We now elucidate the meaning of this statement. It is easy to define the con-
cept of an algebraic family of curves of genus g: such an object is given by an
algebraic morphism X Z, B with fibres 77! (b) curves of genus g. Thus we have
a family of curves “parametrized” by the base B. Our space M, is characterized
by the property that for each family of this sort, there exists a unique algebraic

map B AN M such that for each b € B the curve n~1(b) belongs to the isomor-
phism class represented by the point y(b) € M,. In particular, therefore, there
is a canonical bijection between the points of M, and the isomorphism classes
of curves of genus g, by means of which the algebraic structure of M, induces a
geometric structure on the set of moduli.

An important point here is that M, itself is not the base of any algebraic

morphism X N My for which for every b € My, the fibre 771(b) is in the
isomorphism class represented by b. For this reason one says that M, is only a
coarse moduli space.

In the above two methods of Riemann one is in effect considering Riemann
surfaces endowed with certain supplementary structures: a meromorphic function
defined on the surface together with an enumeration of its critical values, or again
a basis for its homology. The question of the existence of moduli spaces for such
“enriched” Riemann surfaces turns out to be an important one. The advantage
of such an approach is that by enriching the additional structure sufficiently one
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obtains objects without nontrivial automorphisms, which facilitates study of the
moduli problem. For example, this allows one to show that M, is in fact the
quotient of a smooth algebraic variety by a finite group action.

I1.3.2. The “Abelian’ uniformization of Jacobi and Riemann

A further important contribution of [Rie1857] was the solution of the “inversion
problem” left open by Abel and Jacobi. In order to better explain Riemann’s
contribution, we go back to Abel, who — around 1829 — managed to generalize
Euler’s addition theorem to Abelian integrals. He starts with an integral

f ydx
x0

where y(x) is an algebraic function defined by an irreducible polynomial equa-
tion F(x,y) = 0, and he shows that there exists an integer ¢ > 0 such that for
any given u + 1 complex numbers x1,x2,...,X,4+1 one can find y complex num-
bers x/,...,x; — uniquely determined up to order — depending rationally on
X1,X2,...,Xu41 such that

X1 X2 X+l x| X}
f ydx+f ydx+---+f ydx:f ydx+---+f ydx,
X0 X0 X0 X0 X0

to within a period of f v dx. One should think of this as merely a formal equality
between sums of anti-derivatives. For example, for the integral of the form of the
second kind dx/x, that is, the complex logarithm, one has

f“ dx fb dx f“b dx
— 4+ — = —.
1 X 1 X 1 X

By applying Abel’s theorem several times one sees that it leads to an “addi-
tion” of u-tuples of points. More precisely:

For any given p-tuples (xi,...,x,) and (x},... ’x//;)’ defined up to order,
there is a p-tuple (x{',. .., x};), uniquely determined up to order, depending ratio-
nally on (x1,...,x,) and (x’l,. .. ,x;l), such that

M xi M x; H x/
lef;o ydx+21:£0 ydx=zl“fx0 ydx.

Thus whereas Euler and Gauss found an addition rule for the points of a lem-
niscate (the case u = 1), Abel found such a rule for sets of size u.
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The situation remained for some time in this rather mysterious — and more-
over not quite valid — form. In particular, the significance of the integer u re-
mained hidden from view. It had to wait for the work of Jacobi and especially
Riemann before it was understood that when the Abelian integral is of the first
kind, p is equal to the genus g of the Riemann surface associated with y, and
when the integral is of the second kind — as in the case of the logarithm — p is
g + 1. We should not forget that at the time of Abel and Jacobi no one thought of
an algebraic curve as a surface endowed with a topology.

For an exposition of Abel’s theorem from his point of view, the reader may
consult [Cat2004, Kleim2004], where it will be seen that Abel considered several
rather different versions of his theorem.

Hyperelliptic functions and Jacobi’s inversion problem. — One of the first fami-
lies of Abelian integrals beyond elliptic integrals consists of those of the following

form:
”_fx (a + Bx) dx
0 VP

where P is a polynomial of degree 6. This corresponds to the curve C with equa-
tion y> = P(x), a Riemann surface S of genus 2 to which (a + Sx) dx/y lifts as
a holomorphic differential. The integral therefore has precise meaning provided
one specifies the homotopy class of the path of integration joining the two limits
of integration. We note once again that the concepts expressed in this sentence
were not available to Jacobi.

Thus the “function” u lifts to a many-valued function on S. Recall that in the
case of a polynomial P of degree 3 or 4 the analogue of the map u (where P is
assumed to have degree 6) has a doubly periodic inverse. In the present case the
study of the inverse of u encounters two major difficulties.

The first difficulty arises from the vanishing of the form (a + Sx) dx/y at two
points on the surface (x = —a/B corresponds to the two points of the surface
arising from the two values taken by VP at that x). Hence u has critical points,
whence its “inverse” — assuming it existed — would have branch points and so
not be single-valued! This difficulty did not arise in the elliptic case because the
form dx/ VP (with P of degree 3 or 4) does not vanish on the corresponding
elliptic curve.

The second difficulty arises from the fact that (@ + Bx) dx/y affords four
periods, given by integrals around four loops encircling pairs of roots of P. If it
existed, the inverse function would thus have four independent periods. Jacobi
established the fact, clear to a modern mathematician, that a subgroup of rank 4
of C cannot be discrete, and so cannot serve as the group of periods of a non-
constant meromorphic function.
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Following on the appearance of Abel’s article on the laws of addition of u-
tuples of points, Jacobi had two brilliant new ideas for finding a way out of the
impasse.

The first of these consisted in using two holomorphic forms simultaneously

on C. Given any loop y on C, one can integrate 3—% and xji‘, obtaining a pair

of periods (w1 (y),w2(y)) € C2. Asy ranges over all loops on C, these pairs of
periods range over a subgroup A of rank 4 of C? and no longer of C as previously.
It is therefore possible that A is a discrete subgroup of C? and indeed this turns
out to be the case. Thus one now has available a holomorphic map — called the
“Abel-Jacobi map” — utilizing two forms, namely:

* dx * xdx
xeCr f —, ) e C?/A.
( o VP Jo P
The complex torus C2/A is today called the Jacobian of the curve C. However,
uniformization has not been achieved here since the torus C2/A has dimension 2,

so could not possibly parametrize the curve C, of dimension 1.
Jacobi’s second idea was to use pairs of points, that is, to use the map

X1 d X2 d X1 d X2 xd
(x1.x2) € C2 > (f X x f xdx X x) N
0 vP

The domain and codomain of this map have the same dimension, but the map
is not bijective since it sends (x,x3) and (xp,x;) to the same image. One gets
around this by working instead with the “symmetric square” C® of C, the quo-
tient of C? by the involution switching the two factors; the elements of C® are
therefore essentially just the unordered pairs of not necessarily distinct points
of C. By means of elementary symmetric functions one then endows C® with the
structure of a smooth algebraic variety of dimension 2. Thus one now has at one’s
disposal a holomorphic map from C® to C?/A, and it is this map that Jacobi
seeks to invert. The question of its surjectivity is the “Jacobi inversion problem”,
which he himself failed to solve. This particular problem was solved around that
time by Adolph Gopel and Georg Rosenhain in the special case of hyperelliptic
curves that we have been expounding here. But it is to Riemann that we owe the
complete solution of the problem.

Riemann and the Jacobi inversion problem. — Riemann begins by generalizing
the construction to any surface S whatever, not necessarily hyperelliptic. Recall
that by Theorem 11.2.5 the space of holomorphic forms on S has dimension equal
to the genus g of S. By integrating g such forms comprising a basis for that space
over all loops on S we obtain a subgroup A of C8. Riemann proves that this
subgroup is a lattice, that is, that it is discrete with compact quotient C8 /A. Much
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as above one constructs an Abel-Jacobi map from C to C&/A. By taking the sum
of the images in C8 /A, one then obtains a map from the symmetric power C(®) to
C#/A. Riemann now establishes the following two fundamental theorems:

Theorem 11.3.2. — The Jacobian C8 /A of an algebraic curve is an algebraic
variety, that is, it embeds holomorphically in a projective space of sufficiently
high dimension as an algebraic subvariety.

Theorem 11.3.3. — The Abel-Jacobi map C'® — C& /A is birational.

This does not mean that this map is an isomorphism — in fact a little topo-
logical reasoning shows that for g > 2 these two spaces are not even homeomor-
phic. However, by way of compensation we get the existence of a rational map
C8/A — C® that is inverse to the Abel-Jacobi map where defined.

To give the proofs of Theorems II.3.2 and I1.3.3 would take us too far afield.
We limit ourselves to sketching briefly a proof of the surjectivity of the map in
Theorem I1.3.3.

Proof. — We shall show that the Abel-Jacobi map has non-zero “topological de-
gree”. Recall (see [Mil1965]) that the fopological degree of a C*™ map between
two compact orientable manifolds is the sum of the signs of the Jacobian determi-
nants over the preimages of a regular value. Hence a map of non-zero topological
degree must be surjective.

The Abel-Jacobi map is holomorphic and is therefore orientation-preserving.
Thus it suffices to prove that its image contains a regular value. We shall show that
there exists a g-tuple / € C8) where the derivative is invertible; this will suffice
since then by the (local) Inverse Function Theorem the image of our map must
contain a non-trivial open set and hence at least one regular point.

Observe that the derivative of the Abel-Jacobi map fails to be invertible at a
g-tuple [ = (x1,...,xg) € C (&) if and only if there exists a form w of the first
kind on C that vanishes at all of the x;. It therefore suffices to find a g-tuple / at
which no form vanishes. To this end we consider the projective space P(Q!(C)),
of dimension g — 1. The subset A of P(Q!(C)) x C(&) consisting of all pairs (@,/)
where @ is the complex line defined by a differential form w vanishing on the
g-tuple [, is an analytic subset of dimension g — 1, so that its projection on the
factor C(&®) cannot be surjective. o

With a little more work it can be shown that the topological degree of this map
is exactly 1. This implies that there exist dense open sets in C¢) and in C8 /A that
are biholomorphic to one another, so that the Abel-Jacobi map is birational.

One can find a proof of the first of Riemann’s theorems above (giving a neces-
sary and sufficient condition — in terms of the “Riemann bilinearity conditions”
— for a torus C8/A, which is automatically a holomorphic manifold, to be in
fact an algebraic variety) in [Bos1992]. This proof exploits a higher-dimensional
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generalization of the Jacobi ¢-functions, called since then the “Riemann theta-
function”.

While the Jacobian naturally carries the structure of an Abelian group, Theo-
rem I1.3.2 endows it besides with the structure of an algebraic variety. This can be
phrased more concisely by saying that “the Jacobian is an Abelian variety”, which
serves to join in a single statement the names of the two protagonists whose rivalry
should not be allowed to obscure the similarity of their mathematical visions?3.

These theorems afford a new global perspective on the theories of the integrals
of algebraic functions and of algebraic curves:

— the birational identification of the first theorem renders transparent Abel’s
theorem on the law of addition of g-tuples of points: a mysterious addi-
tion formula becomes a simple consequence of the group operation on the
Jacobian;

— without yielding a parametrization of the points of the curve, Riemann’s
theorems provide a simple algebraic model for g-tuples of points by refer-
ring them to a given algebraic model.

However, in the course of time, it transpired that one could do much better than
this “Abelian uniformization”. Twenty-five years later Klein and Poincaré showed
that the points of C itself (and not just of C(& )) can be uniformized.

23]n a letter addressed to Legendre which has remained famous, dated July 2, 1830, Jacobi writes:
“But M. Poisson should not have reproduced in his report the not very clever statement of the late
M. Fourier, by which the latter reproaches us, Abel and me, for not having occupied ourselves
instead with the motion of heat. It is true that M. Fourier was of the opinion that the principal aim
of mathematics is public utility and the explanation of natural phenomena; but a philosopher like
him should have known that the only aim of science is to honor the human spirit, and that under
this banner a question about numbers is worth just as much as a question about the system of the
world.”






Chapter 111

Riemann surfaces and Riemannian
surfaces

In 1881 Felix Klein gave a course [Kle1881] on Riemann’s work, in which he
tried to make the theory of Riemann surfaces more intuitive. By then, of course, a
considerable length of time had elapsed since the appearance of Riemann’s mem-
oirs of 1851 and 1857 [Riel851, Rie1857]; this reworking of Riemann’s results
was contemporaneous with the first announcements of the uniformization theo-
rem, which we shall be considering in Part B and of which Klein was one of the
major heroes.

Especially notable was his reinterpretation of Riemann’s Theorem 11.2.5 on
the existence of meromorphic forms on a Riemann surface, in terms of fluid flow
on the surface. The better to grasp his idea, we reconsider the Riemann Mapping
Theorem from this point of view. Thus consider a bounded, simply connected
(open) region of the complex plane, and imagine that its boundary is a perfectly
conducting wire. If we attach one terminal of a battery to a point inside the re-
gion and the other to a point on the boundary, we obtain a flow of charge in the
region, following the flow lines of the gradient of the potential. One sees that
this potential has a logarithmic singularity at the point in the interior to which the
battery is attached, and is constant on the boundary in view of the assumption
that the boundary wire is perfectly conducting. Thus we have a Green’s function
on the open set, and have thereby “proved” the Riemann Mapping Theorem by
experimental means.

In his course, Klein aimed at illustrating Riemann’s theory by extending this
physical intuition to an arbitrary compact surface.

In order to describe Klein’s physical illustration in mathematical terms, one
needs to introduce a Riemannian metric on the surface under consideration. Even
though this is far removed from Klein’s actual preoccupations and techniques, it
will show how this new structure allows one to look at Riemann’s theory from a
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more modern point of view. In particular, it sheds new light on Theorem I1.2.5
on the existence of meromorphic forms on a given surface and also on the moduli
problem.

III.1. Felix Klein and his illustration of Riemann’s theory

As was explained in the preceding chapter, with each algebraic function of a com-
plex variable z Riemann associates a surface covering the z-plane several times.
For most of his exposition of the theory, Riemann uses the parameter z of the
plane to describe objects that today we would consider as living on the surface.
Getting to the point of rendering unto the surface that which belongs to it has been
a long and difficult process. Here, for instance, is how Klein talks of the matter in
the preface to his course [Kle1882c], taught in 1881:

I am not sure if I'd have been able to develop a coherent conception of the
current subject as a whole if, many years ago now (1874), during an oppor-
tune conversation, M. Prym had not said something to me that has assumed
more and more importance in the course of my subsequent reflections. He
said that “Riemann’s surfaces are, fundamentally, not necessarily surfaces
of several sheets above the plane, but on the contrary, complex-valued func-
tions of position that can be studied on arbitrarily given curved surfaces in
exactly the same way as on surfaces above the plane”.

In [Kle1882c] Klein proposes expounding the theory of meromorphic forms
and functions living on a compact Riemann surface in an intrinsic language no
longer employing projections on the plane. And, even more important, he wants
to teach his students to think in physical terms, since:

[...] there are certain physical considerations that have been developed sub-
sequently [...]. I have not hesitated in taking these physical conceptions as
my point of departure. As we know, Riemann used Dirichlet’s principle in-
stead. However, I have no doubt that he started from precisely these physical
problems and then, in order to lend the support of mathematical reasoning
to what was obvious from a physical point of view, he replaced them with
Dirichlet’s principle.

The path from the “physically obvious” to mathematical rigour is thus strewn
with pitfalls. And in progressing towards rigour, one risks losing all intuition. Ac-
cording to Klein that is what happened in this particular case, and what motivated
him to to design his course:
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We are familiar with all the tortuous and difficult considerations by means of
which, over the last several years, some, at least, of the theorems of Riemann
that we deal with here have been given reliable proofs. Such considerations
play a completely negligible part in what follows and I thus renounce the
use of anything except intuitive foundations for the theorems stated. These
proofs should not in any way be subsequently mixed up with the ideas that
I have tried to preserve [...]. However they should obviously follow them

[...]

We are unable to resist quoting the following excerpt from the review by
Young [You1924] of the third volume of Klein’s collected works:

A topic that will interest the reader of Volume III is Klein’s attitude to Rie-
mann. Although Klein never saw Riemann, they can be freely compared to
Plato and Socrates. Many philologists maintain that the Platonic Socrates
is unhistoric. I would put this otherwise. What Plato tells us of Socrates is
what he thought he saw in his master, and in order to see [what he did see] a
“formidable mind” such as Plato’s was necessary. What Klein tells us about
Riemann is what he thought he saw of the master in his writings, and, I dare
say, this intuition gave Klein access to points of view of Riemann that none
of the latter’s disciples had suspected. One has only to look at Riemann’s
portrait to see that he was modest. I am prepared to believe that he had many
latent ideas of which he himself was not conscious.

One should read what Klein relates on p. 479 on the subject of his paper
“Algebraische Funktionen und ihre Integrale” (1882), where he claims to
have revealed the actual basis of the ideas underlying Riemann’s concep-
tion of his theory of functions, an essentially concrete and physical basis
for abstract and metaphysical notions. Just as the real values of an algebraic
function were then represented by points on a curve, so Riemann introduced
flat surfaces consisting of several superimposed sheets meeting only at their
branch points, in order to separate the complex values of an algebraic func-
tion f(x + iy). Klein claimed that it was only by reflecting on physical
phenomena that Riemann arrived at this idea, and that Riemann’s original
surface was not so very abstract and complicated but a completely natural
curved surface realizable in space, such as the torus.

On such a surface the phenomena of stable flow of heat or electricity is
represented mathematically by a function, the potential, satisfying the fun-
damental differential equation 92 f/8x> + 8> f/dy* = 0 of the theory of
complex functions f(x + iy). In his paper Klein develops this idea in a
very satisfying way, and shows that from this point of view most of the the-
orems of function theory become intuitive. According to Klein, Riemann
must have introduced the surfaces bearing his name only later on, in order
to elucidate his arithmetized exposition. In this connection Klein cites the
statement of Prym, a student of Riemann, that “the surfaces of Riemann
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were originally not necessarily surfaces of several sheets superimposed on
the plane. One can study complex functions of position on any curved sur-
face just as well as on planar ones”.

However, Klein realized that he had interpreted Prym’s thought incorrectly.
The latter issued a formal denial (April 8, 1882) of having said that Riemann
had conceived the idea of separating the values of a complex function on a
curved surface as Klein does in his paper.

The above remarks are a response to the reproach made against Klein of
lacking mathematical rigour in the notions forming the basis of his paper,
as also, incidentally, in other places in his writings. Klein defends himself
with the principle of intuitive methods that he makes use of.

“I seek”, he says, “to arrive by means of reflections on physical nature at
a true understanding of the fundamental ideas of the Riemannian theory. I
would wish for like procedures be used more often, since the usual style of
mathematical publication involves a habitual relegation to the background
of the important question as to the means by which one was led to formulate
certain problems or to make certain deductions. I am of the opinion that
the fact that most mathematicians pass over in total silence their intuitive
reflections, publishing only proofs (certainly necessary) in rigorous form
and for the most part mathematized, is a fault. They seem to be held back
by a certain fear of not appearing scientific enough to their colleagues. Or
is the reason, in some cases, that of not wishing to reveal the source of their
own ideas to the competition?”” He also says: “It is as physician that I wrote
my note on Riemann, and furthermore in this I met with the approval of
several other physicians.”

In the following sections we first of all explain the intuitions developed by
Klein about meromorphic forms and functions on a Riemann surface. Then we
give a modern proof of Theorem II.2.5 on the existence of meromorphic forms
on a given surface: being much less physically intuitive, this nicely illustrates the
above statements of Klein.

Klein’s physical explanations are based on the idea of considering on the given
Riemann surface a Riemannian metric compatible with its complex structure.
Such a metric allows us to regard, via duality, real forms as vector fields. When
a real form is the real part of a meromorphic 1-form, the associated dual field in-
herits particular dynamical properties which can be formulated in the terminology
of Riemannian geometry and interpreted in hydrodynamic or electrostatic terms.
(The very name “electric current” bears witness to the analogies between different
branches of physics observed in the 19th century.)

Further details of these physical interpretations and their history may be found
in [Coh1967].
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III.1.1. Compatible metrics on a Riemann surface

Klein uses the following fact. Given a Riemann surface S, there is always a Rie-
mannian metric g = (-,-) on S that is compatible with the complex structure,
meaning that it determines the same angle measure. Such a metric has the follow-
ing form, expressed in terms of a holomorphic local coordinate system z = x +1iy:
g = e“™¥) \[dx? + dy?, where u is a smooth function. It is very easy to construct
such a metric by modern means. It is enough to cover S by open sets U; en-
dowed with holomorphic maps z; : U; — C, and consider a partition of unity (p;)
subordinate to the open cover by the (U;).! One may then use the metric

g = pi i (\Jd? +dy?).

Remark III.1.1. — If we assume the Riemann surface S embedded in some pro-
jective space CPV, we can construct globally a real analytic Riemannian metric
compatible with the complex structure on S; it suffices to restrict to S the Fubini—
Study metric on the projective Fubini—Study space (see for example [GrHal1978]
for the definition of this metric).

The complex structure on S also induces an orientation of S, determined via
the holomorphic charts by the standard orientation of C. Indeed the coordinate
changes on the overlaps of charts are biholomorphisms between open subsets of C,
so preserve the standard orientation.

It can be shown that, conversely, a given oriented surface (S, g) endowed with
a smooth Riemannian metric admits a unique compatible Riemann-surface struc-
ture (see Section 1.2.2). This local uniformization theorem is much more difficult
to prove than Gauss’s theorem 1.2.1 (which is the particular case of this local uni-
formization theorem for real analytic metrics).

In summary: defining the structure of a Riemann surface on a given differ-
entiable surface S is the same thing as choosing an orientation and a conformal
class of Riemannian metrics.

The unique Riemann-surface structure on S allows us to define an associated
almost complex operator? J : TS — TS, which, from a geometric point of view,
is just rotation through the angle 7/2 in the positive sense. In fact the existence
of such an operator (satisfying the equation J?> = —I) is equivalent to the spec-
ification of an orientation and a conformal class of metrics, and therefore of a

'Thus each p; is a continuous map S — [0, 1] with support contained in U;, and for each s € S
all but finitely many of the p; vanish in some neighborhood of s and }}; p;(s) = 1. Trans
2Here T'S denotes the tangent bundle over S. Trans
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Riemann-surface structure on S. By means of J one can rotate both tangent vec-
tors and real differential forms3:

¥ = J), forv e TS,

¢ = —-aolJ, foraeT*S. (I 1)

Once we have fixed on a metric g compatible with the complex structure, we

can associate with each real-valued differential 1-form a on S the vector field v,
dual to it relative to g:

a/() = <‘_;II’ >
This then allows us to define pointwise a scalar product of two 1-forms as that of

the respective dual vector fields. Denoting by vol the area form determined by g
and the fixed orientation of S, we have the following formulae:

{VOI(*Vl,VZ) ~(.ia), VYV ETS (I1.2)

{ai,az)vol = a1 A=xap, VYaj,ay €T*S,

easily proved by calculating in terms of an orthonormal basis.
With the aid of the duality between forms and vectors one can also define the
concepts of the curl (or rotation) and divergence of a vector field (see Box IIL.1).

Box II1.1: The curl and divergence

Let (S, g) be an oriented surface endowed with a smooth Riemannian met-
ric. Denote by vol the associated area form. Let v be a smooth vector field
on S and @ = (¥,-) the form dual to V. The 2-form da is then the product of
the area form by a smooth function called the curl of v:

da = curly - vol.

By Stokes’ theorem, for every region U of S with smooth boundary U, one
has

@, dl = f curly - vol,
oU U

where 7 is the unit tangent vector field to AU and dl the element of length
on dU. The left-hand side of this equation is called the circulation of the
field v around the curve U. The field V is said to be irrotational if its curl is
identically zero, or, equivalently, if the 1-form « is closed.

3Note the (usual) sign convention here.
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Now consider the 1-form *a. The 2-form d(*a) is the product of the area
form vol by a smooth function called the divergence of v:

d(xa) = divv - vol.

By means of Stokes’ theorem this equality translates into the following stan-
dard form: for every region U of S with smooth boundary,

f (V,ﬁ)dl:f‘divﬁ-vol,
au U

where 7i is the vector field normal to the boundary dU. The left-hand side
quantity here is called the flux of the field v across the curve dU. If v mod-
els a fluid flow, this measures the infinitesimal change in the amount of fluid
contained in U. The flow is called incompressible if the divergence of v is
everywhere zero, or, equivalently, if the form = is closed.

III.1.2. Meromorphic forms and vector fields

Suppose now that the field v is irrotational. The dual 1-form « is then closed, and
therefore locally exact. Thus in a neighborhood of each point of S there exists a
function u such that du = (V,-); in other words V is the gradient of the function
u: v = gradu. This is often expressed the other way around by saying that the
function u is a potential from which v is derived.

If v is both incompressible and irrotational, then u is a harmonic function.
This follows from the relation

Au := div gradu.

(Note that even though the definition of the Laplacian depends on the metric, the
concept of a harmonic function depends only on the associated conformal struc-
ture.) It follows in particular that the function « and the field v are automatically
analytic. Conversely, every harmonic function defines via its gradient an incom-
pressible and irrotational flow.

Consider next the field V. The following equations hold:

curl(¥) = div¥ and div(xV) = —curl¥.

Hence if V is incompressible then =V is irrotational, and vice versa. It follows that
if the field ¥ is both incompressible and irrotational, then so is the field =V, whence,



82 IIT Riemann surfaces and Riemannian surfaces

in particular, it is the derivative of a potential function u*. Like u, the function u*
is only defined locally and up to an additive constant. The complex-valued 1-form
n = du + idu™ is, however, well-defined on the whole surface S.

Lemma II1.1.2. — The I-form n is holomorphic.

Proof. — Consider an open set U of S on which the field ¥ does not vanish. Since
the gradients of u and u* are orthogonal and of the same norm, the map u + iu* :
U — C is holomorphic. Observe that, since this map is a local diffeomorphism,
the functions # and u* give conformal local coordinates on U. Another way of
saying this is that the 1-form 7 is holomorphic on the set consisting of S with the
zeros of v removed. However, since that form is defined on the whole of S (and
the zeros of v are isolated), n must then in fact be a holomorphic 1-formon S. O

Conversely, given a holomorphic 1-form 7 on §, the dual field of the real part
of n, that is, the field v defined by

Re 77 = <\7">a

is both incompressible and irrotational. This allows us to gain an understand-
ing of the local properties of the critical points of incompressible and irrotational
vector fields. In a neighborhood of such a point we have n = df for some
holomorphic function f. Hence there exists a local holomorphic coordinate z
and a non-negative integer n such that f(z) = z", whence n = nz*~'dz and
(¥,-) = Re (nz""'dz). In the case n = 3 the field lines are as in Figure III.1.

Figure III.1: A figure taken from Klein’s book [Kle1882c]: the neighborhood of
a critical point
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In his course Klein also considered the case where the form 7 has poles. The
field v is then defined only on the surface with the poles of n removed, which are,
of course, finite in number. We shall now examine qualitatively the behaviour of
the flow lines of ¥ in the vicinity of the poles. In a neighborhood of a pole of n
one can always find (see Box II1.2) a holomorphic local coordinate w such that

A 1
7]=(—+—)dw,

w o wY

where 1 € C. Hence the field ¥ dual to the real form Re 1 decomposes as a
superposition of the fields dual to the forms Adw/w and dw/w”. Consider first
the case v = 1, where we have n = udw/w, with u = A2 + 1. We now further
decompose the field dual to Re (udw/w) as the superposition of a field with u
real and another with u purely imaginary. For real u one finds that the potential
of ¥ is, to within an additive constant, the function u = ulogr, where w = re'?.
In this case the field lines are orthogonal to the concentric circles about the point
w = 0, which is then either a positive source or a negative sink, depending on the

sign of u (see Figure II1.2).

Figure II1.2: Taken from Klein’s book [Kle1882c]: sink/source and vortices

When p is purely imaginary the potential is, to within an additive constant,
the function u = iu6, and the flow lines are then concentric circles about w = 0,
traced out with speed |u|. We have here the case of a vortex (see Figure I11.2).

The case of the field dual to the 1-form dw/w? is dealt with by first observing
that

1 dw dw dw
— — —ase — 0.
e 2

w—=£& w+ée w

For real ¢ this represents the superposition of a source “of flow £” and a sink “of
flow —&” positioned at points p and p’ a distance 2¢ apart (see Figure I11.3).
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Figure II1.3: Taken from Klein’s book [Kle1882c]: a dipole

The same procedure can be used to investigate the fields dual to the form
Re (dw/wY), v any integer > 2. Thus one arranges for v points representing
sources, sinks, or vortices to approach the same limit.

We next consider how to interpret the periods of the holomorphic 1-form 7 in
terms of the vector field V. Let a € H;(S,Z) be any particular homology class.
The real part of the period of 7 on the class a is then by definition

[Re n7](a) := Re (fn) ,
Y

where 7y is an oriented (multi-)curve representing a. As in Box III.1, we denote
by 7 the unit vector field tangent to this curve and by 7 the unit normal vector
field to the curve, chosen so that (7,7) furnishes an indirect basis for the tangent
space* at each point of the curve. As before, V denotes the field dual to Re 7;
thus Re n = (¥,-). Observing then that (¥,7) = —(x¥,7), we deduce the following
equality (where d! is the element of length along y):

[Re nl(a) = f (=), 7l
Y

Thus the period [Re 1](a) is equal to the flux of the field —(*V) across the curve .
Furthermore, by means of the first of the relations (III.2) we may rewrite the
equality Re = (V,-) in the form Re = —vol(xV, -), whence

[Re n](a) = —fvol(*ﬁ,-).
Y

4That is, one not agreeing with the chosen orientation of the surface. Trans
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The period [Re n](a) is therefore also equal to the surface area of the infinitesimal
cylinder obtained by displacing the curve y by the flow of —(xV).

Box II1.2: The local normal form of a meromorphic form

Consider a meromorphic form 7 in a neighborhood of one of its poles.
We explain here how one finds a local coordinate w in such a neighborhood in
terms of which 7 assumes the normal form n = (% + #) dw.

In terms of an arbitrary fixed holomorphic local coordinate z, the form 7,

can be written as N
A
n= zdz +d (%) ,

where # is a holomorphic function, 4 € C is the residue of the form 7 at 0, and
v > 2 is an integer. We seek a coordinate change of the form w(z) = z - u(z)
where u is holomorphic and u(0) = 1, such that

= +1—.
Zv—l wY w

Adz ( h ) dw dw
—+d
z

In view of the assumed expression for w, this simplifies to

Integrating, we obtain

h
m+ﬂlogu——=c,

ZV—]

where C € C is a constant. Multiplication by z¥~! then yields:

-1

W + /].Zv_1 IOgI/l —h- CZV_I =0.

Denote by ®(u, z) the left-hand side of this equation. In a neighborhood of the
point (1,0), ®(u, z) is a holomorphic function of the two variables u and z. Its
derivative with respect to u at the point (1,z) = (1,0) is 1, so the holomor-
phic version of the Implicit Function Theorem may be applied, yielding the
holomorphic local function u(z) required for the coordinate change from z to
w(z) = z - u(z).
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The above considerations thus allow us to interpret Theorem II1.2.5 (on the
existence of meromorphic forms on a given surface) in terms of vector fields (or, in
more physical terminology, “flows”). Finding a meromorphic 1-form n with poles
at prescribed points then becomes equivalent to constructing an incompressible
and irrotational vector field v having singularities at the poles of r (sinks, sources,
or vortices). Similarly, prescribing the periods amounts to pre-determining the
flux across curves forming a basis for the homology of the surface.

III.1.3. Experimental proof of Theorem I1.2.5

In his course [Kle1882c] Klein described electrostatic or hydrodynamical exper-
iments yielding incompressible and irrotational vector fields. His idea was to ex-
hibit a stationary flow with prescribed singularities and flux across certain curves.

To that end we imagine the given surface to be made of a perfectly conducting,
infinitely thin material. If one attaches the two terminals of a battery to the sur-
face, a flow of charge will occur with a source and a sink at the points where the
terminals are attached. The physics of the motion of electric charges assures us
that this flow will be incompressible and irrotational away from the singularities.
We can further imagine that we can arrange by means of suitable electromotive
forces® for the flux across certain curves to be as prescribed. As we have seen,
this amounts to fixing the real parts of the periods.

By way of example, we investigate how one might generate a prescribed flow
in the plane. We first recall a few relevant facts. The curl of a given vector field Y,
denoted by curl Y, in Euclidean R? is the vector field defined by the following
equality of differential 2-forms:

d((Y,-)) = vol(curl ¥,-,-),

where (-,-) and vol are respectively the Euclidean scalar product and the usual
volume form in R3,

In R3 the electric field £ and magnetic field B of a stationary electromagnetic
field are given by the following special case of Maxwell’s equations:

= P —
divE = —, curlE =0,
€0

. —>
divB =0, curl B = uoj,

5The practical realization of such constraints poses a problem. Klein found himself obliged to
imagine surfaces made up of pieces kept at different temperatures. Our treatment will remain at the
level of a thought experiment.
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where g (the dielectric permittivity of the vacuum) and y (the magnetic perme-
ability of the vacuum) are constants, p is the charge density, and j is a vector field
representing current density. Note that where the quantities p and j vanish, both
the electrostatic and magnetic fields are incompressible and irrotational.

This allows one to produce examples of incompressible and irrotational flows
on the plane. Thus consider finitely many points Py,...,P, of the plane® R?,
and arrange a sequence of charges of uniform density on each of the vertical
lines {P;} x R ¢ R3. Since this configuration is invariant under the symme-
try (x,y,z) — (x,y,—z), the electrostatic field must be tangential to horizontal
planes, and therefore determines an incompressible and irrotational flow on the
plane R? x {0} away from the singularities, which will be sources or sinks depend-
ing on the charge densities one has chosen (see Figure I11.4).

Figure I11.4: A planar electrostatic field

Similarly, one may have constant electric currents passing through the ver-
ticals {P;} X R, in which case the magnetic field B in the stationary regime is
again tangential to horizontal planes and induces an incompressible and irrota-
tional flow on the horizontal (x,y)-plane away from finitely many points where
there are vortices.

By superimposing these two sorts of fields, one obtains experimentally all the
types of poles possible for meromorphic 1-forms on C.

6Considered as the (x, y)-plane of (x,y,z)-space R3. Trans
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III.2. Revisiting Riemann’s theory in modern terms

II1.2.1. Hodge theory and a modern proof of the existence of meromorphic
forms on a given surface

Klein’s idea of endowing a given Riemann surface with a Riemannian metric com-
patible with the complex structure underlies modern proofs of the existence of
meromorphic forms on the surface (Theorem I1.2.5). The proof we give here was
inspired by Springer’s book [Spr1957].

Once again we consider a compact Riemann surface S endowed with a com-
patible Riemannian metric. Let w be a smooth 1-form on S. Recall that such a
form w is called co-closed if *w is closed, and harmonic if it is both closed and
co-closed.

Our proof of Theorem I1.2.5 relies on the following particular result of Hodge
theory, a theory applying in all dimensions, and developed precisely in order to
generalize the two-dimensional situation:

Theorem II1.2.1. — Every real, smooth 1-form w decomposes uniquely as a sum
of three 1-forms:

w=wy +dF + %dG,

where wy, is a smooth harmonic form and F and G are real-valued, smooth func-
tions defined globally on S.

Of course the uniqueness applies to the 1-forms wy,, dF, *dG, and not to the
functions F' and G, which are defined only to within additive constants. We first
explain why this result implies Theorem IL.2.5.

Derivation of Theorem 11.2.5 from Theorem I11.2.1.

We begin by proving the theorem in question for holomorphic forms. Since a
holomorphic 1-form is completely determined by its real part and since harmonic
1-forms are just the real parts of holomorphic 1-forms, it suffices to prove that
there is a unique harmonic 1-form with the prescribed periods.

We shall use, without justification, a very elementary version of de Rham’s
theorem — a result, needless to say, very substantially postdating Klein: firstly,
on a compact orientable surface of genus g one can define a closed 1-form with
its 2g periods prescribed, and, secondly, such a form is exact if and only if these
periods are all zero.

Hence for the existence of the desired harmonic 1-form, consider a real-valued
closed 1-form w with the prescribed periods (as guaranteed by de Rham’s theo-
rem), and apply Theorem III.2.1 to it. Since w is closed its co-exact part *dG
is also closed. The following proposition shows that in fact we must then have
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*dG = 0, so that w is in the same cohomology class as its harmonic compo-
nent wy,, which thus provides a solution to the problem.

Proposition I11.2.2. — For every smooth function G : S — R one has

fl*dGlZVOI:—fG-d(*dG).
S S

Proof. — Since the sum
G -d(*dG) +dG A #dG

is exact (being equal to the differential of the 1-form G - *dG) we have

fG-d(*dG):—fdG/\*dG,
s S

and since here the left-hand side is zero (+G being closed), so is the right-hand
side. On the other hand since the forms dG and *dG are orthogonal and have the
same norm, we have dG A *dG = | * dG|* vol, whence the desired conclusion. O

For the uniqueness it suffices to prove that a harmonic 1-form w with all its
periods zero must itself be zero. Now such a form is exact (by de Rham’s theorem
— see above) and its primitive is a harmonic function. The maximum principle
for harmonic functions then implies that such a function is constant, so that w is
ZEero0.

We now turn to the case of meromorphic forms. Thus let Py, ..., P, be any
prescribed points of the surface, Aj,..., A, any complex numbers summing to
zero, and choose any real numbers for the prescribed real parts of the periods. We
seek a meromorphic form on S with its poles at the points P; with principal parts
given by the A;, and with the real parts of its periods as chosen.

Let ag be a smooth real 1-formon S\ {Py,. .., P, } satisfying

@ =Re ((Aiz;' + Bizi? + Cizg + -+ )dz;)

in a neighborhood of each point P;. Since @ is harmonic in a neighborhood of
each of the points P;, the 2-form day is zero there, and therefore extends to a
smooth form on all of S.

Lemma IIL.2.3. — We have [ dag = 0.

Proof. —Foreachi =1,...,m,let D; be a disc centered at P; on which dag = 0.
We then have by Stokes’ theorem

dag = f dag = — f ag.
L S\U; D; Z oD;
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The last sum is equal to
Re (2m > Ai) :
4
which is zero by the assumption on the prescribed residues of the principal parts. O
Since dayg is a smooth form with zero integral over S, it admits a primitive w,
say. Consider the closed 1-form @ = ¢g—w on S\{Py,...,P,}. As earlier, the 2-
form d(*a) extends to a smooth 2-form on S with zero integral over S. Taking S
to be a smooth primitive of the 2-form d(*a1) on § and applying Theorem I11.2.1
to it, we obtain S = Bj + dF + *dG. From the equality dB = d(*xa) we then
infer that
d(xdG) = d(>xay).

The 1-form a; = a1 — dG is closed (since « is closed) and co-closed by the pre-
ceding equation. It is therefore harmonic away from its poles. We have thus found
the real part of the desired meromorphic form, and the proof of Theorem I1.2.5 is
complete. O
Proof of Theorem I11.2.1. — We introduce the space Q}Jz (S) of differentiable real
1-forms on § whose coeflicients are measurable square integrable functions. This
is a Hilbert space once endowed with the scalar product

(Wi,wa)p2 = f<wl,w2>P volp = fwl A *w2,
s s

where the second equality comes from (IIL.2).

We denote by E the closure of the set of exact smooth forms in sz(S), and
by E* the closure in QlLZ(S ) of the set of smooth co-exact forms — that is, those
expressible as xdF for a smooth function F. For any smooth 1-form w and smooth
function F', one has

f(dF,w)Vol = —de/\ *) = de(*a)), (I111.3)
S S S

where the first equality follows from III.2, and the second from Leibniz’s formula
d(F * w) = dF N\ *w + Fd(*w) and Stokes’ theorem.

By substituting a co-exact form w = *dG, G a smooth function, in these equa-
tions, one infers that (dF,*dG) > = 0. Thus the spaces E and E* are orthogonal.
Writing H for the orthogonal complement of E & E*, one then has the following
decomposition of our original Hilbert space as a direct sum:

Q,(S)=HOE®E"

It remains to show that H is actually the space of smooth harmonic forms. For this
it suffices to prove that every element of H is locally a smooth harmonic form.
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Since S comes with locally conformal coordinates, by choosing the metric to
be locally the standard Euclidean one (which is permitted since the above function
spaces depend only on the conformal structure of S), the problem is reduced to
the following local lemma:

Lemma II1.2.4 (Weyl’s lemma). — Consider the unit disc D endowed with the
Euclidean metric dx* + dy>. If a measurable square integrable 1-form on D is or-
thogonal to all exact or co-exact forms with compact support, then it is harmonic.

Proof. — Let w be a square integrable 1-form on D orthogonal to every exact
or co-exact form on D with compact support. We first prove that if w is also
assumed smooth, then it is harmonic. For this we need to show that w is both
closed and co-closed. Since *w has the same basic properties as w, it suffices to
show, for instance, that *w is closed. Now since by assumption w is orthogonal to
all exact forms with compact support, by (II1.3) the form d(*w) is orthogonal to
all functions with compact support, so must in fact be zero.

The idea is now to regularize w by convolution. If the convolution kernel is
chosen to be rotation-invariant, then, as we shall show, the form w will be equal
to its convolution, by virtue of the mean-value property of a harmonic function
according to which its value at a point is equal to its average on any circle centered
at the point. Thus we now prove that w coincides with its convolute, whence its
smoothness.

The details are as follows. For each p € (0,1), we denote by D, the closed
disc of radius p centered at 0, and choose a regularizing kernel (K,),<(0,1), With,
for each p € (0,1), the following properties:

1. K, is a smooth non-negative function on D with support D, and integral
equal to 1;

2. K, (x,y) depends only on x2 + 2.

Then for every integrable function f : D — R and every p € (0,1), we consider
the function M,, f/ defined by

Mpf(x’w=fDKp(X’—x,y’—y)f(x’,y’)dX’dy’-

Similarly, for every 1-form w = wydx + wydy on D and every p € (0,1), we
consider the 1-form M, w defined by

Myw = (Mywy)dx + (Mywy)dy.
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Such functions and forms have the following properties:

(i) For every integrable function f, the function M, f is defined and smooth on
Di_,.

(ii) For every integrable function f, one has M, df = d (Mp f ) on Dy_,. Simi-
larly, for every 1-form w, one has M,, (*w) = *(M,w) on D_,.

(iii) For every two 1-forms w; and w, where the support of w; is contained in
Di_,, one has (M,w1,w>) = (w1, Mpw2).

(iv) For every integrable function f, and all p,p’ € (0,1), one has M, M, f =
MyM,fonDi_p, .

(v) Forevery 0 < r < 1 and function f in L>(D,.) the functions M, f tend to f
as p tends to 0.

(vi) If u is a harmonic function on D then M,u = u on Dy_,.

The last point is crucial, and follows from the mean-value property of har-
monic functions and the choice of K, as rotation-invariant.

Properties (i1) and (iii) show that if w is orthogonal to all smooth exact or co-
exact forms with compact support, then M,w is orthogonal to all smooth exact
or co-exact forms with support contained in D1_,. Then since M, w is smooth on
D;_, by property (i), it follows, as we have already seen, that it is in fact harmonic
in D1_p.

It remains to prove that M, w is almost everywhere equal to w on D1 _,. To this
end, note that properties (ii) and (vi) imply that for every p, p’ with 0 < p,p’ < 1,
one has

MyMyw = My (du) = d (Mp:u) =du=M,w

on the disc Dy, where u is the potential of M,w. It then follows from (v) that
Myw =MyM,w = MM, w = Myw

on the disc Dy_,_,. Hence for each r, 0 < r < 1, the family M, w is constant for
0 < p < 1 —r and approaches w in Qle(B(O,r)) as p approaches 0.

We have thus proved that w is almost everywhere equal to a smooth harmonic
form, and the lemma follows. |
To conclude the proof of Theorem I11.2.1, we need a second local lemma.
Lemma IIL.2.5. — Let D be the unit disc endowed with the Euclidean metric
dx? + dy?, and let w be a smooth 1-form on D. There then exist smooth functions

F and G on the disc such that

w =dF + %dG.
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Remark II1.2.6. — This lemma might seem to indicate that in the statement of
Theorem II1.2.1 the harmonic form wy, is always zero. However, this is certainly
not always the case: Lemma III.2.5 is a local result applying specifically to the
disc.

Proof. — If w is closed then it is exact on D. Thus we seek a function G such that
w —*dG is closed. Write dw = ¢dx A dy, the measure of the departure of w from
being closed. We may assume w is defined throughout the plane by extending it
smoothly to the whole of R.

It follows from (II1.3) that

d(w - %dG) = (¢ — AG)dx A dy.

Thus it remains to solve the equation AG = ¢ on D. If ¢ is a Dirac point-mass
at 0, the Green’s function Gy (re’®) = —log(r) is a solution. In the general case
it suffices by linearity to take the convolution of ¢ with Gg. Thus one checks that
the following function works:

1 ’ ’ ’ ’
Glx,y) = - f log \/(X’ =07+ (' = )2’ y)dx'dy’ .
D

O

We are now within reach of the completion of the proof of Theorem III.2.1.
Let w be a smooth 1-form on S. We have already shown that

w=wy+a+b,

where wy, is harmonic, a belongs to E and b belongs to E*. We first show that
a and b are smooth. It suffices, of course, to prove this locally, so we con-
sider a disc D in S, sufficiently small to admit conformal coordinates (x,y). By
Lemma III.2.5 there exist smooth functions F and G such that

wp +a—dF = *dG - b.

Here the left-hand side form is orthogonal to co-exact forms with compact support
on D, while the right-hand side form is orthogonal to exact forms with compact
support on D. This differential form is therefore harmonic and smooth by Weyl’s
lemma (Lemma I11.2.4), forcing the regularity of the forms a and b.

Finally, we need to show that a and b are exact. This is done by showing, for
instance by means of Ascoli’s theorem, that a smooth form that is a limit of exact
smooth forms in the L2-topology, is itself exact. |
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II1.2.2. The continuity of the dependence of the moduli on the metric

As before, our context is that of a compact Riemann surface S endowed with a
compatible Riemannian metric 4. We saw in Section I1.3.1 that for g > 1 Riemann
defined certain complex local parameters, or moduli, for what is now called the
“moduli space” M, of complex curves of genus g. Here we are interested in those
of the second type, namely the “periods” of a holomorphic 1-form on §.7

One may ask whether these moduli depend continuously on the chosen Rie-
mannian metric. The space Met(S) of Riemannian metrics on § is naturally en-
dowed with a topology®. As we have seen, each such metric & determines the
structure of a Riemann surface on S, which we shall denote by S€(k). We may
therefore ask how the moduli vary with s. To be precise, the aim of the present
section is to indicate why the map

Met(S) — M,
h - SC(h)

is continuous with respect to the topology “defined” by Riemann on the space M,
of (isomorphism classes of) Riemann surfaces of genus g.

We briefly expound the ideas allowing one to prove that this map is in-
deed continuous. With each Riemannian metric & one can associate a sub-
space of dimension 2g of the space of real differential 1-forms, namely the space
Harm}l(S, R) of harmonic forms. One can view this space as the kernel of the
Laplacian A, = dd* + d*d® associated with h. This is an elliptic operator vary-
ing continuously with /4. Fredholm theory allows one to establish the following
theorem (see [Hod1941]):

Theorem I1I1.2.7 (Hodge). — Let (S, h) be a Riemannian surface (compact, ori-
ented, and without boundary) of genus g. Then in the space Q'(S,R) of C* I-
forms on S, the subspace Harm}l (S,R) of harmonic forms (that is, both closed and
co-closed) has dimension 2g and varies continuously with the metric h.

To see that S© (/) depends continuously on 4, one first observes that the Hodge
star operator *; defines a complex structure on Harm}l(S, R) since *%l = —Id in
this degree. Since moreover the Hodge star commutes with the Laplacian, the
eigenspace of holomorphic forms

H"0(h) = ker(+, +i1d) c Harm, (S,C)

also varies continuously with 4. (Here Harm}l(S,C) stands for the space of har-
monic complex-valued 1-forms on S.)

7Recall that for this a basis for the homology of S needs to be distinguished.

8The C* topology.

9Here d* is the adjoint of d with respect to the scalar product on L2 defined above, now extended
to all forms.
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Let (A;,Bi)1<i<g be a fixed basis for the homology H;(S). The forms w;
defined by

f wk(h):éjk, 1<jk<g,
Aj
then comprise the intersection of the space of holomorphic forms (which depends
continuously on /) with some affine subspace (independent of /), and so vary
continuously with A.

In particular, the periods f B; wi (h) = Ilj; (h) are continuous, as well as the

zeros P;(h) of the w;(h), and so linear combinations of them (with constant co-
. . Pi(h
efficients), whence also the integrals P, (;)) w(h) between two such zeros.

Note that we know today that in fact the I1;; determine the complex curve

(Torelli’s theorem).






Chapter IV

Schwarz’s contribution

In this chapter we expound the relevant works of Hermann Schwarz. Around 1870
he undertook to prove the Riemann Mapping Theorem in particular cases and to
find expressions for the uniformizing functions.

In the introduction to the article [Schw1869], Schwarz tells of how, when he
was attending Riemann’s course on the theory of analytic functions during the
winter of 1863—-1864, Franz Mertens remarked to him that it was extraordinary
that, although the existence of a biholomorphic mapping between the disc and,
say, a triangle was “established” by Riemann’s theorem, it was not at all clear
how one might go about determining such a mapping explicitly. It is primar-
ily to the problem of explicit uniformization of certain simply-connected regions
of the plane that Schwarz addresses himself in [Schw1869]. We shall see that
in large measure he succeeds: he obtains a necessary expression for the biholo-
morphism in each of the cases he considers. However this expression depends
on certain constants — accessory parameters — which he is able to determine
explicitly only in the case of a “triangle” with sides arcs of circles. Schwarz’s
method — marking the first connection between the Schwarzian derivative and
the uniformization problem — is the direct forerunner of Poincaré’s approach via
differential equations. When, following on the publication of Poincaré’s papers,
Schwarz eventually discovered this, he added a note to his paper as it appeared in
his complete works (see Chapter 1X).

Interest in the existence of biholomorphisms between the disc and certain re-
gions of the plane was quickened at the time by Weierstrass’s objections to Rie-
mann’s proof. In his next article [Schw1870a] Schwarz, abandoning the search for
explicit formulae, gives a different proof of the Riemann Mapping Theorem for
compact regions with analytic boundary. His method is constructive, proceeding
via successive approximations. This represents a decisive stage on the way to the
uniformization theorem; it will later be taken up and elaborated on by Poincaré
under the name “the scanning method”. We shall expound Schwarz’s results and
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examine their influence in detail in Chapter IX; here we confine ourselves to de-
scribing the method in a simple case yielding nonetheless the first result in the
direction of the uniformization of abstract compact surfaces, namely the unique-
ness of the conformal structure on the sphere.

IV.1. Explicit cases of conformal representation

One of the first directions taken by Schwarz’s work was the explicit determination
of certain conformal maps. The point of departure of the paper [Schw1869] is the
symmetry principle, to which his name was thenceforth attached.

Theorem IV.1.1 (Symmetry principle). — Let U be an open set of the upper
half-plane H, with closure intersecting the real axis in an interval I, and let
z > f(z) be a holomorphic function on U. We assume that [ extends via con-
tinuity to the union U U I and that I is sent by this extension to (an arc of) a
circle C. Then, denoting by U’ the image of U obtained by reflecting in the real
axis and by o the Mobius inversion relative to the circle C, one can extend f to a
Sfunction holomorphic on U U I U U’ by means of the formula f(zZ) = o o f(z).

With the aid of this principle, Schwarz was able to infer the form of uni-
formizing functions first for polygonal regions and then for such regions bounded
by circular arcs. He was unable to deduce directly the existence of the uniformiz-
ing functions — except in the case of triangular regions — since there remained
accessory parameters to be determined. We shall expound this work here.

IV.1.1. Uniformization of polygonal regions with straight sides

Here we begin with a simply connected polygonal region P of the plane!. The
boundary of P is made up of a finite number of line segments meeting in vertices
wi,...,wy,. The interior angle at w; will be denoted by A;7m, 0 < A; < 2 (with
A; # 1 at vertices where the boundary of the polygon is not “flat”). The assump-
tion of simple connectedness implies that } (1 — 4;) = 2. The problem Schwarz
sets himself is that of finding a biholomorphism s from H onto the interior of
the region P, extending to a homeomorphism on the boundary (where here the
boundary of H is understood to be its boundary in the Riemann sphere, which is a
circle).

In [Schw1869] Schwarz considers to begin with the case of a square; however his approach is
completely general.
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We begin with the following local problem. Suppose a is a point on the real
axis and that some function s sends the half-disc

V={z=a+re |0<p<n 0<r<r
to an angular sector
S={z=re10<0< A, 0<r<ry,

where 0 < 4 < 2. We shall assume that s is a homeomorphism from V to its image
and that it is holomorphic on V N H. We further suppose that the intersection of V
with the real axis is sent to the union of the two half-lines delimiting S.

Consider the mapping s(z)%. This is defined and continuous on the intersec-
tion of ﬁ, the closure of H, with a small disc D(a, €) centred at a; furthermore, it
is holomorphic on D(a,e) N H and is real-valued at real values of its argument.
Schwarz now applies his symmetry principle to infer that s(z)% extends to a func-
tion holomorphic on D(a,€). One may therefore write, in a neighborhood of a:

s(z) = (z— a)'H(2), (IV.1)

where z — H(z) is holomorphic in that neighborhood, and does not vanish at a
(since otherwise the injectivity of s would be contradicted). Moreover since H(z)
is real-valued at real values of its argument, the coefficients of the Taylor series
for H about a, that is, of the expansion as a series in powers of (z — a), are
themselves real.

When a is the point at infinity, the above analysis, applied now to the function

s1(z) = s (—%), gives

s1(z) =z 'H (%) (IV.2)

where H is a function holomorphic in a neighborhood of 0, whose Taylor series
expansion about 0 has real coeflicients.

Returning to our initial problem, we assume there exists a homeomorphism
s : H — P holomorphic on H. In order to determine the form of such an s
we show that it must satisfy a certain natural differential equation. Note that
the problem is invariant under the action (on the codomain) of the affine group.
Denote by ay,. .. ,a, the (putative) preimages of the vertices wy,...,w, under s.
Modulo the application of a suitable Mobius transformation to the domain, we
may assume that a, is the point at infinity.

Thus we seek a quantity that is invariant under the affine group. The function
z B diz log Zl—;(z) will do: it is holomorphic on H and invariant under affine
transformations following s. The symmetry principle together with the above
local investigation then allows us to prove the following lemma.



100 IV Schwarz’s contribution

Lemma IV.1.2. — Let s : H — P be a uniformizing function which extends to a
homeomorphism on the boundary. Then one has

n—1
d 4; =1
—log—(z>—Z .

dz —a

Proof. — For each open interval (a;,a;+1), one can apply the symmetry principle
to extend s to a function s; holomorphic on

H VU (ai,a;41) U H”

where H™ denotes the lower half-plane. This extension satisfies the condition
s;(z) = h; o s;(z) where h; is the reflection in the edge (w;,w;+1). It follows,
in particular, that s; is injective, so that its derivative does not vanish. Hence the
function z — log ds (z) extends by continuity to H with the points a1, . . .,ay,
removed.

Since s maps each segment (a;,a;+1) onto the segment (w;,w;.), there exist
complex numbers A; and B; such that § = A;s + B; maps (a;,a;+1) onto an
open interval of the real axis. We thus conclude, invoking the affine invariance,
that diz log Z—; = log 4s is real-valued on (aj,a;y1) (foreachi = 1,...,n).
By examining the s1tuat10n locally near each of the points a; we will be able to
identify the function - 7z log d; (2).

Indeed, from the local formula (IV.1), considered at each a;,i = 1,...,n—1,
we infer that
d -1
—log—(z)— +d1+d2(z—a)+d3(z—a) + - (Iv.3)
dz —aj

where the coeflicients d; are real. Hence the map defined by the difference

n-1
d ds ﬂ.i—l
— —log —(z) —
z ; log (2) §

is holomorphic on H, extends to a continuous map on H \ {oo}, and is moreover
real-valued at real values of its argument. We shall now show that this difference
is in fact zero.

To prove this, we once again apply the symmetry principle to extend this func-
tion to an entire function. This done, in a neighborhood of the point at infinity the
formula (IV.2) gives s(z) = w, + (z) " H (%), from which one infers that

d
lim e log —(Z)

Z—00 Z
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Thus the entire function % log Z—‘Z" (2) - Z?:_ll ji—;l approaches 0 out to infinity, so

must be identically zero. O
One now has only to integrate twice to obtain:

Proposition 1V.1.3 (The Schwarz-Christoffel formula). — Ler P be a sim-

ply connected polygonal region with vertices wi,...,w, and interior angles

ln,...,Ayn. Let s : H — P be a uniformizing function which extends to a

homeomorphism on the boundary and which maps the point at infinity to wy,.

Then there exist n — 1 real numbers ay, ..., a,_| such that

2 dw

0 W—ap!=h . (w—ay_p)

s(z)=C

(IV.4)

This expression is called the Schwarz—Christoffel formula. Such formulae had
in fact been introduced independently by Christoffel [Chr1867]2. Returning to the
above argument, we see that we have shown that if there is a transformation s
sending the upper half-plane onto the region P biholomorphically and extending
to a homeomorphism on the boundary, then the composite of s with an appropriate
Mobius transformation applied to the domain, is given by the formula (IV.4) for
an appropriate choice of the real constants ay, ..., a,—1. On the other hand, if
the polygon P is fixed from the start, one is unable in general to determine the
corresponding real numbers a;, so that this approach does not provide a complete
proof of Riemann’s theorem for polygonal regions.

IV.1.2. Uniformization of polygonal regions with sides in the form of
circular arcs

Schwarz also considers the more general case of a polygonal region P with ver-
tices wy,. .., w, with sides arcs of circles or straight-line segments. It is assumed
that the vertices w; are so indexed that as one traverses [w;, w; 1] from w; to w; 1,
the interior of P lies to the left, that the interior angle at each vertex w; is A;m,
0 < 4; < 2, and, once again, that we have a map s sending the upper half-plane H
biholomorphically onto the interior of the polygon P and extending to a home-
omorphism on the boundary. By composing, if necessary, with an appropriate
Mobius transformation acting on the domain, we may assume that the point at
infinity is not mapped to a vertex of P, and denote by a; < a» < --- < a, the
preimages of the vertices under s.

Here one has that the problem is invariant under the action on the codomain of
the group of complex Mobius transformations, that is, the group consisting of all

2A classic reference for conformal representation of planar regions is [Neh1952]; for construc-
tive aspects one may consult [DrTr2002].
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transformations of the form z — Z:Z’ a,b,c,d € C,ad-bc # 0. Schwarz seeks a
new differential expression in s, invariant under complex Mobius transformations
applied to s, playing a role analogous to that of diz log Z—; in the previous section.

This leads him to consider the Schwarzian derivative

d> ds 1
= Lo

dz Ogdz

d @2
dz? dz 2 '

Box IV.1: The Schwarzian derivative

The cross ratio of four points x, y, z,t of the projective line CP! = C U {co}

is defined to be
oy = EZD0 =0
T (x—=y)(z-1)

This is a “projective invariant”, that is, it is unchanged by any Mdbius trans-
formation applied to x,y, z,1.

The Schwarzian derivative is a “local” projective invariant measuring the
“departure from infinitesimal projectivity” of a local biholomorphism w of
CP!. It can be defined in several ways — for instance by means of a com-
parison of the cross ratios of the four points x,y = x + &,z = x +2¢&,t = x + 3¢
with that of their images under w (assuming x in the domain of w and ¢ suffi-
ciently small). An elementary calculation shows that

[w(x), w(y), w(2),w(®)] = [x,y,2,t] - 2{w, x}&* + 0(&?),

tox) = L foa @) ZL( 4 100 %))
Wor = e %% ) T2 \a V%% )]

This defines the Schwarzian derivative {w,x} and furnishes its intuitive in-
terpretation as a sort of projectively invariant derivative. It was actually first

introduced by Lagrange in connection with his investigations into the drawing
(D”(Z)

where

of geographical maps (see [Lagl779, p. 652], where it has the form ) with
o = T according to [OvTa2009]). It was later called the “Schwarzian

VP
derivative” by Cayley, unaware of Lagrange’s work.

The third-order differential equation {w,x} = 0 has the Mobius trans-
formations as general solutions. From its very definition it is clear that the
Schwarzian derivative is invariant under Mobius transformations, that is, that
{how,x} = {w,x} for all such transformations #.
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The Schwarzian derivative of a composite of any two local biholomor-
phisms is calculated via the formula

d 2
{fog.x}= (—dg) {fox}og+{g.x). (IV.5)
X

. . 2, .. .
Here the presence of the term involving (fl—f) indicates that it may be useful to

interpret the Schwarzian derivative as a quadratic differential { f, x}dx>. This
allows one to interpret the preceding formula as a “cocycle”

{f o g, x}dx* = g"({f, x}dx?) + {g, x}dx*,

More generally, if U is an open set of a Riemann surface furnished with a
coordinate x : U — C, one can still define the Schwarzian derivative {w, x} of
a local biholomorphism w : U — CP!. Given another coordinate y on U, one
has the following transformation rule:

(w,x}? = {w,y}dy? + {y, x}dx>. (IV.6)

This gives in particular a verification of the fact that the the quadratic dif-
ferential {w,x}dx? is invariant under projective coordinate changes, that is,
{v,x} =0.

Let ¢(x)dx? be a local holomorphic quadratic differential. The third-order
differential equation {f,x} = ¢ then admits local solutions any two of which
differ by a Mobius transformation (acting on the codomain).

Here is yet another way of looking at the Schwarzian derivative. If f is a
local biholomorphism between two open sets of C U {0}, at each point x of its
domain one can determine a unique Mobius transformation m(x) in PSL(2,C)
coinciding with f up to order two in x. In this way one obtains a curve in
PSL(2,C) (a “Frenet frame” a la Darboux) whose derivative again measures
the deviation of f from a Mdbius transformation. This derivative is defined to
be m~'dm, regarded as an element of the Lie algebra of PSL(2,C), consisting
of the zero-trace matrices. A simple calculation then yields

2
m(x) " ldm(x) = —{f’ZX} ( )lc fx )dx.

Note that for the above reasons the Schwarzian derivative is also a basic
tool in real projective geometry in connection with the study of the diffeomor-
phisms of the circle; see the book [OvTa2005].
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The approach in this case is thus very similar to the earlier one, and yields as
upshot:

Proposition IV.1.4. (The Schwarz equation). — Let P be a simply connected
polygonal region with sides circular arcs and with vertices wy, ..., w, and inte-
rior angles \\7, ..., Ay,n. Let s : H — P be a uniformizing function extending to
a homeomorphism on the boundary. Then there exist 2n real numbers ay, . . ., a

and B, ..., By such that

n 1- 22 .
(5,7} Zl Pi (IV.7)

2(z—a; )2 Z-a;
Furthermore, the A;, a;, and B; are linked by the following relations:
@ Zle Bi=0;
(i) X 4 +,8La, =0;
(ii) z;;l ai(1- 2%+ Bia? =0

Proof. — For eachi = 1,...,n, one can by means of the symmetry principle
extend s to a function s; holomorphic on H U (a;,a;+1) U H™, satisfying s;(Z) =
h; o s;(z), where here h; denotes inversion in the circle having (w;,w;+1) as an
arc. In particular, therefore, these extensions are injective, so their derivatives
are non-vanishing. It follows that {s, z}, which is holomorphic on H, extends by
continuity to H with the points ay,...,a, removed. Now for eachi = 1,...,n,
there is an appropriate choice of complex numbers A;, B;, C;, D;, with the property
that the transformation § = % sends a; to 0 and the two segments [a;_1,a;],
[a;,a;+1] onto two straight-line segments meeting at 0 and with the angle between
them equal to 4; at 0. Applying the formula (IV.1) to §, one then obtains, locally,

8(2) = (z - a;)) " Hi(2),

with H; holomorphic in a neighborhood of a;. Moreover the coeflicients of the
power series expansion of each H; in a neighborhood of a; are real.

The invariance of the Schwarzian derivative under complex Mo6bius transfor-
mations then yields

1 1-47 Bi
Z(Z_al)2 Z—daj

{s,2} =1{s",2} = +dy +d3i(z—ap)+ - (IV.8)

The coefficients of this series are real, determined by the power series expansions
of the H;.
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One infers, setting

1 1-242 :
F(2) = 2] £

Z(Z—Cl)2 Z_ai’

that the function z +— {s,z} — F(z), which is holomorphic on H, extends to a
continuous function on H. Since it is real-valued at real values of the argument,
we can once again apply the symmetry principle to extend it to an entire function.
It then remains to investigate the behaviour of this function at infinity in order to
deduce that it is zero.

Thus we apply the symmetry principle relative to the segment [a,,a;]: the
map s extends holomorphically to a neighborhood of infinity, so that we must
have s(z) = bg + % + % + - -+ for z of large modulus in H. It follows that

ds b 2b
d2S 2b1 6b2
2~ B3 4T

and hence that

This allows us to calculate the Schwarzian up to order 3:

2 4cq 1 4 8
A= (==+—=+)—=(=+—+---).
{s,2} (Z2 3 ) 2(Z2 3 )
Thus the Schwarzian {s,z} has a zero of order at least 4 at infinity. Hence the
function {s,z} — F(z) is entire and vanishes at infinity. It is therefore identically
zero, which establishes the first part of the proposition.
We now establish the interdependence of the ai, A; and ;. In the expansion

11/1 Bi

1
- 1 1Gar T rar the coefficient of -

in powers of ~ of the rational function Z

is 3" | Bi, the coefficient of is 31 Ty Bia;, and the coeflicient of

Ny ai(1= ) + Bia
The vanishing of {s,z} to the order 4 at infinity then yields the desired condi-
tions:

() Z?:] Bi=0;
(i) Sy 5+ Bras = 0
(i) Z;‘:l a;(1 —Af) + Bia? = 0. °
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IV.1.3. The special case of a triangle

In Proposition IV.1.4, the constants a; and ; are in general impossible to deter-
mine for a given polygon. However, there is an important case where they can
be found: that of a triangle with sides circular arcs. Since this case will be of
central significance in Chapter IX, we provide the details here. Thus we choose a
fixed such triangle in the plane, and denote by s a uniformizing function extending
continuously onto the boundary.

Let wi,w;, and w3 denote the vertices and Ax, ur, and vr the interior angles
of the triangle, and let a, b, and ¢ on the real axis be the preimages of the vertices
under s.

The equations (i), (ii), (iii) of Proposition IV.1.4 constitute a linear system in
the B; as unknowns. On solving this system one finds that the Schwarzian {s, z}
must satisfy

(5.2) = 1 1-2%(a-b)(a-c)
T ECoG-hE-o| 2 G-o
+1—u2(b—a)(b—c)+l—vz(c—a)(c—b) .
2 z—b 2 z—cC

The crucial point now is that the parameters a, b, and ¢ can be determined com-
pletely: by composing with a suitable Mobius transformation acting on the do-
main, we can arrange that a = 0, b = oo, and ¢ = 1. This done, after a little
reorganization of the terms, the preceding formula becomes

1—/12+1—v2 =2 +vr-1
272 2(1-72)? 2z(1 - 2)

{s,z} = Iv.9)

We have thus found a differential equation with rational coefficients defined
on H \ {0,1,c0}. In the case where the triangle is convex, every solution of this
differential equation will be a uniformizing function for a triangle with appropriate
angles. Then by mapping its vertices to wi, wp, and w3 by a suitable Mdbius
transformation applied to the codomain, we obtain a uniformizing function for
the triangle we began with. Thus we have the following result:

Theorem IV.1.5 (Uniformization of triangles). — Let T be a triangle with
vertices wi, wy and ws and with angles respectively A\, Aym and A3m, where
A; € (0,1). Then the solution of equation (IV.9) sending 0, oo and 1 to wy,
wy and w3, sends the upper half-plane biholomorphically onto the triangle T.
Moreover; this solution extends to H and sends H homeomorphically onto the
boundary of the triangle.

We conclude by examining the means employed by Schwarz to uniformize all
polygonal regions with circular arcs as sides, thereby settling the question of the
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accessory parameters. Here is the key result proved by Schwarz in [Schw1870a];
it goes significantly further than the the situation of plane polygons. Before enun-
ciating it we define one of our terms precisely: an open set U of a Riemann surface
is uniformizable right to the boundary by the unit disc if there exists a biholomor-
phism from U onto the disc which extends to a homeomorphism between the
boundary of U and the unit circle.

Theorem IV.1.6. — Let S be a Riemann surface and U, V two open sets of S
uniformizable right to the boundary by the unit disc. If the intersection U NV
is homeomorphic to a disc, then the union U UV is uniformizable right to the
boundary by the unit disc.

This theorem can then be used in the following way to prove the existence
of a uniformizing function for any polygon with circular arcs as sides: one de-
composes an arbitrary quadrilateral into a union of two triangles (which we know
how to uniformize) with intersection a simply connected region. Theorem IV.1.6
then assures us that we can uniformize the quadrilateral. Then one can inductively
increase the number of sides.

Schwarz’s proof of Theorem IV.1.6 uses his “alternating method” (the term
he himself employs in [Schw1870b]), proceeding by successive approximations.
We refer the reader to [Cho2007, p. 123 et seqq.] for another exposition of this
method, and also of the very similar one of Neumann [Neum1884]. Schwarz, and
then Poincaré and Koebe, extended this strategy very much further (see part C).
Thus ultimately this led to a complete proof of the uniformization theorem. We
ourselves shall adapt the method to prove, in Corollary XI.1.6, that any simply
connected region with analytic boundary of a Riemann surface is uniformizable
right to the boundary.

IV.2. The conformal structure of the sphere

We propose now to explain how Schwarz uses his alternating method in
[Schw1870a] to uniformize spheres. The precise result is as follows:

Theorem IV.2.1. — Every compact, simply connected Riemann surface S is bi-
holomorphic to the Riemann sphere C.

A few preliminary remarks are in order. First, although Schwarz’s proof of
this theorem in [Schw1870a] is not complete, he does not hesitate to enunciate it.
Here is his original statement (where by “surface of a circle” he means a disc and
by “surface of a ball” a sphere) with an approximate translation.

Dem von Riemann ausgesprochenen Satze, dass es stets moglich sei, einen
einfach zusammenhingenden Bereich zusammenhidngend und in den kle-
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insten Theilen dhnlich auf die Fliche eines Kreises abzubilden, kann der
folgende Satz zur Seite gestellt werden :

Es ist stets moglich, einen einfach zusammenhdngenden und geschlosse-
nen Bereich zusammenhdngend und in den kleisten Theilen dhnlich auf
die Fliche einer Kugel abzubilden und zwar nur auf eine Weise so, dass
drei beliebig vorgeschriebenen Punkten jenes Bereiches drei ebenfalls
vorgeschriebene Punkte der Kugelfiiiche entsprechen.

Our translation is as follows:

The theorem announced by Riemann that it is always possible to represent
a simply connected region [of the plane] on the surface of a circle continu-
ously and in such a way that similarity is preserved in infinitely small parts
allows one to establish the following theorem:

It is always possible to represent a simply connected and closed region on
the surface of a ball continuously and in such a way that similarity is pre-
served in infinitely small regions, and furthermore uniquely if three pre-
scribed points of the region are to correspond to three prescribed points of
the surface of the ball.

He does not, however, give a convincing proof except in the case of polyhedral
surfaces, which case does not strictly speaking fall within the purview of the theo-
rem since the latter concerns smooth surfaces. Schwarz shows in effect that every
finite, simply connected polyhedron can be mapped homeomorphically onto the
Riemann sphere in such a way that the mapping is conformal on the faces. Yet
in 1881 in his note [Kle1881], Klein mentions the uniqueness of the conformal
structure for surfaces of genus 0 and attributes the result to Schwarz.

In order for Schwarz’s argument to genuinely yield the statement of Theo-
rem IV.2.1, it is necessary to know beforehand how to uniformize a simply con-
nected region with analytic boundary of a Riemann surface. This result is not,
however, fully established in [Schw1870a], although it is possible to obtain a
complete proof via an elaboration of the alternating method. This is in fact what
we undertake to do in Chapter IX. In the meantime we give a proof of Theo-
rem IV.2.1 assuming ahead of time the uniformization of simply connected re-
gions with boundary.

Before starting the proof we note that by 1860 the topological classification
of compact surfaces was considered as achieved (even if a long interval of time
had to elapse before it was finally established rigorously — see the box in the
introduction to Part C — so that, in particular, it was considered “known” that a
connected, simply connected surface without boundary is homeomorphic to the
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2-dimensional sphere. It was also considered “clear” that the sphere with a disc
removed is homeomorphic to a disc.

Proof. — Thus to prove the theorem we need to construct a meromorphic func-
tion f on S with a single pole of order 1 on §. We achieve this by constructing a
harmonic function u, which will then serve as the real part of the desired function
on S with the pole removed.

Choose two distinct points n and s of S (the north and south poles3), and con-
sider a holomorphic chart ¢, : U — D defined on an open set U containing n
whose closure avoids the south pole s, and extending to a homeomorphism from
the boundary of U to the unit circle. Write V for the open set S \ go;l (m).
Since we are presupposing the uniformization theorem for simply connected re-
gions with analytic boundary (see Corollary XI.1.6), we may assume there exists
a conformal map ¢ : V — D sending the point s to 0. The argument mainly
involves the disc U. The following diagram depicts the situation.

Figure IV.1: The sphere S and Schwarz’s charts

The mapping ¢,, (resp. ¢s) allows us to solve the Dirichlet problem for the disc
U (resp. V) with any continuous boundary value. In fact it suffices to consider the

3Note that in view of the discussion preceding this proof, it is assumed that S is a topological
2-sphere. Trans
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problem on the unit disc, whither it has been transferred by the map ¢, (resp. ¢).
Recall (from §II.2) that in order to solve the Dirichlet problem on the unit disc
with a continuous boundary value u, we use Poisson’s formula, assuring us that
the following function is harmonic on the disc and extends continuously via u to
the boundary (here z = re'?):

I 1-7?
) = — ! dt .
u(2) 27rf0 U o eos(@ 1) 112

This formula (a variant of the formula (I1.4)) allows one to obtain an upper bound
for the modulus of ¥ when the mean of u is zero on the unit circle. The value
of u at the origin is clearly zero and we shall show that its values in a disc of
radius 1/4 are uniformly bounded in terms of the supremum of the modulus of u
on the boundary. The precise result is as follows:

Lemma IV.2.2. — Let u be a continuous function of mean zero on the unit
circle and let u be its harmonic extension to the whole of the unit disc. Then
for every point z of modulus less than le’ one has |u(z)| < %Ilullﬁ, where
llullg = max, 5 lu(z)].

Proof. — This bound is established by means of a straightforward calculation
using Poisson’s formula. Thus for all 8 one has

2ru(re'?) dt

fzﬂ ( i,)l —2rcos(6 — 1) + r2 + 2rcos(6 — t) — 2r2
ule
0o 1-2rcos(6 —t) +r?

2 2 2
. L 2rcos(@—1) —2
f u(etydr + f ueiny e -n -2
0 0

1 —2rcos( —t) +r?2

2n A
er u(e' cos(6 —t)—r
0

1 -2rcos(8—1)+r2

Examination of the function a +— =="— on [-1,1] quickly shows that the
modulus |u(re'?)| is bounded above by 12_—rr||u||ﬁ- Hence in particular for r < ‘—11,
the modulus |u(re®)| is bounded above by |ull5. o

It is now not difficult to construct the function f with a pole at n. We set
u_1(z) = %COS@ where ¢, (z) = re'®, and write 7i_; for the harmonic function
on the disc U satisfying the boundary condition (ii-1)py = (u-1)py. Write
uo = u_j — ii_1; the function uy then vanishes on the circle oU.

We now begin the procedure of successive approximation, constructing induc-

tively two sequences of functions u; and v satisfying:
® 1 is as just defined;

o for every k > 0, the function v is the harmonic function on the disc V
satisfying the boundary condition (vi)jgv = (ux)jov;
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e for every k > 1, the function u; is the harmonic function on the disc U
satisfying the boundary condition (ux)jsv = (Vk-1)joU -

We wish next to bound these two sequences in order to establish the convergence
of the corresponding series. To this end, we note first that the maximum-modulus
principle affords us the following bounds:

e for every k > 1, the modulus of vi is bounded above by its maximum on
the circle 0V, and hence by the maximum value of |uy | on the circle V. It
follows that |vg| is bounded above by the maximum value of |u|;

o similarly, for every k > 1, |ux| is bounded above by the maximum value of
V-1l

Thus the sequences of the |lug |l and ||vi ||y are decreasing. However, that
does not of course suffice for the corresponding series to converge. We shall use
Lemma IV.2.2 to show that for every k > 1, the function |v¢| is in fact bounded
above by %Ilukllﬁ. For this purpose we need to be sure that the mean of the
functions ux o ¢! on the unit circle is zero:

Lemma IV.2.3. — The means of all of the functions uy o ¢,,' and vy o ¢, on the
circles of radius 1 and zlt are zero.

Proof. — Let A denote the annulus bounded by the circles of radii % and 1. A
function holomorphic on A will have equal integrals around the bounding circles
in view of the residue formula. Recall also that a harmonic function on a simply
connected region is the real part of a holomorphic function. Hence considering U
and V in turn, we infer that for k > 1 the functions u; and v are the real parts of
holomorphic functions on ¢! (A). This is also true of ug by construction. Hence
the means of the functions u; o ¢! and v; o ¢! on the two bounding circles are
equal.

Since the function ug o ¢;,! has zero mean on the unit circle, it now follows
that this is likewise true for the circle of radius %. Since on the one hand 1. o ¢!
and v o <p;1 coincide on the circle of radius %, and on the other hand uy 4 o (pr_ll
and vi o ¢! coincide on the circle of radius 1, this property propagates itself
inductively to all of the u; o ¢! and vy o ¢!, that is, they all have mean zero on
the circles of radii % and 1. O

Now Lemma IV.2.2 assures us that for every k > 1 the function uy o ¢! has
%Iluk o 90;1 |l as an upper bound on the circle of radius }1. Hence the function uy
is bounded above by %lluk llzz on V. Now vy was defined as the function solving
the Dirichlet problem on V with boundary condition given by the restriction of uy
to V. Hence a further application of the maximum-modulus principle yields the
upper bound %Iluk |lg7 for [vi| on V.
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We thence obtain, again by induction, the following bounds (for all k£ > 1):

k+1
luk+illg < lvellyy < (g) Nl [l -

Hence the two series with terms u; and v respectively, k = 1,2,..., are dom-
inated in modulus by the geometric series with common ratio %, and therefore
converge respectively to a function 7 defined and continuous on U and harmonic
on U, and a function ¥ defined and continuous on V and harmonic on V. Writing
u =i +ugand v =9 + vp, we have by construction that the functions # and v co-
incide on the boundaries U and dV. Hence the function u — v is harmonic in the
interior of U NV and zero on the boundary. Then by the maximum-modulus prin-
ciple it must vanish also in the interior, so that # = v on the whole annulus. The
function defined on S as equal to u on U \ {n} and to v on V is then well-defined
and harmonic on the whole of S\ {n}. It is therefore the real part of a meromorphic
function, and with a single pole at n of order 1 since ug o (,0;1 = Re(%). We have
thus found the function sought.

Finally, such a function with prescribed images of any three distinct points
will be unique since the only conformal bijection of the Riemann sphere to itself
fixing three arbitrarily chosen points is the identity map. This completes the proof
of the theorem. O

The above proof is a good illustration, though in a rather simple situation, of
Schwarz’s alternating method. Recall that that method is interesting chiefly for its
use in proving Theorem IV.1.6, which we have for the time being assumed. Thus
we shall be returning to the method in Chapter IX.
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Chapter V

The Klein quartic

The theory of elliptic integrals, so intensively developed over the course of the
19th century, gave rise to new functions. With each elliptic integral there is as-
sociated the marked lattice of its periods, that is, a given discrete subgroup of
rank 2 of the additive group (C,+) and a basis (w1,wy) € C* x C* for this lattice
satisfying Im(w;/w>) > 0. It is therefore natural to introduce the set

M= {(a)],wz) eC"x C*le/wz S H}

of marked lattices. Observe that M is invariant under the natural action of
SL(2,Z) on C? (and that SL(2,Z)\ M may be identified with the set of lattices
of C — see [Ser1970]). This action induces an action of SL(2,Z) on H by Md&bius

transformations:
a b at+b
T = .
c d ct+d
We recall in Section V.1 below the proof that there exists a function

j H—-C,

invariant under the action of SL(2,Z), such that two lattices A; and A, of C are
homothetic! if and only if j([A[]) = j([A2]), where [A;] denotes the homoth-
ety class of the lattice A;. Following on foundational work, notably of Gauss,
Legendre, Abel, and Jacobi, a basic problem became that of linking j(7) and
j'(t) = j(Nt) for T € H and N an integer > 2. It can be shown? (see Subsec-
tion V.1.3 below) that there exists a polynomial ®» € C[X,Y] such that

D (j’,j) = 0. (V.1)

10r similar, meaning that there exists a 4 € C* such that AA| = A,, which is equivalent to the
statement that C/A| and C/A are isomorphic.

2Recall, by way of analogy, that the trigonometric functions cos(x) and cos(Nx) are linked by
an algebraic equation

cos(Nx) = Tn(cos x),
where Ty is the Nth Chebyshev polynomial.
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When @y is minimal, this is called the modular equation® associated with trans-
formations of order N. The modular equation associated with transformations of
order 7 (that is, the case N = 7) is the main subject of the article [Kle1878c].
There Klein produces a remarkable geometric model of the surface X (7) obtained
by compactifying the quotient of H by the action of the subgroup

I'(7) = {a € SL(2,Z)|a@ = I, (mod 7)},

where I denotes the identity matrix. More generally, one defines the principal
congruence subgroup of level N by

[(N) = {@ € SL(2,Z)|a = I, (modN)} .

We show in Section V.1 below that the quotient I'(N)\H can be compactified to
form a Riemann surface, denoted by X (N). The group I'(1) coincides, of course,
with SL(2,Z) and we shall see that the surface X (1) is isomorphic to the Riemann
sphere CP!.

Klein shows that the surface X (7) is isomorphic to the smooth plane quartic Cy
with equation* x3y+y3z+z3x = 0, invariant under the action of a group G isomor-
phic to PSL(2,F7) (the automorphism group of X (7) — see Proposition V.1.1 be-
low). In this projective model the natural morphism from X (7) onto X (1) ~ CP!
is made concrete as the projection of C4; on G\Cy (identified with CP!); this is
a Galois covering whose generic fibre is considered by Klein as “the Galois re-
solvent”> of the modular equation of level 7. Relying on numerous geometric
properties of his quartic and on his investigations of the equation ®7(-,j) = O,
Klein arrived at a description of the fibre over a given value j(7) in terms of quo-
tients of explicit modular forms defined on the half-plane H, the domain of the
variable 7 (the ratio of periods). This result was the most significant one of the
article [Kle1878c]. In addition to that he presents another novelty: the explicit
parametrization of a curve of genus > 1 (to within a finite number of points) by
means of a uniform complex variable. He proves the following theorem:

Theorem V.0.6. — The Riemann surface associated with the plane quartic Cy
defined by the equation

x3y+y3z+z3x:0

3An earlier version, Jacobi’s modular equation, concerns the modulus A = k2.
4In terms of homogeneous coordinates for 2-dimensional complex projective space. Trans
SMeaning that the function field of Cy is the splitting field of this equation over C(j).
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with its 24 points of inflection removed, is uniformized by the variable T € H via
the formulae

1 2 1 )

X _ o Zmez(—l)m[qz(z“” +37Tm+16) _ q2(21m +19m+4)] w2
Tnez(=1)rlga@intam ’ ‘

1 2 1 2
Y _ a4 Zmez(—l)m[q2(2l’" +25m+8) _ q2(21m +31m+12)) w3
* ez (=11 gz ’ :

1 2 1 2
E - q_2/7 Zmez(—l)m[q2(21m +m) + q2(21m +13m+2)] (V4)
y Znez(_l)n+lq%(21n2+7n) > :

where q = €*'"7.

In other words, the above formulae give a concrete universal covering map
H — Cy4 \ 14, where 1 is the set of points of inflection of C4. Over the two year
period 1878-1879, Klein published a series of papers on modular equations, in
particular [Kle1878b, Kle1878c, Kle1879b], devoted respectively to transforma-
tions of order p = 5, 7 and 11. In each case he constructs by geometric means a
Galois resolvent, gives its roots explicitly — using modular forms — and shows
how to find the modular equation itself (of degree p + 1) as well as a resolvent
of degree p for each of these particular values of p. For p = 5, the geomet-
ric model of X (5) he uses is the regular icosahedron®, the resolvent of degree 5
being linked, as had been shown by Hermite [Her1858], to the general quintic
equation. Just as the sphere has a regular tiling induced from the faces of an in-
scribed icosahedron, so also does the modular surface X (7) admit a regular tiling
by triangles. This tiling is inherited combinatorially from a tiling of H of type
(2,3,00)7, and its triangles are of type (2,3,7). This is described in [Kle1878c]
(or see pp. 125127 of his complete works) and depends on elementary geometric
properties of Cs. Arithmetic, algebraic, geometric, and combinatorial facets are
tightly imbricated in this work of Klein, revealing the quartic Cs to be a central
and fascinating mathematical object. The reader may also consult [Levy1999a],

6Klein shows that the morphism X (5) — X (1) is isomorphic to that taking the quotient of the
unit sphere in R3 by the action of the symmetry group of the regular icosahedron.

7A tiling of H by triangles is said to be of type (a,b,c) if it is realized by hyperbolic triangles
(a,b,c), that is, with angles (£, 2% 2%,

s ¢
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and especially [Elk1999] who places C; in the context of modern number theory.
We ourselves, following [Kle1878c], will be concentrating here on a particular
result, namely the parametrization of the Klein quartic, representing an important
stage in the explicit uniformization of algebraic curves. In particular, the above
formulae of Theorem V.0.6 will be derived in the final Section V.2.5

V.1. V.1. Modular forms, the invariant map ;

V.1.1. Modular surfaces

It has been known since the time of Gauss (see Box V.1 and Figure V.1) that the
set
D(1) ={r € H||7| > 1, |Re(7)| < 1/2}

is a fundamental region of the action of SL(2,Z) on H, meaning that every orbit of
the action of SL(2,Z) meets D (1) and that the translates of int(9 (1)) by SL(2,Z)
are pairwise disjoint. We shall be returning to this topic in Chapter VI.

Proposition V.1.1. — Let I be a subgroup of finite index of SL.(2,Z). The quotient
r=T\H

admits the structure of a noncompact Riemann surface, biholomorphic to a com-
pact Riemann surface Xt with a finite number of points removed.

Box V.1: Gauss’s reduction theory

The theory of the reduction of quadratic forms consists in the study of the
orbits of the group SL(n,Z) acting on the vector space of quadratic forms in
n variables according to the rule® (A - g)(x) = g(A” x). This action is natural
from the point of view of number theory: two quadratic forms in the same
orbit have the same integer values. It is of interest, in particular, to look for a
fundamental region of the action of SL(n,Z) on the set X of positive definite
quadratic forms.

In his Disquisitiones Arithmeticae Gauss considers the case n = 2. Every
such positive definite quadratic form g can be factored uniquely as

q(x,y) = a(tx + y)(Tx +y) (V.5)

where a > 0 and 7 lies in the half-plane H.

“Here x stands for the column vector with components xi,. .., xy.
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The action of positive scalars on X commutes with that of SL(2,Z), and it
follows from (V.5) that the quotient X/R? is isomorphic to the half-plane H.
The group SL(2,Z) acts via Mobius transformations on H. Gauss proves the
following celebrated result concerning a fundamental region of this action (see
[Ser1970]):

Theorem V.1.2 (Gauss). — The subset

D) ={reH||r|] > 1and |[Re(7)| < 1/2}

of H is a fundamental region for the action of SL(2,7Z) on H.

Proof. — We begin with the case I' = SL(2,Z). It is easy, starting from the
fundamental region D (1), to equip the quotient Y (1) = ¥ with the structure of a
non-compact Riemann surface of genus 0 and with one end; this construction is
carried out in the most general case of an arbitrary Fuchsian group in Chapter VL.
The horoballs® centered at infinity, given by

B,={treH|Imt > a}(a>0)

become in the passage to the quotient punctured discs forming neighborhoods of
the ends of ¥r. Setting ¢ = €%, understood as defining a chart, one obtains
thereby a compact surface Xr representing a completion of the open Riemann
surface Yr.

In the general case of a subgroup I' € SL(2,Z) of finite index, the quotient ¥t
is a branched covering of Y (1). It compactifies uniquely to a branched cover-
ing Xr of X(1). The projective action of SL(2,Z) on QP' is transitive; the set
Xt \ It is finite, in one-to-one correspondence with the classes I'\QP!, whose el-
ements are still called cusps of Xt (or of I'). Let x = p(o0) be a representative of
acusp (p € SL(2,2)) and denote by I' the stabiliser of x in I'. The group p‘ll“x Jol
is, independently of the choice of representative of the cusp and of p, generated
by y(z) = z + m for some integer m > 1. Setting ¢ = €?*7, one takes as chart
p(w) with

w = eZiﬂ"r/m — ql/m‘ (V.6)

Note finally that each inclusion I'j C I of finite-index subgroups of SL(2,Z)
induces a holomorphic map from X, onto Xr,. ]

8In hyperbolic n-space a horoball is the limit of an increasing sequence of balls sharing a tangent
hyperplane and its point of tangency. Trans
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For I' = SL(2,Z) one has ¥ ~ C and Xt =~ C ~ CP! (the case of a single
cusp). When I' is one of the principal congruence subgroups I'(N), the numerical
invariants (genus, the number of cusps) of the associated Riemann surface are
known (see [Shil971, pp. 20-23]). In particular, the surface X (7) has genus 3 and
24 cusps (see Section V.2.1).

Figure V.1: A tiling for PSL(2,Z)

V.1.2. Modular forms

For greater detail concerning the contents of this section, one may consult
[Ser1970]. As above we consider a subgroup I' of finite index of SL(2,Z). Recall
that the set M of marked lattices is stable under the natural action of SL(2,Z)
on C2.

An automorphic form of weight k on H relative to I' is defined to be any
function f : H — C for which

f() = f(z,1)

where f : M — Cisa homogeneous function of degree —2k, invariant under I
and such that f(r,1) is meromorphic on H and also at the cusps coordinatized by
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the variable w defined by (V.6). In particular, the function f satisfies

at+b ok a b
f(CT+d)(CT+d)2—f(T) (TeH,(C d)er). (V.7

Among the automorphic forms it is useful to distinguish certain subsets.
First, we denote by K(I') the set of such forms of weight £k = 0, which may
be identified with the field of meromorphic functions on Xt. Next there is the
set My (') of forms of weight £ holomorphic on H and holomorphic in the vari-
able w at each cusp of I': the modular forms. Under multiplication, the direct sum
M) = B, ., Mk (') is a graded C-algebra.

Consider now the case I'(1) = SL(2,Z), and assume k > 2. For each
(w1,w2) € M we write

r 1
Gi(wi,wy) = ) 7 (V.8)

AEA

where X’ designates summation over the non-zero vectors of the lattice
A = Zw| ® Zw,, convergence being assured by the assumption k > 2. By con-
struction, G (w1,w>) is homogeneous of degree —2k and SL(2,Z)-invariant; an
argument using normal convergence — in a fundamental region of SL(2,Z) —
shows that G (7, 1) is holomorphic on H and also at the point co (see [Ser1970,
Chapter VII]). It is also known that the algebra of modular forms for SL(2,Z)
is a polynomial algebra, generated by g» = 60G; and g3 = 140G3 of respective
weights 2 and 3: M(SL(2,2)) = C[g2,g3] =~ C[X,Y].

In order to construct a meromorphic function on H that is SL(2,Z)-invariant
and non-constant, one considers the first homogeneous summand of M (SL(2,2))
of dimension at least 2, with a view to forming the quotient of two linearly in-
dependent modular forms of the same weight. One shows (see [Ser1970, Chap-
ter VII]) that this first summand is in fact Mg(SL(2,Z)), which contains the form
A= gg - 27g32, not vanishing on H. Hence it is natural to define

J=g/A, and j=(12)°J. (V.9)

The function j, called a modular invariant, is holomorphic on H with a simple
pole at infinity of residue 1. Via passage to the quotient, it induces an isomorphism
between X (1) and cp.

By considerations of symmetry, one obtains g3(i) = 0 and g>(p) = 0 for
p=0+i \/3) /2 (see equation (V.8)), whence the particular values

j)=12>=1728 and j(p) =0. (V.10)
Finally, the field of meromorphic SL(2,Z)-invariant functions coincides

with C(j), which is isomorphic to the field of rational functions over C in a sin-
gle variable. Hence for every finite-index subgroup I' of SL(2,Z), the field of



122 V The Klein quartic

functions K(I') is a finite extension of C(j), Galois if and only if I" is a normal
subgroup of I'(1), which is the case for the principal congruence subgroup I'(N),
whose degree is equal to that of the branched covering Xr — X (1) [Rey1989,
p. 60].

V.1.3. Modular equations

Given an integer N > 2, we seek an equation linking j(7) and j'(7) = j(N7) for
7 € H. It is easy to check that j’ is left invariant by the group

Ih(N) = {(Z Z,) € SL(2,Z)|c = 0 (mod N)}, (V.11)
which is, in fact, precisely the stabiliser of j’.

On the other hand j’ is meromorphic at the cusps of ['((N). Indeed, by means
of the action of I'(1) = SL(2,Z), one reduces the situation to the cusp oo and to a
function of the form j o (§ 2 ) with a, b and d integers; for sufficiently large k the
product of the latter with ¢*/™ (see equation (V.6)) is bounded in a neighborhood
of ql/ " = (. The extension K (I'o(N))/C(j) being finite, this implies the existence
of an algebraic relation between j and j’. In order to exhibit such a relation, one
considers the transforms of j’ by the elements of I'(1), that is, the j o @ with «
ranging over the orbit O of the point

=t g ) erman,

under the action of I'(1) on the right; here Ay denotes the set of integer matrices
of determinant N. One readily checks that the stabiliser of the point py in I'(1)
is Io(N), so that the orbit O may be identified with the quotient I'o(N)\I'(1).
Write dp for the index of I'((N) in I'(1) and ar € Ay (k = 1,...dy) for a
system of representatives of the orbit O . Then the coefficients of the polynomial
Hzfl (X — j o ay) are invariant under I'(1), holomorphic on H and (by the same
argument as above) meromorphic at the cusp co. We have thus found a polynomial
@y € C[X,Y] of degree dp in X such that

ON(j’,j) =0. (V.12)

This is the modular equation associated with transformations of order N. The
stabiliser of joay is conjugate to I'o(N) (the stabiliser of j’), whence the subgroup
fixing all the j o @y coincides with T'(N) = (), er(1) yTo(N)y~L. It follows that
the splitting field of @ € C[j][X] is K(I'(N)). Moreover I'(1) acts as a set of
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automorphisms of K (I'(V)) in permuting transitively the roots of this polynomial,
which is therefore irreducible, whence, in particular, K(T'o(N)) = C(j,j’) (see
also [Shil971, p. 34]). When N = p, a prime, one readily sees that the matrices
(3 f,) (0 <k <p)and (§ (1)) form a system of representatives of 0, = I'(1)\A,;
the index of I'g(p) is thus d), = p + 1.

An elementary calculation shows that I'y (V) is normalized by the matrix

0 N2
(_N1/2 0 ) (V13)

which induces an involutary automorphism of the surface Xo(N) = Xr,(n) and of
its function field: this is the Fricke involution interchanging j and j’. One infers
from its existence that @ € C[X,Y] is symmetric. Klein relies on this symmetry
in his investigation of the modular equation for N = 2,3,4,5,7 and 13 [Kle1878b,
§II]. For these values of N the surface Xo(N) is of genus O and there exists
& € K(T'h(N)) such that K(I'o(N)) = C(j,j) = C(£); one then has j = F(&)
and j' = F(&’) with F € C(Z), the function &’ being linked to & by a Mdbius
transformation (the Fricke involution). In each of these cases Klein describes
a fundamental region for the action of I'x(N) on the half-plane®, then deduces
from ramification data an expression for F and gives the relation between & (in
its alternative guise as a function of ¢g) and &’. Note that for N € {2,3,4,5}, the
surface X (N) is also of genus 0, with respective automorphism groups (leaving
the set of cusps globally fixed) the dihedral group, the tetrahedral group A4, the
group S4 of the cube and the octahedron, and the group As of the dodecahedron
and icosahedron.

V.1.4. The surface X((7)

We shall now expound in detail the case N = 7. Our first task is to determine
a fundamental region for the action of the group I'h(7). For y = (¢ Z) from
SL(2,R), there is the following well-known formula:

Imz

m (Z € H) (V.14)

Imy(z) =

Since for each fixed z there are only finitely many pairs (c,d) € Z? for which
the modulus |cz + d] is less than a given number, it follows that each orbit of the
action of I'y(7) on H contains a point z € H whose imaginary part is greatest, that

°He uses the (¢ Z)e SL(2,Z) with b = 0 (mod N), which comes to the same thing.
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is, such that [cz + d| > 1 forall (¢ Z) € ['h(7). Hence every orbit of ['y(7) meets
the set
D' = (llz+d/7) 2 1/7} 0 {Rezl < 1/2}.
d¢7z
Here the inequality |Rez| < 1/2 is a consequence of the fact that the translation

t:t>T+1
is an element of I'y(7). By applying the rotations r; = (2-1) and r, = (7 3),

the set 9’ is transformed into the fundamental region D of Figure V.2.

t

—

-12 0 12

Figure V.2: A fundamental region for I'y(7)

There we see a tiling by eight translates of (1) by I'(1), and since the image
To(7) of Ty(7) in PSL(2,Z) is a subgroup of index 8, we conclude that O and D’
are fundamental regions for I'x(7). Finally, we see in Figure V.2 that Xy(7) is of
genus 0 with two cusps (0 and oo) and that To(7) is generated by r{, r, and the
translation ¢ realizing the identifications used to obtain X (7).

Proposition V.1.3. — The expression
‘e ( A(7) )”6_ 1
A(7T) q

affords a rational coordinate on Xo(7).

00 l—qn 4
n(l_q7n) (V.15)

n=1
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Proof. — The second equality is a consequence of the following one (see
[Ser1970]):

A=Cnq[]a-g0".
n=1

One next verifies that, as for j(71), A(77) is modular for I'((7), whence
§6 € M(T'o(7)). It then follows that £ oy = y(y)& forall y € To(7), where X is
a character of the group To(7) with values sixth roots of unity. Recall that To(7)
is generated by ¢, r; and rp. One has £ ot = £ (since ¢ is expressible uniquely in
terms of integer powers of ¢) and y(r;) = x(r2) = 1 because these rotations have
a fixed point in H. Hence the character y is trivial. Finally, since A is holomor-
phic and does not vanish on H (see Section V.1.2), & can take the values 0 and oo
only at cusps. In view of the fact that Xy (7) has only two cusps, the function £ is
thus necessarily of degree 1. Hence, in particular, the subgroup of I'(1) leaving &
invariant is I'y(7). a

V.1.5. The modular invariant as a function on X, (7)

We can now determine j as a function of ¢ following the method employed by
Klein in [Kle1878b, II §14]. The result is as follows:

Proposition V.1.4. — We have

1

=7 (&2 + 13& + 49)(£2 + 245& + 2401)°.

J

Proof. — Write j = ¢(&)/y(€), arational function of degree 8 in €. The equation
j = oo has a simple root ¢ = co — corresponding to ¢ = 0 — and a root of mul-
tiplicity 7 at & = 0 (see equation (V.15) and Figure V.2); we may therefore take
W (&) = &, Similarly, ¢ has two triple roots and two simple ones, and ¢ — 1728y
has four double roots (equation (V.10) and Figure V.2). Furthermore ¢ must be
monic since j(g) has a simple pole of residue 1 at g = 0. These conditions serve
to determine ¢ uniquely. Indeed, we must have ¢ = UV?3 and ¢ — 1728y = W?
where U, V and W are monic polynomials of degrees 2, 2 and 4 respectively; and
moreover U, V, W and ¢ are pairwise relatively prime. The “functional determi-
nant” ¢’y — ¢ is therefore a monic polynomial of degree 14 divisible by both
£9V? and W, whence ¢y — ' = £V2W. This relation gives W in terms of the
coefficients of U and V; carrying this over to UV? — 1728&7 = W? then yields the
expression claimed for j. O
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The Fricke involution sends & to &' (1) = £(—1/(77)). It induces an involutary
automorphism o of the surface X((7), so that &’ is an involutary homographic
function of £. One has j = F (&) and j' = F(£'). The two cusps of X(7) make
up the fibre common to j and j’ above infinity, and are interchanged by -, whence
&€&’ = C for some constant C. In similar fashion o interchanges the simple roots of
F = 0 (the images of the centres of rotation of | and r, — see Figure V.2) linked
by the equation z;zp = —1/7), at which j = j* = 0; hence &> + 13& +49 = 0
implies that also &2 + 13¢’ + 49 = 0, whence C = 49. Finally, therefore, the
Fricke involution is given by

g€ =49, (V.16)

It then follows from Proposition V.1.4 that j = (&2 +13&’+49) (&2 +5&"+1)3/¢’.
This is actually the expression obtained by Klein in [Kle1878b] for J = j/1728.

The description of the fibre of j : Xo(7) — CP! will be important in the
sequel as an essential intermediate step towards the parametrization of C4. From
the above expression for J as a function of £’, we infer the following expression
for J’ as a function of &:

1

= E(54 + 1483 + 6382 + 706 — 7). (V.17)

J =1
At the points —1/77 and (7 + k)/7 (k = 0,...,6), the function J’ takes the same

value J(7). Hence oo = €' = &(=1/77) and & = é(7/T+ k/T), k =0,...,6, are
roots of the equation

(Z+ 1422+ 6322 +70z2 - 7)> = 12°(U - 1)z = 0. (V.18)

Since the functions —1/77 and (t + k)/7 (k = 0,. . .,6) are distinct modulo I'((7),
the same holds for the & (kK = 00,0,...,6) as functions on H. Changing the
point 7 in the fibre above J, induces a permutation of the &, (k = ©0,0,...,6) as
roots of the equation (V.18) — the permutation can be made explicit using (V.15).
We now set g'/2 = &7, A2 = (2m)°q /2 ]2, (1-¢™)". Since J -1 = 27g%/A
(see equation (V.18)), the square roots of the solutions of (V.18) are up to sign
solutions of

wd + 14w® + 63wt + 7T0w? — 62 gzw/AY? -7 = 0. (V.19)

They can be expressed in terms of +&1/2, £1/2 = ¢g=1/2 [T, (1- g1 —q"™2.
The sign is determined by the behaviour of the leading term of (V.19) as ¢
tends to 0. Using limg_0(g3) = 2804(6) [Ser1970, Chapter VII, §2.3], one
finds that 63g,/AY/? = q‘1/2(1 + 0(q)). Hence the roots of equation (V.19) are
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Weo = —E12(=1/77) and wy = (=D*&V2(x/7 + k/7) (k = 0,...,6), or, setting

y = eZin/7
) 2
1_q7n
_ 1/2
Weo = =T ]—[(l_n), (V.20)
n=1 q
L (] _ ynkn/T\?
we =y g4 (%) (k=0,...,6).  (V2I)
n=1

V.2. How Klein parametrized his quartic

V.2.1. The group PSL(2,F7) and the surface X (7)

As we have seen above (§V.1.3), the function field K(I'(7)) of the surface X (7) is
the splitting field of the polynomial ®; € C(;j)[X] associated with transformations
of order 7 (equation (V.1)). We first need to examine the action of “homographic
substitutions modulo 7710 [Kle1878c, §§1-2] on X (7). Let F; = Z/7Z be the field
of seven elements. Since SL(2,F7) is generated by (1) and (] ?), the reduction
morphism modulo 7 from SL(2,Z) to SL(2,F7) is surjective, whence the exact
sequence

1 - T(7) = PSL(2,Z) — PSL(2,F;) — 1. (V.22)

In particular, the quotient G = PSL(2,Z)/T(7) is isomorphic to PSL(2,F7), a
simple group of order 168 (see Remark V.2.2 below). The group G acts on X (7)
via automorphisms and G\ X (7) can be identified with X (1). Thus the fibres of
the projection X(7) — X(1) are the orbits of the action of G on X (7). There
are therefore three singular fibres corresponding to the values J = 00,0 and 1
(recall that J = j/1728), whose elements are called A-points, B-points and C-
points in Klein’s terminology, with stabilisers of orders respectively 7, 3 and 2.
These fibres have cardinality 24, 56 and 84; all others have 168 elements. By the
Riemann-Hurwitz formula, the genus g of X (7) satisfies the relation

2-2g=2-168—-6-24—-2-56— 84, (V.23)

whence g = 3.

10That is, Mobius transformations modulo 7. Trans
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Remark V.2.1. — The automorphism group of a compact Riemann surface of
genus g > 2 is finite of cardinality at most 84(g — 1); this is the Hurwitz bound.
Thus the surface X (7) attains this bound.!!

On lifting to X (7) the decomposition of X (1) ~ CP! into two triangles with
vertices (1,0,00), one obtains a polyhedral triangular structure of type (2,3,7)
on X(7). The surface is tiled by 336 triangles which can be grouped to obtain
either a tiling by 24 heptagons (centered at the A-points) with 84 edges centered
at the C-points and 56 vertices (the B-points), or the dual tiling comprised of
56 triangles centered at the B-points, 84 edges centered at the C-points, and 24
vertices, the A-points (see [Kle1878c,Kle1921a] and Figure V.3.).

Figure V.3: Polyhedral triangular structure of X (7)

Each g € G lifts to a matrix vy € SL(2,F;) uniquely defined up to sign.
The order of g is therefore related to the trace of y. For example, if g has

UThis is a consequence of the fact that the triangle (2,3,7) has least hyperbolic area among all
hyperbolic triangles of type (a,b,c). By the Gauss—Bonnet theorem, this derives from the fact that
the largest value less than 1 of the sum % + % + % is attained uniquely by (2,3,7).
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order 4, the minimal polynomial of y is one of the factors of the polynomial
x*+1=(x%=3x+1)(x* —4x + 1) and one has try = +3; conversely, this con-
dition clearly implies that g has order 4. One thus obtains that the elements of
orders 2, 3, 4 and 7 are characterized respectively by +try = 0,1,3 and 2 (with
v # +I). An easy count then shows that G has respectively 21, 56, 42 and 48
elements of these orders.

We now make an inventory of the cyclic subgroups of G. First one observes
that the involutions in G form a single conjugacy class (their lifts to SL(2,F7)
all have x> + 1 as minimal polynomial) so must have fixed points; in fact each
of the 21 involutions must fix four C-points. These involutions are in one-to-one
correspondence with the subgroups of order 4, also all conjugate. Each element
g € G of order 4 is fixed-point free and acts by means of a bi-transposition on the
4 fixed points of the involution gZ. For topological reasons (a surface of genus 3
cannot be an unramified triple covering), the elements of order 3 all have fixed
points. Thus they form 28 subgroups each fixing a pair of B-points, and all conju-
gate since G is transitive on the B-points. In similar fashion, one sees that the 48
elements of order 7 make up altogether 8 subgroups forming a single conjugacy
class, and each fixing three A-points.

A few additional remarks will facilitate the determination of a geometric
model of X (7). Since the action of G by conjugation on the set of 8 subgroups
of order 7 is transitive, the normalizer of each such subgroup has order 21, and
is non-Abelian since G has no elements of order 21. Denote by G, (in the nota-
tion of [Kle1878c]) any one of these normalizers; its structure is necessarily that
of the semi-direct product generated by two elements & and r satisfying (up to
interchanging r and r~!) the relations

W=r =1 and rhr ' =n* (V.24)

The three A-points fixed by /&, which have cyclic stabilizer, are permuted cycli-
cally by r. Analogous reasoning shows that the centralizer of r is a subgroup
of G isomorphic to the symmetric group S3, generated by r and an involution s
permuting the two B-points fixed by r.

Remark V.2.2. — Klein makes no mention of the simplicity of G, although
this may be deduced using the elementary argument given by him in [Kle1884,
p- 19] for PSL(2,Fs). From the knowledge that all cyclic subgroups of the
same order are conjugate — in fact all elements of the same order are conju-
gate — it follows that the cardinality of a normal subgroup H of G is of the form
1 +2la; +56a; +42a3 + 48ay with oy = 0or 1 (k = 1,...,4). The only pos-
sibilities yielding a divisor of 168 are then quickly seen to be @ = 0 for all £
(H trivial) and oy = 1 for all k (H = G).



130 V The Klein quartic

V.2.2. The quartic Cy4

In this section we determine an explicit algebraic equation for the Riemann
surface X (7). Recall that, given a compact Riemann surface X and the dual
V = Q(X)* of the space of holomorphic 1-forms on X, there is a natural em-
bedding of X in the projective space P(V). This map sends each point x of X
to the projectification of the space of holomorphic 1-forms vanishing at x. One
shows that this space is always a vector hyperplane of (X), so may be identified
with a point of P(V). It is further known that the map ¢ from X to the projective
space P(V) so defined is a holomorphic embedding except for the case when X is
hyperelliptic'? (see [Rey1989, p. 102]).

In order to exclude the latter possibility in the case of X(7), Klein uses a
specific known model for plane hyperelliptic curves of genus 3 (see [Levy1999b,
p- 295]). The fact that X (7) is not hyperelliptic may also be inferred from the
behaviour of its involutions®3: they each have four fixed points (§V.2.1), whereas
a hyperelliptic involution in genus 3 must have eight. When g = 3 the projective
space P(V) has dimension 2; hence the image Cy4 of the embedding of X (7) is a
plane smooth quartic.

The group G of automorphisms of X(7) acts linearly on the space
V =Q(X(7))" as follows:

(8- HWw)=&(g"w) (8€G, eV, weQX)). (V.25)

This projective action of G is essential to the geometric investigation of this quar-
tic. Observe that the representation (V.25) takes its values in SL(V) ~ SL(3,C)
since G has no nontrivial quotient (see Remark V.2.2).

Recall that every plane curve possesses special points, notably: inflections,
points of contact with bitangents!4, and points where the curve admits a super-
osculating conic, that is, having contact with the curve of order at least 6. Fol-
lowing Cayley, these last are called sectactic; for example, if the curve has an
axis of symmetry, its intersections with that axis will be sectactic by symmetry.
For a smooth projective curve with equation f = 0 of degree at least 4, each
of these three sets of special points are obtained as the intersection with another
curve associated with f (for Cy4 see equation (V.31) of §V.2.3 below), for example
with det Hess f = 0 in the case of inflections, where Hess f is the Hessian of f.
Smooth curves of degree 4 have 24 inflections, 56 contacts with bitangents, and
84 sectactics points (counting multiplicities).

12Recall that a Riemann surface X is said to be hyperelliptic if there exists a branched covering of
degree 2 of cp! by X. The unique nontrivial covering automorphism is then called a hyperelliptic
involution.

B30r from the simplicity of G, since a hyperelliptic involution is always central.

14That is, lines tangent at two points of the curve. Trans
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Henceforth we shall identify G with the subgroup of SL(V) leaving C;4 invari-
ant under the projective action (V.25). Being projectively invariant, each family
of special points of Cy4 is the union of orbits of the action of G. This leads to the
following single possibility: the inflections correspond to the A-points, the points
of contact with bitangents to the B-points, and the sectactic points to the C-points
(the other orbits each having 168 elements). Since the inflections are simple, each
tangent line to such a point P € C; meets C4 in another point P’. As P ranges
over the set 7 of inflection points, the corresponding points P’ range over a orbit
consisting of 24 elements, which therefore coincides with 7 itself by uniqueness.
Furthermore, an element of G fixing P must also fix P’. Knowing that the sta-
bilizers of A-points each fix a triplet of them, we obtain a decomposition of the
set 7 into 8 cycles of length 3. Hence the tangents to inflection points subdivide
into 8 inflection triangles (in Klein’s terminology) which will have an important
role to play subsequently. For instance, they allow us to prove the following:

Theorem V.2.3. — An equation for Cy, invariant under G, is
By+ydiz+2x=0. (V.26)

Proof. — Let f = 0 be an equation for Cy, invariant under the action of G. The
simplicity of the group G imposes an additional constraint. Indeed, since each
character of G with values in C* is trivial, every projectively G-invariant poly-
nomial is G-invariant; in particular f is G-invariant. Since the linear projective
group is 3-transitive on the plane, one can choose coordinates [x,y, z] so that the
axes form an inflection triangle of C4 and the tangent to the point [1,0,0] is y = 0.
In terms of these coordinates the polynomial f is then of the form

f=ax’y +by’z+ cPx + xyz(ux + vy + wz). (V.27)

We also know from §V.2.1 that there exists an element of order 3 of G which per-
mutes the three base points of the coordinate system cyclically. Such an element
is necessarily conjugate by a diagonal matrix from GL(3,C) to the matrix r in-
troduced above (see equation (V.28)). By applying a diagonal coordinate change
(necessarily preserving the form of f), we may suppose that r acts as a cyclic
permutation of x, y and z. The invariance of f under r then entails a = b = ¢
and u = v = w. On the other hand, each of the base points is fixed by a (diago-
nal) element 4 € G of order 7. The diagonal entries of 4 must have the form y*,
y! and y™ where k,I,m are integers and y = exp(2in/7). From the invariance
of f under h it follows that [ = 4k, m = 2k, whence u = 0, yielding the desired
equation. O

One can in fact characterize the homogeneous coordinate systems relative to
which C4 has equation (V.27). They are those for which xyz = 0 defines an
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inflection triangle and x,y,z are permuted cyclically by an element of order 3
of G.

From now on f will denote the polynomial x*y + y’z + z3x. One also in-
fers from the above proof that the stabilizer of the inflection triangle xyz = 0
is the non-Abelian subgroup G, of order 21 of G (see §V.2.1) generated by the
following two matrices:

010 y 0 0
r=| 0 0 1 and h=|0 »* 0 (V.28)
100 0 0 »2

In order to complete the description of G, it remains to find an involution s
normalizing r. By means of a change of coordinates, Klein obtains

a=i(y?-y)/Vi=-= sin(3—”),

a b c
s=| b ¢ a with  {b=i(y* —y)/\/_— sm( ), (V.29)
¢ ab c=ily =)/ = ——sm(z”)

Here is how one can reconstruct this result. First, it follows from the relation
srs~! = r~! that s has the form shown in the left-hand matrix in (V.29). Next, the
relation s = 1 yields ab + bc + ca = 0 and a® + b* + ¢*> = 1. This implies that the
conic C; with equation xy + yz + zx = 0 is also stabilized by s. The intersection
of C, with C4 is comprised of the points [1,a,02], [1,e2,a] (@ = €*7/3), the
3 base points [1,0,0], [0,1,0], [0,0,1] and the 3 points [a, b,c], [b,c,al, [c,a,b]
with a, b, ¢ defined as in (V.29). Up to replacing s by rs or s (which amounts to
permuting a, b, c cyclically), one sees in this way that s is as in (V.29). Note also
that one has a + b + ¢ = —1 and abc = 1/7.

The normalizer G¢ of r in G, generated by r and s, is isomorphic to the sym-
metric group S3 (see §V.2.1). It acts on the intersection C4 N C, as follows: the
two inflection triangles are each permuted cyclically by r and interchanged by s;
the points of tangency B = [1,a,e?] and B’ = [1,a?,a] with the straight line
x +y + z = 0 are fixed by r and interchanged by s, which therefore stabilizes this
bitangent line. Since the polynomial x> + y? + z? is invariant under s, each conic
of the pencil

u(xy +yz+zx) + v()c2 + y2 + zz) =0, ([u,v]e CIP’l) (V.30)

is stable under the action of G (this is the pencil of conics bitangent at B and B”).
A single conic of this pencil passes through each point P € Cy, and its intersection
with Cy4 contains the orbit of P under the action of G, generally consisting of 6
points.
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By means of an ad hoc use of various coordinate systems, Klein locates a
subgroup G7, isomorphic to the symmetric group S4, whose existence had been
intimated in his investigation of G [Kle1878c, §1]. This subgroup realizes every
permutation of the 4 bitangents and stabilizes the conic C of the pencil (V.30)
corresponding to u/v = (-1 + i\/7)/2 [ibid., §8§4-5]. The action of G on C
defines a family of 7 conics using which Klein then infers a “resolvent of degree 7~
[ibid., §10].

V.2.3. Invariant polynomials

After having constructed a projective model of X (7), Klein returns to the funda-
mental problem of describing the modular invariant in this context, that is, the
function from C4 to CP! denoted by J whose fibres are the orbits of the group G.
To this end, he determines all polynomials left invariant by G — in any case of
use in the sequel — and then deduces the expression for J.

In order to find new invariant polynomials (other than f = x*y + y?z + z3x),
Klein uses his knowledge of “covariants”. Denote by Sy (C3) the subspace of
Clx,y,z] of homogeneous polynomials of degree d. A covariant is a polynomial
map ® : S;(C?) — S4(C3) equivariant under the action of the special linear
group; for example, the Hessian is a covariant with d’ = 3(d-2). If P € S4 (C}) is
G-invariant, then so also is ®(P). Klein introduces three G-invariant polynomials:

oo fla Foy fro Vi
2 " " "
ic )iy )fz 1 fyx f 2 fyZ V;
V=5_4 fyx fyz fyz ’ C=§ " ?,} " ,
T Jox Joy fo Ve
zXx zy 2 ’ ’ ’
: V. VvV, V. 0
R et
and K=\ f; Yy € (V.31)
fZ VZ CZ

of respective degrees 6, 14 and 21, with V = 5x%y?z2 — (xy> +x°z+2°y). To verify
the invariance, for any three polynomials P,Q, R from C[x,y, z], denote by V(P),
C(P,Q), K(P,Q,R) the polynomials obtained by replacing (f,V,C) by (P,Q,R)
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in (V.31). Writing P -u = P ou, u € GL(3,C), one then sees that

V(P u) = (detu)? V(P) - u, (V.32)
C(P-u,Q - u) = (detu)? C(P,Q) - u, (V.33)
K(P-u,Q u,R-u) = (detu) K(P,O,R) - u. (V.34)

Proposition V.2.4. — The algebra of G-invariant polynomials is generated by
f,V,Cand K.

Proof. — The intersections of the quartic C4 with the curves defined by V, C and K
are unions of orbits of the group G; by Bézout’s theorem they have respectively
24, 56 and 84 points. Thus they are comprised of the inflection points (V = 0),
the points of contact with bitangents (C = 0), and the sectactic points (K = 0).
Furthermore, the quotient C3/V’ defines a nonconstant meromorphic function,
hence surjective, from Cy to CP!. Since the degree of both V7 and C? is 42, the
intersection of a curve of the form AV + uC3 = 0 with C4 can have at most 168
points. On the other hand, since C 3/V7 is G-invariant, the fibres are unions of
orbits of G, so in fact have size exactly 168 (counting multiplicities). Since the
cardinality of a union of orbits of G must be of the form 24a + 565 + 84y + 168¢,
where a, 8,y = 0 or 1, the only possibility is for just one of «,5,y,{ to be
nonzero; in other words each fibre consists of a single orbit.

Thus each orbit of the action of G on Cy is given by a curve of the pencil
AV + ,uC3 =0 ([1,u] € CP'). Hence if P is a G-invariant polynomial not
proportional to f, the intersection {P = 0} N C; must be a finite union of G-
orbits, and there exists Q € C[V,C, K] such that {P = 0} N C4 coincides with the
intersection {Q = 0} N C4 (with equality of multiplicities). Thus P/Q defines a
holomorphic function on Cy, implying the existence of a constant A € C such that
P — 20 = 0 on Cy. It follows (choosing an affine chart) that P — AQ belongs to
the ideal generated by f and therefore P belongs to C[f,V,C,K]. O

Hence in particular f, V and K are the only homogeneous invariant polynomi-
als (up to multiplication by a constant) of degrees 4, 6 and 21. By the uniqueness,
one sees that K is necessarily the product of 21 degree-one factors corresponding
to the straight lines made up of points fixed by the involutions of G (for example,
(a+ 1)x + by + cz = 0 in the case of s — see equation (V.29)), each meeting C4
in 4 sectactic points; the group G permutes these 21 straight lines, whence the
invariant polynomial of degree 21.

The orbit of the sectactic points (counted twice) is the intersection of C; with
some curve with equation AV’ + uC? = 0 and is clearly also the intersection with
K? = 0. Hence there is a relation of the form AV’ + uC> + vK? = 0 modulo f.
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Evaluating this at the point [1,0,0], and using the fact that C = x4+ y!*+ 714+ ..
and K = —(x*' + y*' + 221) + ..., one infers that 4 = —v. In order to obtain
another such relation, Klein evaluates the above equation at the points of contact
with bitangents, a calculation most simply carried out in terms of the following
coordinates [y, y2,y3], introduced by Klein in connection with his investigation
of the involutions [Kle1878c, §5]:

—iV3VTx =y + By + B'y3 (V.35)
—i ‘/5\77)/ =y + azﬁyz +apB’ys (V.36)
—iV3VTz =y, + aBys + @28’y (V.37)

where & = ¢%7/3 83 = 7(3a* + 1) and BB’ = 7. In terms of these coordinates,
the bitangent x + y + z = 0 has equation y; = 0 and the points of contact become
[0,1,0] and [0,0, 1]. The polynomial f(x,y,z) becomes

F =371773(y + 21yyays — 147393 + 49y1(y; + ¥3)). (V.38)

Since (V.35) et seqq. defines an element of SL(3,C), one can apply (V.32) et
seqq. to the calculation of the transforms of V, C and K directly from F, yielding
V=7%5/3%+--- and K = -=2°77y3'/3% + ..., whence A + 12}y = 0 and, finally,
the desired relation

12V + C3-K*=0 (mod f). (V.39)

One may consult [AdI1999, p. 262] for a relation linking V, C, K and f. The
determination of the function J is now at hand. One observes that the function
JV’/C3 is holomorphic on C4 and so constant; its value can be obtained by eval-
uating the relation (V.39) at the sectactic points (using the fact that J takes the
value 1 at those points), whence one obtains

C? C?

J = —W and ] = —-——=. (V40)

V.2.4. Inflection triangles and a resolvent of degree 8

The following step is essential [Kle1878c, §8]: in his systematic study of the
action of G on Cj4, especially noteworthy are his investigation of the action of G
on the inflection triangles and the reappearance of a degree-8 equation already
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solved in his earlier article [Kle1878b, §18]; the equation in question is (V.19)
above, now linked to X((7) (see §V.1.5). We now supply the details.

Recall that the stabilizer of the inflection triangle xyz = 0 is the subgroup G,
of G, generated by r and & (see equations (V.24) and (V.28)). Let s be the in-
volution defined by (V.29). The right cosets of G}, are G, itself and Gélshk
(k =0,...,6). The action of G on 6, = —7xyz yields the following polynomials:

Sk = xyz +y F (P = 2 +y (e - ) +y R (Pa -y

+ Zykzzy + 2y4kxzz + 272ky2x (k=0,...,6)

which determine the 8 inflection triangles of C4 (with y = €277y Tt follows that
the coefficients of P = (6 — 6c0) szo(é — 01 ), considered as a polynomial in §,
are G-invariant polynomials. By taking account of degrees, one sees that

P =6%+agVs® + auV?6* + aa V6% + a1 K6 + agV* (mod f) (V.41)

where the a; are constants.

Klein indicates that one may determine the coefficients a; by identification.
However, to ease the calculation we shall find them by evaluating (V.41) at judi-
ciously chosen points. The coefficients of P correspond to symmetric functions in
the polynomials 6w, 0, SO the a; are real; the coefficient of 6% is proportional to V
(up to a constant factor the unique invariant polynomial of degree 6), but the others
are as shown in (V.41) only modulo f. Setting (x,y,z) equal to (1,1,1) and then
to (1,a,?) (with @ = €27/3), one obtains ag = —14 and ay = —7. Substitution
of the point of inflection (1,0,0) and 6 = ¢p yields immediately a; = —1 since
K(1,0,0) = 60(1,0,0) = —1. Evaluating the polynomials 0, at the points of
inflection yields 6® + ¢ = 0. Next, the fact that the aj are real gives a = =70
and a4 = 63 on substituting 6 = 0o and (x,y,z) = (1,@,@?) (here the value
K(1,a,a?) is calculated using the coordinate change of (V.35) ef seqq of §V.2.3.
Finally, at a point [x,y,z] € C4, the polynomials 6, and 6x (k = 0,...,6) are
roots of

6% — 14V6° + 63V26* — 70V°6% — K§ — 7V* = 0. (V.42)

Compare this equation with (V.19). Since 12°(J — 1) = —=K?/V7 on Gy, it follows
that if § is a root of (V.42), then §/ V=V is a root of (V.19) (for a appropriate square
root) and its square —62/V is aroot of (V.18) describing the fibre of Xo(7) — X (1)
(see §V.1.5). In fact Klein begins by showing that the solutions of the “modular
equation” (V.18) can be expressed as rational functions of a point of the curve Cy4
(namely —62,/V and —5,% /V, k =0,...,6), and then infers the relation (V.42). He
remarks that —62,/V induces an isomorphism between Gél\C4 ~ X((7) and CP!.
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V.2.5. Conclusion

The modular equation (V.42) — or degree-8 resolvent — has a remarkable prop-
erty, discovered by Jacobi [Jac1828, p. 308]: the square roots of its 8 solutions,
chosen appropriately, depend linearly on 4 parameters.

It is easy to bring this property to light starting from the expressions for 9.
and Jg. Following Klein, we write, for [x,y,z] € Cy,

Ap = Vxyz, A1 = -3 —22x, Ay = y/-23 —x%y and A3 = [-x3 — y2z.

(V.43)

Then, to within a change of sign of A;, A, or A3, we have AgA; = xzy,
AoAs = y?z and AgAz = z2x. Hence AjAy = xy2, ArAz = yz2, A3A; = zx?,
and the equations of the inflection triangles (see the expressions d.,0x above)
take the form?®

Vée = V=74, (V.44)
Vor =Ao+y *A +y A +y A3, (k=0,...,6). (V.45)

Recall that 6./ V=V and Or/ V=V are solutions of equation (V.19). It remains
only to express the ratios Aj/Ay = x/z, Ap/Ag = y/x and A3/Ag = z/y as
functions of the ratios Vdy/ Ve, that is, in terms of the solutions we, and wi
(k =0,...,6) of equation (V.19), in order to obtain a parametrization of Cs by
the single variable g. The appropriate choice of signs for the square roots can be
determined by eliminating the A; in the equations (V.44) and (V.45). We take (see
equations (V.20), (V.21))

o 1-— Tn
VTR IT) g Rt (V46)
n=1 - qn

nk ,n/7

ok - =1 -
N 1/28]—[# k=0,....,6). (V.47)
n=1

Clearly, it should be possible to express the A;/Ag (j = 1,2,3) directly in terms
of the 6x /0 (k = 0,...,6). The approach via the square roots allows the use of
Euler’s “pentagonal identity” (see, for example, [McKMo1997, p. 143]):

l_[(l _ qn) — Z(_l)nqn(3n+l)/2’ (V48)
n=1

nez

5Klein also gives an interpretation of these formulae in terms of “cubics of contact” containing
the inflection triangles [Kle1878c, §9].
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while expanding [],,»(1 - q”)2 is not easy. From the relations (V.44) and (V.45)
one infers that 7A; = Yo<x<6¥* Vor and Ay = Vdw/ V-7, whence, taking
account of (V.46), (V.47) and (V.48), one obtains:

) 6 )
A
2/7 _ InA21 -k _~nk _n/l
Tq ||1(1 q )Ao_ goy |1|(1 Ygtt)
n= = n=
6
== DU gTET Y T (via9)
nez k=0

Here the sum over k is zero except when n(3n+1)/2—1 is divisible by 7 (in which
case the sum is 7). This occurs if and only if #n is of the form 7m + 3 or 7m + 6,
whence n(3n+1)/14is 1/7+ 21m? + 19m +4)/2 or 1/7 + (21m?* + 37m + 16) /2.
By means of a similar calculation for A;/Ag (j = 2,3), one finally obtains the
formulae of Theorem V.0.6.

To within a permutation of the variables x, y, z and replacing ¢
these are the formulae given by Klein!6 in [Kle1878c, §9].

It is also of interest to consult [E1k1999, p. 84] where a direct parametrization
is described (via the canonical embedding — see §V.2.2) in terms of 1-forms
on X(7):

InT

2by g =€,

xy,z=eq [ |a-gDa-g™]]a-g"
n=1 n>0,n=+ny mod 7
where g = €2 and the triple (€,a,np) is (—1,4,1) for x, (1,2,2) for y, and
(1,1,4) for z. In this version, the G-invariant polynomials define parabolic mod-
ular forms for SL(2,Z) and may therefore easily be linked to the variable g. Thus
3y +y3z+ 23x =00r V(x,y,z) is proportional to the discriminant A.

16He revisits the question again in [Kle1880b] in order to obtain more pleasing formulae, ex-
pressed in terms of the average of partial values of theta functions and also allowing of a uniform
treatment for transformations of orders 5, 7, and 11.
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The years 1880-1882 are crucial to our theme. It was then that Klein and
Poincaré announced and then “proved” that all algebraic curves of genus at least 2
can be uniformized by the disc. This came as a great surprise to the mathemati-
cians of the time. Examples were known — we saw some of them earlier — but
that the result held in such generality seemed incredible. Even today it has the sta-
tus of a major and highly nontrivial fact about the geometry of algebraic curves —
to such an extent, indeed, that many mathematicians profess to know it “so well”
that they forget that it is so highly nontrivial and all too often confuse it with one
or another of two theorems which, although certainly important, are much older
(and much simpler): the Riemann Mapping Theorem (the first convincing proof
of which, as we shall see, was given by Osgood) according to which a nontrivial
simply connected open subset of the plane is conformally equivalent to the disc,
and Gauss’s theorem (often wrongly attributed to Riemann) stating that a (real
analytic) surface is locally conformal to an open subset of the plane.

Even though the present work is not a history book, a brief introduction to the
protagonists may nonetheless be useful.

In 1880 Poincaré was a 26-year-old assistant professor'’. He had defended
his thesis two years earlier on the research topic of differential equations. It is
undeniable that differential equations were at the root of almost all of his sub-
sequent discoveries. The Paris Academy had proposed in 1878, as the theme of
its competition for the Grand Prize in the mathematical sciences to be awarded
in 1880, the following problem: “To bring to perfection in some significant as-
pect the theory of linear differential equations in a single independent variable”.
Since he had founded the qualitative theory of dynamical systems a few months
earlier'®, Poincaré now began to investigate differential equations in a single vari-
able. In March 1880 he submitted a first memoir on the real theory, and then
withdrew it in June of the same year. In the meantime he had become aware — in
May 1880 — of an article by Fuchs on second order linear differential equations
with algebraic coefficients. The memoir that he finally submitted to the Academy
— in June 1880 — contains reflections inspired by Fuchs’s article, reproduced
in [Poin1951, Tome I, pp. 336-373]. In the work that so stimulated Poincaré,
Fuchs sought to generalize Jacobi’s inversion. He considered in particular the
inverse function of the quotient of two independent solutions of a second-order
differential equation and gave a necessary and sufficient condition for this func-
tion to be meromorphic. Since Fuchs’s theory is essentially only local, Poincaré
was struck by the result but found it unconvincing. He understood that Fuchs’s

17 Actually a maitre de conférences, equivalent to senior lecturer in a British university or assistant
professor in North America. Trans

18At this time Poincaré was also feeling the need to develop an autonomous topological theory
(which, as we know, he subsequently realized).
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result was an (excessively strong) version of uniformization. Be that as it may, at
that time Poincaré was in the midst of an attempt to understand second-order lin-
ear differential equations with algebraic coefficients via Fuchs’s theory — and it
was in connection with this aim that he created the theory of Fuchsian groups. De-
tails of this first stage in this engaging story?°? are omitted from the present book.
Happily, the existence of [Poin1997] excuses us somewhat. We might summarize
these first months by saying simply that Poincaré immersed himself, with all his
genius but also with a certain “naiveté”, in the new theory. His correspondence
with Klein shows, for instance, that at that time he had not read Riemann!

Klein was six years older than Poincaré. He had by that time been a professor
already for ten years, and, possessed of an immense mathematical culture, was
probably the most prominent mathematician of the era. He was certainly one of
the finest connoisseurs of Riemann’s works and knew the theory of elliptic func-
tions thoroughly. He was one of the most influential propagators of the group
concept in mathematics: his “Erlanger Programm” of 1872, announced on the
occasion of his nomination to a professorship (at the age of 23), shows aston-
ishing perspicacity. He had at that time already published major articles on the
uniformization of certain particular algebraic curves arising in number theory. He
had also established the projective character of (real) non-Euclidean geometry.
When Professor Klein learns of Poincaré’s first notes on Fuchsian groups (dating
from February 1881) he is astounded both at the generality of the latter’s construc-
tions and his ignorance of the literature — in particular German — on the topic.
On June 12, 1881 he begins a correspondence with his young colleague on the
other side of the Rhine, destined to continue till September 22, 1882.

We reproduce this celebrated correspondence in an appendix, and strongly
recommend it to the reader. One sees there a (scientific!) confrontation between
a beginner and an established professor, tinged with oblique political references.
Also in evidence is the increase in mutual respect over the course of the correspon-
dence. But best of all one sees there the genesis of the uniformization theorem,
gaining in precision of formulation almost day by day. It should also be mentioned
how Poincaré’s genius compels Klein’s respect — respect he gladly acknowledges
subsequently.

YThe day after the submission of his memoir to the Academy, Poincaré also sent to Fuchs the
first of a series of letters in which the young assistant professor tried — without success — to
explain to Professor Fuchs that a local diffeomorphism need not necessarily be a covering. Note
in this connection that, throughout his work on uniformization, the ease with which Poincaré deals
with what is not yet explicitly covering-space theory is certainly one of his essential assets — to
such an extent that some have wished to see in the construction of the universal covering space
Poincaré’s main contribution to the problem. However, as we will see, the latter contention is
largely an exaggeration.

20That is, the part consisting not only of the memoir submitted to the Academy but also the three
supplements brought to light by Gray in 1979 and published in [Poin1997].



143

The first Fuchsian functions Poincaré constructs (in a note of May 23, 1881,
[Poin1951, T. II, pp. 12-15]) uniformize surfaces obtained by removing a finite
number of real points from a sphere (Poincaré also allows what are now called
“orbifold singularities”?!). He arrives independently at functions introduced ear-
lier, as Klein points out to him, by Schwarz (see Chapter IV). Poincaré’s method
is quite different, however. He considers (Fuchsian) groups generated by reflec-
tions in the sides of ideal n-sided hyperbolic polygons. These groups depend on
n — 3 real parameters 1 < x; < ... < x,-3 and he identifies the space of these
groups with the space of moduli of spheres with n real points removed. This rep-
resents the first appearance of the method of continuity?2. It is clear that “from the
beginning Poincaré has a lead that Klein can no longer make up” [Freul955]. On
August 8, 1881 Poincaré makes the following announcement [Poin1951, Tome II,
pp. 29-31]:

We conclude from this that:

1. Every linear differential differential equation with algebraic coeffi-
cients is integrable by means of zeta Fuchsian functions;

2. The coordinates of the points of every algebraic curve can be ex-
pressed by means of functions of an auxiliary variable.

This represents the very first enunciation of the uniformization theorem. It is,
however, always necessary to moderate the enthusiasm of the young Poincaré a
little. What he had actually proved (but completely rigorously) was appreciably
weaker: every algebraic curve can be “uniformized” by means of a function from
the disc to the curve except for at most a finite number of points. For Poincaré, mo-
tivated as he was by the integration of differential equations by means of functions
given explicitly by series, excepting a finite number of points was not a problem.
Moreover the proof of his result was in fact especially simple and elegant: given
an algebraic curve branched over the sphere, up to removing the branch points one
obtains a covering of the sphere with a finite number of points removed. It then
only remains to show that up to the removal of finitely many more points, one has
a covering of the sphere with finitely many real points removed. (This last step is
an elementary exercise which we recommend to the reader.)

It is in fact Klein to whom the honor belongs of enunciating the uniformiza-
tion theorem for algebraic curves as we now understand it. Klein, less interested
in differential equations, in effect prefers finite polygons. Moreover his intimate

21An “orbifold” is a certain generalization of a manifold with singularities. Trans

22The method of continuity, as conceived by Poincaré, is explicitly described in Chapter IX in
the case of spheres with 4 points removed. We leave to the reader as an exercise the verification that
the method becomes considerably simpler when the 4 points are real.
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knowledge of Riemann’s work allows him to identify the number of moduli of
curves of a fixed genus with the number of parameters on which Poincaré’s poly-
gons of the same genus depend. He is thus more naturally inclined to produce
the “correct formulation” (see Freudenthal [Freul955] and Scholz [Schol1980]);
“this is the only essential point in which Klein, in his research on automorphic
functions, surpassed Poincaré” [Freu1955]. The great principle is still the method
of continuity, however implementing it in the needed generality is difficult. The
correspondence between Klein and Poincaré shows very clearly just how each
interprets it according to his own point of view.

Thus Klein observes that Poincaré’s construction of Fuchsian groups produces
uniformizable algebraic curves, and that these depend on parameters equal in
number to those of the moduli space of curves of fixed genus. He notes also
that if a Riemann surface can be uniformized, then this is possible in one way
only. Thus the problem reduces to showing that the space of uniformizable curves
is both open and closed. The question of the connectedness of the moduli space is
mentioned by Klein as established in his book [Kle1882c], which we have already
described?3.

Poincaré, on the other hand, was interested in second-order linear differential
equations on an algebraic curve and showed that their description depended on
a “monodromy” representation of the fundamental group (which he had then not
as yet “invented”) in SL(2,C). When a differential equation on a fixed algebraic
curve is allowed to vary, so also does this representation vary. In his examples of
uniformizable curves (given by Fuchsian groups) one of these differential equa-
tions is privileged and has real monodromy group: Poincaré calls this equation
Fuchsian. He asserts that every algebraic curve possesses a Fuchsian equation
and that this allows him to show that his construction of Fuchsian groups is flex-
ible enough to yield a description of all algebraic curves. The “proof” that he
proposes also contains a component devoted to openness and another to closure.
His attachment to ideal polygons allows him to more easily identify the difficulties
associated with closure; see [Schol1980].

Both Klein and Poincaré later published descriptions of this period in their
lives. Poincaré’s text on “mathematical invention”, dating from 1908, is fa-
mous [Poin1908]. There he describes his discovery of the link between differ-
ential equations and hyperbolic geometry as pre-dating his first epistolary contact
with Klein.

At that time I left Caen, where I was then living, in order to take part in a
geology course undertaken by the School of Mines. The hazards of the trip
caused me to forget my mathematical labors; when we arrived in Coutances

23His “proof™ is hardly convincing.
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we climbed into an omnibus to go I knew not whither. At the instant I placed
my foot on the step, the idea came to me, seemingly without anything in my
mind having prepared me for it earlier, that the transformations I had used to
define Fuchsian functions were identical to those of non-Euclidean geome-
try. I carried out no verification of this, I wouldn’t have had the time since
scarcely had I entered the omnibus when I resumed an earlier conversation;
nonetheless I immediately felt complete certitude. Once back in Caen, 1
checked the result at leisure to satisfy my conscience.

It is indisputable that Poincaré had grasped the essentials of the theory before
beginning his correspondence with Klein. In his third supplement to the memoir
for the prize of the Academy, submitted on December 20, 1880, he “conjectures”
that Fuchsian functions allow one to solve all linear differential equations with
algebraic coefficients [Poin1997]:

I have no doubt, moreover, that the many equations envisaged by M. Fuchs
in his memoir in Volume 71 of Crelle’s journal. .. will furnish an infinity of
transcendentals. . . and that these new functions will allow the integration of
all linear differential equations with algebraic coefficients.

One observes here, however, the absence of any formulation of the situation
in terms of the uniformization of algebraic curves.

As for Klein, in his book on the development of 19th century mathematics
[KIe1928] he explains:

During the last night of my journey, that from March 22 to March 23 [1882],
which I spent sitting on a couch on account of an attack of asthma, suddenly,
towards 3:30, the central theorem dawned on me as if it had been sketched
in the figure of the 14-sided polygon. Next morning, in the coach which at
that time travelled between Norden and Emden, I thought about what I had
found, going over all the details once more. I knew then that I had found
an important theorem. Once arrived in Diisseldorf, I wrote up the memoir,
dated March 27, sent it off to Teubner, and had copies sent to Poincaré and
Schwarz, and also to Hurwitz.

In [Kle1921a, Vol. 3, pp. 577-586], there is an addendum to the effect that he
considered that neither he nor Poincaré had a complete proof and that the proof
using the method of continuity had been firmly established only by Koebe in 1912
[Koe1912]. He also describes that episode in his life as marking “the end of his
productive period”. He fell ill in the autumn of 188224

24“Leipzig seemed to be a superb outpost for building the kind of school he now had in mind:
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Unfortunately the second part of his book makes only a superficial contribu-
tion to the description of this mathematical adventure. Freudenthal’s fine arti-
cle [Freul955] served us as a point of departure. Klein’s book [Kle1928] is an
essential reference for the history of 19th century mathematics, written by one of
the heroes of the present work. By way of complementing these, the reader may
also consult the relevant chapter of the historical book by J. Gray [Gral986], the
remarkable analysis [Die1982] by J. Dieudonné, the introduction [Poin1997] to
Poincaré’s three supplements to his memoir on the discovery of Fuchsian func-
tions, J. Stillwell’s commentary to his translation into English of Poincaré’s ar-
ticles on Fuchsian functions [Poin1985], the relevant chapter of the impressive
thesis by Chorlay [Cho2007], the commentaries attached to the French version of
the Klein—Poincaré correspondence [Poin1989], or Fricke’s article [Fric1901] in
the Encyklopddie der mathematischen Wissenschaften. Finally, there is the article
by Abikoff [Abi1981], from which, while interesting also mathematically speak-
ing, we quote, for our present historical purposes, only his version of the reception
by Hurwitz, Schwarz, and Poincaré of the latter’s proof of the uniformization the-
orem:

— Hurwitz: T accept it without reservation.

— Schwarz: It’s false.

— Poincaré: It’s true. I knew it and I have a better way of looking at the
problem.

Chapter VI is an introduction to Fuchsian groups. The reader will find there,
for instance, the construction of the Fuchsian group associated with a fundamental
polygon, and also the construction of automorphic forms and Fuchsian functions
invariant under the action of a given Fuchsian group. As current references for
Fuchsian groups we might mention the books [Kat1992] and [Beal983], the lat-
ter dealing also with their generalization to higher dimensions: discrete groups
of isometries of hyperbolic space, notably the Kleinian groups in dimension 3.
For Kleinian groups one may also consult [Dal2007] and [Mas1988]. The pa-
per [Mas1971] gives the first complete and correct proof of Poincaré’s polygon
theorem (Theorem VI.1.10 below).

one that would draw heavily on the abundant riches offered by Riemann’s geometric approach to
function theory. But unforeseen events and his always delicate health conspired against this plan.
[In him were] two souls [...] one longing for the tranquil scholar’s life, the other for the active
life of an editor, teacher, and scientific organiser. [...] It was during the autumn of 1882 that the
first of these two worlds came crashing down upon him [...] his health collapsed completely, and
throughout the years 1883—-1884 he was plagued by depression” [Row1989].
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Chapter VIl is a variation on Klein’s approach, and there we make no attempt
to pronounce on the validity of the proofs proposed by him?3. We propose a “re-
constitution” of what purported to be a proof of the theorem on the uniformization
of algebraic curves along the lines of the method of continuity as viewed by Klein.
This proof uses tools developed later, but in a weak form. In sum, Chapter VII is
in some sense the article Klein might have written if he had more tools at his dis-
posal. In the space of twenty years the literature on the representations of surface
groups has grown enormously. The article [GolW1988] is an important reference
for the questions evoked in this chapter. For a presentation adhering more closely
to the ideas of Klein, the reader may consult the classic book [FrK11897].

Chapter VIII is an introduction to the approach of Poincaré. We first explain
there how uniformization theory can be expressed in terms of second-order lin-
ear differential equations, and then give a proof of the openness of the space
of uniformizable curves. In this connection it is necessary to complete some of
Poincaré’s arguments, but in a relatively light-handed manner. However, as far
as his approach to closure is concerned, we do not expound it because it fails to
convince us, and also because we cannot see our way to “repairing” it without in
fact using the arguments of Chapter VII.

Finally, in Chapter IX we put Poincaré’s approach to work in the analysis of
special cases, and also describe the subsequent life of these methods. In particular,
we expound there the explicit examples of uniformization obtained by Schwarz in
his investigation of the hypergeometric equation.

As we have already mentioned, the uniformization theorem is not confined to
algebraic curves. Emboldened by this “special case” (yet an already enormously
general one), Poincaré went on to attempt to generalize it to all simply-connected
Riemann surfaces not necessarily universal covering spaces of compact surfaces.
Here he can no longer resort to finite-dimensional moduli spaces or monodromy
groups. Koebe and Poincaré succeeded in 1907, and we shall explain how in
Part C.

25Except to say that his approach to closure does not appear convincing to us.






Chapter VI

Fuchsian groups

In his articles of 1882-1886 in Acta Mathematica, Poincaré proposes new “tran-
scendentals” on the model of elliptic functions (Chapter I). His initial motivation
was to develop in power series global solutions of linear differential equations
with algebraic coefficients. The then recent work of Fuchs on singular points
of linear differential equations [Fuc1880, Fuc1881] showed that the solutions can
be expressed as analytic functions of a finitely ramified variable, z'/9, or an in-
finitely ramified one, log(z) (corresponding to the case “q = o). Poincaré seeks
a global analogue, at first in the form of the universal cover of CP! with finitely
many points removed, including the singular points of the differential equation;
then, in conjunction with the successive appearances of notes in the Comptes ren-
dus de I’Académie des sciences de Paris between February 1881 and April 1882,
one sees the statement become progressively more precise, culminating in the uni-
versal covering space of a compact Riemann surface with an “orbifold structure”.
First, however, we expound his construction of Fuchsian groups.

VI.1. Fuchsian groups, the fundamental polygon, and hyperbolic tilings

Recall that H denotes the Poincaré half-plane
H={x+ V-1ly=ze€C|y>0}

endowed with the hyperbolic metric y~2dzdZz. Here the geodesics are semicircles
centered on the real axis y = 0 together with the vertical half-lines.

Sometimes the disc model of the hyperbolic plane is used instead, that is, the
disc D = {z € C| |z| < 1} endowed with the hyperbolic metric 4(1 — 1z12)"2dzdz,
where the geodesics are the arcs of circles and segments orthogonal to the unit
circle 9D.
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VL.1.1. The isometries of the Poincaré half-plane

The group PSL(2,R) acts on H by Mdbius transformations: z +— g;:z where

a,b,c and d are real numbers satisfying ad — bc = 1. This action is isometric with
respect to the hyperbolic metric. We remind the reader that, even more, PSL(2,R)
coincides with the group of holomorphic self-diffeomorphisms of H.

There are three types of elements in PSL(2,R), characterized by their respec-
tive fixed points in H = H U dH. (Here we are thinking of H as a disc in the
Riemann sphere, so that 9H contains the point at infinity.) The first type consists
of elliptic transformations, which are just those for which the inequality |a+d| < 2
holds; each such transformation has just one fixed point in H, which is in fact in H.
Every elliptic transformation is conjugate to a unique transformation of the form
P % for some 8 € R. (For these transformations it is more conve-
nient to use the disc model, where every elliptic transformation is conjugate to
a rotation z > ¢'?z.) Note that an elliptic transformation generates a relatively
compact subgroup of PSL(2,R).

The second type of isometry is characterized by the inequality |a + d| > 2.
These are the hyperbolic transformations, and are each conjugate in PSL(2,R) to
a unique transformation of the form z — Az, with 4 > 0 and not equal to 1. A
transformation ¢ of this type has exactly two (distinct) fixed points in H, both on
the boundary dH. One of these points, which we denote by p™, is attractive, and
the other, p~, is repulsive, in the following sense: if z € H is different from p,
then ¢"(z) tends to p* as n tends to +co, and, analogously, if z € H is different
from p*, then ¢"(z) tends to p~ as n tends to —co. The hyperbolic geodesic
connecting p* and p~ is called the axis of ¢.

Lastly, the elements of PSL(2,R) different from the identity and satisfying
la + d| = 2 are called parabolic. A parabolic transformation ¢ is conjugate in
PSL(2,R) to one of the two transformations z +— z + 1, and has just one fixed
point p in H, which is in fact located on the boundary §H. For every z € H, ¢"(z)
tends to p as n tends to oco.

VI.1.2. Fuchsian groups

A Fuchsian group is defined to be a discrete subgroup I' of PSL(2,R).

Proposition VLI.1.1. — A subgroup I of PSL(2,R) is discrete if and only if it acts
discontinuously on H, that is, if and only if each of its orbits is discrete.

Proof. — The group PSL(2,R) acts freely and transitively on the unit tangent
bundle UH. Hence I' is discrete if and only if it acts discontinuously on UH. Then
since the fibres of the projection UH — H are compact, the orbits are discrete
in UH if and only if the orbits of H under the action of I" are discrete. O
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VI.1.3. A fundamental polygon and its associated tiling

A polygon P C H is defined to be a closed, convex subset with piecewise geodesic
boundary, where the number of bounding geodesic arcs is locally finite in H. A
side of P is then a maximal geodesic arc contained in the boundary of P. Thus
the intersection of two sides of P is either empty or consists of a single point, in
which case we call this point a vertex of P. We say that P is finite if it has only
finitely many sides.

Given a Fuchsian group I', a polygon P C H is called a fundamental polygon
for I' if each orbit I'(z), z € H, intersects P in at least one point and intersects the
interior P in at most one point. It follows that the set of translates ¢(P), ¢ € T,
defines a tiling of the hyperbolic plane:

U ¢(P)=H and ¢(P)Ny(P)=0 forall ¢+ y.
el

The set of tiles {¢(P) | ¢ € I'} is thus in one-to-one correspondence with I'.
We saw a classic example of a tiling for PSL(2,Z) in the preceding chapter (see
Figure V.1). Two more are given in Figure VI.1 below.

Figure VI.1: Two more tilings for PSL(2,Z) (variants)

Theorem VI.1.2. — Let I' € PSL(2,R) be a Fuchsian group and zy a point of H
not fixed by any nontrivial element of I'. Then the set

P = {z € H dnyp(z,20) = dnyp(z.T'(20))

of points z € H that are closer to zg than to any other point of the orbit I'(zg)
is a (convex) fundamental polygon for . Furthermore P is finite if U is finitely
generated.
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Poincaré considers only finitely generated Fuchsian groups, showing that for
such a group there exists a fundamental region bounded by a finite number of
curvilinear arcs, and explaining how to modify such a region to make it polygo-
nal. However, it seems that here he glosses over a genuine difficulty. There do in
fact exist finitely generated discrete subgroups of PGL(2,C) having no finite fun-
damental polyhedron in the hyperbolic space H? (see [BoOt1988]). We describe
here the construction of the polygon P, the Dirichlet polygon, for an arbitrary
Fuchsian group. It is in fact finite if the Fuchsian group is finitely generated, but
we refer the reader to [Dal2007] for a proof of this additional fact.

Proof without the finiteness assertion. — Let zo be a point of H not fixed by any
nontrivial element of I" and consider the set P of points z € H closer to zg than to
all other points of the orbit I'(zg):

P = {z € H| dnyp(z,20) = diyp(z.T(20))} -

First of all, since I" is Fuchsian, the orbit I'(zg) is discrete, so P contains a neigh-
borhood of zg. Next observe that P is the intersection of the “half-planes”

P = {z € H | dnyp(z,20) < dhyp(z,zl')}, zi € I'(z0) \ {z0} »

and since each P; is convex (with respect to the hyperbolic metric) their inter-
section P must also be convex, whence, in particular, connected and simply con-
nected. The part of P contained in a hyperbolic disc of radius » > 0 coincides
with the intersection of finitely many of the P;, namely those corresponding to
points z; € I'(zo) contained in the disc of radius 2r. Hence P is a polygon with
piecewise geodesic boundary.

Now consider any point z € H. Its distance to I'(zg) is attained by some
point z; € I'(zp): indeed, since I'(zp) is discrete it must be closed. Let ¢; € T’
be an element sending zp to zi; since ¢ is an isometry, the point zg € I'(zp)
minimises the distance to zj := gol‘l(z) in I'(zp), so that z{ must belong to P.
Hence I'(z) N P # 0. Finally, if I'(z) intersected P in at least two distinct points,
say z; and zJ = ¢; !(2), then z would be equidistant from z; and z> = ¢2(2), S0
that z; would be equidistant from zo and t,DIl(,Dz(Zo). Hence z{ and z, must in fact
both lie on the boundary JP. O

VI.1.4. Finite polygons

In what follows we consider only Dirichlet polygons, that is, those constructed as
in Theorem VI.1.2 above.

Proposition VI.1.3. — Let ' C PSL(2,R) be a Fuchsian group and P a Dirichlet
fundamental polygon. If P is finite then I is finitely generated. More precisely,
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there exists a decomposition of the oriented boundary P into an even number
of oriented geodesic arcs 01,. . .,02,, together with a fixed-point free involutary
permutation o of the set {1,...,2n}, and generators ¢y,. .., for T, satisfying

@i (6;) = 5;1(0 and ¢g;) = tpi_l, i=1,...,2n.

A fundamental polygon with a specified such even decomposition of its
boundary is said to be adapted to the group I'. Note that the assumption that P
be Dirichlet is significant here: in [Beal983, pp. 210-213] an example is given
of a Fuchsian group with a convex fundamental polygon with just 5 sides, one of
which is not associated with the others and is the limit of sides of infinitely many
translates ¢(P), ¢ € I'. Thus in this example the tiling is not locally finite.

Proof. — Let d1,...,6, denote the sides of P, with the orientation inherited from
that chosen for the boundary of P. Observe first that for every point z € JP
there is at least one nontrivial transformation ¢ € I" sending z to a point z’ € dP
(possibly the same). To see this, let zg be a point used to define P as a Dirichlet
polygon (as in the statement of Theorem VI.1.2); then the distance of z from the
orbit I'(zp) is attained at zg and at least one other point z; # zo of the orbit. It
then suffices to choose a transformation ¢ € I" sending z; to zo: the distance from
7’ = ¢(2) to I'(zp) is then attained at both zg = ¢(z1) and ¢(zp), so that z’ is on
the boundary of P.

Now in the case where z and z” are “smooth” points of dP (that is, not ver-
tices), ¢ is determined uniquely and must send germs (9;,z) of segments of the
side containing z to germs (5;1, z") of the side containing z’, since otherwise there
would be points arbitrarily close to z each of whose orbits intersected the interior
of P at least twice. The equivalence class! of a point z € 9P is finite, since the
sum of the corresponding angles must be < 27 and the angles of 9P are all strictly
positive. (Here we are of course considering only points in H). By regarding the
points of the equivalence classes of non-smooth points of P as new vertices, we
obtain a new decomposition of JP into geodesic arcs d1,. . .,6,,, with the property
that for each i = 1,.. ., p there exist a unique j and ¢; € I' such that ¢;(6;) = 6}‘.1;
and moreover the orbit of a point z € §; other than its end-points intersects P in
just the two points z and ¢;(z). It is possible that i = j, in which case ¢; has a
fixed point in the middle of the arc ¢;; if this should occur, we add this point to
the set of vertices and subdivide §; into two arcs to fulfil the claim of the theorem
(see Figure VI1.2).

To verify that the elements ¢,...,¢s, € I' thus constructed do indeed gen-
erate I', we argue in terms of the tiling as follows. Note first that the tile adjacent
to P along the side &; is ¢;'(P). Thus if ¢(P) and ¢’(P) (with ¢,¢’ € T) are

IThat is, the set I'(z) N P. Trans
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two tiles sharing the side ¢’(d;), we must have ¢ Top(P) = cpl._l(P), whence
¢’ = ¢ o ¢;. Now given any element ¢ € I', we choose a path y joining P to the
tile ¢(P) avoiding all the vertices of the tiling (that is, all the translates by I' of
the vertices of P). Suppose the path y successively traverses the tiles

P() = P, P], Pz, e ,PN = (,D(P)

If it enters Py across the side ¢;, (that is, the side of Py sent to ¢;, by a (unique)
elementof I'), k = 1,..., N, then it follows immediately that Py = ¢;, o ¢p;,0---0
@i, (P), whence ¢ = @;; 0 ¢, 0+ 0 @jy. m

LN ¢1(P)

N Q1204021 1
= Q1w ¢201

Sif---c--tte=lay

Figure VI.2: A generating system for PSL(2,2)

From this proof we see that a shortest word in the generators ¢1,. . ., ¢, rep-
resenting a given element ¢ of I' corresponds to a path from P to ¢(P) meeting
the least possible number of tiles.

Henceforth we shall consider only adapted fundamental polygons with sides
understood to be the §; of the above proposition.

VI.1.5. The angle of an elliptic cycle and relations

The group I' determines an equivalence relation on the boundary 9P of the fun-
damental polygon, and, more particularly, on the set of its vertices. We shall call
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the equivalence class of a vertex under this relation a cycle, and define the angle
of a cycle to be the sum of the angles at the vertices of the cycle in question. We
shall ignore for the moment sides that go to infinity and do not intersect in H:
we are concerned for the time being only with the vertices (that is, at finite dis-
tances). We index the sides ; and vertices s; of P cyclically, so that s; = 6; N ;41
(assuming always that the polygon is connected and simply connected). For non-
compact P, the set of indices of the vertices is a proper subset of {1,...,2n}. We
denote by & € Perm{l,...,2n} the permutation defined by 5 (i) := o (i) — 1 for
i = 1,...,2n (with the convention 0 = 2n) where o is the permutation given in
Proposition VI.1.3. It is then immediate that the cycle of a vertex s; is

Sis S5y Sa2i)y -+ 2S&LG)

where [ € N is the least number such that 7+1(i) = i.

Proposition VI.1.4. — The angle of each cycle is an integer fraction of 2n.
Furthermore, in the notation introduced above, if the angle of the cycle of the
2r

vertex s; is 7 4€ N*, then the following relation holds:

(a1 0 o pam opi)? =id.

Every relation between the generators ¢1,. ..,p, follows from these relations
(with s; ranging over a system of representatives of cycles) together with the re-
lations ¢g i) = <pl._1.

We have thus obtained an explicit presentation of the group I' in terms of n

generators and r relations, where 2#n is the number of sides of the fundamental
polygon P and r the number of finite-distance cycles.
Proof. — Let s; be a vertex of P, and consider the tiling of H by the ¢(P), ¢ € T
The transformation ¢; sends the side 9; to its conjugate 6;_1(1.), and in particular s;
to So-(i)-1: the tile Py := gol.’l (P) is the one encountered on leaving the polygon P
across the side ¢;. In turning about s;, we successively encounter

Py =P,
Py = g7 (P),
Py = (¢sa) 0 ¢1) " (P),
P3 = (952¢) © o (i) © ¢1) ' (P),

Writing ¢ = ¢z1;) © *** © @5(i) © @i, we have ¢(s;) = s;. Hence ¢ is an
elliptic transformation, and since I is discrete, there exists an integer g for which
¢4(P) = P, so that ¢? = id. Writing Q = PpU P; U P, U ... U P;, we see that
the polygons Q,¢(Q),...,¢? 1(Q) have pairwise disjoint interiors and cover a
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neighborhood of s;. The angle at the vertex s; of the polygon Q is therefore

of size 27”, and is equal to the angle of the cycle containing s;. Moreover QO

and ¢~ (Q) are, by construction, adjacent along ¢~ !'(8;41), so the angle of the
2n

rotation ¢ is R Note that the element ¢ generates the stabilizer of s; in I,

Figure VI.3: Two cycles of angles 27” and 27” for PSL(2,2)

It remains to show that every relation among the generators ¢; is a conse-
quence of the relations given by the cycles, just discussed, together with the re-
lations gol.‘l = @s;). To this end, we denote by G the group generated by 2n
generators ai,. ..,d,, say, subject to the relations aq ;) = al.‘l, i=1,...,2n,
together with others corresponding to the cycles, and define a group morphism
p : G — I by setting a; — ¢;, with kernel denoted by N. We need to prove that
in fact N is trivial.

With this in view, we introduce the space H = P X G endowed with the
product topology, with the topology on G taken to be discrete, and consider the
equivalence relation on this space generated by

(z,8) ~ (z’,g") whenever there exists 1 <i <2n, 7' =¢;(z)andg =g’ - q;.

Denote by H* the topological quotient space of H by this equivalence and by 7«
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the natural projection of H onto H*. One easily checks that this map is proper?.
The group G acts on H in the obvious way: each element g € G determines a
homeomorphism
T (z,8)eH P (z,8-8)eH.

This action is proper3® and free, and has P X {id} as a fundamental region. This
action of G on H induces an action of G on the quotient {*, also proper since the
projection 7 : H — H* is proper. On the other hand, if (z,g) € H is equivalent
to (z,¢’), where g # g’, then z must of necessity be a vertex sl, and we then have
g = 8agk(jys- - - »Ag(i)ai, With 0 < k < (I5; + Dgs;, where 2% q is the angle of
the cycle containing s; and /s, + 1 the number of vertices in this cycle Since for
0 <k < (s, + 1)gs, we have plagky - --ag@yai) # id, we infer that for all
nontrivial v € N, (z,g) is not equivalent to (z, vg). Hence the action of N on H*
is free (as well as proper).

We now introduce the map p : H — H defined by p(z,g) = p(g)(z). This
map preserves the equivalence relation ~ and therefore induces a continuous map

: H* — H. Note that p* is a local homeomorphism. To see this, let s be a
Vertex of dP, [y + 1 the size of the cycle to which s belongs, and 31” the angle
of this cycle. Then on taking the union of P with the ¢;(P), i = 1,---,2n, and
the pzk(y 0 ... 0 @za) o 9i(P), 0 < k < (Is; + 1)gs,;, where s; ranges over the
vertices of P, we obtain a neighborhood of P. Hence the projection on H* of
Px{id}, together with the P X {a;},i = 1,--- ,2n, and the PX{as ;- .. ag@i)ail,
0<k< (s +1)gs, yields a nelghborhood W of n(P x {id}) and p* is a home-
omorphism from W to its image. It follows further that for all g € G, gW is a
neighborhood of 7(P X {g}), and p* is a homeomorphism from gW to its image.
Finally, observe that since the ¢; generate I' and U, er ¢(P) = H, the map p* is
surjective.

We shall now show that the fibres of p* are precisely the orbits of
the action of N on H*. Clearly, those orbits are contained in the fibres.
Now if p(z,g) = p(z’,g"), then p(g)(z) = p(g’)(z’), implying in turn that
(z.8) ~ (z/,ga) where a = g~'g’. Hence p(ga)(z’) = p(g')(z"). If 2’ is
not a vertex of P, we obtain directly the existence of a v € N such that
ga = vg'. In other words, n(z,g) = n(z’,vg’), so n(z,g) is certainly in
the same N-orbit as w(z’,g"). If 7’ is a vertex, s;, say, then there will exist

< k < gs, such that ga = vg'(a, SLsi (i - a&(i)al-)k. Since (z’,g’) is equiv-
alent to (z',8" (a5, Q)" a&(l)a,) ), we have that 7(z,g) and 7(z’,g’) are in the
same N-orbit. Thus we conclude that H*/N is homeomorphic to H. Then since
H is simply connected, N must be trivial, and in fact G is isomorphic to I". |

2That is, the preimage of every compact set is compact.
3Anaction a : G X X — X is proper if the map a X pr, : G X X — X X X is proper.
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Remark VI.1.5. — We mention by the way the fact that if I" contains a nontrivial
element ¢ fixing a point zg € H, then zg is in the orbit of a cycle of P and ¢9 = id
where 27” is the angle of the cycle. In particular, ¢ is conjugate in I to an element
(of order g) of the isotropy group of zg. Hence the cycles of angle < 27 are in one-
to-one correspondence with the conjugacy classes of maximal elliptical subgroups
of I'.

VI.1.6. Cycles at infinity

We shall now consider the intersection of the closure of P with the circle at in-
finity JH. We denote by P the closure of P in H = H U dH. The boundary of P
at infinity P N H decomposes into a finite number (possibly zero) of points and
closed intervals in 0H; we call the isolated such points and the endpoints of the
intervals contained in P N dH the vertices at infinity of P. Recall that we are
assuming P to be convex, so that its closure P is also. Extending the convention
adopted above, we denote by s; the connected component of the boundary of P
at infinity connecting the side ¢; to the side ¢;1. Once again the group I induces
an equivalence relation on the boundary of P at infinity, or, more specifically, on
the set of connected components of that boundary. The cycles at infinity of P are
then the latter equivalence classes. Such a cycle will be called parabolic if it con-
sists only of isolated points, and hyperbolic if it also contains intervals of positive
length. As for finite-distance cycles, one may consider the isotropy subgroup of a
vertex x = s; contained in a parabolic cycle. A nontrivial element of this group is
then ¢ := @z 0+ 0 Y (i) © p; where [ € N is the smallest natural number for
which &*1(i) = i.

Proposition VI.1.6. — If the vertex x € P N dH belongs to a parabolic cycle,
then the element ¢ € T indicated above is parabolic and generates the isotropy
group of x.

Proof. — By suitably dissecting and reassembling the fundamental polygon we
can arrange for the various ends corresponding to the cycle in question to coin-
cide; in this way we are reduced to the case of a fundamental polygon where the
parabolic cycle of interest consists of a single point x. The two sides of P adjacent
to x are then sent one to the other by ¢ so that of course ¢(x) = x.

To see that ¢ is parabolic, we consider the two geodesics g and vy bound-
ing P in a neighborhood of x and such that ¢(yg) = y1. Supposing ¢ hyperbolic,
consider the position of its second fixed point y relative to these two geodesics.
If y, or (what comes to the same thing) the geodesic y joining x to y, is between
vo and vy, one readily sees (by considering the germ of P at x along ) that the
intersection P N ¢(P) must have non-empty interior, contradicting the fact that P
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is a fundamental region. Hence y cannot lie between yy and ;. By replacing ¢
by ¢! if necessary, we may suppose that x is repulsive and y attractive in order
that the sequence of geodesics y, := ¢"(yp) tend to y. The side of P along yq
will then be sent by ¢" to a side of P, = ¢" (P) along “larger and larger” portions
of y,, that is, tending to the whole of y. Hence the tiling cannot be locally finite
in a neighborhood of vy, giving a contradiction.

The preceding argument shows in fact that the isotropy group contains only
parabolic elements. That isotropy group is therefore contained in a one-parameter
group {'} of parabolic elements, where ¢ = ¢, say. If the isotropy group con-
tained an element not a power of ¢, then on multiplying it by ¢, we would obtain
an element ¢ = ¥, 0 < 1y < 1, sending vy, to a geodesic lying strictly between
vo and 1, from which it would follow that P N ¢(P) had nonempty interior. This
contradiction shows that in fact the isotropy group of x is generated by ¢. O

VI1.1.7. Orbifolds and Riemann surfaces

If a discrete group I' acts properly on a Riemann surface S, the quotient space S/T’
can be endowed with the structure of a Riemann surface in such a way that the
projection S — S/I' is holomorphic. If we are given that the action is free and S
simply connected, then I and S and the action of I on S can actually be retrieved
from knowledge of S/I'; in fact S is just the universal covering space of S/I" and I
the fundamental group of S/I" acting via covering transformations. However, if the
action is not free, this is no longer the case. For example, as we have seen in Chap-
ter V, the quotient of H by the action of PSL(2,2) is a Riemann surface isomorphic
to C, which is simply connected. In this case, in order to recover I' and its action
on § from S/I', one needs supplementary information about the latter Riemann
surface. This leads to the concept of a 2-dimensional “orbifold”, originally intro-
duced in all dimensions by Satake [Sat1956] under the name of “V-manifold”, and
popularized by Thurston [Thul980, Chapter 13] under the name orbifold*. Here
we shall rest content with a naive approach, close to that of Poincaré.

Thus for us an orbifold is a Riemann surface X on which there is specified
a family (x;) of isolated points assigned integer weights n; > 2. One some-
times hears the points x; called ramification points of the orbifold and the n; their
multiplicities. When a group I acts properly on a Riemann surface S (preserv-
ing orientation), the quotient S/I" naturally acquires the structure of an orbifold.
Each point of § with nontrivial (finite cyclic) stabilizer defines a ramification point
of S/T" whose multiplicity is the order of the stabilizer. The quotient S/I" is then
called a quotient orbifold.

With two exceptions, described below, every orbifold X determines a unique

4The corresponding object of algebraic geometry bears the name “stack”.
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proper action of a group I' on a simply connected Riemann surface S such that
X is isomorphic to S/I". The Riemann surface S is called the universal cover of
the orbifold X and I its fundamental group. The exceptions referred to above
are just the sphere with either one ramification point or two ramification points
of different multiplicities. Here are examples that we have already encountered
(see Chapter V): the quotient of H by PSL(2,Z) is C with two ramification points
of multiplicities 2 and 3; the quotient of CP' by the icosahedral group is CP!
with three ramification points of multiplicities 2, 3 and 5; and the quotient of H
by I'h(7) is C*, with two ramification points of multiplicity 3 (see §V.1).

Thus orbifolds represent a generalization of Riemann surfaces. One can define
the concepts of a holomorphic mapping between two orbifolds, a covering of
orbifolds, and so on. If X is a compact orbifold, with ramification points x; of
multiplicities n; > 2, its orbifold Euler—Poincaré characteristic x4, is defined
to be xorh(X) = x(X) + X(1/n; — 1). This definition is dictated mainly by the
fact that if X; — X» is a covering map of degree d, then y o (X1) = dyon(X2), a
version of the Riemann—Hurwitz relations>.

VI.1.8. Quotients viewed as Riemann surfaces, then as orbifolds
Consider now the quotient
n:H-— S:=H/TT.

The structure of S as Riemann surface can be described as follows. As topological
space S is homeomorphic to the quotient of the fundamental polygon P by the
relation identifying each side ¢; with its conjugate 6‘;1(1.); thus in particular each
finite-distance cycle corresponds to a single point of S. It is also quite natural
to consider the compactification S obtained by making the same identifications
of P.6 A cycle at infinity then projects to a point or a circle according as it is
parabolic or hyperbolic. The map 7 : H — S is a ramified covering; or, more
precisely, it is totally ramified above each cycle of angle 27" with g > 1, and, at
each point of the fibre 7 can be expressed in the form z — z9 in terms of local

complex coordinates; and elsewhere the covering 7 is regular.
Proposition VLI.1.7. — The genus g of the Riemann surface S = H/T is equal
to % where 2n is the number of sides of the polygon P and c the number of

cycles, both infinite and finite.

5Another interpretation involves understanding an “ordinary” point as having characteristic 1
and an orbifold point characteristic %

60ne must take into account here that H/T', endowed with the quotient topology, is not Hausdorff
if I' is infinite.
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Proof. — The genus of S is by definition that of the compact surface without
boundary S’ = S U |J D;, where the D; are discs attached to the connected com-
ponents ;S of the boundary of S via identifications between the ;S and the dD;.

Denote by cpyp (resp. cpar, cen) the number of hyperbolic (resp. parabolic,
elliptic) cycles of I'. We then have

2-2g=x(8") = x(S) + chyp = X(S) + Cpar + Chyps

and also y(S) = ce1 — n + 1, by considering the images of the vertices and sides
of P in its quotient S. Hence 2 —2g = 1 — n + ¢ as claimed. |

Since I acts by conformal transformations, one can endow S with a complex
structure in such a way that 7 is holomorphic; a conformal local coordinate w
at a point 7m(zp) is given by the formula w = (z — z9)?, where ¢ is the order of
the isotropy subgroup of zg in I'. At a parabolic end, for instance zg = oo with
isotropy group generated by ¢(z) = z + 1, the function w = exp(2inz) projects to
a conformal local coordinate in a neighborhood of the corresponding point of the
compactification S. Hence in the case when the group I' has no hyperbolic cycles,
the Riemann surface S so defined is compact without boundary; the surface S is
then obtained by removing from S a finite number of points, one for each parabolic
cycle.

When the group I has one or more hyperbolic cycles, the compactification S
is naturally endowed with the structure of a Riemann surface with boundary.

Figure V1.4: The quotient orbifold H/PSL(2,Z)

The hyperbolic metric on H is invariant under the action of I and therefore 7
induces a metric of constant curvature —1 with orbifold singularities on the quo-
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tient S: corresponding to each elliptical cycle one has an orbifold (or conical)
singularity with angle that of the cycle. In this way one may view 7 : H — §
as providing an “orbifold uniformization” of S. As far as parabolic ends are con-
cerned, it is natural to consider them as orbifold points of angle zero in S.

The area of a hyperbolic triangle with angles measuring «, 8 and y is

T—(a+B+7),

even if one or more of the angles is zero. Hence, in particular, parabolic ends have
finite area, or, to be more precise, by dissecting the polygon into triangles, and
calculating directly, one obtains:

Proposition VI.1.8. — If the polygon P is without hyperbolic ends, then its hy-
perbolic area is finite, given by

area(P) = 2n-2)r — a,

where 2n is the number of sides of P and a = }; a;, the sum of the angles of P
over all its vertices.

It follows that the orbifold Euler—Poincaré characteristic of the quotient S is
given by yop, = —area(P)/2m — a particular case of the Gauss—Bonnet theorem.
Since the polygon P has area > 0, we conclude that the Euler—Poincaré character-
istic of S is necessarily < 0.

If the polygon P has a hyperbolic end its area is infinite. To give a fundamen-
tal polygon for the action of a group I, is to give a “tessellation” of, or piecewise
geodesic graph on, the quotient orbifold S whose vertices include all the orbifold
points and whose complement is connected and simply connected. Hence one
may construct new fundamental polygons by modifying or deforming this graph.
For instance, one can always modify the graph in such a way that a given orbifold
point becomes a vertex on a single side; the corresponding cycle of the new funda-
mental polygon is thus reduced to a single vertex. In the particular case of a cycle
of angle 2m, it becomes an interior point of the new fundamental polygon. One
cannot, however, use this device to eliminate all cycles of angle 27 — for exam-
ple, in the case of a compact surface (without orbifold points). All the same, they
can be moved about relatively freely in the course of deforming the fundamental
polygon.

Remark VI.1.9. — Given any Fuchsian group I' (not necessarily finitely gener-
ated), one can form the quotient H/I" and endow this with an orbifold structure
rendering the projection a universal orbifold covering map. The number of orb-
ifold points or ends may then be infinite. In fact it follows from the topologi-
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cal classification of connected oriented surfaces” that the (orbifold) fundamental
group of such a surface is finitely generated if and only if it has a finite number
of orbifold points and ends. Thus the quotient of H by a finitely generated sub-
group I' of PSL(2,R) must be geometrically finite; it is then easy, starting from a
geodesic triangulation, to infer the existence of a finite fundamental polygon.

VI.1.9. The polygon theorem

Hitherto we have always started with a Fuchsian group I' and constructed from it
a fundamental polygon. We now reverse this point of view and look for conditions
on a polygon for it to be the fundamental polygon of a Fuchsian group.

Theorem VI.1.10. — Let P C H be a connected and simply connected polygon
with boundary consisting of an even number of geodesic arcs 61,. . . ,02, in cyclic
order. Suppose given the following:

— an involutary fixed-point free permutation o of {1,...,2n} allowing the
pairwise identification of the arcs;

-1

o () and

— for each i, a transformation ¢; € PSL(2,R) sending 6; onto 6§

satisfying ¢ iy = ¢; .

Suppose in addition that:
— the angle of each finite-distance cycle is an integer fraction of 2m;

— for each parabolic cycle at infinity the corresponding “return” transforma-
tion ¢ defined in §VI.1.6 is parabolic.

Then the group I generated by ¢1,. .., is Fuchsian and P is a fundamental
polygon for T.

Remark VI.1.11. — Given two oriented geodesic arcs ¢ and ¢’, there exists an
element ¢ € PSL(2,R) sending § onto ¢’ (and matching the orientations) if and
only if one of the following conditions holds:

— 6 and ¢’ are of the same finite length;
— ¢ and ¢’ are either both future half-geodesics or both past half-geodesics;

— ¢ and &’ are both complete geodesics.

7This classification came later than the work of Poincaré we are concerned with here; see the
introduction to the final part (Part C).



164 VI Fuchsian groups

The transformation ¢ is unique except in the third case where it is defined only
modulo the action of a one-parameter group. Consequently, if the polygon of the
above theorem has no “doubly infinite” sides, then, once the involution o is given,
it determines the group I" uniquely. Hence for instance in the case of a compact
polygon, the theorem can be stated without reference to the ¢;, requiring only that
for each i the sides 0; and 6 (;) have the same length. In the non-compact case the
parabolicity condition has to be appropriately translated. As Proposition VI.1.6
shows, this condition is necessary. For example, if one chooses to identify the two
sides of the polygon {(x,y) € H | % < x < 1} using the hyperbolic transformation
¢(z) = 5, then the associated tiling covers only a quarter of the plane {x,y > 0}.
In his first notes Poincaré omits this needed assumption.

Figure VI.5: The tiled neighborhood V

Proof of Theorem VI.1.10. — It suffices to show that the polygons ¢(P), ¢ € T’
constitute a tiling of the half-plane H, that is:

— the union of the ¢(P) covers H;

— the intersection of two translates ¢(P) and ¢ (P) is empty or a union of
sides (or else vertices) or ¢(P) = (P) in which case ¢ = .

Observe first that the condition on the elliptic cycles at least allows one to tile
a neighborhood of P in H. This is done by first attaching the germ of P; = gol.‘l (P)
to the side ¢;. Next one fills in the region around each (finite-distance) vertex s;
using a sequence

Pij=¢ijo-o0@1(P), j=1,---k;

of tiles, as in Proposition VI.1.4. (Here one considers the germ of each P; ; in a
neighborhood of the vertex s;, except for j = 1 and j = k; where one considers
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germs neighbouring the sides d; and d;11). Let V be a neighborhood of P for
which the tiling so constructed is well defined. In order to appreciate the difficulty
and thus the force of this theorem, note that a priori this neighborhood of P is
tiled only by germs (see Figure VL.5).

We shall now construct a global tiling of a surface covering H. To that
end we again employ the construction used in the proof of Proposition VI.1.4.
The group G, the morphism p : G — I, the spaces H and H*, and the maps
p:H — Hand p* : H* — H are all as in that proof.

The action of G on H* is discrete and 7 (P X {id}) is a fundamental region for
that action. To obtain the polygon theorem we need to show that p* is a home-
omorphism between H* and H. Since we do not know a priori that the ¢(P),
¢ € T, tile H, it is no longer clear that p* is surjective. Nonetheless it is still true
that p* defines a local homeomorphism from H* to H. We verify this first in a
neighborhood of w(P x {id}). Just as we constructed above the tiled neighbor-
hood V of P in H, we now construct the analogous neighborhood W of P x {id}
in H by adjoining the corresponding germs P X {g} obtained by replacing the ¢;
by the a;. Write U = n(W), the projection of W on H*. The map p*|y : U — V
is a homeomorphism by construction. Noting that p* o 7, = p(g) o p* for all
g € G, we see that 7, (U) defines a neighborhood of 7(P X {g}) and p* restricts to
a homeomorphism from 7, (U) onto p(g)(V).

In order to show that the local homeomorphism p* : H* — H is in fact a
global homeomorphism, it is enough to prove that p* is a covering map from H*
onto H. We establish this by showing that p* has the homotopy lifting property
for paths. It is in this connection that the condition on parabolic cycles comes into
play. Thus let s; be a vertex of P belonging to a parabolic cycle with n; + 1 vertices
at infinity. By gluing together germs at s; of the @zx ;0 -+ 0 wz@i) 0 i (P), 0 <
k < n;, one obtains a tiling of an angular sector C; lying between two geodesic
arcs a and S issuing from s;. The return map ¢, which generates the isotropy
group of s;, is a parabolic transformation sending @ onto 8. By considering the
union of the ¢™(C;) as m ranges over Z, one can tile the whole of the interior
of a horosphere based at s;. This procedure is repeated for each parabolic vertex
of P, and the interiors of the horospheres thus tiled are adjoined to the region V,
yielding a new neighborhood V’ of P. The analogous construction on H with
the ¢; replaced by the q;, yields a neighborhood W’ of P x {id}, and then by
projecting to H*, we obtain a new neighborhood U’ of 7(P x {id}) on which
p* H* — His still injective.

Now for the neighborhood V', there exists a € > 0 such that for all z € P, the
hyperbolic disc with centre z and radius ¢ is contained in V. This implies that the
open set Uy er ¢(P) coincides with its e-neighborhood in H, or, in other words,
that the map p* is surjective. Let 2* be the metric on H* obtained by lifting the
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Poincaré metric via p*. Since p* is a homeomorphism between U’ and V', we
have that for each a € 7 (P x {id}), p* determines an isometry between D*(a,€),
the disc centred at a and of radius € with respect to the metric 4*, and its image
D(p*(a),e). Since G acts isometrically on H*, we conclude that every h*-disc
centred at a point of H* and of radius ¢ is sent isometrically by p* onto its image.
It is then easy to show that every path in H lifts to H*, so that p* is indeed a
covering map. m|

VL.2. Examples
We now apply the preceding theorem to the construction of certain Fuchsian

groups and thence of uniformizable orbifolds.

S1

S3

{52,854}

Figure VI.6: Hyperbolic triangles and orbifold spheres

VI.2.1. The sphere with 3 orbifold points

Consider a hyperbolic triangle T with vertices s1, s and s3, and angles

Vs by and Vi
] =—, ay=— a3z = —,
T T Tk T ks
with k; € N* U {oo}. If k; = oo, then s; € JH. We denote by o; the reflection in
the side s; sk, {i,/,k} = {1,2,3}. These three reflections generate a discrete group
of isometries of H. The subgroup I" generated by

$i = 0iy1 00442, =1,2,3mod3
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has index 2: it is the subgroup of orientation-preserving transformations. The
group I is Fuchsian, with fundamental region P := T U 0»(T), for example. The
vertices of P are then s1, 52, 53 and s4 = 02(s2). Writing ¢; for the geodesic arc
SiSi+1, we have

©1(01) = 04, ©3(03) =02 and ¢ 0203 =id.

Figure VI.7: The sphere with 4 points removed

The cycles are
{s1}, {s2,54}, {s3}
with angles respectively
2n 2m  2nm
ki’ k' k3’

and with isotropy groups generated respectively by

o1, 2= (g3, @

The group relations are just
ki _ -
;" =id
for each i = 1,2,3 for which k; is finite. When k; = oo, one verifies that the
parabolicity condition holds for the cycle associated with the vertex s;, i = 1,2,3.

The surface S is compact, of genus 0, and has 3 orbifold points (possibly of an-
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gle zero). Every sphere with 3 orbifold points is obtained in this way provided

1 1 1 :
k_1+k_2+k_3< l,thatls,

+_

2 2 2
area(T)zﬂ—(k—T k:+k—:)>0,

which is just the necessary and sufficient condition for a hyperbolic triangle with
these angles to exist.

VI.2.2. The Riemann sphere with »n + 1 points removed
Next we consider an n-sided polygon P in the hyperbolic disc D with all of its
vertices si,...,52, on the boundary dD, and cyclically ordered. We denote by

0;+1 the side s;5;+1 and by ¢y the parabolic transformation fixing s,; and sending
02k +1 to 02x. The cycles are then

{s2}, {sa}, ..., {s2n} and {s1,s83,...,5001}
The corresponding isotropy groups are generated by
©2, @4 ... @2 and @ i=@r0@40---0 @y
The transformation ¢ is parabolic if and only if

(51— 83)(s3 —585) - (S2n-1 — S1) _
(52— 54) (54— 56) =+ (S2 — 52) ’

If this condition is satisfied, the group I' generated by the ¢; is Fuchsian. The
surface S is compact, smooth, of genus 0, and has n + 1 orbifold points of zero
angle. Once endowed with the complex structure defined in §V1.1.8, S is just CP',
while § = H/T is CP! with n + 1 points removed. Modulo the action of PSL(2,R)
one can fix three vertices, say s, s4 and sg; there then remain 2n — 3 parameters
subject to the cyclic inequalities and the parabolicity condition. Hence the set of
such polygons forms a real semi-algebraic subset of R*"~3 of dimension 21 — 4.
Given two (n+1)-tuples E; and E, of points of CP', the Riemann surfaces CP'\ E,
and CP' \ E, are biholomorphically equivalent if there exists a transformation
from PSL(2,C) sending E; onto E;. Since the action of PSL(2,C) is transitive on
triples of points, a structure of this form is completely determined by a given n—2
distinct points of CP! \ {0, 1, 00}, again yielding the real dimension 2n — 4.
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VI.2.3. The surface of genus g > 1

Figure VI.8: The surface of genus 2

Lastly, we consider a 4g-sided polygon P in H with cyclically ordered vertices
S1,...,54¢ € H, writing as before 6; = s;5;+1. We assume also that 6; has the
same length as 6;,2, and denote by ¢; the transformation sending the first of
these onto the second and reversing the orientation induced from P. The vertices
then form a single cycle; we shall further assume that the sum of their angles is
exactly 2r. The quotient by the Fuchsian group generated by the ¢; is then a
compact Riemann surface of genus g. Modulo PSL(2,R), one needs 8g — 3 real
parameters to determine such a polygon. These parameters are subject to 2g + 1
equations, of which 2g arise from the condition that opposite sides be congruent
and one from the condition on the sum of the angles. This leaves 6g — 4 param-
eters, which is two more than the dimension of the space of possible complex
structures on the compact orientable surface of genus g. These two dimensions
are accounted for by the circumstance that the same Riemann surface can be rep-
resented by a 2-parameter family of such polygons: the cycle (of angle 27) plays
no role in the surface and may be changed at will; one can also continuously
deform the geodesic graph on the surface. In other words, one can deform the
polygon without changing either the surface or the group I'. Hence one obtains
finally 6g — 6 essential real parameters.

Remark VI.2.1. — These dimensional calculations allow us to glimpse the con-
ceptual leap involved in introducing Fuchsian groups; while earlier uniformized
Riemann surfaces seemed to represent only exceptional cases — consider for ex-
ample the case of the Klein quartic — one now saw entire open sets of complex
structures uniformized by means of Fuchsian groups. We shall provide a more
rigorous treatment of this aspect in the next chapter.
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VL.3. Algebraisation according to Poincaré

VI.3.1. Automorphic forms

Recall (see §V.1.2) that an automorphic form of weight v € N for a subgroup I" of
PSL(2,R) is a (holomorphic or meromorphic) differential form on H of degree v

0O = 0(2)(dz)”
invariant under I', that is, satisfying
6op(z) (¢ ()Y =6(z), YzeH, peT.

This is only of interest if I" is discrete. Abusing terminology, we also call the
function 6 an automorphic form of weight v.

Theorem VI1.3.1. — Let I be a Fuchsian group, v > 2, and f a rational function
such that the differential form ®y = f(z)(dz)” has no poles on 0H (and the
function f vanishes to the order 2v at 7 = o). Then the series

0(z) = Y Fop(a) (¢ ()

pell

converges uniformly to a meromorphic automorphic form on every compact subset
of H.
Proof. — To establish the convergence we go over to the disc model of the hyper-
bolic plane

D={zeCllzl <1}

via the identification ¢ : D — H, given, for example, by ¥ (z) = ilﬁ.
We have to prove the convergence in mean of the differential form ¥*®y =
fow(2)(¥W'(2))” (dz)” under the action of the group ¢ o I" o y~!. To avoid undue
notational complexity, we shall henceforth understand the group I' as acting on D
and the differential form ®¢ = f(z)(dz)” as given by a rational function f without
poles on 0D.

Now choose a point zg of the disc not fixed by any element of I \ {Id}, and
denote by D = D(zg,¢€) a closed disc centred at zp of radius & (in the Euclidean

metric) contained in D. We first establish the uniform convergence of the series
2
D19’
el

on D for sufficiently small . For & small enough the ¢(D), ¢ € I will be pairwise
disjoint, whence the total (Euclidean) area ', < area(¢(D)) will be finite.
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We claim (see below) that there exists a constant K (&) > 0 such that for every

¢ € I" one has
, area(¢(D))
Maxzeple'(2)? < K2 2]
area(D)

It follows from this that

KQ
2 @F < o ) arealp(D) <,
el

& area(

whence the normal convergence of the series of interest on D. In particular, the
quantities |¢’(z)| are uniformly bounded on D by a constant C > 0. Hence for
every v > 2, the quantities |<,o'(z)|"‘2 are bounded above by C”2, whence the
normal convergence on D of the series

D@ Y < oo

pel el

Now if f(z) is a rational function, or even just meromorphic in a neighborhood
of the closed disc D, without poles on the boundary dD, then it will be uniformly
bounded on all the (D) possibly except for a finite number of them on which it
is meromorphic, whence the convergence of the series

D foe (@)
pel’

on D for all v > 2.
It remains to establish the above upper bound for |¢’| on D. If ¢(z) =
ad — bc = 1, then

az+b
cz+d’

, 1 1 1
Iy (@l lcz+d|?> || dist(z,—%)z’
where the only variable quantity on D is the Euclidean distance from z to the point
0 1(c0) = —g. Note that the equality ¢(c0) = oo holds only for finitely many
elements of the group. Leaving aside the terms corresponding to these elements,
we may assume ¢ # 0. Let M, and m, be the largest and smallest values of
l¢’(z)] on D. Then

. -1 2 2
% < (dlstFD,go (00)) +26) - (1 . 2€ ) .
My dist(D, p~1(0)) dist(D,dD)

Writing K for the right-hand majorant here, A for the Euclidean area of D, and A,
for the Euclidean area of ¢(D), we then have

Ay >mi-A> 2. A
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which gives directly

rarea(¢(D))

M "D < K
axzeple'(2)| area(D)

O

The number of poles of 8(z) - (dz)” in the fundamental region P is (neglecting

simplifying reductions) equal to the number of poles of f in the disc. In the

notation of §VI.1.8, the quotient S = H/I" is a Riemann surface of finite type.

Its compactification S obtained by adjoining the cycles at infinity is a Riemann
surface with boundary.

Lemma VL.3.2. — The automorphic form 6(z)(dz)" of Theorem VI.3.1 defines a
meromorphic differential form © of degree v on the compact Riemann surface S.

Proof. — Since 6(z)(dz)” is meromorphic on H and automorphic (I"-invariant),
it projects to a meromorphic differential form of degree v on

S§* = S — elliptic cycles.

Thus we now need to examine the behaviour of ® in a neighborhood of each type
of cycle.

We begin with elliptic cycles. We again work in the disc model, and assume
that O belongs to an elliptic cycle of angle 2rr/g, so that the isotropy subgroup of 0
in T is generated by the elliptic transformation ¢(z) = e*"/9z. The form @ is
invariant under ¢, in particular, and can be written as

) Z a qu (dZ)V Z akqwk (dW)V
= kg - = — —
k>ko < k>ko qv w
where w = z4 is a local coordinate on § in a neighborhood of the corresponding
cycle. Hence the form ® is meromorphic on S.

Note that even if the rational function f of Theorem VI.3.1 is holomorphic
in a neighborhood of the orbit of 0, the form ® will still have a pole at the cor-
responding point of S. Indeed, if f(z) = X ,a,z", then averaging over the
isotropy subgroup one obtains

N i I\ N kq (42 Y O kg (dw)”
;fo‘#"(d‘ﬁ) =6]Zakq—v2 ? =qzq—vw 7 .

k>X% k>Y
=q “q

Hence the form ® will in general have order k — v, where k is the smallest inte-
ger > é. Since v,g > 2, as in our case, one has k — v < 0.

We next consider parabolic cycles. We return to H and assume that the point oo
belongs to a parabolic cycle, with isotropy group generated by ¢(z) = z + 1. To
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that cycle there corresponds a point s on the surface S at which a local coordinate
is given by w = e?"%; a neighborhood base is given by the family of horospheres
Hp := {Im(z) > M}, M > 0. By modifying the fundamental polygon P if
necessary, one may assume that

1 1
Py :=PNHy = {—z < Re(z) < E}HHM

for M > 0. By construction, the form 6(z)(dz)” has only a finite number of
poles in P and is therefore holomorphic on Py, for M > 0. On the other hand,
0(z)(dz)” is p-invariant, so projects to a form

dw 1 log(w)\ (dw)”
®=0 = 0 — .
) ( ) Qin)’ ( 2in |\ w
The whole difficulty consists in showing that (w), which is defined holomorphi-

cally a priori only on a punctured neighborhood, grows at a moderate rate and so
extends to w = 0. We first prove this for the series

+00

00(z) == ) f(z+h).

k=—oc0

Recall that the rational form f(z)(dz)” is, by assumption, holomorphic in a neigh-
borhood of the limit set of I'; since dz has a pole of order 2 at oo, it follows that
the function f vanishes to the order 2v at co. Hence for M > 0 one has

C
lf(2)] < W ¥z € Hpy,

where C > 0 is a constant. Hence for all zg € Py

+00 +0o0
0o(z0)| < -~
160(20)| kZ - +k|2V ;(W o
+00
< 2C Z 1 .
|ZO|2V (1+( k )2)
Izol

and since there are at most |zg| + 1 integers k£ € N such that n < ﬁ <n+1,it
follows that

C/
[60(z0)| < (Izol )Z o ~ <

| |20/2~!
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for some constant C’ > 0. Therefore
~ dw\”
00(z)(dz)” = 6p(w) (7)

with fy(w) holomorphic in a neighborhood of w = 0 and vanishing at w = 0.
The general case now follows readily. One chooses from each right coset of I
modulo (¢) a representative ¢;, i € I, and rearranges the series

()= ) f fiz+ k) - (d2)” = ) 0:(2)(d2),

i€l k=—co iel

where f; := f o ;- (¢})”,i € I. By Theorem VI.3.1 this series converges uni-
formly on every compact subset of H, so in particular in the annulus {r < |w| < r’}
defined about w = 0 by Pps \ Pps+1. Each function f; is rational and vanishes to
the order 2v at oo; hence each series 6; (w) is holomorphic and vanishes at the
point w = 0. Thus on the annulus {r < |w| < r’} the series §(w) is a uni-
form limit of holomorphic functions on the disc {|{w| < r’} vanishing at w = 0.
The limit is therefore holomorphic, vanishing at w = 0, and the differential form
®=64(w) (dTW)V is meromorphic of order < v — 1.

It remains to show that ® extends meromorphically to the compact Riemann
surface S in the case where I has hyperbolic cycles. To this end, we return to the
disc D and consider the fundamental region P’ symmetric relative to D, obtained
by applying a Schwarz reflection to P. The convergence of the series

D@

el

holds on every compact set D C C not approaching the orbit I'(c0), once estab-
lished at a point zg € D. To see this it suffices to observe that, for z € D, one

has
2

’

@) _ (diSt(Zo,QD_l(OO)))Z . (dist(zO,¢-1<w)>)
Gl \distzg (o) )| =\ dist(D.T(eo))

since I acts discretely on CP' \ D, one can uniformly bound dist(zg, ¢ 1 (c0)) on
all nontrivial elements of I, thus establishing the convergence of the series on D.
In fact, provided the compact set D contains no limit point of I'(c0), then possibly
after omitting a finite number of terms containing a pole, the series still converges.
Hence the form © extends meromorphically to S. O

When there are no hyperbolic cycles (and the differential form © of degree v
is not identically zero on the compact surface S) one has

number of zeros — number of poles = 2v(g — 1)
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where g is the genus of the surface S, or, equivalently, by Proposition VI.1.7:
number of zeros — number of poles = v(n — c — 1)

where 2n is the number of sides of P and ¢ the number of distinct cycles (elliptic
or parabolic). In order to use Theorem VI.3.1 to construct a form ® that is not
identically zero, it is enough to ensure that it has a pole. Note however that several
of the poles of f may belong to the same orbit of I' and simplify in the series 6.
To avoid this eventuality, one might for instance choose the function f(z) with
all of its poles in the interior P of the fundamental polygon: these poles will then
persist (with the same orders) in the form ©.

VI1.3.2. Fuchsian functions and the algebraisation of the Riemann surface

We define a Fuchsian function for the group I' to be any meromorphic func-
tion f(z) on the disc D left invariant by I':

fow(x)=f(2), VzeD, pel

(in other words, an automorphic form of weight v = 0). One constructs such
functions by taking the quotient of two automorphic forms of the same weight; in
order to ensure nontriviality, it suffices to make an appropriate choice of poles of
the rational functions used in Theorem VI.3.1. These are the “new transcenden-
tals” proposed by Poincaré.

Proposition V1.3.3. — Suppose the polygon P has no hyperbolic cycles. Then the
field of Fuchsian functions is generated by just two of them, that is, has the form
C(x,y), where x = x(z) and y = y(z) satisfy an algebraic relation F(x,y) = 0,
F e C[X,Y]. The map

H—- X ={F(x,y) =0}; z (x(2),y(2))

identifies the compact quotient S with a compactification/desingularization of the
algebraic curve X = {F(x,y) = 0} ¢ C%. The genus of this curve is as calculated
above.

Remark VI1.3.4. — Here the curve is considered up to birational equivalence (that
is, to within an isomorphism of the function fields). When the genus g is > 3, it is
possible that the curve obtained be non-smooth. It may have “apparent” singular-
ities depending on the choice of the generators x and y. We can nevertheless talk
of the underlying Riemann surface by passing to its desingularization, or, what
amounts to the same thing, to an embedding in some projective space PV. The
genus of the curve is thus well defined.



176 VI Fuchsian groups

Proof. — First of all, it is easy to construct a non-constant Fuchsian function
on the quotient S by forming the quotient of two automorphic forms of the same
weight: here one should choose the poles of the second so that they do not cancel
those of the first. Let x(z) be the function so constructed. We shall now show
that the field K of meromorphic functions on S is a finite extension of £k = C(x).
With this in view, we first prove that every element y(z) € K is algebraic over k.
Since x(z) effectively defines a ramified covering of the Riemann sphere of de-
gree d, say, its inverse has at a generic point x exactly d values z;(x),i = 1,...,d.
The elementary symmetric functions o (x) of the d local values of y(z;(x)) are
then well defined and meromorphic on the Riemann sphere, whence rational in x.
Finally, y(z) satisfies the polynomial equation

Y =y e+ (DT oa (0 + (D oa(x) = 0.

Hence the degree over k of every element of K is bounded by d, and it follows
(from the primitive-element theorem) that K is a finite extension of k and that
K = C(x(z),y(z)) for some y € K. ]

VL1.3.3. The dependence of Fuchsian functions on the group I

Consider a fundamental polygon Py of a Fuchsian group Iy, with generators
©1,...,Pn as given by Proposition VI.1.3. Now imagine a deformation

[I—)PZCH

of the polygon Py where the finite and infinite vertices vary continuously with
the parameter ¢ without collisions, and with the assumptions of Theorem VI.1.10
preserved identically throughout. Then the generators deform continuously:

t t
e PN

in such a way that the groups I'; they generate are all Fuchsian. For example,
in the compact case, it is enough for the angles of the cycles to be kept constant
and for the sides conjugated by the ¢’ to remain conjugate — that is, of the same
length.

In this case the family of automorphic forms

0:(2) = ) fop(2)- (¢'(2)

@ely

constructed from a given rational function f will also depend continuously on the
parameter ¢; to see this it suffices to note that in the proof of Theorem VI.3.1, all
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of the constants involved in bounding the series

Dl @P

pely

on D depend continuously on ¢. This continuous dependence automatically ex-
tends to parabolic cycles of the surface S;. In taking the quotient of two such
forms, one obtains a meromorphic function x;(z) again depending continuously
on ¢. In particular the degree of the meromorphic function x; : § — CP! must be
constant. Hence the function y,(z) constructed from x, as in the proof of Propo-
sition VI.3.3 will depend continuously on ¢, and, finally, so also will the curve
X, ={F(X.,Y) =0}.

VI1.4. Appendix

We conclude this chapter with two technical lemmas to be used in Chapter IX in
connection with appreciating how Poincaré uniformized the complex structures
obtained by removing 4 points from the Riemann sphere. The reader may wish to
omit this section at first reading.

Consider the unit disc D furnished with the hyperbolic metric. We will denote
distance and area with respect to this metric by “dist” and “area” respectively. For
example, the open disc centred at 0 and of radius R > 0 (in the hyperbolic metric)
is

R _
D(0,R) := {z € D | dist(0,2) < R} (: D(O,eR_l))
et +1

and its (hyperbolic) area grows exponentially with R:

eR 4+ ¢ R

area(D(0,R)) = 2n(cosh(R) — 1), cosh(R) = >

Suppose now that I' is a Fuchsian group acting on the disc D.

Lemma VI1.4.1. — For every radius R > 0, there exists k € N and € > 0 such
that for all zo € D(0,R), the disc D(zg,€) contains at most k other points of the
orbit I'(zg). If T is finitely generated then k may be chosen independently of R
provided one takes e(R) = ce R ¢ ¢’ > 0.

Proof. — Consider first the case where I has no elliptic cycles in some neigh-
borhood of D(0, R): in such a neighborhood no nontrivial element of I" will have
a fixed point. Hence there is an £ > 0 separating every two distinct points of
D(0, R) in the same orbit under I' — if this were not the case, then there would
have to exist a sequence of points z,, € D(0, R) and elements ¢, € I such that z,,
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and ¢, (z,) converged to the same point zg € D(0, R), since this set is closed, and
then we could find a transformation ¢ fixing zg in the closure of the ¢,,. However
since I is discrete, such a sequence of transformations would eventually become
constant, whence ¢ € I', a contradiction. Thus in this case we have k = 0.

If on the other hand I has an elliptic fixed point zg € D(0, R), of order [, say,
then in the orbit of a point arbitrarily close to zop we can find / points arbitrarily
close to one another. Thus by choosing k£ + 1 as an upper bound for the highest
order of an elliptic point in D(0, R), we can apply the above argument to obtain
an appropriate €.

If T is finitely generated, then for R sufficiently large the complement of
D(0, R) will contain only finitely many parabolic and hyperbolic cycles of a suit-
able fundamental polygon. In the case of a parabolic end the distance between
any two points in one and the same orbit will not have a positive lower bound:
if ¢ is parabolic, direct calculation shows that dist(z,¢(z)) < ce~¢'dis0.2) where
¢’ > 1 can be chosen arbitrarily close to 1 for suitable choice of ¢ > 0. O

For each n € N, we denote by C,, the annulus
C, :=D,n+ 1)\ D(,n),
and write the series of Theorem VI.3.1 as the sum 6(z) = >, ex 01 (z) Where

0n(x):= Y foe@- (@)

pel, p(z)eCp

Lemma VI1.4.2. — Given a Fuchsian group I" and v > 1, R > 0, there exists a
constant K > 0 depending only on v, R, and the constants &€ and k of the preceding
lemma, satisfying
o (@) < KeI™m,
wel, ¢(z)eCp

Proof. — Given a value R > 0 for the radius, the preceding lemma tells us there
exist constants € > 0 and k € N with the property that for all zog € D(0,R), each
point of the disc D is contained in ¢(D(zg,€)) for at most k distinct elements
¢ € I'. Hence the number of points of the orbit of zg contained in the disc D(0,n),
n € N*, is bounded above as follows:

area(D(0,n)) 2n(cosh(n+¢&)—1) e +e
T PO Do) = Tartcohe - =@

Certainly, therefore, the number of such points in the annulus C,, also satisfies

n+l
+
IN(20) N Cal < k.
£
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One also readily verifies that for every automorphism ¢ of the disc D, one has

, 1—Jp(z)]?

Z = -
o' (@)= —— EE
And since for ¢(zp) € C,, one also has

e -1
e+ 1°

lp(z0)|* =

it follows that

- lpz) € — = < 2
PROTS Cshmy +1 = e

whence

l¢"(z0)| < m-

Thus

1¢"(zo)” < Ke'"™" where K = kel)ﬁS _4 V_
g2 \1-R2

SO(ZO) eCy,

It follows from these lemmas that

(1-v)N

> supllba(2)] | z € DO,R)} < K———sup{|f(2)| | z € D(O,R)}.
n>N v-DN

Hence in the situation of a subgroup I'’ of I with the property that the I'-orbits
of the points of D(0, R) coincide with the I'’-orbits on restricting to a sufficiently
large disc D(0, N), the corresponding series 6 and 6" will be close to one another
on D(0,R). This property will be useful to us in understanding the behaviour of
the map P; — X, constructed in §VI.3.3 above, in the case where the family of
polygons P, approaches the boundary of the moduli space.






Chapter VII

The ““method of continuity”

The aim of this chapter is to establish the uniformization theorem for compact
Riemann surfaces in the spirit of the “method of continuity” developed in parallel
by Klein and Poincaré. This method consists in showing that the space of uni-
formizable Riemann surfaces is both open and closed in the space of all Riemann
surfaces. The proof we present here is more along the lines of Klein’s approach,
at least insofar as the “closure” is concerned; Poincaré’s approach will be con-
sidered in the next chapter. What we actually show in the present chapter is that
every compact Riemannian surface of negative Euler—Poincaré characteristic is
conformally equivalent to a quotient of the hyperbolic plane. Since every Rie-
mann surface admits a Riemannian metric compatible with its complex structure,
this then certainly shows that every compact Riemann surface of negative Euler—
Poincaré characteristic is uniformizable by the hyperbolic plane. We describe
the set of uniformizable metrics as the continuous image of a space of Fuchsian
groups (modulo conjugation) in the space 7, of metrics (modulo conformal equiv-
alence). Then, noting that 7, is a real connected manifold of dimension 6g — 6
(g = 2), we prove that the set of uniformizable metrics is both open and closed in
that space.

VII.1. Preliminaries

VII.1.1. Introduction

We now give the definitions of these various objects. Let S be an oriented, closed,
connected surface of genus g > 2 endowed with a smooth structure, and let Metg
be the space of Riemannian metrics on S endowed in turn with the uniform conver-
gence topology. We shall say that two metrics m and m, are equivalent (m ~ my)
if there exists ¢ € diff’(S) (the group of diffeomorphisms isotopic to the identity
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map) such that m; is conformal with ¢*m,. We denote by
‘7; = Metg/ ~

the quotient by this relation. By the local theorem of Gauss on the existence
of locally conformal coordinates — extended to the smooth case by Korn and
Lichtenstein — the space 7, is isomorphic to the Teichmiiller space of complex
structures on the surface S, up to an isotopy.!

On the other hand the space of Fuchsian groups is described in terms of rep-
resentations. Denoting by I' the fundamental group of the surface S, we write
Rep{f&d (g) for the set of discrete faithful representations of I' in SL(2,R) (with
the topology induced from the product topology on SL(2,R)") and consider the
quotient with respect to conjugation

R/ (g) = Repl? (g)/SL(2,R).

We shall show that R{;d (g) is a manifold of dimension 6g—6; in fact it is a union of
connected components of the manifold of irreducible representations, considered
up to conjugation (see §§VIIL.2, VIL3).

VIL.1.2. From representations to metrics

We wish to construct a continuous map from the manifold of representations
Réd (g) to the Teichmiiller space 7,. Henceforth we fix on a connected com-

ponent X of Rﬁ;d (g), and denote by X the component of Repﬁd (g) above X. The
action of the group I on X X H, where H is the Poincaré half-plane, is given by

Y- (0,2 =(p,p(y) - 2), (p,2) € X XH.

The projection of X X H on X extends to the quotient as a submersion of the space
E =T\(X x H) onto X; it is a C* fibration, locally trivial by Ehresmann’s theo-
rem. Furthermore, the fibre S, above each p € X is a compact surface naturally

IThe fact that this space is a manifold (in fact a smooth manifold) of real dimension 6g—6 can be
proved using Riemann’s methods. The space Riemann considered implicitly, namely the modular
space My of complex structures modulo diffeomorphisms, is singular (an orbifold) at the points
corresponding to surfaces having nontrivial automorphisms (such as Klein’s surface!), but one can
get around this problem by means of “level structures” (one takes a fixed basis for H{(S,Z/nZ) for
n > 3); see the discussion following Proposition I1.3.1. One obtains in this way a space intermediate
between 7 and Mg and Riemann’s methods allow one to prove that it is in fact a smooth complex
manifold of dimension 3g — 3, and therefore a fortiori a smooth real manifold of dimension 6g — 6.
For further details on this matter, consult for example [HaMo01998]. Otherwise, there are many
expositions available of the theory of Teichmiiller spaces themselves, from which it follows directly
that the space in question is diffeomorphic to R0, One may consult for instance [ImTal1992],
which also contains substantial historical asides.
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endowed with a hyperbolic metric m,. As our surface of reference, we choose
the fibre § = §,,, above a fixed base point pg € X. For each p € X, denote by
c(t) = p; (t € [0,1]) a piecewise-smooth path from pg to p. The fibration c*E is
trivializable, and every trivialization F : [0,1] X § — ¢*E determines a continu-
ous family of diffeomorphisms f; = F(z,-) € diff(S,S,,). We may always assume
that f is the identity map on S.

Lemma VIL1.1. — The isotopy class of the metric fm, € Mets is independent
of the choice of trivialization of c¢*E (normalized as above) and the choice of the
path c from pg to p.

Proof. — By construction, the group I acts via p as a group of automorphisms
of the universal covering H of S, (for every p € X). The above trivialization F
lifts to F : [0,1] x H — [0, 1] x H (between universal covers), whence we obtain
a continuous family f; : § — S’pt of lifts; here we may assume that fy is the
identity map of S. Each f; defines an automorphism 6, of the group I' via the
equality f, o po(y) = pr(0:(y)) o f,, where y € I'. However, since 6, depends
continuously on ¢, we must have 8, = 6y = Idr for all ¢ € [0, 1]. In other words f,
is I'-equivariant, whence, in particular,

Ffiopo(y) = p(y)o fi (y ). (VIL1)

Now consider another path o, from pg to p (possibly equal to p;) in order
to deal with a change of trivialization. Suppose g; € diff(S,S,) is obtained via
a normalized trivialization. Its lift g1, constructed as above, also satisfies (VIL.1).
Hence for all y € T" we have

f~1_1 0 g1 0 po(y) = po(y) Ofl_l o

The diffeomorphism ¢ = f o g1 clearly satisfies ¢*(f [mp) = g m,. Moreover
the above equation shows that the outer automorphism of the group I' = AutgS
determined by ¢ is trivial. It follows that ¢ is isotopic to the identity map (see
[ZVC1970, 5.13]). O

Now consider two conjugate representations p,o € X, joined by paths p, and
o to the base point pg (t € [0, 1]). Choose continuous families f; € diff(S,S,,)
and g; € diff(S, S, ) as in the above proof, with fy = go = Ids. Let A € SL(2,R)
be such that p = AcA~" and let A, be a smooth path from 7 to A in SL(2,R)
(t € [0,1]). Each element A; induces a diffeomorphism /4, between S, and
S Ao AL with hp = Idg, and A} \my =mgs. Hence g; (1 € [0,1]) followed by
hy o g1 (t € [0,1]) yields a continuous family of diffeomorphisms above a path
from pg to p. By Lemma VII.1.1 (and invoking go = Ids) we have that the iso-
topy classes of the metrics fym, and (h; o g1)*m, = gjm coincide.
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Write [p] € X for the conjugacy class of p € X and [m] € 7, for the class
of a metric m € Metg. In view of the foregoing, we can define a map ® from X
to 7¢ by setting
O([p]) = [fimpl € Tg ([p] € X).

It is then immediate that @ is a continuous trivialization of the fibration E above a
contractible open set containing p and pg. The uniformization theorem a la Klein
is then subsumed in the following result.

Theorem VII.1.2. — Let X be a connected component of Réd (g). Then the map
O : X — T4 is a homeomorphism.

VIL.2. Representations of surface groups

VIL.2.1. The manifold of representations

Let I" be the fundamental group of a closed, connected, orientable surface of genus
g = 2 (with a distinguished base point), and let (y;);=1,...,2¢ be a set of generators
of I' satisfying ]_[f:][yi,yi+g] = 1, which we shall henceforth call a standard
generating set. The set of representations of I' in SL(2,C) is then identifiable
with the subset Repx(g) consisting of the 2g-tuples (Ay,...,Ax,) € SL(2,C)%8

satisfying
g
[ [tai Al = 1.
i=1

The subset Repq(g) is an affine algebraic subvariety of M, (C)?8. Write
Rep.(g) for the subset of Rep(g) consisting of the irreducible representations p
over C (that is, such that the only invariant subspaces of p(I') are C? and {0}). By
§VI1.2.3 this is a non-empty subset of Rep-(g) since a faithful discrete representa-
tion is necessarily irreducible, as one may readily verify2. It is moreover an open
subset (even in the Zariski topology) since the set

{(p.D) € Repc(g) x CP' | p(I)D c D)

of pairs made up of a representation p and a nontrivial p-invariant subspace D
of C? is a closed set whose first projection (closed since CP! is compact) is

Repc(g) \ Repi(g).

2If the group p(I') had a proper, nontrivial invariant subspace of CZ (in other words an invariant
line) p(I") would then be solvable since contained in a conjugate of the subgroup of upper-triangular
matrices of SL(2,C).
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For each representation p of I' in SL(2,C), one may view the Lie algebra
s[(2,C) as a I'-module via the adjoint action defined by y - & = Adp(y)(¢) =
p(y)ép(y)~!; we shall denote this module by sI(2, ©)p. Recall that a 1-cocycle is
amap c from I to s1(2,C),, such that forall y,y" € T

cyy)=cy) +y-c(y),

and that a 1-cobordism is a l-cocycle of the form cs(y) = & -y - &
with ¢ in s1(2,C),. We write ZI(F,$I(2,C)p) for the space of 1-cocycles and
B! (I',s1(2,C),,) for the subspace of 1-cobordisms, and define

HY(T,51(2,C),) = Z'([,s1(2,C),) /B (T,51(2,C),).

The tangent space to SL(2,C) at any point o is isomorphic to s[(2,C); the
map & — exp(&)o affords via s1(2,C) a local chart on SL(2,C) in a neighborhood
of o.

Proposition VIL2.1. — The space Rep;(g) is a complex submanifold of dimen-
sion 6g — 3 of SL(2,C)?8. For every p € Rep.(g) the map associating with each
c € ZI(F,SI(Z,C),,) the element (c(yi))<i<2g € s1(2,C)?8, induces an isomor-
phism from Z'(T',s1(2,C),,) to T,Repf(g).
Proof. — We follow the argument given by Hubbard in [Hub1981]. Consider the
map f : SL(2,C)?8 — SL(2,C) defined by

g

f(o1,...,008) = l_l[ffi,o'i+g]-

i=1

The set Rep-(g) has f = I as analytic equation. A straightforward calculation
beginning with

[ 01,658 o1y ] = e (0152 0 ) (a1 0140 e oo o Do, o g le T
= €170 1 E1bg g~ Ad@ 1014507 616-AdlT 1.0 1eg ] Sl [ Tlig]
and ending by invoking eX1eX2 = eX1"X24+ O (] vy |2+ |)(2|2), implies that the differ-

ential of f ato = (071,...,024) € SL(2,C)?8 in the direction & = (&1,...,&2,) €
s[(2,C)%8 is

—

[oj,05+g]" ((1 — 0i01g0 ) &+ (0 = [04,Ti4g]) -§i+g) .

1

8 i-
=1

1l
—_

Observe that a similar calculation shows that the map y; — & (i = 1...2g)
extends to a (necessarily unique) I-cocycle I' — sI(2,C), if and only if

do f(&15. .. ,&2g) = 0, where o = (p(¥:))i=1,....2¢-
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Thus it suffices to verify that the map d f : sl(2, C)ﬁg — sl(2,C) is surjective
if p is irreducible. We deduce this by means of two applications of the following
lemma:

Lemma VIL.2.2. —If 01,07 € SL(2,C) do not commute, then the map s1(2,C),, X
s1(2,C), — sl(2,C), sending (£1,&2) to (1 —o1) - &1+ (1 —02) - & is surjective.

Resuming the proof of Proposition VIL.2.1, we first assume that for some in-
teger i, 1 <i < g, the elements o; and o4, do not commute. Then, since

(I —0ioirg) - &i + (07 — [01,Ti4g]) - Eing
=0 (1 = 0rgo)o" - &+ (1 = g0 07} i)

we infer from Lemma VII.2.2 that the restriction of the map d, f to &; and &;,4
is surjective. If we now assume that each o-; commutes with ;. ¢, then the differ-
ential of f takes the form

g
do f(&) = ) (1= i) - & + (01 = 1) - Eing)
i=1
and Lemma VIIL.2.2 can be applied again since, by virtue of the irreducibility
of p there exist at least two indices i and j in [1,2g] such that o; and o; do not
commute. O

Proof of Lemma VII.2.2. — Let ¢ € SL(2,C), o # *xI. The endomorphism
fo (&) = (1-0)-& hasrank 2 and ker f, = C(20—tro ). One verifies directly that
ker f is the orthogonal complement of imf, with respect to the nondegenerate
bilinear form on s[(2,C) defined by b(£,£7) = tr(£€7). Therefore, since o) and o
do not commute the images of f,-, and f,-, must be distinct . O

The action of the group SL(2,C) on Repq(g) by conjugation preserves
Rep.(g), and restricted to this subspace this action is locally free. To see this,
let C,zj be the simple C[I']-module defined by p. The ring End¢yr (C,%) reduces
to homotheties (in particular since each of its elements is either null or invertible,
and has a single eigenvalue), so that the centralizer of p in SL(2,C) is just {+I}.
We write

R () = Reps(g)/SL(2,0)

for the quotient by this action. For every p € Rep;(g) the differential at
the identity of the inclusion map of SL(2,C)/{+1} in Repg(g) defined by
o+ oo poo~! isthe map from s1(2,C), to Zl(F,sl(Z,C)p) given by & - cg.
The following theorem now follows readily from Proposition VIL.2.1.

Theorem VIL2.3. — The space R:(g) is naturally endowed with the structure
of a complex manifold of dimension 6g — 6. Its tangent space at a point p is
canonically isomorphic to H' (T, s1(2, C)p).
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Proof. — It remains only to verify that the action of SL(2,C) on Repg(g) is
proper, that is, that the set

Ex ={o € SLQ2,C) |cKo'nK £ 0}

is compact in SL(2,C) for all compact K of Repg.(g). To this end, observe that
the set F of all pairs (p,p") € Repg (g)? for which the linear equation

Xp-p'X=0

admits a non-zero solution X € M,(C) is closed (since the projection
P(M,(C)) x (Rep(*c(g))2 — Repé‘j(g)2 is proper) and non-empty; furthermore,
in F the solution space represents a line D(p, p’) = Homgyr)(C? ,Ci,) — gener-
ated by an invertible element — depending continuously on (p, p’). For any given
sequence (o) of elements of Ek, there exists a pair (px,p;) € (KX K) N F
such that o px = p;{ak, the sequence (px, p;c) being assumed convergent to
(P P5)s sy, by compactness. Hence we have D(px,p;) = Crx where 7 is
invertible (k = 0,...,00), lim 7, = 7 (as k tends to o0), and we can normalize so
as to ensure 1, € SL(2,C). It follows that oy = 7, (k < o0) and, by choosing a
suitable subsequence if necessary, we have lim o = +7. The set Ex is therefore
compact. O

We now turn to the set Repy(g) of C-irreducible representations of I' in
SL(2,R), that is, the intersection of the set of real points Repg(g) of Repq(g)
with Rep.(g). Note that as before this is a non-empty open set of Repp (g).

Corollary VIL.2.4. — The space R;(g) = Repy(g)/SL(2,R) is a real manifold
of dimension 6g — 6.

Proof. — The points of Repy,(g) are smooth points of Repg (g) since by Propo-
sition VIL.2.1 they are smooth points of Repn(g) and this manifold is defined
over R. As earlier, one verifies that the action of SL(2,R) on Repg,(g) is locally
free (for p € Repg (g) the module Cf, is simple). The argument showing that this
action is proper is then analogous to that of the proof of Theorem VII.2.3. |

Remark VIIL.2.5. — More generally, let S be a compact surface of genus g with M
points removed (where M > 1 and 2g + M > 2). The fundamental group I'
of S (which is free on 2g + M — 1 generators) is generated by 2g + M elements
O1,...02g, C1, ...Cy satisfying the single relation ]_[f”:1 [0i,0i4g] Hj”i] cj = 1.
Write Rc(g, M) for the space of representations p of I' in SL(2,C) satisfying
the supplementary constraint trp(c;) = =2 (1 < j < M). One can then show
as above that the spaces R’(g, M) of irreducible representations, and their quo-
tients Rg(g,M ) = Ri(g,M)/SL(2,C), are complex manifolds of dimensions
6g —3+2M and 6g — 6 + 2M respectively. Moreover these results continue to

hold when C is replaced by R.
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VII.2.2. Characters and the fundamental invariants

Let I' be a finitely presented group and p a representation of I' in SL(N,C). The
character of p is then the function y,, from I' to C defined by x,(y) = tr(p(y)).
Note that conjugate representations in SL(N,C) have the same character.

Poincaré was interested in the reciprocal relation when he considered, in the
first section of his memoir [Poin1884b], a monodromy representation pg arising
from a differential equation on a surface. In this situation the group I is the
fundamental group of the surface and the y, . (y), for y € I, are invariants that
he associates with the substitutions pg (y) € SL(2,C). He states that:

If one knows the invariants of all the substitutions pg(y), the group I will
be completely determined, since we do not consider it as distinct from its
transforms o~ !'T'o. But it is not necessary to know all of these invariants, it
suffices to know a certain number of them which we will call fundamental
invariants and of which all the others are functions.

We shall now give a proof of this assertion (which Poincaré states without
proof). It will also be used in Chapter VIII. The following proposition captures
the first statement of the above quotation.

Proposition VIL.2.6. — Let p and p’ be two representations of I in SL(N,C).
If xo = Xxp and if p and p’ are irreducible, then p and p’ are conjugate
in SL(N,C).

The proof we give is due to Selberg [Sel1960], and reduces to the following
two lemmas.

Lemma VIL.2.7. — Let p be an irreducible representation of I in SL(N,C). Then
there exist N> elements y1,...,yn2 of T such that the family (P(Yj))j=1,.. N2
spans the complex vector space My (C) of square matrices.

Proof. — 1t suffices to prove that the vector subspace R spanned by the p(y),
with y ranging over I, is the space My (C). This is just Burnside’s lemma: see
for instance [Lan2002, XVII, Corollary 3.4]; in fact R is a subalgebra of My (C)
and the space CV is a simple R-module. O

Lemma VIL.2.8. — Every algebra automorphism  : My (C) — My (C) is inner.

Proof. — Consider the basic matrices E;;. The images p; = ¢ (E;;) satisfy
pf = pi, pip; = 0if i # j, and ) p; = Id, so they represent projections
on n independent lines. Hence p; = E;; to within a conjugation. It follows that
Ekkw(Eij) =0if k # i and w(Eij)Ekk =0if k # j, whence lﬁ(El]) = aijEij
(a;j € C). We have a;ja;x = a;x, whence a;; = b;/b;, and ¢ is conjugation by
the matrix (6;;b;). O



VII The “method of continuity” 189

Proof of Proposition VI1.2.6. — Lety; € T'(j = 1,... ,N?) be as in Lem-
ma VIL2.7. If Zj.vzzl A;p(y;) = 0, then A; = 0 for every j (by choice of the y;),
whence in turn Zj.\]: 21 A;p'(yj) = 0. The endomorphism of My (C) sending a lin-
ear combination Z;.V: 21 A;p(y;) to the matrix Zj.vz 21 A;p'(vj) € My (C) is therefore
well-defined. We shall now show that if a linear combination }; 4, p(y) (4, € C)
is zero in My (C), then also ] 4, p"(y) = 0. For all yg € I, we have

r (Y] o' 0P ) = D Ao’ (ryo))
= > 4,tr(p(yy0)
=tr (D 4,0 p(10)) = 0.

It follows from Lemma VII.2.7 (and from the fact that the trace defines a non-
degenerate bilinear form on My (C)) that }; 4, p'(y) = 0. Hence, finally, our
endomorphism is an algebra morphism, and we can invoke Lemma VIIL.2.8 to
complete the proof. O

In the second statement of the above quotation from Poincaré’s memoir, he
claims that it is in fact enough to know the invariants of only a finite number of
substitutions, his “fundamental invariants”.

Proposition VIL.2.9. — Let T be the fundamental group of a closed surface of
genus g, and for each y € T consider the function T, : Rc(g) — C defined by
T (p) = trp(y) = xp(y). The ring T generated by the functions 7, (y € I') is
finitely generated.

Proof. — Here N = 2. The proof depends on the identity
tr(A)tr(B) = tr(AB) + tr(AB™!) (A,B) € SL,(C)?,

(an immediate consequence of the Cayley—Hamilton theorem) and on the fact
that T" is finitely generated. (As before we denote standard generators by v;,
1 <i<N.) We recall the argument (see [Hor1972] or [CuSh1983, p. 116]):
Let Ty be the ring generated by the 7, with y = ¥; ---v;,, and the indices
i1,...,i all distinct (so that in particular £ < N). Consider a general element
o=y -y el

withm; # 0 (j = 1,...,r). Assuming to begin with that the indices iy,...,i,
are distinct, we verify that in this case 75 € Tp. We proceed by induction on
q= Z;=1 max(mj — 1,—m;). When g = 0, we have 75 € Ty by definition. For
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q > 0, up to replacing § by a conjugate we may assume that m, # 1. If m,, <0,
then by the above trace identity we have

T5 = Tsy,, Tyi_rl - T6712'r €Ty

since Tsy, , Ts,2 € Tp (by the inductive hypothesis) and 7,-1 = 7,. € Ty by
Yir o y yp Vi, Yir

i,
definition. If m, > 2 we write 75 as above with y; replaced by yl.‘l . We dispose of
the general case by means of a second induction on r. In view of what we have just

proved, we may suppose that » > 2, and then, by conjugating if need be, that there

exists an index j < r such thati; = i,. It now suffices to define o = y;'l“ e yl.";j ,

B = ylr:’l*' . -y;'r” and express 7 in the form 75 = Top = Ta T — Top-1- m|

Let (a1,...,a,) be afixed finite sequence of elements of I" such that the func-

tions 7y,,. . .,Tq,, generate the ring 7. One then defines a mapping ¢ from Rc(g)
to C"™ by

t(p) = (ta,(P)s- - - s Ta,, (P)). (VIL.2)

The numbers 74,(p), i = 1,...,m are then exactly what Poincaré called funda-

mental invariants of the group p(I').

VIL.3. Real faithful and discrete representations

VIL.3.1. The faithful and discrete representations form an open set

As in §VIL.2.1, let I' be the fundamental group of a connected, closed surface §
of genus g > 2. In what follows we will understand the group I" to have a fixed
action as a group of automorphisms of the universal cover S. Consider the set
Rep{;d (g) of faithful, discrete representations of I' in SL(2,R) (a nonempty set
— see §VI.2.3). These representations are C-irreducible — see §VIL.2.1. For
pE Repﬁd (g), the action of p(I') on the half-plane H is faithful — since I" has no
elements of order 2 — and the surface p(I')\H is diffeomorphic to S.

We denote by Rﬁd (g) the quotient of Rep@d (g) by the conjugations. The first

thing to note is that, by virtue of the following proposition, Réd (g) is a manifold
of dimension 6g — 6.

Proposition VIL.3.1. — The set R{Rfl (g) is an open subset of the manifold Ry (g)
of irreducible representations.
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Proof. — This reduces to showing that Repﬁlgd (g) is an open subset of Repy, (g).

Consider pg € Repﬁlgd (g) and let 6 : S — H be a smooth and (T, po(I"))-equi-
variant diffeomorphism. Choose a compact set K of S such that Uyer y(K) = S.
For any given p € Repy(g), we shall show that there is a map 6, : § — H
that is smooth, (I', p(I'))-equivariant, and C I_close to 8y on K when p is close
to po. For the moment we assume this. Then if p is sufficiently close to py, the
map 6, is an immersion in a neighborhood of K (immersions forming an open
set in the C'-topology), and therefore by equivariance an immersion on §. By
considering the inverse image of the hyperbolic metric of H under 6,, we see
that S inherits a -invariant metric. Then since the action of T on § is cocompact,
it follows from the Hopf—Rinow theorem that this metric is complete. Hence the
local isometry 6, is a covering map for H, and therefore a diffeomorphism. The
(I, p(I"))-equivariance then ensures that p is faithful and discrete.

It remains to show how to construct 6,,. Choose a fixed open cover of K by
opensets U!,...,U!, together with successive refinements U’,...,U. 2 <1 < s)

of this cover. More precisely, the refinements are to be chosen so that Ujﬂ is
contained in U; (I < 5-1,j < s)while maintaining K C U‘;.zl U; forl <l <,
and the initial U} are chosen so as to satisfy y(U}) N y’(U].l) =0Qfory £y
in I". Now set vjl = Uyery(Ulu... U U;) forall 1 < j,I < s. The map J, we
are seeking is now constructed by means of successive “restriction-extensions”
from Vll to Vll:ll. We first define 6 [1) as the (I', p(I'))-equivariant map from V]l to
H coinciding with §¢ on Ull. We then suppose that for some [ € {1,...,s — 1},
we have constructed a smooth, (I', o(I"))-equivariant map 62 from Vll to H. The
open set U/ '/
f: Vll — H, it is possible, by means of suitable plateau functions, to extend the

restriction of f to Ulljll N Vll *1 to a smooth map ? U ll:ll — H. Furthermore this

extension procedure may be arranged so as to be continuous in the C'-topology,

so that if f is C'-close to 6o on V/ N K, then f is C'-close to o on U''! N K.

It is therefore possible by means of this process to extend the restriction of 6}10

N VllJrl has compact closure in V!, so that, given a smooth map

to VllJrl to a smooth map from Ull:_’ll U VllJrl to H; one completes via (T, o(T"))-

equivariance to obtain 61{,” : Vll:ll — H. After s steps one arrives at a smooth and
(T, p(I'))-equivariant map 6, = 6; from V§ = §to H. Now if a sequence (px )k >1
converges to po, then for each y € I' the sequence (px (y)) converges to po(y) on
the compact set K, in the sense of the C!-topology; moreover, for 1 < j,I < s, the

set of those y € I for which y(U Jl.) N K # 0 is finite. This explains why, if p is
chosen sufficiently close to pg, each of the maps 62 (1 <1 < s) will be C'-close
to dp on Vll NK. ]
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VIL.3.2. Closure of the faithful and discrete representations

‘We now show that Réd (g) is closed in Ry (g), a result due in this form to Wielen-
berg [Wiel1977].

Proposition VIL.3.2. — A limit of discrete, faithful representations of I in
SL(2,R) is again faithful and discrete.
A few preliminaries are in order. Denote by || - || the algebra norm on

M>(R) determined by the usual Euclidean norm on R%. Given two matrices
A,B € SL(2,R), and writing @ = A— [ and 8 = B — I, we have:

[A,B]-1=(AB-BA)A™'B™! = (a8 - Ba)A™'B".

If ||Ol||,||ﬂ|| < 1, then ||A_1|| = ||Z:l°:0(_a)n|| < (1- ||a,||)—1 and also
IIB~']| < (1 - [IBI)". Hence

iy 2||alllIBll ‘
(I ={lafD =1IB1D)

In particular, if [|A - I|| and ||B = I|| < 2 — V3, then [I[A,B] =1I|| < ||B-1||.
The following classical lemma, which in a much more general form is due to

Zassenhaus, is also known as Margulis’s lemma by reason of the latter’s non-linear

generalization of it (see for example [Kap2001, §4.12]).

Lemma VIL.3.3. — Let A and B be two elements of SL(2,R) with ||A — I|| and

||B — I|| strictly less than 2 — \3. If A and B generate a discrete subgroup of

SL(2,R), then they commute.

LA, B]

(VIL.3)

Proof. — Since the group II generated by A and B is discrete, there exists
an element C € II — {/} such that the norm ||C — I|| is least. Hence by the
inequality (VIL.3) we have

[A,C]=[B,C] =1,

so that C is a nontrivial element in the centre of II. This element is hyperbolic,
parabolic, or elliptic. In the first case, the group IT preserves the axis of C and is
therefore Abelian. If C is parabolic, II fixes the fixed point of C at infinity, and
is therefore a subgroup of the group of similarities of R. However since C cannot
commute with a strictly contracting or dilating similarity, the group I1 must again
be Abelian. Lastly, if C is elliptic, then II fixes the unique fixed point of C and is
therefore once again Abelian. |

Proof of Proposition VII.3.2. — Recall first of all that if a representation
p : I' = SL(2,R) is discrete and faithful, then all elements of p(I") must be hy-
perbolic by the compactness of p(I')\H — see for example [ImTal1992, p. 46] —
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and two elements of p(I") commute if and only if they have a fixed point in com-
mon (since their commutator would then necessarily be parabolic). Note also that
if A € SL(2,R) is hyperbolic, then the only finite subsets of H U 0H left invariant
by A are the subsets of the set comprised of the two fixed points. Hence if A and
B are hyperbolic and satisfy [A,BAB™'] = I, then A and BAB~! have the same
fixed points, whence one infers that A and B have the same fixed points.

Now let (pr) be a sequence of faithful and discrete representations of I' in
SL(2,R) convergent to p. As before, let (y;);=1,...,2¢ be a standard generating
family for I'. We first show that p is faithful. Suppose we have an element y # 1
of I" such that p(y) = I. Then of course p(yl-yyl.‘l) =[forali=1,...,2g,
whence by Lemma VII.3.3 for sufficiently large k¥ we must have that pg(y) and
Pk (y,-yyl.‘l) commute, and therefore in turn (see above) that pi (y) and pg (y;)
commute. However this means that pg (y) is central in py (I'), which is absurd.

Finally we show that p is discrete. Let Q be the set of those A € SL(2,R)
for which ||[A - 1|| < 2 — V3,and Q' c Q an open neighborhood of the identity
such that p (y:)Q' px (y;)~! € Q for all k and i. If p were not discrete we should
have for sufficiently large k that there existed an element 6 # 1 of I' such that
01 (6) belonged to Q’. This would then entail, as before, that pi (6) and pg (y;)
commute, once again yielding a contradiction. O

Thus by Propositions VII.3.1 and VIL.3.2, we have that Réd(g) is a union
of connected components of the manifold Ry (g) of irreducible representations.
Let G be a covering of PSL(2,R). The connected components of the space
Hom(I',G)/G have been described by Goldman in [GolW1988]. First, for
G = PSL(2,R), they coincide with the fibres of the Euler class3

eu : Hom(I',PSL(2,R))/PSL(2,R) — Z.

The faithful and discrete representations constitute the two connected components
associated with the maximal value |eu| = 2g — 2 — each homeomorphic to a
ball. Next, the projection of SL(2,R) onto PSL(2,R) determines a covering of
degree 228 by Hom(I',SL(2,R))/SL(2,R) of the components of even Euler class
of Hom(I',PSL(2,R))/PSL(2,R). Hence ﬂﬁd (g) has at most 228+l components.

However for [p] € R{Pgd(g), the signs of the trp(y;), i = 1,...,2g (for a stan-
dard generating family) and that of eu(p) are continuous and may be changed

3Here is the definition of eu(p). For each i one chooses a lift Tm of p(y;) in the univer-
sal cover Isﬁ,(Z,R) — PSL(2,R), who%rnel, canonically isomorphic to Z, is the centre of
lsgi(lR). One then has eu(p) = ]_[f:] [o(¥i), p(yi+g)], which is independent of both the choice
of lifts and the standard generators y;, provided the homology classes [y;] € H{(S,Z) form a
symplectic basis, that is, satisfy [y;] - [vj+g] = 0ij, [¥i] - [¥j] = [Vitg] - [¥j+g] =0, 1 <i,j < g.
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arbitrarily by replacing p(y;) by —p(y;) for any of the i, or by inverting the re-
lation Higzl[p(y,-), p(vi+g)] = I (which changes the Euler class into its opposite,
and comes down to changing the orientation of the surface S). Hence the mani-
fold Rﬁéd (g) has exactly 222*! connected components.

VIL3.3. The map determined by the ‘“fundamental invariants” is proper

Consider fundamental invariants as defined by the formula (VIL.2) of §VIIL.2.2.
Since they are conjugation-invariant, they induce (via restriction to the faith-
ful and discrete representations) a map ¢ from Réd(g) to R™. We denote by

Réd’+ (g) C Réd (g) the submanifold of the representations of positive Euler class
(in fact necessarily equal to 2g — 2).

Proposition VIL.3.4. — The map 1 : ﬂéd’Jr(g) — R™ is injective and proper.

Proof. — Let [pl,[p'] € RL%(g) be such that 7([p]) = 7([p']). Since the
fundamental invariants determine the character, we have x, = x}, (Proposi-
tion VIL.2.9). Hence there exists A € SL(2,C) conjugating p to p’ (Proposi-
tion VIL.2.6), or, in other words, a nonzero complex solution X = A of the system
of linear equations with real coefficients X p(y) = p’(y)X, v € I', whose solution
space is then the line C A. This immediately gives the existence of a non-zero
real solution, necessarily invertible since p and p’ are irreducible. Hence we may
choose A € GL(2,R), detA = +1, and in fact detA = 1 provided eu(p) and eu(p’)
have the same sign. Thus we have [p] = [p’].

We now verify that 7 is proper. Let (y;)1<i <2, be a standard generating family
of the fundamental group I of the surface S such that the intersection of y; and y;
in the homology H/(S,Z) is 1. For p € Rep{éd (g), the 1-dimensional homology
classes of the surface p(I')\H are represented by closed geodesics, projections
of the axes of the hyperbolic elements p(y) (y € I'). We therefore see that the
axes of p(y1) and p(y,2) meet*. Let (px)ren be a sequence of representations
with #(pg) bounded. For every y € I' the sequence trpg (y) is then bounded (see
Proposition VII.2.9). For each k, to within a conjugation we may assume that
Pk (v1) and pg (y2) are of the form

1273 0

Ak=pk(71)=( 0 l/uk) and Bk:Pk(72):(ak o )

¢k di

Furthermore we can conjugate again by a diagonal matrix (which does not
change Ay) in order to arrange that |bg| = |cx|. The condition that the axes of Ax

4One may also easily construct an example of such a representation p in each connected com-
ponent of Replgd (g); see the conclusion of §VIIL.3.2.
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and By intersect translates into the condition by ci > 0. From the equality

tI‘QBk -4 = (ay — dk)2 + 4by k.,

we infer that the ay — dy and by ¢ are bounded, and then that By, is bounded. An
elementary calculation yields

tr[Ag, Bl — 2 = —brcr (P Ay — 4), (VIL4)

whence tr[Ax, Bx] < —2 (since brci > 0), that is, by cx (tr? A —4) > 4. Since by ck
and trA; are bounded, it follows that inf (bgcr) and infy (tr2 Ay — 4) are positive.

Now consider any y € I' and denote by a;, b, c;, d, the entries of
B, = pi(y). Equation (VIL.4), with B, in place of By, implies that the b, ¢, are
bounded; therefore, since a,’c + d,’( = trB,’( and a,’(d,’( = b,’cc,’c + 1 are bounded, so
are the diagonal entries a; and d, . Similarly, by considering px (y2y), we see that
the axa; + byc; and did, + ¢ b;_are bounded, and then, since infy |bx| = infy |c|
is positive, that the b; and c; are bounded. Thus all of the generators px (y;)

are bounded, for i = 1,...,2g, and we can find a sub-sequence of the pg
that converges, necessarily to a faithful and discrete representation (Proposi-
tion VIL.3.2). |

Note that the analogous result holds for the submanifold Rﬁd’_(g) of classes
of discrete and faithful representations with negative Euler class.

VII.4. Proof of uniformization

VIL.4.1. The set of uniformizable surfaces is open

Consider the map @ : X — 7, defined in §VII.1.2. Recall that X is an arbitrary
connected component of the manifold ﬂﬁd (g).

Proposition VIL4.1. — The map ® : X — T, is injective and open.

Proof. — For the injectivity, it is useful to first re-examine the definition of ®. This
is based on a natural fibration E into hyperbolic surfaces above the component X
of Rep{kd (g) corresponding to X. The metrics m,, on the fibres S, = p(I)\H
(p € X) are pulled back to a reference fibre S = S, by trivializing the fibra-
tion E above paths. Thus for p,o € X, we defined ®([p]) = [ffmp] and so also
O([o]) = [gjm], with f1 and g; obtained via trivialization (see §VIL.1.2 for the
details). Now suppose there exists ¢ € diffo(S) such that ¢*(f{m,) is conformal
with gim.. We know that f; and g lift equivariantly to universal covers (see the
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equality (VIL.1)). This holds also for ¢, which is isotopic to the identity. Hence
the diffeomorphism ¢ = fjogo gl‘1 admits a lifting that conjugates the representa-
tion o to p. However ¢ is directly conformal from S, to S,,. Hence by Schwarz’s
lemma (or rather its corollary Aut™ (D) = PSL,(R)), such a diffeomorphism lifts
to a Mobius transformation of the half-plane. Thus [p] = [o].

The space Réd (g) is a manifold of dimension 6g — 6 (Theorem VIIL.2.3). Al-
lowing — as was made precise in the introduction §VIL.1.1 — that 7, is also a
manifold of dimension 6g — 6, one concludes that @ is open by the (admittedly
much later) theorem of Brouwer on the invariance of the domain. O

VII.4.2. The set of uniformizable surfaces is closed

Proposition VIL4.2. — The map ® : X — 7, is proper.

Let [ px ] be a sequence of points of Réd (g) such that ®([pr]) converges in 7.
Taking, as always, Klein’s point of view (see §1II.1), we note that this conver-
gence means that there exist Riemannian metrics dsi onS, k=1,...,00, such
that dsi converges to ds2,, each metric dsi (k € N) being conformally equivalent
to the hyperbolic metric on S associated with*py (well-defined to within an iso-
topy — see §VII.1.2). We need to show that, up to extracting a subsequence, the
sequence ([px]) converges to a limit [ po]. If this is the case, then the representa-
tion po, will be faithful and discrete (Proposition VII.3.2) and the metric ds2 (or
the associated complex structure) will be uniformized by po (I').

We know (see §VII.2.2) that there exists a finite family («;)i<;<mu of non-
trivial free homotopy classes of simple closed curves on S such that each [pk] is
determined by the lengths (£, (@;))1<j<m of the classes a; relative to the hy-
perbolic metric associated with py — lengths corresponding to Poincaré’s funda-
mental invariants’. By virtue of the fact that the “fundamental invariants” map is
proper (Proposition VII.3.4), the existence of a convergent subsequence of ([px])
is a consequence of the following proposition.

Proposition VIL.4.3. — Let a be a free homotopy class of simple closed curves
on S. There exists a constant C, < +00 such that £, (a) < C, forall k € N.

Proof. — The proof rests on a simple argument around “extremal length”’6. Con-
sider first a Riemannian metric ds® on S. For every positive function ¢ on S, we
set

Ly(a,ds®) = infecq f @ds and A,(S,ds?) = f @PdA,
c S

5The traces are certainly determined by the lengths since their signs are fixed in the compo-
nent X.
¢In the spirit of the work of Ahlfors and Beurling [Ah11973].



VII The “method of continuity” 197

where dA is the measure of area in the metric ds?; these quantities are respectively
the length of @ and the area S with respect to the metric ¢’>ds>. The extremal
length of « is then defined to be

2 2
Ly (a,ds”)

Ey(a) = SUPp>0 1~ S sy
@ ’

This quantity is a conformal invariant associated with the class of ds* in T, (for a
fixed @). Furthermore if ds? is uniformized by a representation p of I' in SL(2,R),
one has, by definition, ff, (@) < 4n(g-1)E 2 (). The following lemma on semi-
continuity then gives us the desired conclusion. O

Lemma VII.4.4. — Let a be a free homotopy class of simple closed curves on S
and (dsi) a sequence of Riemannian metrics on S converging to ds%, as k tends
to infinity. We then have the inequality

ﬁkEdsi(a) < Egp (a).

Proof. — In the above definition of the extremal length we may confine ourselves
to functions satisfying ¢ < 1 since S is compact and ¢ continuous. Under this
condition the sequence gozdsi converges to ¢>dsZ, uniformly with respect to .
Let L be strictly greater than the length of the class « in the metric ds2, and let
e > 0. For every curve ¢ € a of length Length(c,ds2,) less than L, there exists
a ko independent of ¢ < 1 and ¢ such that

L (a,ds}) - Length?(c, ¢?ds?) - Length?(c, ¢*ds2)
Ap(S.ds?) — Ap(Sdsy) T Au(S.dsk)

+e (k=kp).

By taking the infimum over the curves ¢ and then the supremum over the func-
tions ¢, we infer that Edsi () < E;o (a) + € for k > kgy, whence the desired
conclusion. |
Proof of Theorem VII.1.2. — This is now an immediate consequence of Propo-
sitions VIL.4.1 and VIL4.2, and the fact that, as a quotient of Metg, 7 is con-
nected. O






Chapter VIII

Differential equations and
uniformization

The aim of this chapter is to examine the route to the uniformization theorem taken
by Poincaré, who was interested above all in the solution of linear differential
equations. Uniformization was not his initial goal, and only emerged incidentally
as a byproduct of his results.

It seemed to us useful to precede the main part of this chapter with a prelim-
inary section summarizing the various features of algebraic differential equations
that were undoubtedly present to Poincaré’s mind when he began his investiga-
tions.

VIII.1. Preliminaries: certain aspects of first-order algebraic differential
equations

The Riccati differential equation. — This is any equation of the form

D~ a0y + by + ().
dx

where a, b, c are rational functions of a complex variable x (which may also vary
over a more general algebraic curve).

It was this family of equations that led Poincaré to uniformization. Here we
recall their basic properties, long ago become classical.

These equations are well known as “disguised” linear differential equations.
Starting from a first-order linear differential equation in two unknowns

d ( “ ):A(x)( Z; ) (VIIL1)

dx \ u
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where A(x) is a 2 X 2 matrix depending rationally on x, one infers that the quo-
tient y = u; /uy satisfies a Riccati equation, and conversely every Riccati equation
derives from a linear equation of this form.

In fact the Riccati equation can be transformed into a scalar linear equation,
but of the second order. More precisely, the change of variable given by the

formula y(x) = —~ (V;;Ef()x) yields the second-order linear equation

d’w dw

—— +p(x)— +q(x)w(x) =0,

dx dx
for w, where p = —a’/a — b and ¢ = ac. And conversely, if w is a solution of this
second-order linear equation, then the function y = —w’/w satisfies the Riccati
equation

dy

i y(x)? = p(x)y(x) + g(x).

We recall also that a second-order linear equation in a single unknown w reduces
to a first-order linear equation in the two unknowns (w,w’).

An important (elementary) property of linear differential equations consists in
the fact that the domain of definition of the solutions is the same as that of the
equation. Considering for example the above equation in two unknowns associ-
ated with a matrix A(x), one may continue a local solution in the neighborhood
of a point along any path whatever avoiding the poles of A. Of course, in doing
this one may encounter the phenomenon of monodromy lying at the heart of this
chapter, but the solutions of the associated Riccati equation present only poles as
singularities — apart from the poles of the coefficients a, b,c. What is perhaps of
greatest interest here is the fact that this property characterizes them. Here is a
result in this direction.

Proposition VIIL1.1 — Let Q be a simply connected open set of C and
F :QxC — C a holomorphic function. Consider the first-order differential
equation Z—)yc = F(x,y). The following two statements are equivalent:

(a) For every initial condition (xg,yy) € Q X C, there exists a meromorphic
solution y defined on Q and satisfying y(xo) = yo,

(b) There exist holomorphic functions a,b and c defined on € such that
F(x,y) = a(x)y* + b(x)y + c(x).

Proof — We first show that (b) implies (a). The above change of variable shows
that the solutions of the Riccati differential equation can be expressed as quotients
of two solutions of a linear equation, which are therefore defined (and holomor-
phic on Q). The solutions of the Riccati equation are thus meromorphic on Q.
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Here is another proof. The graphs of the solutions of our differential equation
are integral curves of the vector field a% + F(x, y)% defined on Q x C. For each

fixed x, the component F(x, y)% of this vector field is (assuming (b)) quadratic

in y and therefore extends to a well-defined holomorphic vector field on CP!. In
fact, if we set Y = 1/y, our equation becomes

dy 1 dy dey

dx ~ yrdx  dx
= -y? a(x)% + @ + c(x)
= —c(x)Y? = b(x)Y - a(x).

We can thus compactify our equation and, provided we admit meromorphic so-
lutions, seek graphs of solutions in the form of integral curves of a well-defined
vector field on Q x CP'. Since the fibre CP! is compact, this means that the mero-
morphic solutions of our equation are defined along every differentiable curve ¢
contained in €, whence, in particular, such solutions are meromorphic on €.

We now prove that (a) implies (b). The graphs of the solutions of our differ-
ential equation are curves transverse to the fibres CP! of the product Q x CP!.
Since these solutions are assumed single-valued and defined on (, the projection
on the factor Q determines a diffeomorphism from the graph of each solution to
its domain of definition Q.

Consider the graph of the solution y taking the value yo € CP! at the point
xo € Q. This graph meets the fibre above x € Q in a point y € CP'. The map
sending an initial point yq to the point y is a biholomorphism between two fibres,
each isomorphic to CP'. It must therefore be a Mobius transformation, so that

_a(x)yo + B(x)
y(x) = SR
y(xX)yo + 6(x)
We recover the vector field F(x,y) by taking the derivative at x¢ of y(x), that is,
—y’(xo)yé + (a’(xg) — 8" (x0))y + B’(xg), which is in fact quadratic in y. (This
ultimately derives from the fact that the Lie algebra of PSL(2,C) is identifiable
with the polynomials of degree two.) O

We also need to describe briefly the work of Fuchs on linear differential
equations, which, although it directly inspired Poincaré’s work in that direction,
is not considered elsewhere in the present book. Fortunately, the existence of
Hille’s book [Hil1976] somewhat excuses our brevity. We note also the excellent
works [Forsy1902, Gral986,Inc1944,1KSY 1991, Val1945].

Thus consider once again a linear equation of type (VIIL.1). Fuchs seeks con-
ditions on the matrix A (rationally dependent on x) guaranteeing that local so-
lutions in a neighborhood of the poles of A can be expressed as power series
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in (x — x;)* and log(x — x;) for certain 1. He shows that this is the case if and
only if A has only simple poles. He also shows how to calculate the exponents A
simply as roots of an equation called “radicial”, easily made explicit.

Fuchs’s theory is essentially local, and he was therefore led to study linear
equations of a similar type — called Fuchsian equations — where now A is an
algebraic function of x, or, in other words, a meromorphic function on a certain
compact Riemann surface extended over the x-plane. We will revisit some of
Fuchs’s work in detail in §IX.1.

Revisiting differential equations and elliptic functions. — We turn once again to
elliptic functions, only touched on in Chapter I. The point of departure for that
theory was the investigation of integrals of the form

x—f dy
VO-a)-B(y-7)

with @, §,y distinct complex numbers.

We first need to justify the idea of Gauss, Abel, and Jacobi to the effect that y
is a single-valued (and periodic) function of x.

The differential form

w= dy
VO-a)y-B -7

is well-defined and nonsingular on the double cover of the projective line CP!,
ramified over the points a, 8,7, co. In other words, the smooth projective cubic C
with affine equation z> = (y — a)(y — 8)(y — ¥) inherits a nonsingular holomor-
phic volume form. In fact the local coordinate v of the cubic C in a neighborhood
of y = a is such that y — @ = v?, whence dy = 2vdv and w =~ 2dv. A similar
calculation in a neighborhood of infinity (where the local variable v satisfies the
equation 1/y = v?) shows that w is also holomorphic and nonsingular at infinity.

Dually, C inherits a nonsingular holomorphic vector field X, defined by
w(X) = 1. Since C is compact, the (complex) flow determined by X is complete
and its (transitive) action parametrizes C as the quotient of C by the stabilizer A
of a point. The smooth cubic is thus uniformized by C. The equation w(X) =1
shows that the parametrization of a given orbit of X (the uniformizing map) is the
inverse of the corresponding integral x. This inverse its therefore a A-periodic
elliptic function satisfying, by construction, the differential equation

dy 2
(d_) =(0-)O - -7),
x
the solutions of which are the Weierstrass g-function and its translates y = p(x +

const).
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One may instead base the development of the theory of elliptic functions on
the following differential equation:

Theorem VIIIL.1.2. — The nontrivial solutions of the equation

dy 2
(d—) =(y-a)y-80-v)
X

are elliptic functions which uniformize the smooth projective curve C with affine
equation 2 = (y = a)(y = B)(y = 7).

Proof. — The proof uses a geometric method invented by Lie (see [PaSe2004]).
Denote the quantity Z—)y( by z; then dy = zdx. We seek solutions in the form of
maps f: C — C?, f(x) = (y(x),z(x)), with graphs tangent to the contact field
dy — zdx = 0 and contained in C X C. The intersection of the tangent space to
C x C with the contact field allows us to define a nonsingular line field. In fact if
we set F(y) = (y — a)(y — B)(y — y), this intersection coincides with the kernel
of the holomorphic differential 2-form

(dy — zdx) A 2zdz — F'(y)dy) = zQ,

where € is a non-vanishing holomorphic 2-form. The kernel of Q is a line field
(defined even at z = 0) and one may verify that it extends to a line field ¥ defined
also at the point at infinity of C (and therefore on the whole of C x C). Further-
more, ¥ is transverse, that is, its projection on the coordinate x is an isomorphism.

The solutions of our differential equation are curves tangential to . Let
¢ : [0,1] — C be a differentiable curve and (yp,zp) a point on C above c(0).
There then exists a unique differentiable curve ¢ : [0,1] — C X C that is a lift
of ¢ and satisfies ¢(0) = (0, yo, zo0). In view of the compactness of the fibre C, the
curve ¢ is well-defined on the whole interval [0, 1].

This shows that corresponding to every initial condition and every curve ¢
in C, there exists a meromorphic solution defined along that curve. Hence the
nontrivial solutions of our equation are defined on C.

Denote by A the group of periods of a nontrivial solution y. Since y is com-
pletely determined by its initial value, one also has

A ={1eCly(1) = y(0)}.

Now since the zeros of an analytic function are isolated, A is a discrete subgroup
of C, so that we have an injective map f : C/A — C. One readily verifies that f
sends the canonical 1-form dx to the form w = dy/z on C: one has, indeed,

dy) _ Y (x)dx

fw)=f" (? V() = dx.
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In particular, f sends the real volume form dx A dx to vol A vol.

Suppose by way of obtaining a contradiction that A is not a lattice in C.
Then f maps the manifold of infinite volume C/A injectively to the finite-volume
cubic C, an absurdity. Since the image of C/A is both open and closed (being
compact) it must coincide with C. m|

Non-linear differential equations. — In the remarkable article [Poin1885b], which
nevertheless went unnoticed at the time, Poincaré succeeded in delineating Riccati
or elliptic differential equations within the jungle of algebraic differential equa-
tions: they are just those without “mobile singularities”.

The definition is as follows. Poincaré says of a differential equation

d
R (x,y,d—i) =0,

that it has no mobile singularities if one can find a finite number of points
X1,...,Xn (singular for the given differential equation) such that for every
Xp # X1,...,Xp,every yo € CU {0}, and every path y : [0,1] = C\ {x1,...,x,}
starting at xo, there exists a meromorphic solution y of the equation along vy such
that y(xg) = yo. Thus the solutions may be many-valued, but apart from the “fixed
singularities” xi,. . ., x, they can only have poles as singularities.

Here are some examples of equations admitting mobile singularities.

The rational equation Z—ch + 3y = 0, with general solution y(x) = 1/ Vx—¢
has mobile singularities of algebraic type. Observe that the singularity x = ¢
does indeed depend on the initial condition.

The equation (not rational this time) % +exp(y) = 0 affords another example
since the solutions y(x) = —log(x — ¢) admit mobile singularities of logarithmic
type.

A further example is the equation Z—)yc + ylog? y = 0 whose solutions of the
form y(x) = exp(1/(x — c¢)) present essential mobile singularities.

Theorem VIII.1.3. — Let R (x,y, %) = 0 be a differential equation without

mobile singularities, where R is polynomial in y,% and analytic in x. There

are then three possibilities: the equation “derives” from a Riccati equation, or

its general solution is expressible in terms of elliptic functions, or the general
. . . . . dy .

solution is an algebraic function of the coefficients of y and 7 in R.

Proof. — Again we seek graphs of solutions of the differential equation
R (x,y,Z—)y() = 0 in the form of curves situated naturally on the surface with
equation R(x,y,z) = 0 (or more precisely on the projective compactification
with respect to the variables (y,z)) and tangential to the plane field defined by
dy — zdx = 0. This surface is generated by the family of curves obtained by as-
signing x some fixed value. In view of the assumption that there are no mobile
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singularities, we can, for every path y : [0,1] — C\ {xy,...,x,} and every initial
condition xg,yo (with xg = y(0)), find a solution along y. The end-point y(1)
of this solution allows us to identify holomorphically the curves R(y(0),y,z) =0
and R(y(1),y,z) = 0 (of course it must be shown that such identifications extend
to the associated compact surfaces). In other words, all surfaces R(x,y,z) = 0
with x given a fixed value (other than xi,...,x,) are birationally equivalent.

Thus every path y avoiding the x; defines a “monodromy” isomorphism. We
distinguish three cases.

If the genus of these curves is 0, that is, if they are copies of the Riemann
sphere, the monodromies are projective transformations and the monodromy
group is a subgroup of PSL(2,C). As we saw in the proof of Proposition VIII.1.1,
this characterizes equations of Riccati type or linear.

If the genus is I then, as we have seen in connection with Theorem VIII.1.2,
the theory of elliptic curves allows us to identify these curves with the quotient
of C by a lattice, and the solutions can be parametrized by means of the corre-
sponding elliptic functions.

Finally, if the genus is greater than or equal to 2, then a theorem due to Klein
affirms that the group of holomorphic automorphisms of such a curve is finite. It
follows that the monodromy group is finite or the general solutions take on only
finitely many values for each value of x (different from the x;). From this it is
not difficult to conclude that the general solution is algebraic. (For many further
details concerning this proof, the reader may consult [PaSe2004].) O

Later developments. — Thus the preceding theorem of Poincaré shows that
the quest for new transcendentals via first-order algebraic differential equations
should be concentrated on Riccati differential equations, or, equivalently, second-
order linear differential equations. Here we have the principal motivation behind
the articles of Poincaré of interest to us here.

Of course one might also attempt an investigation of nonlinear higher-order
algebraic differential equations, which lie outside the scope of the theorem of
Poincaré we have just expounded. It was Painlevé who, following the work of
Poincaré we are concerned with here, made major contributions to the topic. There
is perhaps some point in mentioning two of them. The first shows that for first-
order algebraic equations the mobile singularities are of a limited sort.

Theorem VIIL.1.4. — An equation of the form Z—){ = F(x,y) where F is a rational
function in y with coefficients algebraic functions of the variable x, can only have
mobile singularities of algebraic type.

Proof. — The graphs of solutions of such an equation must be contained in the
surface given by the equation R(x,y,z) = z — F(x,y) = 0 and be tangent to the
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plane field given by dy — zdx = 0. The trace of this plane field on the surface
R(x,y,z) = 0 defines a holomorphic singular line field ¥ (with isolated points as
singularities). Moreover this line field compactifies into a well-defined singular
line field on the compactification of the curve R(x,y,z) = 0 in CP! x CP?. Note
that # may become vertical (contained in dx = 0) at infinity.

The singular points xi,...,x, of the equation will then be the projections of
the singular points of the foliation on the projective line CP!, the domain of the
variable x.

Consider a differentiable curve ¢ contained in the plane of the variable x.
We have the following two possibilities: If the curve c lifts to a curve ¢ tangential
to ¥ (along which the foliation ¥ is not vertical), then there exists a meromorphic
solution of the equation, differentiable along the curve c.

If the tangent to a lift ¢ of ¢ becomes vertical above a point c¢(¢p), then the
analytic continuation of a local solution along ¢ will not be meromorphic, but
have an algebraic singularity at c(#). In order to see that that singularity is indeed
algebraic, one reverses the roles of the variables x and y and observes that at the
point in question x is then a holomorphic function of y with derivative zero since
fl—;“ = F(x,y) = 0. If that derivative vanishes to the order k € N*, then y represents

an algebraic mobile singularity given by a series in (x — c(to))%. O

The other major contribution of Painlevé is his systematic investigation of
second-order nonlinear equations without mobile singularities with the aim of dis-
covering the “Painlevé transcendentals”. He succeeded in classifying equations
of the form y” = F(x,y,y’) without mobile singularities, where F is an analytic
function in x and rational in y, y’. He shows that only six classes of such equations
(the simplest being of the form y”’ = 6y> + x) effectively yield new transcenden-
tals, that is, functions not expressible in terms of algebraic functions and known
transcendental functions.

VIIL.2. Poincaré’s approach

We now return to Poincaré, sustained as he is by elliptic functions and convinced
by his theorem that linear equations provide a suitable framework for research on
new transcendentals. He considers a Riccati equation on which he imposes the
conditions that it be Fuchsian and that the A arising in connection with the poles
be reciprocals of integers. The equations he obtains, which he calls “normal”,
have all the properties necessary for the inverses of their solutions, a la Jacobi,
to be locally single-valued (the local exponents becoming integers). But are the
inverses of these solutions globally single-valued? Will the elliptic miracle oc-
cur again? Nothing of the kind, but nonetheless Poincaré makes a remarkable
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discovery. Among all the normal differential equations defined on a single Rie-
mann surface S, there exists a unique one' the inverses of whose solutions are
single-valued in a disc D. This yields a parametrization of S by D. Just as an
elliptic curve is the quotient of C by a lattice acting as group via translations, the
Riemann surface S is the quotient of the disc by a discrete group of holomorphic
automorphisms. The Fuchsian functions were born.

Poincaré then shows that Fuchsian functions allow the solution not only of
this privileged Fuchsian equation but of all normal equations on S. Thus did he
discover new transcendentals, single-valued on a disc, and show that they allow
the solution of all normal equations. Mission accomplished!?

As it were incidentally — this was not Poincaré’s research goal — he had uni-
formized all surfaces of genus at least 2. These are all isomorphic to the quotient
of a disc by the holomorphic action of a discrete group. However, this major result
— which so surprised Klein — was only of secondary importance to Poincaré.

It is perhaps best to quote relevant excerpts from Poincaré’s announcement
[Poin1921].

I was thus led to examine linear equations with rational and algebraic coef-
ficients.

[...]

This close study of the nature of integral functions cannot be achieved with-
out the introduction of new transcendentals, about which I shall now say a
few words. These transcendentals have great analogies with elliptic func-
tions, and one should not be astonished at this, since if I conceived these
new functions, it was in order to do for linear differential equations what
had been done by means of the elliptic and Abelian ¢-series for the inte-
grals of algebraic differentials.

!Poincaré calls this equation Fuchsian. We prefer the terminology uniformizing equation.
2We quote the testimony of Lecornu, classmate at 1’Ecole Polytechnique and 1'Ecole des Mines,
as reported by Appell in [App1925]:

I remember that, invited by me to dine with my parents on December 31, 1879, he
spent the evening walking up and down, not hearing what we said to him or else
replying in monosyllables, and forgetting the time to such an extent that just after
midnight I took it upon myself to remind him gently that we were now in 1880. He
seemed at that moment to return to earth, and decided to take leave of us. Some days
afterwards, when I met him on the quay of the port of Caen, he told me carelessly:
I know how to integrate all differential equations. Fuchsian functions have just been
born. And I guessed then what he had been thinking about in going from 1879 to
1880.

This quote, mentioned in [MiP01999] does not fully gibe with the chronology of the discovery
of Fuchsian functions as reported by Poincaré himself in [HaPo1993]; but at least it shows clearly
what motivated him.
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It is thus the analogy with elliptic functions that has served me as guide in
all my investigations. The elliptic functions are single-valued functions that
remain unchanged when one increases the variable by certain periods. This
idea is so useful in Mathematical Analysis, that all geometers must long ago
have thought how convenient it would be to generalize it by seeking single-
valued functions of a single variable x which remain unchanged when one
applies certain transformations to that variable; however such transforma-
tions cannot be chosen in any way whatever.

[...]

It is easy to see what particular kind of discrete groups it is appropriate
to introduce. Recall how the elliptic functions arise: one considers certain
integrals said to be of the first kind, and then, by means of a process known
under the name of inversion, one regards the variable x as a function of the
integral; the function so defined is single-valued and doubly periodic.

In the same way, we take a second-order linear equation and, by means
of a sort of inversion, we regard the variable as a function, no longer of
the integral, but of the ratio z of two integrals of our equation. In certain
cases, the function so defined will be single-valued, and then it will remain

unaltered by an infinity of linear substitutions, changing z into ‘;z:g .
[...]

The results so obtained as yet give only a very incomplete solution to the
problem I set myself, that is, the integration of linear differential equa-
tions. The equations I have called Fuchsian, and which can be integrated
by means of a simple inversion, are just very special cases of second-order
linear equations. One should not be surprised at this if one reflects a little
on the analogy with elliptic functions. The inversion process only allows
the calculation of integrals of the first kind. For integrals of the second and
third kinds, it is necessary to proceed otherwise.

Consider for example the integral of the second kind

X

u_fx x%d
0o VA-2(A -

To evaluate it we consider as auxiliary equation that giving the integral of
the first kind

. fx dx
0 (1 =x2)(1 - k2x2)

where by inversion x = sn z. Replacing x by sn z, we find that u is equal to
a single-valued function of z, Z(z), which increases by a constant amount
when z increases by a period. We are thus led to use an analogous proce-
dure: given a linear differential equation E of any order, with coefficients
algebraic in x, we use an auxiliary second-order equation E’, and this auxil-
iary equation must be chosen in such a way that x is a Fuchsian function of
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the ratio z of two integrals of E’ and that the integrals of E are single-valued
functions of z.

Is it always possible to make this choice so as to satisfy all these conditions?
Such is the question that naturally arises. This comes down moreover to
wondering if, among linear equations satisfying certain conditions that it is
pointless to state here, there is always a Fuchsian equation. I have managed
to prove that one can answer this question affirmatively. I cannot explain
here in what consists the method we, M. Klein and I, have employed in
studying diverse particular examples; how M. Klein has sought to apply the
method in the general case; nor how I filled in the gaps which persisted in
the proof of the German geometer in introducing a theory having the most
profound analogies with that of the reduction of quadratic forms.

[..]

Thus is it possible to express the integrals of linear equations with alge-
braic coefficients in terms of new transcendentals, in the same way as one
expresses, in terms of Abelian functions, the integrals of algebraic differ-
entials. Furthermore the latter integrals are themselves susceptible of being
obtained by means of Fuchsian functions, and one then arrives at a new ex-
pression, entirely different from that involving J-series in several variables.

VIIL.3. Second-order linear differential equations, normal equations and
uniformizing equations

The idea of using second-order linear differential equations to uniformize Rie-
mann surfaces arose essentially from the following two observations. On the one
hand, if S is a Riemann surface uniformizable by the half-plane and w : S—>H
is a biholomorphism, then in a neighborhood of every point w can be expressed
as the quotient of two independent solutions of a certain second-order linear dif-
ferential equation on an open set of S. On the other hand, if E is a second-order
linear differential equation on an open set U of S, then the quotient w of two in-
dependent solutions of E is always a local biholomorphism from U to CP!. The
aim of this section is to justify these two assertions and introduce the definitions
needed to formulate the uniformization question “a la Poincaré”, that is, as the
problem of the existence of a “uniformizing” differential equation.
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VIIL3.1. Second-order linear differential equations

Let U be a connected open set of a Riemann surface S and x : U — C a coor-
dinatizing holomorphism defined on this open set3. For us, a second-order linear
differential equation on U in the coordinate x will be a differential equation of the

form

d*v dv
el = =0 E
dx2+fdx+gv (E)

where f,g : U — C are given holomorphic functions (we stress the fact that the
functions f and g are not permitted to have poles in U) and v : U — C is the
unknown function*.

A second-order linear differential equation on U in the coordinate x will be
said to be reduced if it has no order-one term, that is, if it has the form

2
% +hv=0 (E")
where / is a holomorphic function on U.

The notion of a second-order linear differential equation is certainly stable
under coordinate changes: if we rewrite the equation E above in terms of a coor-
dinate y, the differential equation obtained will still be second-order linear. This
is why one may speak of a second-order linear differential equation without spec-
ifying the coordinate. On the other hand the concept of a reduced equation is not
invariant under coordinate changes: if the equation E’ is rewritten in terms of a
new coordinate y, one obtains in general an equation that is no longer reduced.

If E is a second-order linear differential equation on an open set U, then its
solutions are holomorphic functions v : U — C that are, in general, many-valued.
In other words, it is more appropriate to view such solutions as (genuine) functions
defined on the universal cover 7 : U — U , that is, as solutions of the differential
equation on U induced from E:

r—
v (fom T+ (gomT=0,
where X = x o m. In practice it is convenient to hold both points of view: we

will understand the solutions of E to be functions on U, but it will sometimes be
practical to use the language of many-valued functions.

3By this we mean that x is a local biholomorphism from U onto an open set C. Typically we
shall be considering a ramified covering x : § — CP! and U will be the surface S with x~! (c0) and
the ramification points of x removed.

“Here g—; denotes the “ratio” of dv and dx as sections of the cotangent bundle.
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VIIL.3.2. Quotients of solutions and projective equivalence

Let U be a connected open set of a Riemann surface S and U its universal cover.
We are interested in functions arising as quotients of two solutions of a second-
order linear differential equation on U. We begin with a few elementary remarks
concerning such functions.

Proposition VIIL.3.1. — Consider a second-order linear differential equation E
on U and two independent solutions vi,v, of that equation. Write w for the quo-
tient vi/vy. Then w is a local biholomorphism?® from U to CP! and for each auto-
morphism 'y of the universal cover U there exists a Mobius transformation p(y)
such that w oy = p(y) o w.% Furthermore, a function is expressible as the quo-
tient of two independent solutions of E if and only if it is the composite of w with
a Mobius transformation.

Proof. — The solutions vy,v; are holomorphic many-valued functions on U,
which is to say that they are holomorphic functions on U. Their quotient w is
meromorphic on U and its derivative is given (to within a non-vanishing factor)
by the Wronskian %vz -V %, which is non-vanishing in view of the indepen-
dence of the solutions v; and v,. This shows that w : U — CP! is étale.

Now let y be an automorphism of the universal cover U and v a solution (that
is, a solution of the equation on U induced from E — see §VIIIL.3.1). Since the
coordinate of U (induced from that on U) is invariant under ¥, it follows that v oy
is also a solution. Thus the pair (v o y,v, o y) of solutions is obtained from the
pair (vy,v2) of independent solutions by means of an element of GL;(C). Hence
there exists a Mobius transformation p(y) such that w oy = p(y) o w.

The final assertion of the theorem follows from the argument involving com-
parison of bases of a vector space. O

We now introduce an equivalence relation on the set of second-order linear
differential equations taking into account the fact that our interest lies not so much
with the equations’ solutions in themselves as with quotients of pairs of indepen-
dent solutions.

Proposition VIIL.3.2. — Given two second-order linear differential equations E
and E’ on an open set U, the following three conditions are equivalent:

(1) the set of functions expressible as the quotient of two solutions of E coin-
cides with the set of functions expressible as the quotient of two solutions
of E’;

50One also says that w is étale.

¢In other words, w is a many-valued meromorphic function on U, each of whose local determi-
nations (branches) is étale from U to CP!, with passage from one determination to another achieved
by composing with a Mbius transformation.
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(ii) the quotient of any two independent solutions whatever of E’ can be ob-
tained by composing the quotient of any two solutions of E with some
Mobius transformation,

(iii) there exists a non-vanishing holomorphic many-valued function k such that
the solutions of E’ are obtained by multiplying those of E by k.

Proof. — The equivalence (i) & (ii) follows immediately from the final assertion
of Proposition VIIL.3.1. The implication (iii) = (i) is obvious. Thus it remains to
prove the implication (i) = (iii).

Suppose (i) holds and consider two independent solutions v{,v; of E’. By as-
sumption there exist two independent solutions vy, v, of E such that vy /v, = vi / vé.
Writing k& = v{/vl, we have v{ = kv; and vé = kv,. Since (v{,vé) is a basis for
the solutions of E’, it follows that every solution of E’ is obtained by multiply-
ing some solution of E by k. The function k is meromorphic a priori; but it is
easy to see that in fact it has neither zeros nor poles. For example, if k£ vanished
at a point xo of U, then the solutions v{ and v, would have to vanish simulta-
neously, which is impossible since they are assumed independent. One shows
similarly that k has no poles by reversing the roles of the solutions. Hence k is a
non-vanishing holomorphic function and (iii) holds. O

Definition VIII.3.3. — Under the conditions of the above proposition the equa-
tions E and E’ will be called projectively equivalent.

Proposition VIIL.3.4 below allows us to replace the abstract space of
projective-equivalence classes of second-order linear differential equations on U
by a more concrete space: that of second-order linear differential equations that
are reduced relative to a fixed coordinate.

Proposition VIIL.3.4. — Let x : U — C be a holomorphic local coordinate.
Every second-order linear differential equation on U is projectively equivalent to
a unique equation reduced in the coordinate x.

Proof. — Consider a second-order linear differential equation £ on U in the vari-
able x:

d?v dv

— +f—+gv=0. E
By condition (iii) of Proposition VIIL.3.2, an equation E’ is projectively equivalent
to E if and only if it can be obtained from E by means of a change of unknown of
the form v = k(x)v’. Applying such a change to E, we obtain the equation

d>v’ f+2dk dv’+ +fdk+1d2k ,
dx2 kdx | dx kdx  kdx?)'
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For this equation to be reduced, k must satisfy % = —% fk, in which case the
latter equation becomes
d*’ ldf 1,
+le—-=2L = "=0. E’
dx? (g 2ax 2l )Y (E")

This proves the proposition. Observe that although the function k£ may a priori be
many-valued, the functions appearing in the final equation E’ are single-valued.
Its form implies the uniqueness of the reduced equation in the coordinate x. O

We turn now to the following problem: what (many-valued) functions appear
as quotients of two independent solutions of a second-order linear differential
equation?

By the preceding discussion such a function w must be étale and its branches
interchanged by Mobius transformations. We shall now show, by means of the
Schwarzian derivative (see Box IV.1), that these two conditions suffice to charac-
terize the functions in question. This elementary but fundamental fact highlights
the connection between uniformization and differential equations (see Corol-
lary VIIL.3.7).

Proposition VIIL3.5. — Letrw : U — CP' be a many-valued meromorphic
function that is étale and whose branches are interchanged by Mobius transfor-
mations. Let x : U — C be a coordinate on U. Then w is the quotient of two
independent solutions of the following second-order linear equation:

> 1

— + ={w,x}v =0. E’

a2 T2 (E7)
Proof. — Since w is étale, its derivative with respect to x is non-vanishing and

{w,x} is holomorphic. Furthermore, in view of the projective invariance (of the
Schwarzian derivative of w), the Schwarzian {w, x} is single-valued on U. Hence
the equation E’ is a second-order linear differential equation in our restricted

sense. Set
/dw dw
Vi :W/ E and V) = 1/ E

Then obviously w = v;/v,. We also have

/dw d? -1
{w,x} =-2 E@(dedx) s

-1
and by using the above equation E’ with k(x) = (dedx) (k as in Proposi-
tions VIII.3.2 and VIII.3.4) we obtain an equation of which 1 and w are obvious
solutions. The functions v; and v, are therefore solutions of the equation E’. 0O
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Corollary VIIL.3.6. — Let w be the quotient of two independent solutions of a
second-order linear differential equation E on U. Then the equation E’ above is
the unique reduced equation projectively equivalent to E.

Proof. — This is immediate from Proposition VIIL.3.2. O

Corollary VIIL.3.7. — Let S be a Riemann surface uniformizable by the half-
plane H, r : S — S the universal cover of S, and ¢ : S—>Ha biholomorphism.
Then for every open set U of S furnished with a coordinate x, the restriction w
of ¢ to = \(U) is the quotient of two independent solutions of the differential
equation E" on U.

Proof. — The conjugates by ¢ of the automorphisms of the universal cover S are
biholomorphisms of the half-plane H, that is, M&bius transformations with real
coeflicients. It follows that the function w, considered as a many-valued function
on U (being actually defined on a covering of U), satisfies the assumptions of
Proposition VIIL.3.5. o

We now need to consider the problem of changing coordinates in second-order
linear equations. Suppose we are given a second-order linear equation on U, re-
duced in a coordinate x. If we rewrite this equation in terms of another coordi-
nate y, we will in general obtain a non-reduced equation. According to Proposi-
tion VIII.3.4, however, the equation in terms of y admits a unique reduced projec-
tively equivalent equation. The precise result is as follows:

Proposition VIIL.3.8. — Let x and y be two coordinates on U, and consider a
second-order linear differential equation reduced in the coordinate x:

d*v

ﬁ + hv =0. (Ex)
Then the unique equation projectively equivalent to E, and reduced in the coor-
dinate y has the form

d?v , dy\* 1
d—yz+HV:O, with h = (a) H+§{y,)€}. (Ey)

Proof. — The set of quotients of independent solutions is common to all equa-
tions projectively equivalent to E,. Let w be such a quotient and E equivalent
to E;. We know that the unique reduced equation equivalent to E is defined
by the Schwarzian derivative of w in the coordinate of E (Corollary VIIIL.3.6).
Hence the equation we seek is just the formula (I'V.6) for the transformation of the
Schwarzian derivative under a change of coordinate (see Box IV.1). O
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VIIL.3.3. Globalizable equations

Let S be a Riemann surface. So far we have been considering only differential
equations defined on an open set U of S. Except in very exceptional circum-
stances, the open set U cannot be taken equal to the whole of the surface S since
in general there does not exist a holomorphic coordinate x defined on the whole
of S. Recall, however, that our aim is to use differential equations to solve a global
problem: the uniformization of S. Hence we need to consider second-order lin-
ear differential equations with the property that the quotient of two independent
solutions extends to a many-valued function defined globally on the surface S (in
other words a function defined on S). This is equivalent to considering second-
order linear differential equations which “extend to the whole surface S to within
projective equivalence”. Or, more formally:

Definition VIIL.3.9. — Let Uy be an open set of a Riemann surface S and Ej a
second-order linear differential equation on Uy. We shall say that the equation Ey
is globalizable if there exist

— open sets Up,..., U, of Ssuchthat S = Uy U --- U U,

— second-order linear differential equations Ej,...,E, on the open sets
Ui,. .., Uy,, such that, for every pair (i,j) € {1,...,n}?, the equations E;
and E; are projectively equivalent when restricted to U; N U;.

Alert geometers among our readers will certainly have perceived that the no-
tion of a globalizable second-order linear differential equation is closely allied to
the more classical idea (for us today) of a complex projective structure. Recall
that a projective structure — here assumed compatible with the complex struc-
ture — on a Riemann surface S is given by a holomorphic atlas whose charts take
their values in CP' and with coordinate changes on overlaps locally projective
(restrictions of Mdbius transformations). With each projective structure on S one
associates a local biholomorphism w : S — CP!, termed structure developing,
obtained by analytic continuation of a germ of a fixed chart. This map clearly
depends on the initial chart: two developments differ by a Mobius transformation
(acting on the codomain). Two projective structures whose developments differ
by a Mobius transformation are said to be equivalent.

Now let Up be an open set of S, furnished with a coordinate. Then every glob-
alizable second-order linear differential equation on Uy defines a projective struc-
ture on S and conversely. One passes from the equation to the projective structure
by considering quotients of solutions on small open sets (see Proposition VIIL.3.2)
and from the projective structure to the equation by means of a development (see
Proposition VIIL.3.5). Furthermore, two second-order linear differential equations
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on Uy are projectively equivalent if and only if they correspond to equivalent pro-
jective structures.

Proposition VIIL.3.10. — Ler S be a Riemann surface with universal cover
n:8S — S. Let Ey be a second-order linear differential equation on a connected
open set Uy of S and wy Uy — CP! the quotient of two independent solutions
of Ey. Then the equation Ey is globalizable if and only if both of the following
conditions hold:

(1) wo extends” to a local biholomorphism w : S - CP!;

(ii) for every y € m(S) (viewed as an automorphism of the covering S ) there
exists p(y) € PSL(2,C) such that w oy = p(y) ow.

Proof. — If Ey is globalizable, then one constructs w by gluing step by step
on S quotients w; of solutions of the equations E;; the compatibility of the equa-
tions E; ensures that one can find w;s which can be glued in this way. Conversely,
if wo satisfies (i) and (ii), then one can cover S by finitely many open sets U;
furnished with coordinates x;, and the equations E; globalizing Ey are then ob-
tained via the Schwarzian derivative {w, x;} of w on the open sets U; (see Propo-
sition VIIL.3.5). |

Remark VIIL.3.11. — Since condition (ii) is automatically satisfied for all
v € m1(Up), it becomes superfluous in the case that 71 (Up) maps naturally onto
m1(S). This occurs when S \ Uy is finite — for example if Ey is meromorphic on
S and U is the complement of the set of poles of Ey.

The property of a differential equation of being globalizable is clearly invari-
ant under projective equivalence. Thus Proposition VIII.3.4 allows us to restrict
attention to equations that are reduced in a given coordinate.

Proposition VIIL.3.12. — Let Uy be a connected open set of a Riemann surface S,
xo a coordinate on Uy, and hy : Uy — C a holomorphic map. Then the reduced
second-order linear differential equation

d*v

— + h()v =
dxo

is globalizable if and only if the following conditions hold:

— there exist open sets Uy,...,U, of S such that S = Uy U --- U U,,

"The use of the verb “extends” here is not quite accurate. In fact Uy does not in general embed
in S. In order to be able to “extend” wo to a function defined on S, a prior condition would be that
wq pass via the appropriate quotient to a function defined on 7 1(UO) cS.
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— there exist holomorphic coordinates xi,. . .,x, and holomorphic functions
hi,...,hy on the open sets Uy, . ..,Uy, such that on each U; N U; ((i,]) €
{1,...,n)?) one has

de 2 1
hi = T hj+§{x_,~,xi}.

Proof. — It suffices to express the equations E; of Definition VIII.3.9 in the form
d*v

+ h;v = 0 and apply Proposition VIII.3.8. O

VIIL.3.4. Normal equations on algebraic curves

In his article [Poin1884b] Poincaré never considers abstract Riemann surfaces; he
confines himself rather to Riemann surfaces defined explicitly as algebraic curves
in CP? and from now on we will follow suit. Note that he is perfectly well aware
that as far as uniformization is concerned only the structure of the Riemann sur-
face in the abstract counts. It is simply that he needs to have the surfaces defined
by a polynomial equation in order to “calculate” certain objects on them. Today
we can of course re-derive the whole theory intrinsically — by regarding second-
order linear differential equations as connections and the quotients of solutions of
these equations as sections of a certain vector bundle; showing the existence of
globalizable equations then reduces to establishing the triviality of a certain Cech
cohomology group, this being equivalent to the condition of Proposition VIII.3.12
(see for example [Gun1967, p. 75]). However the aim of the present chapter is to
resuscitate Poincaré’s point of view, which, although more concrete than the mod-
ern approach, contains the seed from which it developed.

Recall that, from the point of view of abstract structures of Riemann surfaces,
confining oneself to algebraic curves in CP? is equivalent to restricting one’s at-
tention to compact Riemann surfaces since in fact every compact Riemann surface
can be immersed in CP? with image an algebraic curve (see Theorem II.1.3).

The projective plane CP? is obtained from the affine plane C? with coordinates
(x,y) by adjoining a line at infinity. Thus we shall consider projective algebraic
curves X, assumed reduced and irreducible (but possibly singular), given in the
form

X :={(x,y) € C?| F(x,y) = 0}
where F(x,y) is a polynomial in the variables x and y, the closure being taken
in CP2. The Riemann surface associated with X will be denoted by .

Definition VIIL.3.13. — Let X c CP? be an irreducible algebraic curve and Uy
the open set of X on which the first projection x : X — CP! is a holomorphic
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coordinate®. A normal equation on X is a second-order linear differential equation
on an open set U C Uy, reduced in the coordinate x and globalizable.

Notation VIII.3.14. — We denote by &(X) the space of normal equations on
an algebraic curve X ¢ CP? endowed with the following topology: equations
% +hyv =0and % + hyv = 0 are close if the rational maps /; and h; are close.

VIIL.3.5. Uniformizing equations

The following result provides the main motivation for studying normal equations
in connection with uniformization of surfaces.

Proposition VIIL.3.15. — Suppose that the Riemann surface S associated with X
is uniformizable by the half-plane. Then every global biholomorphismw : § — H
is the quotient of two solutions of a normal equation on X.

Proof. — By Corollary VIIL.3.7, the restriction of w to Uy is the quotient of
two solutions of a second-order linear differential equation on U, reduced in the
coordinate x. Proposition VIII.3.10 then shows that this equation is globalizable.
It is therefore normal. O

We are thus led naturally to the following definition:

Definition VIII.3.16. — A normal equation on X will be called uniformizing® it
there exist two solutions vy, v, of E such that the quotient w := v /v, extends to a
global biholomorphism between S and H.

Note that a uniformizing equation is automatically globalizable. Poincaré lent
great importance to the following fact:

Proposition VIIL.3.17. — There exists at most a single normal uniformizing
equation on S.

Proof. — Let E and E’ be two uniformizing normal equations. There then ex-
ist two solutions vy,v of E and v{,v] of E’ such that the quotients w := v{/v,
and w’ := v /v] extend to global biholomorphisms from S to H. It follows that
w’ = h o w where h is an automorphism of H and therefore a Mobius transforma-
tion. The equations E and E’ are thus projectively equivalent and the uniqueness
condition of Proposition VIIL.3.4 then implies that £ = E’. |

We are now in a position to formulate the uniformization problem for the
surface S, a la Poincaré, in terms of linear differential equations:

To show that, among all normal equations on X, there is one that is uniformiz-
ing. If possible, to find this equation.

8In other words, Uy is the surface X with x~!(c0) and the ramification points of the covering
x: X — CP! removed.
9These are in fact just the equations Poincaré calls Fuchsian equations.
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VIIL.4. The set of normal equations on a fixed curve

VIIL.4.1. The existence of such an equation on a given curve

Our aim in this section is to understand the structure of the set of normal equations
on a given plane algebraic curve of genus g > 2.

Surprisingly (for us) Poincaré seems to consider as self-evident that every
algebraic curve should support at least one normal equation. The “modern” proof
of this fact consists in seeing that the obstruction given by Proposition VIII.3.12
actually has its being in a cohomology group which can be shown to vanish by
means of Serre duality (see [Gun1967, p. 75]). Here we present a proof which
could have been given by Poincaré — even though the reader will perhaps perceive
the cohomology groups lurking between the lines!

Thus let X be a reduced, irreducible, plane algebraic curve, with affine equa-
tion F(x,y) = 0. We seek a normal equation on X of the form

d*v
E + h(x,y)v =0. (Ep)

We may always assume that to within a birational transformation of the projective
plane X is a nodal curve (that is, that its only singularities are ordinary double
points), that 1/x furnishes a local coordinate at every point at infinity (so that, in
particular, X is transverse to the line at infinity), and that the singularities of the
projection on the x-axis are quadratic.

Proposition VIII.3.12 gives a necessary and sufficient condition for the equa-
tion to be normal. The surface S (associated with X) inherits a covering by
open sets Uy, U;, U, each equipped with a holomorphic coordinate (in the sense
of VIIL.3.10), namely x, 1/x and y respectively. Denote by R the divisor of S
determined by the critical points of the projection on the x-axis. We need to find
holomorphic functions 4; on the U; such that

dx J 2 1
hi = (d_x,) hj + 5{xj.xib,
where x; is equal to x, 1/x or y as the case may be.

The compatibility condition on coordinates between Uy and U; implies that
hodx? extends to a holomorphic quadratic differential in a neighborhood of the
points of X at infinity. The compatibility condition between the coordinates of Uy
and Uj is expressed by

1
hodx? = hydy® + E{y,x}dxz,
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which implies that at each point of R the differential hodx? is meromorphic in
the local coordinate y and that its polar part coincides with that of %{ y, x}dx?, of
order 2 in y. Conversely, if a meromorphic quadratic differential on S fulfills these
conditions, then its local expression #;d(1/x)? on U, also satisfies the appropriate
gluing condition on U; N U, in view of the formula (IV.6) for the transformation
of the Schwarzian derivative under coordinate changes (see Box IV.1).

To summarize: a normal equation is determined by a meromorphic quadratic
differential with poles and polar parts — of order 2 — prescribed (by initial choice
of projective model).

Let K be the canonical divisor of S and m a natural number. The dimension
[(2K +mR) of the space L (2K + mR) of meromorphic quadratic differentials with
poles on R and of order at most m is given by the Riemann—Roch theorem (see
Box IL.5):

I2K +mR) =1(K —2K —mR) +deg(2K +mR) + 1 —g
=3g -3+ mdeg(R)

where we have set /(-K — mR) = 0 (in view of the fact that deg(K + mR) > 0).
Hence in particular the dimension /(2K) of the space of holomorphic quadratic
differentials on S is 3(g — 1). One has, moreover, [ (2K +2R) —[(2K) = 2deg(R),
whence it follows that the polar parts of an element of £(2K + 2R) may be im-
posed arbitrarily. This completes the proof of the existence of a normal equation
on every algebraic curve.

Proposition VIII.3.12 shows that the normal equations naturally form an
affine space associated with the vector space (of dimension 3g — 3) of holomor-
phic quadratic differentials on the surface. For an algebraic curve this fact can be
expressed in the following concrete form:

Proposition VIIL.4.1. — Let X be a reduced and irreducible nodal curve in CP?,
of degree d and with affine equation F(x,y) = 0. Suppose further that X is
transverse to the line at infinity and that the branches of its double points are
transverse to the fibres of the coordinate x.

If Ey is a normal equation on X:

d*v

E + h()v = 0, (E())

then the normal equations on X are exactly those of the form

d? P
d—;+<h0+—,2)v=0,
X Fy
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where P(x,V) is a polynomial of degree less than 2d — 6 which, together with its
first partial derivatives, vanishes at the double points of X (along with F = %—5 ).
Note furthermore that the polynomials P need be considered only modulo F.

Proof. — We need to show that every holomorphic quadratic differential on X can
be expressed in terms of the coordinate x in the form

P
Q= —5 dx’, (VIIL2)
Fy

where P is a polynomial satisfying the assumptions of the proposition. (The reader
may also like to examine the proof of Proposition I1.2.8, where the argument is
similar.)

Let QO be a meromorphic quadratic differential on X. We may write
it in the form (VIIL.2) with P a rational function. Observe that the form

_(oFr\7t , _  (aF\7! . . . . .
w= ( ay) dx = ( ax) dy is holomorphic at the ramification points of x
since these are smooth. In order for Q to be holomorphic on the affine part Y
of X, it is necessary and sufficient that P be regular on Y (that is, that it be a poly-

nomial) and vanish to the appropriate order at the double points of X. At those

points the function (‘g—i) vanishes to the order 2; the desired condition is thus

that P, together with first derivatives, should vanish at the double points of X.
Finally, since the form w vanishes to the order d — 3 on the line at infinity and X is
transverse to that line, the form Q is holomorphic at infinity (given that we know
it is holomorphic on Y) if and only if the degree of P is less than 2d — 6. O

VIIL.4.2. The space of normal equations on curves

Let g > 0 and d > 1 be integers. Setting N = d(d + 3)/2, we consider the set
Se.a C CPV of reduced and irreducible nodal curves of degree d and genus g. In
fact Sg 4 is a smooth manifold of dimension 3d + g — 1 = N — 6, where ¢ is the
number of double points of a curve of S, 4, givenby g +6 = (d — 1)(d —2)/2
(see Box VIIL.1 below). In what follows we shall consider only curves of genus
g=2.

We shall say that a curve X € S, 4 is in general position with respect to an
affine coordinate system (x,y) if X is transverse to the line at infinity and the
singularities of the coordinate x are of quadratic type, distinct from the double
points. These conditions clearly define an open set of the manifold Sg 4. The
corresponding space of polynomials in (x,y) will be denoted by $, 4. Every
curve X € S, 4 admits such a system of affine coordinates. Hence as far as local
questions on S, 4 are concerned, one may confine attention to curves X defined
by polynomials F' € Py 4.
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Recall (Theorem II.1.3) that every compact Riemann surface S admits a holo-
morphic immersion in the projective plane with image a nodal curve, which more-
over one may choose to be in general position relative to an appropriate affine
coordinate system; in other words, S always admits an algebraic model of the
form Xr with F € P, 4. In line with the spirit of the present chapter we tackle
the uniformization of compact Riemann surfaces via algebraic curves, or, more
particularly, in the framework — dear to Poincaré — of differential equations on
those curves.

Notation VIIL.4.2. — For a given two integers g > 2 and d > 4, we denote
by &g 4 the space of pairs (X,E) with X € S, 4 and E € &(X) (see Nota-
tion VIIL.3.14).

One then has, of course, the natural projection from &, 4 onto Sg 4. By
Proposition VIIL.4.1, the fibres of this projection are complex affine spaces of
dimension 3g — 3. In fact one has the following proposition:

Proposition VIIL.4.3. — Take any g > 2 and d > 4. Then the space &g 4 is a
fibration of affine spaces over Sq 4. In particular Eg4 4 is a smooth manifold.

Proof. — Consider the curves X with F € P, 4. The ramification divisor Rr
of the coordinate x is the (transverse) intersection of Xy with Fy’ = ?9_1; =0, of
degree d(d — 1). The meromorphic quadratic differentials on Xr with poles of
order at most 2 at the points of R are of the form
P
0=— 2 dx?,
Fy

where P belongs to the space £r of polynomials of degree at most 4d—8 vanishing
to the fourth order at the double points of Xr (here it is enough to adapt the
proof of Proposition VIII.4.1). The polynomials P need to be considered only
modulo F. Choose (locally) a complement Qp of C[x,y]F N Pr in Pr; we
know that this space has dimension 3g — 3 + 2d(d — 1) independently of F (see
Proposition VIIL.4.1). We therefore have a holomorphic vector bundle over P 4.

The restrictions on the polar parts at the points of Ry characterizing the nor-
mal equations are affine. They depend holomorphically on F (considering {y, x}
explicitly as a rational function of the partial derivatives of F)) and determine an
affine subspace of QF of dimension 3g — 3 independently of F (see Proposi-
tion VIIL.4.1). This establishes the proposition. m|

Box VIII.1: The manifold of nodal curves

Let d > 1 be an integer and CPV the projectification of the space of
homogeneous polynomials of degree d (so that N = d(d + 3)/2). Each curve
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of degree d in the projective plane CP? can be identified with a point of CPY
(the equation of the curve in the usual homogeneous coordinates). Furthermore
the projective coordinate changes of CP? correspond to projective transforma-
tions of CPV.

Proposition VIIL.4.4 (Severi). — Let ¢ > 0 and d > 1 be integers and
Sga C CPN be the set of reduced and irreducible nodal curves of de-
gree d and genus g, assumed non-empty (which is equivalent to requiring that
(d - 1)(d - 2) < 2g — see for example [Loel988, Cor. 2.2]). Then Sg 4 is a
smooth manifold (a “Severi manifold”) of dimension

3d+g-1=N-3,

where ¢ is the number of double points of a curve from Sq 4 (given by Cleb-
sch’s formula g + 6 = (d — 1)(d —2)/2).
Proof (see [HaMo01998, p. 30]). — Set

X= {(X’P)|X € Sg,dap € Xsing} c CPN X CPZ,

where Xj;,, denotes the singular locus of X. We shall show that X is smooth
at (Xo,po) provided py is an ordinary double point of Xy. Choose affine co-
ordinates (x,y) so that pg = (0,0), and let Fy(x,y) = O be an affine equation
for Xo. The condition for a point p = (a,b) to belong to the singular locus of
a curve X of degree d with affine equation F(x,y) = 0 is

®(F,a,b) := (F(a,b),F}(a,b),F)(a,b)) =0 € C°.

Now the Jacobian matrix of @ at the point (Fp,0,0) with respect to the variables
(F(0,0),a,b) is

1 0
0 HFy(0,0) )’

where H Fy is the Hessian matrix of F, invertible at (0,0) since pg is an or-
dinary double point of X(, whence we infer that ¥ is a smooth submanifold
of codimension 3 in a neighborhood of (Xg,pg). Moreover at this point the
projection CPV x CP?> — CP induces a local immersion from X to a germ of
the smooth hypersurface H (py) whose tangent hyperplane corresponds to the
space of polynomials vanishing at p°.

Returning to the set Sg 4, we see that for 6 = 0 the proposition is obvi-
ous since the smooth curves form an open set in CP" . Suppose now that § > 1.
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Consider X € S; 4 and let py,. .., ps be the double points of X. By the above,
every curve in S, 4 sufficiently close to X belongs to the intersection of the
H(pr) (k =1,...,0). Conversely, every curve X’ € ﬂizl H (pr) sufficiently
close to X must belong to Sg 4 (in particular the only singularities of X’ are
its & double points close to the pr). Hence in a neighborhood of X the set
S, a coincides with the intersection of the hypersurfaces H (px ). To complete
the proof it remains to show that these are in general position, that is, that the
space of polynomials vanishing at the points p,. .., ps has codimension é.
Let X € Sg 4 be as before and (x,y) an affine coordinate system in general
position with respect to X. Write P, for the space of polynomials of degree
< min (x,y). It follows from Clebsch’s formula g + 6 = (d — 1)(d — 2)/2
(inferred, for instance, from the Riemann—Hurwitz formula in the case of a
generic projection on CP') and the characterization of holomorphic differen-
tials on X in terms of polynomials of degree < d — 3 (see the proof of Propo-
sition I1.2.8), that the conditions P(px) = 0 (k = 1,...,0) are independent on
P;_3. In other words, setting ¢,,(P) = (P(p1),...,P(ps)) € C° for P € P,
we have that the map ¢4_3 is surjective. Hence ¢, is surjective for every
m > d — 3 — so in particular for m = d — since its restriction to Py_3 is

already surjective. This completes the proof. m|

VIILS. Monodromy of normal equations and uniformization of algebraic
curves

In this section we explain why the set of algebraic curves supporting a uniformiz-
ing normal equation is open (from which it follows that the set of uniformizable
algebraic curves is open).

VIIL5.1. The monodromy representation

Our main tool for detecting uniformizing equations will be the concept of mon-
odromy. With each normal equation E on an algebraic curve X € S, 4, we shall
relate a conjugacy class of representations in PSL(2,C) of the fundamental group
of the associated Riemann surface S.

For any Riemann surface S, we denote by Rc(S) the space of conjugacy
classes of representations of the fundamental group m;(S) in PSL(2,C)!0. We

ON. B. We use the same notation as was used in Chapter VII in connection with representations
in SL(2,C) although now they are in PSL(2,C).
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denote by Rr(S) the subset of Rc(S) consisting of the conjugacy classes of
representations containing a representation in PSL(2,R). We saw earlier (The-
orem VII.2.3) that Rc(S) is a complex analytic manifold of complex dimension
6g —6; similar arguments show that Rr (S) is a real analytic submanifold of R¢(S),
of real dimension 6g — 6 (see Corollary VII.2.4).

Let X be an algebraic curve in CP2, S the associated Riemann surface, and E
a normal equation on X. To begin with consider two independent solutions of E
and denote by w the ratio of these solutions. Since the equation FE is globalizable,
the function w (defined a priori on the universal cover of an open set of §) can be
analytically continued to a function defined on the universal cover of S (Proposi-
tion VIIL.3.10). By Proposition VIIL.3.1, for every y € m(S) there then exists a
Mobius transformation p(y) € PSL(2,C) such that w(y.z) = p(y) o w(z). This
defines a representation

p:m(S) - PSL(2,0),

the monodromy representation. Consider now two other independent solutions
of E, and denote by w’ their quotient and by p’ the monodromy represen-
tation of w’. By Proposition VIIL.3.1, there exists a Mdobius transformation
m € PSL(2,C) such that w” = m o w. We have therefore p’ = m o p o m™" ; thus
in particular the monodromy representations of w and w’ are conjugate. This jus-
tifies the following definition: we call the single conjugacy class of monodromy
representations of quotients of pairs of independent solutions of the equation E
the monodromy of the equation E, denoted by

Monyx (E) € Re(S).

Remark VIILS.1 (fundamental). — If an equation E uniformizes S by means
of the half-plane H, then its monodromy is real. Indeed, under this assumption
there exist two solutions of E whose quotient defines a global biholomorphism
from S to H. Thus the associated monodromy representation takes its values in the
automorphism group of H, that is, in PSL(2,R), and the monodromy Mony (E)
belongs to the submanifold Ry (S).

Note that the converse is “almost true”: if X is close to a uniformizable curve
and if there exists a normal equation £ on X with monodromy Mony (E) belong-
ing to the submanifold Rr(S), then E is uniformizing for X; in particular, X is
uniformizable!!.

Thus for each algebraic curve X € S, 4 we now have a monodromy map
defined on the space of normal equations on X. But this is not enough! We

UHowever there are normal equations with monodromy in Rg (S) (and even with Fuchsian mon-
odromy) that are not uniformizing; see [GolW1987].
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need a monodromy map defined on the fibration &, 4 of normal equations over
all algebraic curves, or at least defined in a neighborhood of a given fibre.

Fix onintegers g > 2 and d > 4. Recall that , 4 denotes the set of polynomi-
als F € C[x, y] of degree d such that the projective curve X defined by F is nodal
and in general position with respect to the coordinates (x,y) (see §VIIL.4.2). For
any Fy € Pg 4, we have by the Tubular Neighborhood Theorem (for immersed
submanifolds) that there exists a neighborhood U of Fy in P, 4 and a smooth
map ® : Uy x Xp, — CP? such that for every F € Uy, the map ®(F,.) is a
diffeomorphism from Xr, to Xr. Although the map ® is not itself unique, the
homotopy class of maps ®(F,.) is well-defined and for F sufficiently close to Fy
affords an identification of the fundamental group of the associated surface Sg
with that of the surface Sf,.

For F € Uy and E € E(XF) (see Notation VIIL.4.2), one may therefore con-
sider the monodromy Monx,. (E) as an element of the manifold Rc(SF,). Writing
Euy, ={(F,E) | F € Uy, E € E(XF)}, we therefore have a map

Mon : Eq, — Re(Sk,) (VIIL3)
(F,E) — Mony,. (E).

Recall that &y, is a fibre bundle of affine spaces over the open set Uy (Proposi-
tion VIIL.4.3).

Proposition VIIL.S.2. — The map Mon: Eqyy — Rc(SF,) is holomorphic.

Proof. — This follows from the theorem concerning the holomorphic dependence
of the solutions of a linear differential equation on the coefficients of that equa-
tion. O

VIIL5.2. The set of uniformizable Riemann surfaces is open

The aim of the long memoir [Poin1884b], which Poincaré published in 1884, is to
show, by means of the method of continuity that he had conceived simultaneously
with Klein, that algebraic curves are all uniformizable.

Theorem VIIL.5.3. — Every compact Riemann surface of genus g greater than
or equal to 2 is uniformized by the upper half-plane.

Recall that for each fixed integer g > 2 the symbol M, denotes the moduli
space of compact Riemann surfaces of genus g (see Proposition I1.3.1). Recall
also that the method of continuity consists in the following:

— observing that M, is connected and that there exists at least one point of
M corresponding to a uniformizable Riemann surface;
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— showing that the set of points of M, corresponding to uniformizable Rie-
mann surfaces is both open and closed in M.

This clearly suffices to establish that every compact Riemann surface of
genus g is uniformizable.

Poincaré seems to consider it evident that the moduli space M, is arcwise
connected; on this point the reader may consult Chapter II, in particular Proposi-
tion I1.3.1. The existence of at least one uniformizable Riemann surface of genus g
follows easily from Poincaré’s work on Fuchsian groups, expounded in §VI1.2.3.

We shall not enter here into the arguments Poincaré uses to establish closure,
except to remark that he fully appreciated the difficulties involved in this, and that
in some sense one may regard the proof given in Chapter VII as a “putting in
order” of his attempt at a proof. The particular case of the sphere with four points
removed is instructive: here he produced a perfectly rigorous proof — apparently
as the result of concentrated effort. (We give the details in the next chapter.)
However that may be, we would say that the creation of the tools necessary for a
correct proof of closure in general lay far in the future of the researchers of that
era, even such a one as Poincaré.

Thus here we rest content with a treatment of the openness (within the frame-
work of algebraic curves) closely following Poincaré’s method, which requires
modifications only of minor points to make it fully rigorous.

Proposition VIIL5.4. — Let Sy 4 be the manifold of curves of genus g > 2
and degree d > 4. Then the set of curves X € Sg 4 uniformizable by the upper
half-plane is open in Sg 4.

Proof. — Let Fy € Pg 4 be such that the Riemann surface S, is uniformizable
by the upper half-plane. We need to find a neighborhood U of Fy in P, 4 such
that the Riemann surface Sr is uniformizable for every F € U. In §VIIL5.1 we
defined a certain neighborhood U of Fy in P, 4 for which the space

Euy={(F,E)|FeUy, E € EXF)}

is a fibre bundle of affine spaces over the open set U, and the “monodromy” map
(see (VIIL.3)) from Eqy, to Rc(SF,) is holomorphic.

Writing Ej for the uniformizing equation of the surface Sg,, we choose two
solutions of Ey whose quotient wy defines a biholomorphism from §F0 to H, and
denote by po : 71(SF,) — PSL(2,R) the monodromy representation of wy. We
then have MonXFO (Eo) = [pol € Rr(SF,) (see Remark VIIL5.1).

Recall that Rc(SF,) is a smooth complex manifold of complex dimension
6g — 6 (or real dimension 12g — 12) in a neighborhood of py, and that Rg (SF,)
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is a smooth real submanifold of real dimension 6g — 6. The following point is
crucial’.

Lemma VIILS.5. — The map Monx Fy - E(XF,y) — Rc(Srk,) is transverse at Ey
to the subvariety Rr (SF,).

We shall assume this result for the moment and use it to complete the proof of
Proposition VIIL.5.4. Thus by this lemma, the inverse image of Rr (Sf,) under the
map Mon defines a germ of a real smooth manifold X passing through Ey and of
(real) codimension 6g—6. This submanifold is transverse to the fibre &E(XF, ) since
its codimension is equal to the dimension of E(XF,). Hence for F sufficiently
close to Fpy there exists a normal equation Er (depending smoothly on F) on the
curve Xr with monodromy in Rg(Sr,). We now show that Er is uniformizing.

Let &7 be a germ of a projective chart with values in CP! and defined on
an open set of Xr by a quotient of solutions of Er (see §VIIL.3.3). We may
choose &f, to correspond to wy and assume that &7 depends smoothly on F
(in view of the dependence of solutions on the parameters of the equation). In
what follows we shall suppose the polynomial F to be as close to Fj as need
be. The many-valued analytic continuation of & will then be C%-close to &F,
on compact sets. The single-valued version of this affirms that £ defines a local
biholomorphism wg : §F — CP!, and we can find a compact fundamental re-
gion DF of the universal cover §F — S such that wr(Dp) is Hausdorff close
to wo(DF,). Since wo(DF,) is a compact set contained in the half-plane H, we
also have wr(DpF) contained in H. In view of the equivariance of wr (Propo-
sition VIIL.3.1) and the fact that the monodromy of EF is real, this entails that
wF(gF) is contained in H.

Now let /& denote the usual hyperbolic metric on the half-plane H. Since wr
takes its values in H, we can pull / back to a metric § = wyh on §F, which
by construction then induces a (hyperbolic) metric g on Sr. Recall that if M
and N are Riemannian manifolds, with N complete, then a local isometry from
M to N is a covering map if and only if M is also complete. Here the metric g
is complete since Sy is compact, whence we infer that g is also complete, so
that wr is a covering map. Hence wp is a biholomorphism from S, rtoHand Er
is uniformizing. O

In order to complete the proof of Proposition VIIIL.5.4, it remains to prove the
transversality lemma.

2]n connection with this lemma we should mention Klein’s and Poincaré’s claim, made without
proof, that a certain “functional determinant” is non-zero, signifying transversality.
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Commentary. — A crucial point in the following proof concerns the equality
of the (real) codimension of Rr(g) in Rc(g) and the dimension of the space of
quadratic differentials. It is of course not surprising that the dimension of Rc(g) is
twice that of Rr (g) since the first space is just the complexification of the second.
Thus it is a question of understanding why the space of quadratic differentials and
the space Rr(g) have the same dimension. The first of these dimensions is cal-
culated using the Riemann—Roch theorem and the second by counting generators
and relations — two independent calculations yielding 6g — 6 real dimensions but
leaving it a mystery as to the reason. (To put it in other terms, the moduli space of
curves of genus g has the same dimension as the space of quadratic differentials
on a given curve.) Poincaré seems not to have been surprised by this coincidence.
A modern way of making it “clear” is as follows: A holomorphic quadratic differ-
ential is a section of the double of the canonical divisor K. According to a general
principle, an infinitesimal deformation of the complex structure on a curve S is
parametrized by an element of the first cohomology group of § with values in the
sheaf of holomorphic vector fields, which is to say —K. These two spaces are then
dual by Serre duality.

VIIL5.3. Proof of the transversality Lemma VIILS5.5

Poincaré does not prove this lemma (and in any case the concept of tranversality
had of course as of then not yet settled out)! On the other hand he proves in detail
the above lemma according to which a given algebraic curve possesses at most one
uniformizing equation, whence, in particular, it follows that in a neighborhood of
the uniformizing equation E the image of the map Mony Fy - E(XF,) = Re(SF,)
meets the submanifold Rg (S, ) in a single point. Of course this does not immedi-
ately entail transversality at this point of intersection, yet Poincaré seems to make
the leap without hesitation'3. We now propose giving a proof of transversality by
means of methods that Poincaré might have used (as it seems to us).

We begin with a preliminary calculation. Let w be a biholomorphism between
two open sets of the upper half-plane and 2¢ the logarithm of the Jacobian of w
in the hyperbolic metric. We first establish the equation

Ap(p) = exp2p) — 1, (VIIL4)

where Ay denotes the hyperbolic Laplacian in H.
Writing s and ¢ for the real and imaginary parts of a point z of H, we have
that the Laplacian for the hyperbolic metric (ds® + dt?)/t> is given by Ay = ?A,

13“Is it because the functional determinant of the coordinates of u with respect to those of §
vanish? But this can never happen since the lemma of Section VII shows that to every point u there
can correspond only a single point ™ [Poin1884b, p. 370].
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where A is the Euclidean Laplacian. Setting v = Im(w), we have the Jacobian of w
in the hyperbolic metric in the form lw’(2) 22 /v2. Tts logarithm 2¢ is therefore
given by

¢ =log|w'(z)| +logt —logv.

Here the first term is harmonic (as the real part of a holomorphic function). Fur-
thermore

1 1 1 1
A(logv) = —A(v) — = |gradv|? = ——=|gradv|® = = |w’(2)|?
% y2 v2 v2

since v is also harmonic. Finally, we obtain the desired equation (VIIL4):
Au(p) = 2(Iw'(2)1*/v? = 1/1*) = exp(2¢) - 1.

Remark VIIL.5.6. — In order to motivate what follows, we make a few remarks
on matters Riemannian. The equation (VIII.4) is a special case of the formula
linking the curvatures K; and K, of two conformal metrics g; and g> on a surface,
namely, if g» = exp(2¢)gi, then

K> = exp(=2¢) (K1 — Ag, (¢)),

where Ag, is the Laplacian of the metric g;. Then in order to obtain (VIIL4),
one takes the usual hyperbolic metric and its inverse image under w, both of cur-
vature —1. Even if this line of thought was not actually present to the mind of
Poincaré, we shall see in Chapter X that he was very familiar with such formulae,
at least in the case where g; and g; are of constant curvature.

The question of the uniqueness of the uniformizing equation on an algebraic
curve X can be reformulated in terms of Riemannian metrics on the surface S
associated with X. Thus two uniformizing equations furnish biholomorphisms w;
from S to H and hyperbolic metrics g; on S, i = 1,2 (stemming, as above, from the
hyperbolic metric of H). The metrics g; and g, determine the complex structure
of S, so belong to the same conformal class. The projective equivalence of the
uniformizing equations translates'* as g; = g». From the point of view of metrics
on S, the uniqueness is thus equivalent to the fact that there exists at most one
metric of curvature —1 in a given conformal class, that is, that there is no non-
zero function ¢ on a compact surface that solves the preceding equation. This last
point can be argued directly as follows: Such a function ¢ must change sign since
the integral of a Laplacian is zero; at a point where ¢ attained its maximum, the
Laplacian is zero or negative while the second term is positive, an absurdity.

We are now in a position to conclude the proof of the transversality lemma.

14Via the identity Isom™ (H) = PSL(2,R), inferred from PSL(2,R) = Aut(H), which clearly
already settles the question of uniqueness!
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Thus consider the uniformizing normal equation for the curve Xg,:

d*v
E + /’l()V = 0, (E())

and a vector tangent to &(XF,) at the point Ey, which is to say tangent at € = 0 to
a certain curve in the space of normal differential equations of the form
2

% + (ho+&q) v =0, (Es)
where g(x,y)dx? defines a holomorphic quadratic differential on Sg,. Via the
monodromy map one obtains a curve in Rc(SF,) parametrized by . We wish to
show that, if this curve is tangent to the real submanifold Rr (SF,) at € = 0, then ¢
is identically zero.

Since Ey is uniformizing, we have an identification between S and the upper
half-plane H and between the fundamental group of S and a discrete group I'
of isometries of H. Let z be the usual coordinate on C, that is, for which H is
defined by Im(z) > 0. As always, the quotient of two solutions of the differential
equation E. furnishes a local biholomorphism w, from S = H to CP', well-
defined up to a projective transformation of the codomain. We may assume that wy
is the identity map.

The quadratic differential (W, z}d7Z? is equal to squz. To see this, observe
first that by Proposition VIII.3.5 the Schwarzian derivative of w with respect to the
coordinate x is equal to hg+&q. But then, by the same proposition, the Schwarzian
derivative {z, x} is equal to hg since the identity function wy(z) = z is the quotient
of two solutions of the equation Ey. The equality {w,, z}dz* = squz now follows
from the formula (IV.6). Thus in order to show that g vanishes identically, it
suffices to prove that the derivative of {w,,z} with respect to the parameter ¢ is
zero at € = 0.

By definition of the monodromy representation, for each element y € I, the
fundamental group of S, there is a Mobius transformation depending on & such
that:

a(y,e)we(z) + b(y,e)
c(y,e)we(2) +d(y,e)

we (¥(2)) =

For £ = 0 the numbers a(y,&),b(y,€),c(y,€),d(y,e) are real. By assumption we
may choose the w, in such a way that the derivatives of these numbers at € = 0
are also real. To see this it suffices to recall that w, is defined only up to a Mobius
transformation acting on the codomain, and that the monodromy representation is
defined only up to conjugation.
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Of course w, does not necessarily preserve H; however, for every compact
subset K of the half-plane the compact subset w.(K) is contained in H for &
sufficiently small. We may therefore consider the functions 2¢. — logarithms
of the hyperbolic Jacobians of w, — these being defined in a neighborhood of a
given point for sufficiently small £. By the equation (VIIL.4) we have Ag(ps) =
exp(2ps) — 1. Setting ¢ = d%lszogog : H — R, and differentiating the preceding
equation, we obtain

Au(y) = 2¢.

We claim that ¢ is invariant under the action of I'. To see this, note first that
since the numbers a(y,&),b(y,&),c(y,€),d(y,eg) are real to the first order, the
hyperbolic Jacobian of the corresponding Mobius transformation is equal to 1 to
the first order. It follows that

¢e (7(2) = @s(2) + O(%)

for every y, moreover uniformly on every compact subset of H. Differentiating
with respect to € at 0, we obtain the desired I'-invariance of . Hence ¢ induces a
function, which we also denote by ¢/, on the compact surface S, and then as earlier
(see the conclusion of Remark VIIL.5.6), by examining the sign of the Laplacian
at the extrema of ¢, one sees that y must vanish identically. In other words, we
have established that w,, preserves the hyperbolic metric up to the order O(&?),
uniformly on every compact subset.

It remains to show that the Schwarzian derivative of wg is also of order O(&?)
uniformly on every compact subset. To this end it is convenient to go over to
the unit disc model of the hyperbolic plane: D = {|z| < 1}. Consider any point
zo € H, and choose a compact neighborhood K of zg such that wo(K) ¢ H
(with & sufficiently small), and Mobius transformations f,g. : D — H such that
f(0) = z0, 8:(0) = we(z0) with g, a smooth function of &. We take K = f(D,2)
where Do = {|z|] < 1/2}. We now replace w. by the function g;l owg o f,
while continuing to denote it by w,.. This (new) function w, fixes 0, and the
quadratic differential (We, x}dx? is left unchanged (since the functions f and g.
represent projective coordinate changes). Furthermore, f and g, are isometries for
the hyperbolic metrics on H and D, so that w. preserves the hyperbolic metric up
to the order O(&?), uniformly on compact subsets, so in particular on the disc Dy /5.

We now claim that this entails that, always within the disc D1 /2, the distance
between w. and a certain rotation about 0 as centre (depending on g) is of or-
der O(&?). To see this, observe first that the image under w, of a radius joining
the origin to a point of the circle Ci;2 = 0Dj/; has hyperbolic length different
from its Euclidean length only by an amount O(g?). It follows that the image
wg(Dy2) is contained in a disc of radius 1/2 + 0(&?). By noting that for small
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the restriction of w, to Dy 5 is a diffeomorphism onto its image, and applying the
same reasoning as before to the inverse of w,, we infer that w, (D7) is contained
in the annulus between two discs of radii 1/2—0(g?) and 1/2+ O(g?). Schwarz’s
classical lemma then implies that w(0) has modulus 1 + 0(?).

Now consider the restriction of w, to the circle Cj,. Its image is a curve
contained in an annulus of width O(&?) around C; /2. Hence the radial projection
on the circle Cj/; furnishes, for sufficiently small €, a diffeomorphism of the circle
with derivative majorized by 1 + O(g?). This diffeomorphism therefore differs
from a rotation by O(g?). We have thus shown that w, differs from a rotation
by an amount O(£?) on the boundary of the disc Dj/2, whence this holds also
throughout the disc by the maximum principle. Cauchy’s formula then shows that
the second and third derivatives of w. at the origin are of order O(&?), so that the
Schwarzian derivative {wg, z} at the origin is of order o).

Returning to the upper half-plane, we see that the derivative with respect to &,
at ¢ = 0, of the Schwarzian derivative {wg,z} is zero at every point zg of the
half-plane. As we have seen, this is equivalent to the fact that the holomorphic
quadratic differential q vanishes identically, which we wished to prove. O






Chapter IX

Examples and further developments

We begin the chapter with a detailed exposition of Schwarz’s work [Schw1873] on
the hypergeometric equation — work which led him to the famous list of values of
the parameters for which the solutions are algebraic. This precursory work con-
tains the seeds of many of the ideas later developed by Klein and Poincaré. Then
we examine in detail normal equations on certain particular algebraic curves; this
leads us to revisit certain classical families of differential equations. These de-
pend on certain “accessory parameters” of which the values yielding uniformiz-
ing equations are known only in certain exceptional cases. As Schwarz himself
realized in light of the subsequent work of Klein and Poincaré, it follows inci-
dentally that the general solution of the hypergeometric equation allows one to
uniformize many algebraic curves. Next, following Poincaré’s lead, we apply the
method of continuity in a direct and elementary manner to the case of the sphere
with four points removed. The chapter concludes by evoking some of the conse-
quences of the method of continuity. For more on this theme the reader may like
to consult [Gral986].

IX.1. Fuchs’s local theory

As we have noted on several occasions, if one is interested only in uniformizing
smooth compact curves, one is obliged, if only for computational reasons, to con-
sider differential equations with poles, corresponding to singular projective struc-
tures. This is the case, for instance, when one seeks to express the uniformizing
equation of a curve with equation F(x,y) = 0 in terms of the variable x. Other-
wise one has to resort to the following result of Fuchs, which inpressed Poincaré
sufficiently for him to feel the terms “Fuchsian functions” and “Fuchsian groups”
justified. (The result in question was reproved slightly later by Schwarz.)
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A linear differential equation

d?v dv
@ + fa +gv = 0 (E)

with meromorphic coefficients is called Fuchsian at a point x = x if at that point
f and g have at worst only poles of orders 1 and 2 respectively. This is equivalent
to requiring that the associated reduced equation

d*v ,
ﬁ + hv =0, (E"),
where h = g— % % - le £2, has at worst a double pole at xo. We then say that the pro-

jective structure induced in a punctured neighborhood of x( possesses a Fuchsian
singularity at xo. Note that (E) and (E’) are projectively equivalent, as defined
in §VIIL.3.2, only on such a punctured neighborhood, since neither (E) nor (E’)
has a solution at xo. According to a well-known result of Fuchs, equations with
Fuchsian singularities are characterized among meromorphic second-order equa-
tions by the fact that their solutions have moderate growth in a neighborhood of
their singular points (on sectors). However, it is a different result of Fuchs that
interests us here.

We wish to describe the type of singularities presented by the charts w of the
projective structure induced around xg, as well as their monodromies around x.
Recall that by Proposition VIIL.3.5 such a chart is determined by the quotient
w = vi/vp of two independent solutions of (E) around xg, or, equivalently, as
a solution of the Schwarzian equation {w,x} = 2h, where # is the coefficient of
the associated reduced equation (E’). Thus the problem we are faced with is that
of solving the Schwarzian equation {w,x} = 2h in a neighborhood of a double
pole xg of A.

If y(x) is another coordinate, sending the point x to the point yg = y(xg), then
the new Schwarzian equation {w,y} = 2H, as given by the change-of-coordinate
formula (see Box IV.1), will still present a double pole at yy. Furthermore the

dominant coeflicient A, defined by
A H

{w,x} = G~ x0)? + T — o +0(1),

remains unchanged:
1 ~
2t -
y=y0)* Y=o
This is the residue of the projective structure at the singular point. It is calculated
in terms of the differential equation

d*v ( A1

— +
X —Xp

{w,y} = + O(1).

+0(1))%+1( L K Lomlv=0 (&)

dx? 2\ (x—x0)2 x-—x0
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using the formula
1- (4 -1)?

A=A+ 2

One then defines the index 6 up to sign by

1-6?

a4
2

We remark in passing that when the coefficient g in the equation (E) has only a
simple pole, the index 8 = A; — 1 is given directly as the usual residue of f. The
Fuchs—Schwarz result is then:

Theorem IX.1.1. — The Schwarzian equation

has as a particular solution around x

— either w(x) = )Y,

— orw(x) = yin + log y, in which case 6 = +n (n € N),

where y(x) is a local coordinate at xg, y(xg) = 0.

When 6 is not an integer we are in the first case and every other solution of the

o+b
Z;B:d’ ad — bc # 0 (see
Box IV.1). In particular, w(x) = y~? is also a solution, which is consistent with
the fact that 6 is determined by the equation only up to sign. The monodromy

around x is given by multiplication by ¢?"?. A basis for the solutions of the
1£0

reduced equation (E’) is afforded by v(x) =y 5

Schwarzian equation is then clearly of the form w(x) =

On the other hand, when 6 is an integer, say § = n € N, then there exists a
local coordinate y(x) at xq in terms of which the projective structure is defined

— either by the chart w = y" (or w = y%,), in which case the monodromy is
trivial,

— or by the chart w(x) = y%, + log y, in which case the monodromy is a non-

trivial translation of the form w(e?™y) = w(y) + 2ix.
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The first, exceptional, case is characterized as in the following proposition:

Proposition IX.1.2. — Under the assumptions of Theorem IX.1.1 and with 6 = n
(an integer), the following statements are equivalent:

— there exists a local coordinate y for which w = y"

Schwarzian equation;

is a solution of the

— every solution w(x) of the Schwarzian equation is single-valued on a punc-
tured neighborhood of xy — in other words the monodromy is trivial;

— there exists a local coordinate y for which the equation (E) is projectively
equivalent to
d>v 1-n?
— +
dy?  4y?

v =0;
— there exists a local coordinate y in terms of which

dy 21 -n?
(E) 2y2 + {y’x} = {W,X},

— there exists a local coordinate y in terms of which

dv\2 1 —n2
(%) QyZ +{y,x} = {w,x} + 0(x"h).

We shall say that the singularity is apparent in the last case, otherwise loga-
rithmic.

A direct formal calculation using the above characterization yields the follow-
ing list of possibilities up to n = 4 for the singularity of the Schwarzian equation

1-n? u

5+ + o + p1 (x = X0) + p2(x = x0)* + O((x = x0)*) :
2(x — xp) X — Xg

{w,x} =

— n =0, in which case it is always logarithmic;

— n =1, in which case it is apparent if and only if ¢ = O (that is, if and only
if it is holomorphic since then 4 = 0);

— n =2, in which case it is apparent if and only if u? + 2ug = 0;
— n = 3, in which case it is apparent if and only if w* + 8uug + 164, = 0;

— n = 4, in which case it is apparent if and only if u* + 20u%ug + 36;1(2) +
96uu; +288uy = 0.
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The proofs of Theorem IX.1.1 and Proposition IX.1.2 consist in first finding
a formal coordinate change y(x) yielding one of the solutions mentioned in the
statement of the theorem and then establishing its convergence by means of dom-
inant series. (Alternatively, one might simply cite the earlier theorem of Briot—
Bouquet, proved by similar means.) We propose here to simplify our task by
using without proof the fact of the moderate growth of the solutions of (E£) (also
established by Fuchs), today considered classical (see for example [Hil1976]).

Idea of the proof. — Since the equation (FE) is Fuchsian, its (many-valued) solu-
tions v near xo have moderate growth at xg, that is, satisfy

M
lv(x = xo)| < Clx = xo

for constants C, M > 0 provided certain restrictions are observed — such as, for
instance, confining attention to a sector {—a < arg(x—xp) < a}. The situation will
be similar for every projective chart w = v /v,: its monodromy around xq will be
given by a Mobius transformation. To within a change to another projective chart,
we may assume the monodromy to have the form

62i7r

w( x)=aw(x) or wx)+b

(where we suppose xg = 0 for the sake of simplicity).

First case: w(e?"x) = aw(x). The differential form de is also of moderate
growth at 0, and is well-defined (single-valued) so extends meromorphically to 0.
In fact it must have a simple pole there since otherwise w would have exponential
growth at 0. We may therefore write

d—W:9@+df,
w X

where 6 is the residue of de and f(x) is holomorphic at 0. Integrating, we obtain

_p2
12y92 . (The case

w=x%expf =y’ withy = xexpg. Hence, finally, {w,y} =
6 = 0 needs to be considered separately.)

Second case: w(e2"x) = w(x) + b. Here the differential form dw is mero-
morphic at 0 and we may write

dx
xn+1

dw=f

with f holomorphic at 0. There is here an important point to consider: a logarithm
will appear on integrating if and only if the coefficient of order n of f is non-zero;
this yields non-trivial monodromy. A simple calculation shows that this condition
is determined by the first n coefficients of {w,x}. One then has w = -5 + S log(x),
with u holomorphic and non-zero, which can be rewritten as w = % = )% +
log y, and then by setting y = xv(x), one arrives at the non-zero holomorphic

function v(x) via the Implicit Function Theorem. m|
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IX.2. Gauss’s hypergeometric equation and Schwarz’s list

The hypergeometric equation of Gauss, namely
d? d
xx-DEL y @+ Br - Y 1apy=o0, (IX.1)
dx? dx

is a family of Fuchsian equations on CP! in the three parameters a, S, y (real or
complex) with poles at 0, 1 and co. By “Fuchsian at infinity” one understands that
with respect to the variable ¥ = % it extends meromorphically to ¥ = 0 with the
singularity Fuchsian. The indices +6; at the points i = 0, 1, c0 are given by

bo=y-1, 6,=a+B—-y and O, =a—p. (IX.2)

Every Fuchsian equation on CP! with poles at 0, 1 and o is projectively equivalent
to an equation of this family. To see this, one verifies that the associated reduced
equation must have the form

d>v (2o A Ao — Ao — Ay
—+=+ +
dx?  \x2  (x-1)2 x(x=1)

=0 (IX.3)

where A; = 1—To§ is the residue! at the point i = 0, 1, c0. In other words, a Fuchsian
projective structure on CP! with three singularities is completely determined by
its singular points and their residues (or indices).

In [Schwl1873], Schwarz revisits his earlier work [Schw1869] on confor-
mal representation (see §1V.1.2) in order to answer the following question of
Gauss: for which values of the parameters (a, ,7y) is the hypergeometric series?
F(a,B,y,x) an algebraic function of its argument?

In [Schw1873] Schwarz gives a complete answer to this question, determin-
ing the triples (a, 8,y) for which equation (IX.1) admits at least one algebraic
integral. His exhaustive solution involves many technical details, but the most
interesting part of Schwarz’s work, at least from a geometrical point of view, is

1Tt should be noted that here we are considering the residues of the coefficient of the reduced
equation, which differs by a factor 2 from the second term of the associated Schwarzian equation
considered earlier in §IX.1.

2For y ¢ Z~, the hypergeometric equation (IX.1) has as a particular solution the hypergeometric
series introduced by Gauss:

S @n(Bn n

F(a,B,y,x) =
(@, B,y,%) 24 0,

with the convention (x)g = 1 and (x), := x(x + 1)...(x + n — 1). When either « or § is zero or a
negative integer, F(a, 3,y,x) is a polynomial in x. Otherwise the series defining F(a, 8,7y, x) has
radius of convergence 1.
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his answer to the simpler question as to when all the solutions of the hypergeo-
metric equation are algebraic functions of their argument. By taking a fair degree
of liberty with Schwarz’s article, which is, to put it mildly, rather elliptical, we
will explain just how he arrived at his famous list. In the course of doing this, he
described the projective monodromy of the hypergeometric equation for all real
triples (a, B,y) of parameters.

IX.2.1. The algebraicity of solutions and the monodromy of the equation

We first note, as does Schwarz, that the algebraicity of solutions of the hypergeo-
metric equation is directly linked to the finitude of the monodromy group.

Proposition IX.2.1. — Consider a Fuchsian equation

d*v dv

dx? fdx g (E)
such that g(x) has only simple poles. Then the following statements are equiva-
lent:

1. all solutions of (E) are algebraic;

2. the quotient w = v{ /vy of some two independent solutions of (E) is alge-
braic;

3. the projective monodromy of (E) takes its values in a finite subgroup of
PSL(2,C).

In this case all singular points of the equation have rational indices 6, and are
non-logarithmic for integer indices.

This proposition applies directly to the hypergeometric equation (IX.1). Note
that the indices are rational if and only if the parameters «, S and 7y are rational.
We shall see in the next section that when one of the indices is an integer the
corresponding singularity of the equation (IX.1) is of logarithmic type and the
monodromy is then infinite.

Proof. — Let v| and v, be two linearly independent solutions of equation (IX.1).
If v; and v, are algebraic then of course w = :—; is also. It is then immediate
that w has only a finite number of determinations under analytic continuation, so
that, since the projective monodromy of the equation is just the monodromy of w,
that also is finite.

For the converse, suppose the equation (E) has finite projective monodromy.
Then, in particular, the local projective monodromy around each singularity of the
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equation is finite, which by §IX.1 is equivalent to the rationality of the index 6 of
each singularity, with those singularities with integral 6 not being of logarithmic
type. Furthermore, the quotient w = v;/v, of two solutions will have a finite
number of determinations and admit an algebroid continuation (that is, of the form
w = ¢, 8 € Q) at each singular point (see §IX.1). Hence in view of Riemann’s
work w(x) is an algebraic function of x.

Finally, if w is algebraic, then this will also be the case for
d d

dw B V2% - Vlﬁ

= —= =

dx V3

Now the Wronskian of two solutions v; and v; is given by:

whence it follows that

Since the equation (E) is Fuchsian (even at infinity), f must have the form

et

4

Moreover since g has only simple poles, the residue of f at every singularity x; is
the rational number A; = 1 + 0; (see §IX.1). Hence e J Fdx i algebraic, whence
in turn also v%, and thence also v, and v; = wv,. O

IX.2.2. Revisiting the article [Schw1873]

In terms of the preparatory work of Schwarz on conformal representation (see
§IV.1), we may paraphrase Theorem IV.1.5 as follows:

Theorem IX.2.2. — If0 < 6,601,060 < 2 are such that there exists a triangle with
sides arcs of circles and angles n0;, then the quotient w = v1 /v, of two particular
solutions of the associated hypergeometric equation (1X.1) maps the half-plane H
conformally onto the triangle (sending 0, 1 and oo to its vertices).

In this situation, the projective monodromy of the hypergeometric equa-
tion (IX.1) coincides with the monodromy of the projective coordinate w. Recall
(from §1V.1) that the group thus generated is the subgroup of index 2 of the group
of (anti-)conformal transformations generated by the reflections in the sides of the
triangle.
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Recall that Theorem IX.2.2 is established by means of a direct approach when
0 < 8; < 1 and indirectly as a consequence of the Riemann Mapping Theorem
for 0 < 6; < 2. In order to reduce the general case of real parameters 6; to that of
the statement of the theorem, we employ a group of symmetries become classical
in view of later work of Schlesinger.

IX.2.3. Symmetries

We note once and for all that several hypergeometric equations may yield one and
the same reduced equation, and therefore define the same projective structure. To
be precise, the coeflicients @, 8 and vy of the hypergeometric equation are, via the
formulae (IX.2), mutually uniquely determined by the indices 6;, but the latter are
defined only up to sign by the projective structure. For example, the equation with
parameters

(a,’ﬂ/77’) = (1 +a _7’1 + :8 —’y,2—’)/)

is projectively equivalent to the one given by (a, 8,7); it is arrived at via (IX.2)
by means of the change of indices given by

Thus it will be advantageous in the sequel to work in terms of the indices 6; as pa-
rameters rather than the classical («, ,7). In this connection note also the natural
action of the group Z/2Z X 7Z/27xZ/2Z on the space of triples (6y,61,0) € C3 of
parameters — which is to say on the space of hypergeometric equations — with
quotient the space of projective structures.

The permutation group S3 also acts, via the coordinate changes given by

x'=1-x and x' = —,
X

on CP!, inducing the parameter changes
(60,61,05) = (01,60,0) and (6e,61,60)

respectively. Combining these actions, we obtain a linear action of a group of
order 48 on C>.

Lastly, recall that on setting dy = % one obtains a Riccati equation (see
the beginning of Chapter VIII), with monodromy the same as the projective
monodromy of equation (IX.1). Then on applying the birational transformation

’ a

y = —ﬁ, one obtains a new Riccati equation with the same monodromy
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since the change of unknown is regular away from the three poles of the equa-
tion. Next, direct calculation shows that on setting dy’ = dv—v, we retrieve the

hypergeometric equation, though now in terms of the parameters
(@, p'y) = (-a,=-p,1-7v),

whose projective monodromy must be the same as for the parameters («, 5,7v).
This corresponds to the transformation

(60,01,6%) = (=00 — 1,-01 — 1,—0).

(It is important to note, however, that the projective structure has changed.) By
combining this transformation with the earlier ones, one easily sees that the group
generated is an infinite group I of affine transformations of the space of parame-
ters, with a normal subgroup of index 6 given by

[’ = {(£00 + no, £01 + 11,200 + neo) | (0, 11,1100) € Z3, no + 1y + neo € 27}

The quotient I'/T"” is the symmetric group S3 of degree 3.

Proposition IX.2.3. — Two hypergeometric equations have the same projective
monodromy representation if and only if one can be obtained from the other by
the action of the symmetry group T".

Proof. — 1t suffices to verify that two hypergeometric equations having the same
projective monodromy are sent one to the other by an element of I'’. The pro-
jective monodromy of equation (IX.1) is given, in terms of the standard sys-
tem of generators of the automorphism group of CP' \ {0,1,c0}, by a triple
(0,9¢1,90) € PSL(2,C) satisfying ¢op1¢ = id. The transformation ¢; rep-
resents the local monodromy of the projective structure around the respective
pole i = 0,1,00 and is conjugate in PSL(2,C) to an affine transformation of
the form w + e*7™%w + b, b € C. Each transformation ¢; has two preimages
+M; € SL(2,C); we choose M; so that trM; = 2 cos(m6;). We claim that then the
relation @@ ¢ = Id lifts to MoM 1Mo, = —1.

To see this, note first that we must have MyM| M., = =1 and the sign of the
right-hand side depends continuously on the parameters 6; of the equation; it must
therefore be constant on the space C> of parameters, so that it suffices to determine
it in a particular case. By applying Theorem 1X.2.2 to w = z, for example, the
conformal representation of H viewed as a triangle with all its angles equal to n,
one finds that 8; = 1 and M; = —I fori = 0,1, 0.

If another hypergeometric equation, with parameters 67, has the same pro-
jective monodromy, then up to conjugation we shall have M/ = +M; with
M(;Ml’ M, = —I. Hence in particular tr(M;) = +tr(M;), which is equivalent to
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cos(n0;) = +cos(nf;), in turn equivalent to 6, = +6; + n;, n; € Z; the condition
MMM, = —I now follows since ng + n; + ne is even. O
By Proposition IX.1.2, when 6 is an integer, say 89 = n € N, in order to
determine if the singularity is logarithmic, we need to consider the first n terms of
the Laurent series of the coefficient in the reduced equation (IX.3). A remarkable
consequence of the use of the symmetry group is that there are no such non-
logarithmic singularities:
Proposition I1X.2.4. — If for any of the singular points i = 0,1,00 of the hy-
pergeometric equation the index 0; € Z is an integer, then the singularity is of
logarithmic type.
Proof. — By Proposition IX.1.2, the nature of the singularity can be read off the
monodromys; it is therefore invariant under the action of the group I', and we may,
in particular, assume i = 0 and 6y = 0. However in this case the reduced equa-
tion (IX.3) has a double pole at 0 (1p = %), so that the singularity is logarithmic,
again by Proposition IX.1.2. |

IX.2.4. Triangles and geometries

In order to understand the structure of the group generated by the reflections in
the sides of a triangle, Schwarz was naturally led to consider — though without
putting it in these terms — three geometries. Recall that the Riemann sphere CP!
may be identified with the unit sphere S?> c R3 via the stereographic projection.
One then defines a circle on CP' as the image of a plane intersecting S2, as long
as this intersection is neither empty nor consists of just a single point; these cor-
respond to the circles and straight lines of C in the Euclidean metric. The group
PSL(2,C) acts transitively on the circles of CP!.

Spherical geometry. The Euclidean metric R? induces a metric of constant
curvature +1 on the sphere S, with isometry group generated by the antipodal
involution o (z) = —% together with the rotation group

PSU(2,C) = {¢ e PSL(2,C) | po o =0 o ¢}.

The geodesics are the great circles (the intersections of S? with planes IT ¢ R?
passing through the origin). These are just the circles intersecting the equator RP!,
for instance, in a pair of antipodal points.

Euclidean geometry. The Euclidean metric of C ¢ CP' has as its geodesics
the straight lines on C, that is, the circles of CP! passing through the point at
infinity.

Hyperbolic geometry. The Poincaré metric of constant curvature —1 on H has
as geodesics arcs of circles of CP! orthogonal to the equator.
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In what follows, by “triangle” we shall understand a simply connected region
of CP! with boundary made up of three circular arcs forming a Jordan curve with
distinct vertices. We shall denote the vertices by wg, w; and we,, by A; the circular
arc opposite the vertex w;, and by C; the complete circle of which A; is an arc.
Schwarz observes the following trichotomy:

Proposition IX.2.5. — Ler Cy, C| and Cs be three circles on the Riemann
sphere CP! intersecting pairwise in one or two points. We have the following
three possibilities:

— Cy intersects Cy N Cy, or

— Cx separates CoNC (that is, CoNCy intersects both components of CP"\Cy
but not Cy), or

— Cx isolates Cy N Cy (that is, Cy N Cy is wholly contained in one of the
connected components of CP! \ Cy).

— In each case there exists an element of PSL(2,C) mapping the three cir-
cles C; simultaneously onto Euclidean, spherical, or hyperbolic geodesics
respectively.

Proof. — In the first case it suffices to send any point of CoNC1NC to the point co.
(Here we do not exclude the possibility that the circles become combined.) In the
second case, we first map the two points of Cy N C; to 0 and oo, and then, by
means of appropriate homotheties ¢(z) = az, send C onto a great circle. In
the third case, assuming that two of the circles, say Cy and Cj, intersect in two
distinct points, then once again we map these points to 0 and oo and then juggle
homotheties ¢(z) = az to map the third circle Cy to one also orthogonal to the
equator; thus all three will have been sent to geodesics relative to the hyperbolic
metric on the unit disc. Finally, if the three circles are pairwise tangential to each
other, then the circle C through the three points of tangency will be orthogonal
to them, and on mapping C to RP!, the circles C; will become geodesics in the
hyperbolic metric on H. O
In the sequel we shall call:

— a spherical triangle any triangle on the Riemann sphere CP' bounded by
geodesics relative to the spherical metric;

— a Euclidean triangle any triangle® on C bounded by straight lines, geodesics
for the Euclidean metric;

3We include here the possibility that one of the vertices is at infinity, with the restriction that
then the two adjacent sides should be parallel. In other words, unbounded Euclidean triangles are
allowed, with angles (0,76,7(1 —6)), 0 < 6 < 1, with the case (0,0, 7) degenerating to a strip.
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— a hyperbolic triangle any triangle in the half-plane H bounded by geodesics
relative to the hyperbolic metric.

Even though Proposition IX.2.5 tells us that every triangle is equivalent mod-
ulo the action of the group PSL(2,C) to a triangle with geodesic sides relative to
one of the three geometries, one should be careful to note that that triangle itself
may not be any of the three preceding types. To take the hyperbolic case, for in-
stance, it may happen that several triangles are bounded by arcs of the same circles
Co, C1 and C, only one of which is contained in H. The same sort of possibility
occurs in the Euclidean case. However, the transformation group generated by
the symmetries in the three circles depends only on those circles and not on the
triangle chosen. Schwarz actually shows that the triangle minimizing the angle
sum 6y + 01 + 0 is indeed hyperbolic, Euclidean or spherical. Note that he does
not even ask for which 0 < 8; < 2 there exists a triangle with angles 76;. We
shall circumvent Schwarz’s arguments and the associated technical difficulties by
appealing to the group of symmetries, as in the following proposition.

Proposition IX.2.6. — Let 0 < 6y < 0 < O < 2. There exists a triangle (with
sides arcs of circles) with angles n0; if and only if:

200 —1 <6y +60] +60 <20p+3, (IX.4)

and in this case the triangle is unique modulo the action of PSL(2,C). Further-
more, when 6y + 61 + 0, < 26 + 1, these conditions are satisfied and the triangle
is equivalent modulo the action of PSL(2,C) to one of the following:

— a hyperbolic triangle if 0y + 61 + 0o < 1;
— a Euclidean triangle if 0y + 01 + 0, = 1; and

— a spherical triangle if 8y + 01 + 0 > 1.

Proof. — Consider a triangle with angles 76; where
0 < 69,601,600 < 2. (IX.5)

Modulo the action of PSL(2,C) we may suppose the vertices are 0, 1 and co.
Denote by A;; the circular arc forming the side of the triangle joining the vertices
i and j. We choose an orientation so that the oriented side Ag; goes from O to 1
with the interior of the triangle to the left. (Note that Ag; is a circular arc —
which in the degenerate case coincides with the interval [0, 1] — while the two
other sides Aj. and Ao are straight lines, that is, circles passing through the
point at infinity).
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We now introduce the parameters
-1 < 60,01,000 < 1 (IX.6)

defined as follows: for (i,j,k) = (0,1,00),(1,00,0),(c0,0,1), we take 7; to be
the angle at the point j made by the arc A;; with the real interval ;;; the sign
is chosen here so that 6; > 0 if the arc Aj; lies in the interior of H. We have
excluded the possibility 6; = 1 since in this case the arc A;r would be incident
with the vertex i, and the boundary of the triangle would no longer be a Jordan
curve. Hence the angles of the triangle are given by

0 = 1—61 -0
0 = 1-6e — 0o (IX.7)
00 = 1 =30 — 6.

Since 0 < 76; < 2x, the parameters ¢; are subject to the constraints
-1 <80+ 031,01 + 0o, 00 + 00 < 1. (IX.8)

Conversely, every triple (59,01,0) of real numbers satisfying the conditions
(IX.6) and (IX.8) corresponds to a triangle with angles given by (IX.7).
Inverting the system (IX.7), we obtain

50 =1+90—91—9w/2
01 =146 -0p)—0,/2 (IX.9)
0o = 1 + 00 —6p—01/2

so that the triangle is determined, modulo the action of PSL(2,C), by its angles.
It remains to express the constraints (IX.6) in terms of the angles of the triangle:

2600 — 1,201 — 1,200 — 1 < 0p + 01 + 0o < 2600 + 3,201 + 3,260 + 3. (IX.10)

When 6y < 6; < 6, these constraints reduce to those of (IX.4).

We now turn to the second part of the theorem. The set of triples (6o, 61, 6)
of parameters defined by the inequalities (IX.5) and (IX.10) is a convex region T
of R3, regarded as the space of all triangles. By Proposition IX.2.5 we can par-
tition 7T in accordance with the configuration of the three circles bounding each
triangle. The set E of Euclidean configurations, characterized by the property that
these three circles have a common point of intersection, is closed and separates the
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(open) components made up of the hyperbolic and spherical types. We now give
the equations for E. If the common point of all three circles lies on the boundary
of the triangle, then it must be a vertex, and this occurs precisely when one of
the §; vanishes, that is, when

Op+01+0=26p+1, 201 +1 or 20, + 1.

If this is not the case then of course the common point of the three circles is
either in the interior or exterior of the triangle. In the second case we have a
Euclidean triangle with 6y + 61 + 6., = 1, and in the first case the complement
of the triangle (with angles 27 — 76;) is Euclidean whence 6y + 6; + 6. = 5.
It is classical and straightforward (so we omit the details) that the condition
Op + 61 + 0 = 1 characterizes Euclidean triangles. On the other hand the open
component 8y + 01 + 0., < 1 corresponds to hyperbolic triangles. Indeed, if a tri-
angle is hyperbolic, then its hyperbolic area is given by 7(1 — 6y — 6; — 0) > 0;
by continuity, therefore, every other triangle satisfying this inequality is hyper-
bolic. If one now confines oneself to the parametric region 7* determined by
the inequalities 6y < 6] < 6, then the other component bordering on the plane
6o + 01 + 6 = 1 is defined by

1 <0p+60]+0<26)+1,

in which case the triangles are spherical. |

IX.2.5. Monodromy

The following crucial lemma allows us to bring every hypergeometric equation
into the form of an equation uniformizing a hyperbolic, Euclidean, or spherical
triangle.

Lemma IX.2.7. — Let (6y,6;,0c) € R3 be a triple of reals. Its orbit under the

symmetry group I contains a unique positive ordered triple (6,61,0.,):
0<6,<6] <6,

minimizing the sum
0y + 0] + 0%,

which we call a reduced triple. It also satisfies
0y + 0] + 0, <1+26

with equality only if 6 = 0.
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Proof. — By applying first of all appropriate changes of signs and “even” trans-
lations (n9,n1,ne) € (2Z)3, one obtains a unique triple (6y,61,60.) for which
0 < 6; < 1. Then by further applying transformations of the forms

(1 —90,1 —91,900), (1 —00,91,1 —900) and (90,1 —91,1 —900),

one can minimize the sum 6y + 6] + 6. Note that if one of these triples, the first,
say, has the same sum as (6y,60;,6), then 6y + 6; = 1, so that these two triples
are permutations of one another. Finally, by applying the symmetric group S3
appropriately one can order the 6; so that 0 < 8y < 81 < 0.; the triple thus
obtained is then unique. Now if we had

O+ 601 +0 >1+26,
then the triple (6),61,605,) = (60,1 — 01,1 — ) would satisfy
O, +0] +6, <1

whence, by the minimality of the sum, the above two inequalities become equali-
ties and 6y = 0. a

Corollary IX.2.8. — The projective monodromy of a hypergeometric equation
with real coefficients is given by the group generated by the reflections in the sides
of a hyperbolic, parabolic, or elliptic triangle.

More precisely, if G denotes the transformation group generated by the three
reflections, then the image of the projective monodromy representation is the sub-
group of index 2 consisting of the orientation-preserving transformations in G.

Proof. — Consider the hypergeometric equation (IX.1) with the coefficients «,
S and y assumed real, so that the indices 6; defined by (IX.2) are also real. By
Proposition IX.2.3, every other hypergeometric equation obtained via the action
of the group I’ has the same monodromy. By the above proposition, we can, for
example, arrange for the indices to satisfy 0 < 0p < 01 < 0 < 1 + 6 — 6.
In particular, Theorem 1X.2.2 tells us that the monodromy is generated by the
reflections in the sides of a triangle with angles 76; and Proposition IX.2.6 that
that triangle is hyperbolic, Euclidean, or spherical. O

IX.2.6. The hyperbolic case

When the indices of the hypergeometric equation (IX.1) satisfy

Op+61+0, <1,
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the monodromy is generated, modulo conjugation in PSL(2,C), by the reflections
in the sides of a hyperbolic triangle. In this case the monodromy group is infinite.
This occurs, for example, when there are vertices of the triangle located on the
boundary of H, since on composing the reflections in the two sides incident with
such a vertex, one obtains a parabolic element (of infinite order) of PSL(2,C) (see
§VI.1.6). On the other hand, when the triangle is compact in H, the images of
the triangle obtained by reflecting in the sides can approach arbitrarily closely to
the boundary of H, without ever reaching it. After a finite number of successive
reflections the vertices of the image triangles will always be at non-zero distance
from the boundary of H and the procedure of repeated application of symmetries
can be carried on indefinitely. The projective coordinate w is a transcendental
function, since it is an infinitely multi-valued function of x.

The diagram reproduced below as Figure IX.1, appears in [Schw1873] as an
illustration of the case (6y,01,0) = (%, %, %), yielding a tiling of the disc by
triangles.

Figure IX.1: A tiling by the triangles (%,7%,%)

Returning to the example of §VI.2.1, we see that the hypergeometric equation
(IX.1) with parameters (as defined in (IX.2)) of the form

1 111
0;=—, kieN', —+—+—<1,
P N ko ki ke
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must be the uniformizing equation for the sphere with three conical points of an-
gles . In this case the variable x is a single-valued function of w. Schwarz notes
that thlS is the only case where this circumstance arises, but without providing any
proof. Recall (see §VI.2.1) that this represents a particular case of Poincaré’s The-
orem VI.1.10. This later prompted the following remark of Poincaré in a letter to
Mittag-Leffler:

In his memoir M. Schwarz has thus stated a result of the greatest importance,
namely the one I quoted. He gives no proof. In the proof of this result there
is a very delicate point, a difficulty of a special kind; I don’t know how M.
Schwarz overcame it.

Unfortunately, however, Schwarz dwells no further on the hyperbolic case.
He does revisit it later on, after the relevant works of Klein and those of Poincaré
on Fuchsian functions appeared. In the second volume of Schwarz’s complete
works, there is an addendum to [Schw1873] in which he reformulates the dif-
ferent cases investigated earlier in terms of hyperbolic, Euclidean, and spherical
geometry, and then evokes, by means of several examples, the major fact that had
eluded him in [Schw1873], namely the property of the “transcendental” functions
w(x) associated with the parameters 6; = k of uniformizing a great number of
algebraic curves (see §1X.3). We mention by the way that the hypergeometric
equation

d*v dv v
x(x—l)w+(2x—l)a+z=0 (IX.11)

uniformizes CP! \ {0, 1, c0}.

IX.2.7. The Euclidean case

When the indices of the hypergeometric equation (IX.1) satisfy
90 + 91 +0, =1,

the monodromy is generated, modulo conjugation in PSL(2,C), by the reflections
in the sides of a Euclidean triangle, including the case 8., = 0 where the corre-
sponding vertex is at the point at infinity and the two adjacent sides are parallel
half-lines. Like Schwarz, we shall not linger over this case. The monodromy is
again infinite for reasons similar to those in the hyperbolic case. Note that once
again the function x(w) is single-valued if and only if the triangle tiles the plane,
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which is the case precisely for the triples of indices
111 111 111 11
(5’5’5)’ (E’Z’Z)’ (5’5’8) and (57570)-

IX.2.8. The spherical case

When the indices of the hypergeometric equation (IX.1) satisfy
0<6y<6; <6, <1

with

1 <6g+6] +60 <26p+1,
the monodromy is generated, modulo conjugation in PSL(2,C), by the reflections
in the sides of a spherical triangle with angles 76;. In this case the projective
monodromy group of the equation is a subgroup of SO(3), the rotation group of
the sphere S? c R3. Its finite subgroups are well known to be as follows:

The finite cyclic groups. — For each n € N* the rotation w e w generates a
cyclic subgroup of order n with quotient x(w) = w', viewed as a metric space, a
sphere with two conical points both of angle = I

The dzhedral groups. — The group D, (ne N n > 2) generated by the involution
W — and the rotation w > e w, has order 2, and is isomorphic as abstract
group to the semi-direct product Z/nZ = Z/2Z. It is a subgroup of index 2 of
the group generated by the reflections in the sides of the spherical triangle with
angles (2,5,;). The quotient, given by x(w) = (1;:::;)2
conical points of angles (7r m, —) The inverse function w(x) is the quotient of

TR

, 1s a sphere with 3

two solutions of the hypergeometric equation with indices (1 i1 )

2°2°n
The tetrahedral group — When one tiles the sphere with 4 triangles with all their
angles equal to 2&, one obtains a spherical tetrahedron. The group of rotations

preserving this t1hng has order 12, and is isomorphic as abstract group to the al-
ternating group A4. If one adds the reflections, one obtains a group of order 24
with fundamental region the triangle with angles (%, Z %), which defines a sub-
tiling of the above tiling. The group A4 may thus be viewed as a subgroup of
index 2 of the group generated by the reflections in the sides of the latter triangle.

Passage to the quotient by Ay is given, for example*, by
wr(w* — 1)?
—2i V3w2 + 1)3

4The formulae given by Klein for the quotient by this group and the following two correspond
toxX =1-x(w).

x(w) = —12i V3
(w?
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The inverse function w(x) is the quotient of two solutions of the hypergeometric
equation with indices
111
(57 3 5) :

The octahedral group. — This is the group of rotations of order 24, isomorphic
to the symmetric group S4, leaving invariant the octahedral tiling of the sphere
by 8 triangles with all their angles equal to 5. One may also view it as the group
fixing the cubic tiling by 6 quadrilaterals of angles ZT" It has index 2 in the group
2°3°1%
tiling determined by the latter triangle contains as subtilings both the octahedral
and cubic ones, situated dually with respect to each other. The passage to the
quotient is given by

generated by the reflections in the sides of the triangle with angles (E z E) The

B (w'? = 33w® —33w* +1)2
108 wH(w* - 1)4

x(w) =—

The inverse function w(x) is the quotient of two solutions of the hypergeometric
equation with indices
111
(z’ 3 z) -

The icosahedral group. — This is the group of rotations of order 60, isomorphic
to the alternating group As, and leaving invariant the icosahedral tiling of the
sphere by 20 triangles with all their angles equal to 2?" It is also the group fixing
the dodecahedral tiling of the sphere by 12 regular pentagons of angle %” It has
index 2 in the group generated by the reflections in the sides of the triangle with

angles (%, % ’5—’) The passage to the quotient is given by

1 (w30 +522w% — 10005w2° — 10005w10 — 522w° + 1)?
1728 w3 (W0 + 11w> - 1)° )

x(w) =

The inverse function w(x) is the quotient by two solutions of the hypergeometric
equation with indices
111
(5’ 3 5) :

5That is, with a vertex of the first at the center of each face of the second and vice versa.
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IX.2.9. Schwarz’s list

The main result obtained by Schwarz in [Schw1873] is the following:

Theorem IX.2.9. — A hypergeometric equation has all its solutions algebraic if
and only if its parameters are equivalent, via the symmetry group I, to one of the
triples in the following table:

Group Reduced triples (6p,01,0c)
D, dihedral | (3.3.%), withk =1,....n-1
Ay tetrahedral (%,%,%) or (%,%,%)
Sy octahedral (%%%) or (%,%,‘_1‘)
As icosahedral (%,%,é), (%,%,%),

G (25

(43 G2

(49 553)

(£35or (329

Idea of the proof. — The method Schwarz proposes (without giving the details)
is as follows. Suppose that the monodromy of a hypergeometric equation is finite
and that its defining triple (8g,01,0.) of indices is reduced (see Lemma 1X.2.7).
The monodromy group G of the equation is then of index 2 in the group G*
generated by the reflections in the sides of the spherical triangle with angles 76;
(since, as we have seen, the triangle cannot be hyperbolic or Euclidean). Hence the
group G may be identified with one of the finite rotation groups of the sphere S?
described in the preceding subsection.

We take the case of the tetrahedral group A4 by way of illustration, and denote
by Ay the reflection group of the triangle 7y with angles (%, % 731) Thus here
G* = Aj. In fact G* is always generated by G together with the reflection o in
any of the sides of the triangle T with angles 6;. Since in the present case G = A4
is a normal subgroup, o defines, via passage to the quotient, an anti-holomorphic
transformation & on CP!/A,; furthermore, since o is an isometry, & will preserve
the metric structure of the quotient and hence fix the 3 conical points. It follows
that & is the reflection in the circle passing through those 3 points — the generator
of the action of Ai’ on the quotient CP!/Ay4.

Here we are exploiting the fact that the quotients have 3 conical points, which
is the case for all the finite groups except the cyclic ones, which need to be elimi-
nated by means of a different argument.



256 IX Examples and further developments

Thus the sides of the triangle T furnishing the generators of G* must be con-
tained among the geodesics of the tiling determined by A%, so that T is tiled by a
finite number of copies of 7y. The angles of 7" are of the form 7, %, and %’r (they
are < & and are formed from the angles of T by successive reflections). These
constraints give us 3 reduced triples, namely

112 AR
3°3°3)° \2°3°3) *"¢ \3°3°3)

The last is Euclidean but the first two, of areas % and % respectively, conform: the
first is made up of two copies of Ty and the second is Ty itself.
112123

In the case of As, one finds 15 reduced triples of the indices 5, 3> 525, 5> %

or % corresponding to spherical triangles. The triple (%, %, %) corresponds to the

triangle of minimal area Zj: it is a fundamental region for the action of A3. After
a tedious case-by-case analysis, one discovers that of the 15 possibilities, only 10
triangles are tiled by means of the fundamental triangle for AZ. For example, in

order to eliminate the triple (% %%
127

imal area =, it suffices to note that the corresponding hypergeometric equation
can be obtained by lifting, via the branched covering map x — (2x — 1)2, the
hypergeometric equation corresponding to the reduced triple (%, %, 13—5) The mon-
odromy group of the former has at most index 2 in that of the latter, which cannot

be finite since it contains an element of order 15. m]

), which corresponds to the triangle of max-

In [Kle1884], Klein reconsiders Schwarz’s work, bringing to it the clarifica-
tion lent by Galois theory. He also re-derives Schwarz’s list by means of a different
approach to finite monodromy via Fuchsian equations:

Theorem IX.2.10. — Consider a Fuchsian equation
d*v

dv
E+fa+gv=0 (E)

on CP!, and suppose its projective monodromy group is finite non-Abelian.
Then (E) is projectively equivalent to the lift via a rational map ¢(x) of a hy-
pergeometric equation with indices

111 111 111 or 111
2°2’n)7 \27373)7 \2°34 2°3’5)°

The proof is remarkable for its simplicity.
Proof. — Consider the quotient w = v /v, of two independent solutions of the
equation (E): this is a many-valued local biholomorphism

CP' \ Sing(E) — CP'
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whose monodromy coincides with one of the finite groups D,,, A4, S4 or As de-
scribed above. (Here Sing(E) denotes the singular locus of the equation (E).)
Composing the map w with the map CP! — CP'/G determined by passage to the
quotient by the corresponding group G, we obtain a single-valued local biholo-
morphism

¢ : CP'\ Sing(E) — CP'/G,

which, by the local investigation of singularities undertaken in §IX.1, extends
continuously to Sing(E); we thus obtain a rational map ¢ : CP! — CP!/G ~ CP'.
The projective structure induced on CP! \ Sing(E) by the equation (E) is the lift
via w(x) of the standard projective structure on CP' and consequently the lift
via ¢(x) of the orbifold projective structure on the quotient CP'/G; for each of
the finite groups listed above, the quotient structure has precisely 3 conical points
and is defined by a hypergeometric equation with indices as given in §1X.2.8. 0O

This statement obviously remains valid (with the same proof) when (E) is a
globalizable Fuchsian equation on any curve. Moreover it allows us to give a very
different proof of Schwarz’s theorem using the techniques of branched coverings.

IX.3. Examples of families of normal equations

In the following subsections we give other examples of normal equations, no-
tably in the smooth (non-orbifold) case. On each occasion where the curve’s
symmetries allow the accessory parameters to be determined, we observe that the
equation in fact reduces to hypergeometric form.

IX.3.1. Heun’s equation and the sphere with 4 points removed

As in the case of the hypergeometric equation, one readily verifies by passing to
the reduced form that every Fuchsian equation on CP! with poles at 0, 1, A, and co
is projectively equivalent to Heun’s equation

d2v+(a B LY )dv ox+c

A o &y orre oy,
7= R R R L YR D

which has indices at its singular points respectively

a-1, B-1, y—1 and \/(a/+,8+y—1)2—46.
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The normal equation associated with the uniformization of CP' \ {0,1, 1,00} is
thus projectively equivalent to an equation of the form

d*v 1 1 1 dv X+c

W+(;+x—l +x—/l)a+x(x—l)(x—/l)v=0

Here c is what is called an “accessory parameter” of the equation. The uniformiz-
ing function w(x) is given as the quotient w = v{ /v, of two independent solutions
of the equation for a single value of c¢. In fact, since in the smooth case (see
Proposition VIII.3.17) two uniformizations x : H — CP'\ {0,1, 1,00} will induce
the same projective structure on CP! \ {0,1, 1,00} and therefore yield the same
reduced equation

2

ﬂ+{i+ Lt Zerdiloy }v:O, (IX.12)
dx? 4x2  4(x-1)2 4(x-1)2 2x(x-1D(x-2)

it follows that two distinct values of ¢ yield two distinct reduced equations. It
is not known which ¢ yield a uniformizing equation except in special cases. For
example, when 4 = —1, the Mobius transformation ¢(x) = —x permutes the 4
singular points, and since the uniformizing equation must be left invariant, we
infer that ¢ = 0; thus the equation

d*v . 1 . 1 .\ 1 .\ x 0
av. ) v =
dx? 452 A(x-1D?% 4(x+1)? 2x(x-D(x+1)

uniformizes CP' \ {—1,0,1,00}. Sure enough, this equation corresponds to the
hypergeometric equation (IX.11) via the (unbranched) double cover

x € CP'\ {-1,0,1,00} > x> € CP' \ {0, 1, c0}.

Similarly, when an affine transformation ¢ of order 3 permutes the 3 singular
points 0, 1 and A, then A2~ 1+ 1 =0and c = —%. Once again the uniformiz-
ing equation passes to the quotient under the action of ¢(x) = 1 — % and one
retrieves the hypergeometric equation uniformizing the orbifold sphere with in-

dices (%,O, 0). These are the only two cases where one can determine ¢ by means
of symmetries. For example, although the Mobius transformation ¢(x) = % also
permutes the 4 singular points — whatever the value of 4 — one observes that
every equation (IX.12) is left invariant by ¢, so that ¢ cannot be determined.
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IX.3.2. The sphere with r + 1 points removed

We now choose r + 1 distinct points of CP!. We assume one of these points
is the point at infinity and denote the others by ay,...,a,. A calculation analo-
gous to that of the preceding example shows that the uniformizing equation for
CP'\ {ai,...,a,,o0} has the form

JR— + —_
dx? 4 (x—a;)? Ilio,(x—ap)

2 r
dv IZ ! o) -0, (IX.13)

where Q is a polynomial of degree r — 2 with leading term ’T‘lxr‘z. All the other
coeflicients of Q are “accessory parameters”.

When the points ay,. . ., a, are permuted by an affine rotation ¢ of order r, say
@o(x) = ux and a; = p' with g a primitive 7 root of unity, then the invariance
of the uniformizing equation under ¢ yields Q(x) = %. The equation can
also be obtained by lifting the hypergeometric equation with indices (%0 0) via
the branched covering map x — x".

I1X.3.3. Lamé’s equation and the torus with a point removed
In the case of a curve X of genus 1, given say in Legendre’s form by

v =x(x—-1D(x—-2), 1€C\{0,1}, (IX.14)

the uniformizing equation of a projective structure with a single orbifold singular-
ity at the point x = oo is projectively equivalent to Lamé’s equation

0.

v 1(1 1 1 \dv  c-uty
— + ==+ +
x x-1 x-24

22 P Ty T

The index of the equation at the singular point (on the curve X) is 2n + 1. This
is a special case of Heun’s equation, except that we are not considering it on CP',
but rather on its elliptic double cover X. In other words, every projective structure
on X with a Fuchsian singularity of index 2n + 1 at the point at infinity, derives,
via the double cover

X - CP'; (x,y) b x,

from a projective structure on CP' singular at 0, 1, A and oo, with respective

indices

111d+1
2,2,2ann2.
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The equation becomes non-singular at infinity precisely when n = 0 (or n = -1,
by the symmetry of the equation under n +— —n — 1). For n = —%, we obtain
the uniformizing equation for the affine curve X \ {co} (that is, for the projective
curve X with the point at infinity removed). We are able to determine the ac-
cessory parameter ¢ in the same two cases as were described in §1X.3.1 for CP!
with 4 points removed.

When A4 = -1, the Mobius transformation ¢(x) = —x affords a symmetry of
the curve and thence a uniformizing equation: one finds that ¢ = 0. The map
(x,y) + x? induces a branched covering X — CP' of degree 4 and we see that
our Lamé equation is just the lift of the hypergeometric equation with indices
(33.0)

Similarly, when 12— +1 = 0, the transformation ¢(x, y) = (1 -1 y) defines
an automorphism of the curve X of order 3, which allows one to determine that

c= ’”1. Passing to the quotient by the group of order 6 generated by ¢ and the

elliptic involution, one obtains the hypergeometric equation with indices ( 1 é,O)

IX.3.4. Hyperelliptic curves

A normal equation without singular points on the hyperelliptic curve of genus g
2g+1
Y =P, P =]]Gx-4q)
j=1

is projectively equivalent to a unique equation of the form

d>v 1P (x)dv A(x)y+ B(x)

a2 2P dx | P()
where A and B are polynomials of degrees satisfying deg(A) < g — 3 and
deg(B) = 2g — 1, with B having leading term £~ D x28=1_ The absence of a term
of the form (x_ya BE in the coefficient of v is a necessary and sufficient condition
for there to be no logarithmic singularity on the curve at the branch points. One
also verifies that the set of normal equations has dimension 3g — 3 (and that for
g < 2 they depend only on the variable x).

For the highly symmetric pair of curves

=0 (IX.15)

2g+1 2g+1 _ 1

v =x —x and y*>=x

the uniformizing equation is given by

g-1 2gf
A=0 and Bx)=—2—— [N (x-a|.
8(2g + 1) dx? F=
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Once more we have here an avatar of the hypergeometric equation.

In the case

y2 = 28
the projection p : x — x2¢*! induces a branched covering (of degree 4g + 2) by
the hyperelliptic curve of genus g of the sphere with three conical points at 0, 1
and oo, of angles zz’il, m and 2;“ respectively. Figure IX.2 below represents the
case of genus 2. The only uniformizing equation of type (IX.15) on the curve

V2= 28t

is obtained by lifting the corresponding hypergeometric equation.

Figure IX.2: A branched covering of degree 10

In the case

2g+1 _

v =x X,

the projection p : x — x?¢ induces a branched covering (of degree 4g) by the hy-
perelliptic curve of genus g of the sphere with three conical points at 0, 1 and oo of
angles %, ;7’ and % respectively. The only uniformizing equation of type (IX.15)
on the curve

2g+1 _

v =x X

is obtained by lifting the corresponding hypergeometric equation.
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IX.3.5. Curves of arbitrary genus

As we mentioned earlier, in the second volume of the complete works of Schwarz,
there is an addendum to [Schw1873], in which he revisits several points in that
article. These were added after the works of Klein and those of Poincaré on Fuch-
sian functions had appeared. Schwarz begins by reformulating the different cases
he had investigated earlier in terms of hyperbolic and spherical geometry. Then
he evokes by means of several examples the major fact that had escaped him when
he wrote the paper [Schw1873], namely the property of hypergeometric equations
with parameters 6; = k_l, of allowing many algebraic curves to be uniformized.

In fact, provided a curve X admits a covering 7 : X — CP! branched precisely
over 0, 1 and co whose fibres are totally ramified of order kg, k; and k. respec-
tively, then the uniformizing equation of the curve X is obtained by lifting the
corresponding hypergeometric equation via . By way of example Schwarz gives
the following family of curves, of which the above examples are all special cases,
namely the family of curves X with equation

y"* = x"(1-xP)4 (IX.16)

where m,n,p,q € N*. Such a curve X is irreducible if and only if (m,n,q) = 1
(that is, m, n and ¢ are relatively prime).

To see this, note that the projection (x,y) +— x induces a branched cover-
ingé 7 : X — CP! of degree m; the monodromy around x = 0 and x = 1, given
respectively by y — ¢27u and y > %7, acts transitively on the fibre pro-
vided (n,q) is relatively prime to m. The smooth part of the curve X is thus
connected, whence X is irreducible.

Composing 7 with 71’ : x > xP, we obtain a branched covering IT : X — CP!
of degree mp ramified precisely over the points 0, 1 and co. Above x = 0, the

curve X has exactly (m,n) branches with a local parametrization given by
t— ([ ) ,t(mrfn) u(t))

where u(0) is a (m,n)th root of unity (which depends on the branch chosen).
On each branch IT is given by I : ¢ — ¢, Thus the fibre of IT above 0 is

totally ramified to the order (::f; 5- Above x = 1 the curve has (m,q) branches

parametrized by £ — (1 + @@ u(t)) on which I1(r) = (1 + tma)P is
ramified to the order % The calculation is similar when x ranges over the other
pth roots of unity, and the fibre of IT above 1 is totally ramified to the order —2

(m,q)"
An analogous calculation shows that the fibre of II above oo is totally ramified to

6Abusing notation, we understand X as denoting the disjoint union of the Riemann surfaces
associated with the irreducible components of the singular curve.
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the order % and the uniformizing equation of the curve X is the lift via I1

of the hyperéeometric equation with indices

(00’917600) = ( ” s

(m,n) (m,q) (m,n+ pq)
pm m pm '

The Riemann—Hurwitz formula gives us the genus of the curve X:

L pm = (m.n) = p(m.q) = (m.n + pq)

2 b
and whenm = 2k + l and n = p = g = 1, this gives g(X) = k. In this way one
obtains explicit uniformizations of curves of any genus.

gXxX)=1

IX.3.6. Revisiting Klein’s quartic

We now return to Klein’s quartic (see Chapter V), given by the equation
XY +YZ+27°X =0
in CP?. The projection
X:Y:2)w (X°Y:YZ: Z°X)
induces a cyclic covering of order 7 by the curve over
CP'={(a:b:c)eCP* |a+b+c=0}.

We have (Y/Z)7 = ab*/c> so that a point (X : Y : Z) is completely determined by
the point (a : b : ¢) and the choice of a 7th root Y/Z of ab*/c3. Setting y = Y/Z
and x = —b/c = —Y3/Z*X, we see that Klein’s quartic is birationally equivalent
to the curve with equation

F(x,y)=y —=x*(x-1) =0,

a particular case of the family of curves considered in the preceding subsection.
The uniformizing equation of this curve is projectively equivalent to the equation

d>v 12x2-x+1
—t V=
dx? 49 x2(x - 1)

Despite a century of effort most of the known cases of explicit uniformization
generally speaking reduce to the hypergeometric equation. A notable exception
will be considered at the end of the present chapter. The difficulty of the problem
is doubtless to be found in the real analytic nature of the uniformizing section
S = Ey(S) (see §1X.5.1).
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IX.4. Uniformization of spheres with 4 points removed

Klein’s quartic was the first example of a Riemann surface of genus at least 2
demonstrating the uniformization theorem. In Chapter VI we explained how
Fuchsian groups allow one to uniformize a whole open set of the moduli space
of curves (with orbifold singularities) of a given genus g. The first example of
a moduli space for which one could prove that all its curves are uniformizable
was that of spheres with 4 points removed. In this case Poincaré was able to put
the method of continuity to work in completely rigorous fashion. In the present
section we shall follow Poincaré in proving a particular case of the uniformization
theorem while staying at a relatively elementary level.

IX.4.1. A space of polygons

We return to the polygon considered in Example VI.2.2 in the case n = 3: here
there are the 4 cycles

{0}, {1}, {eo} and {x,y,z}

(see Figure I1X.3 below). The generators of the group I are given by

w (I1+s)w-—s
=— = d ¢ =w-—I,
wo(w) 5w e1(w) (=) and @oo(w) =w
where
1 1 1 1
r=———-, §s= ——— and t=x-y.
X z z-1 y-1

Thus in this case the group I is determined by the polygon. The isotropic sub-
group of a point x is generated by ¢g © ¢ © ¢ this transformation is parabolic if
and only if

x(1-z)=2z(1-y). (IX.17)

The parameters x, y and z are real and subject to the conditions

x<0<z<1l<y.
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Poo
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®o IR
2N \
X 0 Z 1 y

Figure IX.3: A fundamental polygon

To see this, note that for every point (x,y) belonging to the parameter space
T:={(x,y)|x<0and 1 < y},

the point z = ﬁ (defined by the condition (IX.17)) is immediately seen to

satisfy 0 < z < 1: thus the region T of the plane is precisely the space of polygons
of the above form (with 0, 1 and oo fixed).

The quotient of H by the group I is the Riemann sphere with 4 points re-
moved, namely the images of the above cycles, say 0, 1, co and A.

0, 1

[e9]

Figure IX.4: The quotient (with cuts)

The space of parameters for the quotient is therefore
CP'\{0,1,00} 3 A

Following in Poincaré’s footsteps, we shall prove the following theorem by
elementary means.
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Theorem IX.4.1 (Uniformization of spheres with 4 points removed)

The map
I:7 — CP'\ {0,1,00}; (x,y) > A

is surjective.

We know already that the map II is continuous (see §VI.3.3). Thus it suffices
to prove that it is both open and closed.

IX.4.2. Openness

We have already proved the openness in §VIIL.5.2 in the case of a smooth and
complete curve of genus g > 1. But rather than adapting that proof to the non-
compact case of interest to us here, we use Poincaré’s argument.

The price we have to pay for this is the use of the theorem on the invariance of
the domain, which, although proved by Brouwer” only a considerable time after
the appearance of the works of Poincaré we are considering here, seems to have
been regarded by Poincaré himself as something obvious: If Il is a continuous
map between two manifolds of the same dimension that is locally injective, then it
is also locally surjective and therefore open.

Now local injectivity can be proved using the same argument as was used in
the proof of Proposition VIII.3.17. If two points (x1,y;) and (x2,y,) of T have the
same image A, then the corresponding polygons P; and P, are the fundamental
regions of two Fuchsian uniformizations

m1,m H — CP'\ {0,1,1,00}.

Hence m, = ) o ¢ for some automorphism ¢ of H and the two groups are conju-
gate. In other words, P; and P, are, to within a conjugation (by ¢), fundamental
regions for the same Fuchsian group. Hence if P; and P, are close, then ¢ will be
close to the identity, whence in fact P; = P».

7We quote in this connection words of Freudenthal published in the book marking Poincaré’s
centenary:

The principle of continuity and the concept of a topological manifold attracted the
attention of Brouwer, who was then able to create by these means his proof of the
invariance of the domain the indispensable and fundamental methods that Topology
has used from that time till this.
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IX.4.3. Closure

For the proof of Theorem IX.4.1 it remains to show that the map II is closed.
To this end we consider a sequence of points 4, in the image converging to
Ao € CP\ {0,1,00}, with the aim of showing that the latter point is also in the
image of the map. By assumption, there exists a sequence of polygons P,, € T
such that I1(P,) = A,. If the sequence P, has a clus