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Foreword

Mathematicians have ambiguous relations with the history of their discipline.
They experience pride in describing how important new concepts emerged grad-
ually or suddenly, but sometimes tend to prettify the history, carried away with
imaginings of how ideas might have developed in harmonious and coherent fash-
ion. This tendency has sometimes irritated professional historians of science, well
aware that the development has often been much more tortuous.

It is our implicit belief that the uniformization theorem is one of the major
results of 19th century mathematics. In modern terminology its formulation is
simple:

Every simply connected Riemann surface is isomorphic to the complex plane,
the open unit disc, or the Riemann sphere.

And one can even find proofs in the recent literature establishing it by means
of not very complicated argumentation in just a few pages (see e.g. [Hub2006]).
Yet it required a whole century before anyone managed to formulate the theorem
and for a convincing proof to be given in 1907. The present book considers this
maturation process from several angles.

But why is this theorem interesting? In the introduction to his celebrated 1900
article [Hil1900b] listing his 23 most significant open problems, David Hilbert
proposed certain “criteria of quality” characterizing a good problem. The first
of these requires that the problem be easy to state, and the uniformization theo-
rem certainly satisfies this condition since its statement occupies only two lines!
The second requirement — that the proof be beautiful — we leave to the reader
to check. Finally, and perhaps most importantly, it should generate connections
between different areas and lead to new developments. The reader will see how
the uniformization theorem evolved in parallel with the emergence of modern
algebraic geometry, the creation of complex analysis, the stirrings of functional
analysis, the blossoming of the theory of linear differential equations, and the
birth of topology. It is one of the guiding principles of 19th century mathematics.
And furthermore Hilbert’s twenty-second problem was directly concerned with
uniformization.
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We should give the reader fair warning that this book represents a rather mod-
est contribution. Its authors are not historians — many of them can’t even read
German! They are mathematicians wishing to cast a stealthy glance at the past of
this so fundamental theorem in the hope of bringing to light some of the beautiful
— and potentially useful — ideas lying hidden in long-forgotten papers. Further-
more, the authors cannot claim to belong to the first rank of specialists in modern
aspects of the uniformization theorem. Thus the present work is not a complete
treatise on the subject, and we are aware of the gaps we should have plugged if
only we had had the time.

Our exposition is perhaps somewhat unusual. We don’t so much describe the
history of a result as re-examine the old proofs with the eyes of modern math-
ematicians, querying their validity and attempting to complete them where they
fail, first as far as possible within the context of the background knowledge of the
period in question, or, if that turns out to be too difficult, then by means of modern
mathematical tools not available at the time. Although the proofs we arrive at as a
result are not necessarily more economical than modern ones, it seems to us that
they are superior in terms of ease of comprehension. The reader should not be
surprised to find many anachronisms in the text — for instance calling on Sobolev
to rescue Riemann! Nor should he be surprised that results are often stated in a
much weaker form than their modern-day versions — for example, we present
the theorem on isothermal coordinates, established by Ahlfors and Bers under the
general assumption of measurability, only in the analytic case dealt with by Gauss.
Gauss’ idea seems to us so limpid as to be well worth presenting in his original
context.

We hope that this book will be of use to today’s mathematicians wishing to
glance back at the history of their subject. But we also believe that it can be used
to provide masters-level students with an illuminating approach to concepts of
great importance in contemporary research.

The book was conceived as follows: In 2007 fifteen mathematicians fore-
gathered at a country house in Saint-Germain-la-Forêt, Sologne, to spend a week
expounding to one another fifteen different episodes from the history of the uni-
formization theorem, given its first complete proof in 1907. It was thus a week
commemorating a mathematical centenary! Back home, the fifteen edited their
individual contributions, which were then amalgamated. A second retreat in the
same rural setting one year later was devoted to intensive collective rewriting,
from which there emerged a single work in manuscript form. After multiple fur-
ther rewriting sessions, this time in small subsets of the fifteen, the present book
ultimately materialized.

We are grateful for the financial support provided by the grant ANR Symplexe
BLAN06-3-137237, which made the absorbing work of producing this book fea-
sible.
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We wish to thank also Mark Baker, Daniel Bennequin, Catherine Goldstein,
Alain Hénaut, Christian Houzel, Frédéric Le Roux, Pierre Mounoud, and Ahmed
Sebbar for useful conversations, François Poincaré for translating the Klein–Poin-
caré correspondence, Arnaud Chéritat and Jos Leys for producing the diagrams,
and Marc Deroin and Karim Noui for the electrostatic photographs.

Translator’s Note. I am grateful to Edwin Beschler, Manfred Karbe, Norm
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General introduction:
The uniformization theorem

The study of plane curves is one of the chief preoccupations of mathematicians.
The ancient Greeks investigated in detail straight lines, circles, as well as the
conic sections and certain more exotic curves such as Archimedean spirals. A
systematic study of general curves became possible only with the introduction of
Cartesian coordinates by Fermat and Descartes during the first half of the 17th
century [Fer1636, Desc1637], marking the beginning of algebraic geometry. For
the prehistory of algebraic geometry the reader may consult [BrKn1981,Cha1837,
Die1974, Weil1981].

Two ways of representing a curve

A plane curve can be modelled mathematically in two — in some sense dual —
ways:

— by an implicit equation F (x, y) = 0,where F : R2 → R is a real function of
two real variables;

— as a parametrized curve, that is, as the image of a map γ : R→ R2.

We shall see that the uniformization theorem allows one to pass from the first
of these representations to the second. If F is a polynomial, the curve is said
to be algebraic (formerly such curves were called “geometric”), otherwise tran-
scendental (formerly “mechanical”). A significant part of this book is concerned
with algebraic curves but, as we shall see, the uniformization theorem in its final
version provides an entrée into the investigation of (almost) all curves.



xiv General introduction

Among transcendental curves we find various kinds of spirals and catenaries,
the brachistochrone and other tautochrones, which played a fundamental role in
the development of mathematics in the 17th century.

Figure 1: Some transcendental curves

Formerly the study of algebraic curves consisted in a case-by-case examina-
tion of a large number of examples of curves with complicated names (lemnis-
cates, cardioids, folia, strophoids, cissoids, etc.) which used to be found among
the exercises in undergraduate textbooks and which continue to give pleasure to
amateur mathematicians1.

Figure 2: Some algebraic curves

The first invariant that suggests itself for an algebraic curve is the degree of
the polynomial F, readily seen to be independent of the system of plane (Carte-
sian) coordinates to which the curve is referred. It is clear that straight lines are
precisely the curves of degree 1, and it is not difficult to show that the venerable
conic sections of the ancient Greeks are just the curves of degree 2. In a cel-
ebrated work [New1704] Newton took up the task of producing a “qualitative”

1See e.g. http://www.mathcurve.com/ or http://www.2dcurves.com/.
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classification of the curves of degree 3, concluding that there are 72 different
types2. Evidently it would be difficult if not impossible to continue in this fashion
since the number of possible “types” increases very rapidly with the degree and
the situation soon becomes impenetrable.

Three innovations

Three major mathematical innovations led to significant clarification of the situa-
tion. First came the understanding that the projection from a point in 3-dimensional
space of one plane onto another, both situated in that space and neither contain-
ing the point of projection, transforms an algebraic curve in one plane into an
algebraic curve on the other, moreover of the same degree, said to be projectively
equivalent to the first. For example, every non-degenerate conic section is the im-
age of a circle under a suitable such projection; hence from the projective point of
view the distinction between ellipses, parabolas, and hyperbolas disappears: there
now exists just a single equivalence class of non-degenerate conic sections. Simi-
larly, after having defined a diverging parabola to be a curve given by an equation
of the form y2 = ax3 + bx2 + cx + d, Newton states that:

Just as the circle lit by a point-source of light yields by its shadow all curves
of the second degree, so also do the shadows of diverging parabolas give all
curves of the third degree.

Here we are at the beginning of projective geometry, initiated by Girard De-
sargues [Desa1639]. Rather than considering a curve F (x, y) = 0 in the plane
coordinatized by pairs (x, y), one considers it in the projective plane, coordina-
tized by means of homogeneous coordinates [X : Y : Z], where now the curve
is given by a homogeneous polynomial F̄ (X,Y, Z ) = 0. Each set of points of the
projective plane with Z , 0 and fixed values for the ratios X/Z and Y/Z corre-
sponds to the point of the affine plane with coordinates x = X/Z and y = Y/Z ,
so that the projective plane is in effect the ordinary affine plane with a line at in-
finity adjoined, each of whose points corresponds to a line through [0 : 0 : 0]
in XY Z-space with Z ≡ 0 and with [0 : 0 : 0] omitted. It follows that the two
branches of a hyperbola in the affine plane join up at two points on the line at
infinity, namely the points of that line determined by its two asymptotes, while a
parabola is actually tangential to the line at infinity. Thus utilization of projective

2Note however that he “missed” 6, his definition of “type” in this context was criticized by Euler,
and Plücker, using a different criterion, distinguished 219 types.
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geometry simplifies the geometrical picture in a significant way, reducing appar-
ently distinct cases down to an examination of the relative positions of a projective
algebraic curve and a (projective) line. The adjunction of the line at infinity has
other advantages: for instance, every pair of distinct projective lines intersects in
a point, which will be at infinity precisely when the corresponding affine lines are
parallel.

The second major innovation, dating back to the turn of the 19th century, was
the systematic use of complex numbers in geometry, leading to the need to con-
sider the complex points of the algebraic curve under investigation, that is, the
complex solutions of the equation F (x, y) = 0, where furthermore the polyno-
mial F (x, y) is, naturally, now allowed to have complex coefficients. The fact
that the field of complex numbers is algebraically closed — awareness of which
grew gradually until it was finally established in the 19th century — entails a sub-
stantial consolidation of geometrical statements. Clearly projective geometry and
complex geometry represent natural enlargements of the original context of the
study of plane curves, and indeed until relatively recently were together taken as
providing the most natural framework for algebraic geometry.

To take a simple example, the straight line y = 0 now meets every “parabola”
y = ax2 + bx + c (with not all of a,b,c zero) in two points. The sign of the
discriminant is no longer of any importance — indeed it no longer really has a
sign! — but if it vanishes then the two roots merge into one. If a = 0,b , 0 one of
the points is at infinity and if a = b = 0,c , 0 there is a “double root at infinity”3.
(The case a = b = c = 0 is exceptional.) Thus does one see the unifying power
of complex projective algebraic geometry. An even more compelling example
concerns the cyclic points, which are both imaginary and on the line at infinity.
These are just the points [1 : i : 0] and [1 : −i : 0]. It is not difficult to see that a
conic section in the Euclidean plane is a circle if and only if, considered as a conic
in the complex projective plane, it passes through the cyclic points. From this fact
many of the properties of circles can be inferred, since they in fact reduce to the
question of the position of a conic relative to two points.

Even if we study complex algebraic curves only up to projective coordinate
changes, a systematic classification still eludes us except in small degrees. To
see this it suffices to note, as Cramer did in 1750, that the vector space of alge-
braic curves of degree d has dimension d(d + 3)/2, while the group of projective
transformations has “only” dimension 8 [Cra1750].

The third major innovation, due to Poncelet, Plücker, and Steiner [Ponc1822,
Plü1831, Ste1832] among others, rested on the discovery that one can investigate
curves by means of non-linear coordinate changes. Among such coordinate trans-

3To see this rewrite the equation in terms of homogeneous coordinates.
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formations inversion plays an important role. (Up until the 1960s many chapters
of high school geometry textbooks used to be devoted to inversion.) One very sim-
ple algebraic version is the transformation (to which the name De Jonquières is
attached) sending each point with affine coordinates (x, y) to the point (1/x,1/y),
or, in its “homogenized” variant, mapping the point with projective coordinates
[X : Y : Z] to [Y Z : X Z : XY ]. This prompts two remarks. First, this “transfor-
mation” σ is not everywhere defined. When two of the homogeneous coordinates
are zero — the three such points forming the vertices of a triangle with one side
on the line at infinity — the image is not defined (since [0 : 0 : 0] does not
correspond to a point of the projective plane). Secondly, the transformation is
not injective: the line at infinity Z = 0 is sent entirely to the point x = y = 0.
However, apart from such “details”, which hardly bothered our predecessors, this
transformation may be regarded as a legitimate change of variables. It is “almost”
bijective in view of the fact that it is involutory: if σ is defined both at a point p
and its image σ(p), then (σ ◦ σ)(p) = p. On transforming an algebraic curve
via σ we obtain another algebraic curve but of different degree. For example, the
image of the straight line x + y = 1 is the conic 1/x + 1/y = 1, or, to be precise, a
conic with certain points removed.

The non-linear transformations we have in mind form a group (named after
Cremona) which is much larger that the projective group, so that one can hope
for a precise and at the same time tractable classification of algebraic curves
up to such a non-linear transformation. Here we have the beginnings of bi-
rational geometry, one of Riemann’s great ideas. We say that two projective
algebraic curves F̄ (X,Y, Z ) = 0 and Ḡ(X,Y, Z ) = 0 are birationally equiva-
lent if there is a (possibly non-linear) transformation of the form (X,Y, Z ) 7→
(p(X,Y, Z ),q(X,Y, Z ),r (X,Y, Z )) where the coordinates p,q,r are homogeneous
polynomials of the same degree, which maps the first curve “bijectively” to the
second. Here the quotation marks are meant to indicate that, as in the above ex-
ample, the transformation may not be defined everywhere. One insists only that
each of the two curves has a finite set of points such that the transformation sends
the complement of the finite subset of the first curve bijectively to the complement
of the subset of the second.

A signal virtue of birational transformations is that they allow us to avoid the
problem of singular points. Early geometers were soon confronted with the need
to study double points, cusp points, etc. In the real domain the theory of such
points is relatively simple, at least in its topological aspects. Every point of a real
algebraic curve has a neighbourhood in which the curve is made up of an even
number of arcs. Such a curve cannot have an end-point, for instance.
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On the other hand for complex algebraic curves, local analysis of their singu-
lar points has established that they can have an extraordinarily intricate structure:
investigations begun by Newton and continued by Puiseux [New1671, Pui1850,
Pui1851] show that their topological structure is connected with the theory of
knots, which theory does not, however, come within the compass of the present
book. For us it suffices to know that every algebraic curve is birationally equiva-
lent to a curve possessing only especially simple singular points, namely ordinary
double points (Noether, Bertini [Noe1873, Bert1882]) — in other words, points
in a neighbourhood of which the curve consists of two smooth arcs with distinct
tangents.

Figure 3: Some types of singular points

To summarize, geometers have progressively reduced the study of algebraic
plane curves to that of algebraic curves which, to within a birational transforma-
tion, have only ordinary double points.

Rational curves

The introduction of complex numbers had consequences far beyond projective
geometry: the beginning of the 19th century also witnessed the advent of the geo-
metric theory of holomorphic functions, which are at one and the same time func-
tions of a single complex variable and of two real variables. Gauss not only knew
that it is useful to coordinatize the plane with the complex numbers, but under-
stood equally well that any surface in space can be coordinatized by the complex
numbers conformally (see Chapter I). Thus a surface is locally determined by a
single number. The step had been taken: a real surface can be considered a com-
plex curve. Some thirty years later Riemann understood that there is, reciprocally,
some advantage in regarding a complex curve as a real surface (see Chapter II).
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We are now in a position to address the question of parametrized curves. A
curve is called rational if it is birationally equivalent to a straight line. (Formerly
such curves were called unicursal, meaning that they could be “traced out with a
single stroke of the pen”.) More concretely, a curve F (x, y) is rational if it can be
parametrized by means of rational functions

x =
p(t)
r (t)

, y =
q(t)
r (t)

,

where p,q and r are polynomials in a single (complex) variable t, and the parametr-
ization is a bijection outside a finite subset of values of t. Here are some simple
examples.

Non-degenerate conics are rational. To see this it suffices to take a point m on the
conic C and a projective line D not passing through m (see Figure 4). Then for
each point t on D, the line determined by m and t meets the conic in two points,
of which one is of course m. Denoting the other point by γ(t), one readily checks
that the map γ : D → C is a birational equivalence.

Figure 4: Parametrization of a conic and a singular cubic

A cubic curve with a double point is also a rational curve. For this it suffices to
choose a straight line not passing through the singular point, and consider for each
point p of that line the line through p and the singular point (see Figure 4). Each
such line meets the conic in three points, two of which coincide with the double
point of the cubic. The third point of intersection then determines a birational
equivalence between the initially chosen line and the given cubic. For example,
the origin is a double point of the curve y2 = x2(1 − x). We choose x = 2 as
our parametrizing line. The line passing through the origin and the point (2, t) has
equation y = t x/2, so intersects the given cubic where t2x2/4 = x2(1 − x),which
has the expected double root x = 0 and the third solution x = 1 − t2/4, yielding
the desired rational parametrization y = t(1 − t2/4)/2 of the curve.
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Although rational curves are of considerable interest, they represent just a
small proportion of all algebraic curves. We do not know exactly when math-
ematicians became fully aware of this, that is, of the fact that most algebraic
curves are not rational. There are several elementary means of convincing one-
self of it, and later on we shall give a topological argument rendering it “obvi-
ous”. Or one can argue as follows. Note first that a curve given in the form
x = p(t)/r (t), y = q(t)/r (t) is of degree d where d is the largest of the degrees
of the polynomials p,q,r: one can see this by counting the number of points of
intersection with a generic straight line, which points will be given as the solu-
tions of an equation of degree d. The vector space of triples of polynomials of
degree d has dimension 3(d + 1). However multiples of p,q,r by any non-zero
scalar yield the same curve, and replacement of t by a suitable rational function
of t (depending on at least three parameters) will also leave the curve unchanged.
Thus the space of rational curves of degree d depends on at most 3d − 1 param-
eters. As noted earlier, a count of the number of coefficients of a polynomial of
degree d in two variables yields d(d + 3)/2 for the number of parameters. Since
d(d + 3)/2 > 3d − 1 for d ≥ 3, we conclude that in general algebraic curves of
degree at least three are not rational curves.

Figure 5: Some rational curves

Elliptic curves

It is completely natural that effort should first be concentrated on the cubics. As
we have seen, Newton himself produced an initial classification which was neither
projective nor complex, even though he found hints of certain features of projec-
tivity and the complex numbers. His aim was to understand in some fashion the
possible topological dispositions of cubic curves in the plane: the positions of
asymptotes, singular points, etc. We saw above that singular cubics are rational.
However non-singular cubics are never rational; we recommend that the reader
attempt to prove this by elementary means.
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We limit ourselves here to a brief overview of the principal results. First,
every smooth cubic curve is projectively equivalent to a curve with equation in
the following normal form (named for Weierstrass although it should properly be
attributed to Newton):

y2 = x3 + ax + b,

where a,b are complex numbers. If 4a3 + 27b2 , 0, this cubic is smooth. From
the inception of the theory mathematicians struggled to evaluate integrals of the
form

f (x) =

∫
dx
y

=

∫
dx

√
x3 + ax + b

.

They called such integrals “elliptic” since evaluation of the length of an arc of an
ellipse leads to such a formula. Difficulties arise when one tries to make sense of
such integrals with x and y allowed to be complex. The first problem is that the
value of the integral depends on which square root one chooses for the denomi-
nator of the integrand. The second, linked to the first, consists in the dependence
of the integral on the path of integration. Faced with these difficulties, one is
forced to the conclusion that one must resign oneself to regarding f as a “many-
valued4 function”, that is, that each point x may have several images, all denoted
by f (x) however — a situation somewhat distasteful to present-day mathemati-
cians, brought up as they are on the modern set-theoretic definition of a function.

Gauss, Abel, and Jacobi conceived the ingenious idea (to be expounded in
Chapter I) that it is not so much the function f that is of interest but its inverse.
They were perhaps led to this by the analogy with the circle

x2 + y2 = 1

(which is certainly a rational curve) and the integral∫
dx
y

=

∫
dx

√
1 − x2

= arcsin x.

The “function” arcsin as so defined is multivalued, but it is the inverse function of
sin, a function in the strict sense of the word — each point x has a uniquely defined
image sin x. The many-valuedness of arcsin arises from the periodicity of the
sine function, and in like manner the inverse ℘ of f is a “genuine” meromorphic

4The French term is “multiforme”.
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function (to emphasize that the modern interpretation of the word “function” is the
one intended, the adjective single-valued5 is sometimes used), and the fact that f
is many-valued is explained by the periodicity of the single-valued function ℘.

It is important to stress this periodicity. While the sine function is periodic of
period 2π, the periodicity of the meromorphic function ℘ is much richer: it has
two linearly independent periods. In more precise terms, there is a subgroup Λ
of C of rank 2 (depending on a and b) such that

∀ω ∈ Λ, ℘(z) = ℘(z + ω).

(In fact the elements ofΛ are just the integrals of dx/y around closed curves in the
x-plane.) It follows that we may regard ℘ as defined on the quotient of C by the
latticeΛ. Topologically, the quotient space C/Λ is a 2-dimensional torus. Locally,
each point of the torus is associated with a complex number in such a way that
it inherits the structure of a holomorphic manifold of complex dimension 1, an
example of a Riemann surface (see Chapter II).

Since ℘ is periodic, its derivative ℘′ = d℘/dz is also, and we then obtain a
map (℘,℘′) from the Riemann surface C/Λ with the poles of ℘ and ℘′ removed,
toC2. It is not difficult to prove6 that this map extends fromC/Λ to the original cu-
bic curve in the complex projective plane (with the three excluded points restored,
now sent to three points at infinity). In this way one obtains an identification of
the projective cubic curve and the torus C/Λ.

A few remarks are apropos. First, it now becomes topologically clear why
such cubics are not rational: a complex projective line is homeomorphic to a
sphere (the Riemann sphere) and the removal of finitely many points will not
make it homeomorphic to a torus.

We also see from the above that every smooth cubic, considered as a real sur-
face (in the complex projective plane), is homeomorphic to the torus. On the other
hand, considered as Riemann surfaces, these tori are not holomorphically equiva-
lent to one another: given two distinct lattices Λ1,Λ2 in C, there is in general no
holomorphic bijection between C/Λ1 and C/Λ2. (There is such a bijection if and
only if Λ2 = kΛ1 for some non-zero k.) Hence in contrast with rational curves,
which are all parametrized by the complex projective line (the Riemann sphere),
smooth cubics are not all parametrized by the same complex torus C/Λ: each of
them is parametrized by a complex parameter (determined by a lattice in C defined
to within a homothety7), called a modulus.

5The French term is “uniforme”. “Uniformization” is thus the process of representing many-
valued functions by single-valued ones. Translator

6Using the fact that (℘′)2 = ℘3 + a℘ + b. Trans
7That is, defined to within a similarity.
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The reader may now take the measure of the progress achieved since Newton’s
attempt at classification: the birational equivalence classes of smooth cubic curves
also depend on a single complex parameter.

Figure 6: Uniformization of an elliptic curve

Even though the domain C/Λ of the parametrization of a smooth cubic de-
pends on the cubic, it should be noted that the universal cover of C/Λ, the complex
line C considered as a Riemann surface, is in fact independent of the cubic. We
shall now elaborate on this point — at the expense of perpetrating an anachronism
since the concept of the universal cover evolved only gradually in the course of
the 19th century, and reached final form only in the 20th. (In this connection one
should also mention that some of the motivation for the development of topology
came from the study of curves.) A topological space X is said to be simply con-
nected if every loop c : R/Z → X can be contracted to a point, that is, if there is
a continuous family of loops ct , t ∈ [0,1], with c0 = c and c1 a constant loop. It
can be shown that provided X is a “reasonably well-behaved space” — which is
certainly the case for manifolds — there exists a simply-connected space X̃ and a
projection map π : X̃ → X whose fibres are the orbits of a discrete group Γ acting
on X̃ (fixed point) freely and properly8. The space X̃ is then called the universal
covering space of X , and Γ the fundamental group of X . In the case where X is
the torus C/Λ, it is obvious from its very construction that its universal cover is C
and its fundamental group is Λ, which is isomorphic to the group Z2. When X
is endowed with the additional structure of a Riemann surface, such a structure

8That is, with the map Γ× X̃ → X̃ × X̃ given by (g, x) 7→ (gx, x) proper, meaning that complete
inverse images of compact sets are compact.
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is naturally induced on its universal cover, most often non-compact, so from the
above it follows that the universal cover of every non-singular cubic curve is iso-
morphic to the complex line C. Thus even though the isomorphism classes of
smooth cubic curves depend on a modulus, their universal covers are all isomor-
phic. We summarize this, bringing in for the first time the term “uniformization”:

Every smooth cubic curve C in the complex projective plane has a holomor-
phic uniformization π : C→ C which parametrizes the curve in the sense that two
points of C have the same image under π if and only if their difference belongs to
a certain lattice Λ of C.

And the converse rounds off the theory into a harmonious whole: correspond-
ing to each latticeΛ ofC, there exists a smooth cubic curve that is holomorphically
isomorphic to C/Λ.

Beyond elliptic curves

Our Chapter II constitutes an invitation to read the papers of Riemann devoted
to algebraic functions and their integrals. These texts, so important for the his-
tory of mathematics, are difficult of access, and it took a considerable time for
them to be finally assimilated. Although there are historical articles commenting
on these, our approach is quite different, in particular in not at all attempting to
be exhaustive. Riemann’s great contribution was to turn Gauss’ idea on its head:
although it is useful to think of real surfaces as complex curves, it turns out to
be more fruitful to think of a complex curve — with equation P(x, y) = 0, say
— as a real surface. It is on this that Riemann bases his theory of surfaces, in
which one-dimensional and two-dimensional notions become associated with one
another. For example, he makes no bones about cutting a surface along a real
curve, thereby introducing topological methods into algebraic geometry. Regard-
ing an algebraic curve — that is, an object of one complex dimension situated
in the complex projective plane — as a real two-dimensional surface presents no
difficulties if the given curve is smooth, since then the real surface is also smooth.
However, as we have already seen, this is far from representing the general sit-
uation since singular points arise frequently. In this case, however, one can to
within a birational equivalence assume that the singularities are ordinary double
points, and then it is not difficult to make the surface smooth: for this it suffices
to regard the double point as actually two distinct points, on separate branches,
and one constructs in this way a smooth surface associated with the original al-
gebraic curve. This is how Riemann associates with each given algebraic curve



General introduction xxv

a Riemann surface, that is, a holomorphic manifold of dimension 1, or, to put it
another way, a real manifold of dimension 2 endowed with a complex structure.
(We shall revisit this theme throughout the book.) Riemann went on to (almost)
prove the following two statements:

— Two algebraic curves are birationally equivalent if and only if their associ-
ated Riemann surfaces are holomorphically isomorphic.

— Every “abstract” compact Riemann surface is holomorphically isomorphic
to the Riemann surface of some algebraic curve.

Thus the algebraic problem of describing algebraic curves is transformed into
the transcendental one of describing Riemann surfaces. The first invariant derived
by Riemann was a purely topological one (and had a major impact on the devel-
opment of topology since, among other things, it was in attempting to generalize
it that Poincaré was led to the modern form of that discipline). It is well known
that every compact orientable surface is homeomorphic to a sphere with a cer-
tain number of handles attached, which number is nowadays termed the genus of
the surface. It follows that every algebraic curve has a specific associated genus
which is invariant with respect to birational equivalence and so of much greater
significance than the degree.

Figure 7: Topological surfaces of genus 1, 2, and 3
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Here are some of the results concerning the genus that we shall encounter
later on.

Having genus zero means that the curve’s associated Riemann surface is home-
omorphic to the 2-sphere. It does not then follow immediately that it is holomor-
phically isomorphic to the Riemann sphere. This fact was established in two dif-
ferent ways by Alfred Clebsch (see Chapter II) and Hermann Schwarz (see Chap-
ter IV): every Riemannian metric on the sphere is globally conformally equivalent
to that of the standard sphere. In other words (closer to those of Schwarz) every
Riemann surface homeomorphic to the sphere is holomorphically equivalent to
the Riemann sphere. In yet other words:

The algebraic curves of genus zero are precisely the rational curves.
This represents a further stage on the way to general uniformization: a sin-

gle topological datum about a curve determines whether or not it has a rational
parametrization.

Having genus 1 signifies that the Riemann surface is homeomorphic to a torus
of two real dimensions. It follows, although not obviously — Clebsch proved it in
1865 — that it is holomorphically isomorphic to a quotient of the form C/Λ (see
Chapter II). Thus:

The algebraic curves of genus 1 are precisely those birationally equivalent to
smooth cubics (the so-called “elliptic” curves).

The case of genus greater than or equal to 2 is more complicated, and it is to
this case that the present book is devoted. Before summarizing the situation, we
clarify the connection between genus and degree: it can be shown that if C is a
curve of degree d with k singular points, all ordinary double points, the genus is
given by the formula

g =
(d − 1)(d − 2)

2
− k .

It is then immediate that straight lines and conics have genus zero, smooth cubics
genus 1, singular cubics genus zero, and smooth quartics genus 3.

Riemann demonstrates great mastery by the manner in which he generalizes
from the case of elliptic curves. For instance, for each fixed value g ≥ 2 of the
genus, he seeks to describe the space of moduli of the curves of that genus —
that is, the space of algebraic curves of genus g considered to within a birational
transformation — showing it has complex dimension 3g − 3. Among other re-
sults of Riemann, we should also mention the celebrated one asserting that every
non-empty simply connected open subset of C is biholomorphically equivalent
to the open unit disc — a result of fundamental importance, although Riemann’s
proposed proof leaves a little to be desired (see Chapter II). It sometimes happens
that this result, albeit an important special case, is confused with the “great” uni-
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formization theorem forming the theme of the present book, which has to do not
just with open sets of C but, much more impressively, with all Riemann surfaces.

Riemann’s work in this field exerted a considerable influence on his immediate
successors. In Chapter IV we describe Schwarz’s attempts to establish explicitly
certain particular cases of the conformal representation theorem while skirting the
technical difficulties on which Riemann’s proof founders.

Among the best expositions of Riemann’s ideas, that of Felix Klein, another
hero of the present work, stands out. In 1881 he wrote up what he believed to be
the idea behind Riemann’s intuition, even though Riemann’s actual articles make
no mention of it. We will never know if Klein was right in this, but the resulting
new approach, via Riemannian metrics, seems to us especially illuminating. It
relies on an electrostatic or perhaps hydrodynamic interpretation, making it par-
ticularly accessible to the intuition. We describe this way of looking at the subject
and its modern developments in Chapter III.

Uniformizing algebraic curves of genus greater than 2

The question of parametrizing curves of general genus g remained open, or, more
precisely, no one suspected that every algebraic curve might be parametrizable
by single-valued holomorphic functions. However, following Riemann’s work,
evidence for this began to accumulate from the examination of certain remarkable
examples.

In a marvellous article Klein studied the curve C given by the homogeneous
equation x3y + y3x + z3x = 0 as a Riemann surface, showing that it is isomor-
phic to the quotient of the upper half-plane by an explicit group of holomorphic
transformations. In other words, he constructed a (single-valued) holomorphic
function π with domain the upper half-plane H and with fibres the orbits of a
group Γ of holomorphic transformations acting freely and properly. The analogy
with the situation of elliptic curves was striking: the half-plane replaces the com-
plex line and the group Γ of Möbius transformations replaces the group Λ acting
via translations. Thus is Klein’s quartic uniformized by π.

Even though this remarkable specimen was actually the first example of uni-
formization in higher genus, it was nonetheless taken at the time for an unparal-
leled gem, as it were, incapable of generalization like the regular polyhedra. As
such it marked an interlude prior to attempts at establishing general uniformiza-
tion. We shall expound Klein’s example in Chapter V.

Motivated by quite different considerations arising in the theory of linear dif-
ferential equations, Poincaré was led to the systematic investigation of the dis-
crete subgroups Γ of the group PSL(2,R), which he called Fuchsian, and the
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quotients H/Γ obtained from them. He saw that among such quotients there are
compact Riemann surfaces of genus at least 2. He showed that there is some lati-
tude in the choice of the group, depending on certain parameters (see Chapter VI).

In light of Poincaré’s results, Klein realized that the algebraic curves uni-
formized by H are in fact not isolated examples as he had thought, but form con-
tinuous families depending on parameters to be determined. Almost simultane-
ously Klein and Poincaré saw that the latter’s constructions might be of sufficient
flexibility for all compact Riemann surfaces to be uniformizable by H. A di-
mensional count quickly showed that the space of Poincaré’s Fuchsian groups,
considered up to conjugation, yielding a surface of genus g depends on 6g−6 real
parameters — highly suggestive given Riemann’s result that Riemann surfaces
of genus g depend on 3g − 3 complex moduli. The race was on between Klein
and Poincaré to prove the theorem. We encourage the reader to read the impas-
sioned correspondence on this topic between our two heros reproduced at the end
of the book. Here Klein and Poincaré introduce a new method of proof, namely
by continuity.

Figure 8: Klein’s Fuchsian group (shown here as a group of automorphisms of the
unit disc rather than the upper half-plane).

To us neither Klein’s proof nor Poincaré’s is totally convincing. In Chap-
ter VII we try to resurrect Klein’s proof9; to obtain a rigorous proof we had to use
modern tools derived from quasiconformal techniques, which Klein and Poincaré
certainly did not have at their disposal. Then in Chapter VIII we make an attempt
to resuscitate — at least in part — Poincaré’s approach, which was not motivated

9The matter is actually more complex; in fact some parts of the proof given in Chapter VII are
closer to certain of Poincaré’s arguments than to those of Klein.



General introduction xxix

by uniformization but rather by the desire to solve linear differential equations.
The reader will observe there the emergence for the first time of a great number of
concepts familiar to modern mathematicians. Chapter IX is devoted to the explicit
investigation of some examples of uniformization of surfaces of higher genus.

By 1882 Klein and Poincaré had become fully convinced of the truth of the
following uniformization theorem:
Theorem. Let X be any compact Riemann surface of genus ≥ 2. There exists
a discrete subgroup Γ of PSL(2,R) acting freely and properly on H such that X
is isomorphic to the quotient H/Γ. In other words, the universal cover of X is
holomorphically isomorphic to H.

To summarize, Klein and Poincaré had now effectively solved one of the main
problems handed down by the founders of algebraic geometry: to parametrise an
algebraic curve F (x, y) = 0 (of genus at least 2) by single-valued meromorphic
functions x, y : H → C. This magnificent result rounded out the theory deal-
ing with the particular cases of rational and elliptic curves. Thus Fuchsian func-
tions were now seen to be the appropriate generalizations of elliptic functions.
Of course, as in the case of the elliptic functions, it was now necessary to admit
new transcendental functions into the menagerie of basic mathematical objects,
find their (convergent) series representations, etc. In fact Poincaré subsequently
devoted a number of papers to such questions.

Beyond algebraic curves

But why should we confine ourselves to algebraic curves? What is the situa-
tion with “transcendental” curves? Spurred by his success with algebraic curves,
Poincaré went on to address the problem of non-compact Riemann surfaces, which
a priori have no relation to algebraic geometry. Although the method of continuity
could no longer be applied, nonetheless already by 1883 Poincaré had managed to
show that every Riemann surface admitting a non-constant meromorphic function
can be uniformized in a certain weakened sense of the word “uniformize”: one has
now to allow parametrisations that may not be locally injective, that is, with ram-
ification points. This result is the subject of Chapter XI. The question of the uni-
formization of non-algebraic surfaces seems to have stagnated for a while there-
after, until, in 1900, Hilbert stressed the incomplete nature of Poincaré’s result,
and encouraged mathematicians to re-apply themselves to it; this was Hilbert’s
twenty-second problem. At last, in 1907, Poincaré and Koebe arrived indepen-
dently at the general uniformization theorem:
Theorem. Every simply connected Riemann surface is holomorphically isomor-
phic to the Riemann sphere C̄, the complex plane C, or the upper half-plane H.
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Koebe’s and Poincaré’s approaches to this theorem are described in Chap-
ters XII and XIII.

Of course, this classification of simply connected Riemann surfaces yields im-
mediately a characterisation of all Riemann surfaces, since every Riemann surface
is a quotient of its universal cover by a group acting holomorphically, freely, and
properly. Thus by the theorem of Koebe and Poincaré every Riemann surface is
identical with either the Riemann sphere or a quotient of C by a discrete group
of translations, or a quotient of the half-plane H by a Fuchsian group. The work
of Poincaré and Koebe, occupying Part C, allowed a new page to be turned in
potential theory, and represents the end of an important epoch in the history of
mathematics.

Meanwhile, over the decade 1890–1900, Picard and Poincaré worked out
a new proof of the uniformization theorem based on a suggestion by Schwarz,
valid in the compact case at least, and depending of the solution of the equation
∆u = eu . We present this in Chapter X.

The uniformization theorem was at the centre of the evolution of mathematics
in the 19th century. In the diversity of its algebraic, geometric, analytic, topo-
logical, and even number-theoretic aspects it is in some sense symbolic of the
mathematics of that century.

Our book ends in 1907, even though the story of the uniformization theorem
continues. Among later developments, one might mention Teichmüller’s work on
moduli spaces, or those of Ahlfors and Bers in the 1960s relating to the concept of
quasiconformal mappings (see for example [Hub2006]). There is also the progress
in higher dimensions, in particular Kodaira’s classification of complex surfaces,
that is, of 2 complex dimensions. But that’s another story!
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Riemann surfaces





Chapter I

Antecedent works

Any account of the evolution of the uniformization theorem must begin with a
description of the methods of Riemann and his immediate successors1. The aim
of this first part is to provide such a description.

Of all mathematicians of the middle of the 19th century, it was without doubt
Riemann who left the deepest imprint on the theory of algebraic curves. Here, for
example, are the first few sentences of Hermite’s preface to Riemann’s complete
works:

Bernhard Riemann’s oeuvre is the greatest and the most beautiful of our era:
it has received unanimous acclaim and will have a permanent influence on
scientific development. The work of present-day geometers is inspired by
his ideas whose significance and fruitfulness are reconfirmed every day in
their discoveries.

In this preliminary chapter we give a succinct exposition of two topics which
in Riemann’s time (around 1851) had emerged quite recently and which may well
have served as “detonators” for his work on algebraic curves:

— Gauss’ application of complex numbers to cartography, and the “local”
uniformization theorem allowing local parametrization of any surface by a
“conformal map”.

— the rise of the theory of elliptic functions, initiated by Euler and reaching
maturity with the work of Abel and Jacobi just prior to Riemann’s thesis.

However before discussing cartography and elliptic functions, we consider
very briefly the birth of the geometric interpretation of the complex numbers as
points of the plane.

1Even though the correspondence between Klein and Poincaré reproduced at the end of the
present book shows clearly that when Poincaré began his investigations of Fuchsian functions he
had not read Riemann!
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I.1. On the development of the complex numbers

The story of the complex numbers is a rather involved one and there are many
detailed histories devoted to them, such as, for instance [Mar1996, Neue1981].
Our present aim is certainly not to recount their history, but rather to recall just a
few of the more important stages in their development in order for the reader to
appreciate more fully the innovatory character of the works of Gauss, Abel, and
Jacobi described below. (For additional details we refer the reader to [Mar1996],
pp. 121–132.)

Although in 1777 Euler had indeed coordinatized the points of the plane with
complex numbers x + iy, this geometric interpretation received its full formaliza-
tion only at the turn of the 19th century (by Wessel in 1799, and Argand and Buée
in 1806), and it took some time before the geometric point of view was taken for
granted.

Of course, Gauss understood many things before anyone else. . . His first
“proof” of the Fundamental Theorem of Algebra, in 1799, cannot be understood
without an appreciation of the geometric and topological way of viewing the com-
plex numbers2. According to [Mar1996] it was only following the publication of
Gauss’s 1831 article “Theoria residuorum biquadraticorum” that the notion of a
complex number as a point of the plane gained universal recognition.

The theory of analytic, or holomorphic, functions also took a long time to
crystallize out, at least in its geometric aspect. Here the great instigator in the
development of the theory was Cauchy. According to [Mar1996], the path he
followed was long and tortuous. In 1821 he was still talking of imaginary expres-
sions: “An imaginary equation is merely a symbolic representation of two equa-
tions in two variables.” It took till 1847 for him to largely shed such terminology,
speaking instead of “geometric quantities”, and reach the point of conceiving a
function visually as we do today, that is, as transforming a variable point in the
input plane to another variable point in the output plane.

The concept of the complex integral
∫

f (z)dz along a path, the dependence
of the integral on the path, and residue theory: all of these familiar results also
underwent a long period of gestation, primarily at the hands of Cauchy. His first
paper on these questions appeared in 1814 but the theory of residues dates from
1826–1829.

Here also Gauss was ahead of his time, but refrained from publishing his ideas.
A letter from him to Bessel dating from 1811 shows that he had a clear idea of the
integral along a path and that he had already grasped the concept of the residues
at the poles of the functions being integrated.

2In order to show that a non-constant polynomial P vanishes somewhere in the complex plane,
he studies the behavior towards infinity of the curves Re P = 0 and Im P = 0, deducing that they
must of necessity cross.
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In sum, in 1851 Riemann has at his disposal a geometric theory of holomor-
phic functions just recently created. By introducing the concept of a Riemann
surface, he will now liberate holomorphic functions from the coordinates x and y,
and the theory will assume a fundamentally geometric form. By contrast, twenty-
five years earlier, Abel and Jacobi had none of the basic concepts of complex
function theory — such as for example Cauchy’s residue formula — at their dis-
posal.

I.2. Cartography

The pursuit of the science of cartography, both terrestrial and celestial, led schol-
ars of antiquity to pose the question as to how a portion of a sphere might be
represented by a planar map. Ptolemy’s Geography contains several possible so-
lutions. It soon became clear that distortions are inevitable, whether of shapes,
distances, areas, etc.

In 1569 Mercator proposed a projection which he used to produce a map of the
world with properties especially convenient for navigation. Although his method
of drawing the map was empirical, the underlying idea nonetheless paved the way
for the application of mathematical analysis to cartography. It was in the 18th
century that these two disciplines came together in a series of works by Johann
Heinrich Lambert, Leonhard Euler, and Joseph Louis Lagrange. Lambert’s work,
published in 1772, heralded the birth of modern mathematical cartography. Ac-
cording to Lagrange, Lambert was the first to formulate the basic problems as-
sociated with the representation of a region of the sphere on a plane in terms of
certain partial differential equations.

In 1822, inspired by cartographical problems and methods, the Royal Society
of Copenhagen set as the subject of a prize essay the problem of “representing
parts of a given surface on another surface in such a way that the representation
be similar to the original in infinitely small regions”. This was a prime oppor-
tunity for Gauss, greatly interested as he was in both the theory and practice of
cartography, to prove the existence of a locally conformal representation of any
real analytic surface on the Euclidean plane, the first step towards uniformization.
The main goal of the present section is to expound this theorem.

I.2.1. From practice to theory

First constructions. — Written by Ptolemy in the 2nd century AD, the famous
geographical treatise Geography maintained its authority till the Renaissance. It
describes (and applies) several methods of representing the then known world as
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precisely as possible on a planar map. Of course, the geometers and astronomers
of antiquity were aware that it is impossible to represent a part of a sphere on a flat
surface so as to preserve all pertinent geometrical information (distances, angles,
areas, etc.) — that is, isometrically.

This impossibility is due to the curvature of the sphere, in modern terminology
— that is, in the precise sense of “curvature of a surface” as defined by Gauss. Of
course, ancient astronomers had no such sophisticated mathematical artillery at
their disposal, but they must surely have been aware of simple manifestations of
that curvature. For example, a geodesic triangle forming an exact eighth part of
the sphere, with its angles all right angles, readily occurs to the imagination, and
shows clearly that not all spherical triangles can be faithfully represented on a
plane (see Figure I.1).

Figure I.1: A spherical triangle

We might also mention that although Ptolemy and his forerunners (Eratos-
thenes in the 3rd century BC, Hipparchus in the following one) did indeed take
the Earth to be spherical in their model of the world, the attempt to obtain a useful
planar representation of the celestial sphere of fixed stars presents in any case the
same difficulty independently of the question of the shape of the Earth.

Of course, constraints on the planar representation of large parts of a sphere
will depend on the intended use of the map. A sovereign exacting taxes propor-
tional to areas of land under cultivation, a sailor navigating with compass and
astrolabe, or an astronomer observing the heavens — these all have different re-
quirements. Leaving aside (important) questions of aesthetics, it would seem rel-
evant to demand, for example, one or more of the following:

— that areas be preserved (or, rather, be in a fixed proportion to the originals);
in this case one calls the map equivalent;
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— that angles be preserved (a conformal map);

— that the distances from a particular reference point be preserved (an equidis-
tant map;

— that certain distinguished curves be mapped onto straight line segments. In
this connection it is natural to think of geodesics ( geodesic maps), but a
sailor would naturally tend to give priority to routes of constant heading
(loxodromic maps).

There are obviously many other constraints that one might impose on the pla-
nar map, yielding as many different problems to solve or to be shown incapable of
solution. The book [Sny1993] is a good introduction to such aspects of the history
of cartography.

Box I.1: Conformal mappings

In this book we shall often have occasion to revisit the concept of conformal
maps so it may be appropriate to give the precise terminology. For a linear
operator L on a Euclidean vector space (E, ‖ · ‖) the following properties are
equivalent:

— L preserves angles;
— L is a similarity, that is, there exists a positive constant c such that
‖L(v)‖ = c‖v‖ for every vector v of E.

The word “similarity” conveys preservation of shape; in German one finds the
adjective winkeltreu, directly conveying the preservation of angles.

A diffeomorphism between two open sets of the Euclidean plane is said
to be conformal if its differential map has the above two properties at every
point. The expression “similar in infinitesimally small regions” also used to
be current in both French and German. Later on we shall see that once the
plane has been made over into the complex plane C, one is in a position to
speak of a given diffeomorphism as being holomorphic or not holomorphic.
Note also the analogous meanings of the Greek and Latin roots morph and
form, and likewise how the prefixes holo- and con- both convey the sense of
preservation.

Even before Ptolemy various projections had been used by ancient Greek
scholars. An intermediate step, crucial both theoretically and practically, was the
introduction of the idea of latitude and longitude, already familiar to Hipparchus.
This provided in effect a means of pinpointing the positions of two distant towns,
say, using a single system of coordinates. Astronomical criteria — most notably
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observations of the stars — could be used to ascertain position. A fairly typical
example: if two towns A and B in the northern hemisphere are such that a partic-
ular star is visible the whole night through by an observer at A, while an observer
at B sees it rise and set, one can infer that the town A is more northerly than B.

One method of drawing a map is therefore to impose constraints on the im-
ages on the map of the circles of constant latitude — called parallels — and the
great half-circles of fixed longitudes — the meridians. Cartographers call the
network of images of lines of latitude and longitude a graticule. Thus rectangu-
lar maps are those where the parallels and meridians are represented by horizontal
and vertical straight lines respectively: here the graticule is made up of rectangles.
Among these we find the equirectangular map (often known also by the French
name plate carrée (squared flat [projection]), dating from before Ptolemy’s Geog-
raphy, generally signifying a constant spacing of the equal jumps in latitude and
longitude. In this case, therefore, the graticule is a grid of squares of fixed size
(Figure I.2).

Figure I.2: The plate carrée

Another natural method of producing maps is to apply certain simple geo-
metric operations to the space in which the sphere is situated in order to obtain
a planar image: one might apply an orthogonal projection onto a suitably posi-
tioned plane, or a projection from some point, or indeed map the sphere onto a
surface such as a cone or cylinder, and then develop the resultant image onto a
flat surface. One very old such method is stereographic projection, known to Hip-
parchus and probably earlier. This involves projecting the Earth’s surface onto the
tangent plane to one of its points (the South Pole, for instance) from the antipo-
dal point (Figure I.3). This procedure yields a planar map representing the whole
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of the Earth’s surface except for the point of projection. Clearly, the distortion
occasioned by this method increases with the distance from the point of tangency.

An essential property of this map is its conformality: angles drawn on the
sphere remain the same on the map. This property, as important for celestial maps
as for terrestrial or maritime ones, seems to have been noticed and proved for the
first time by the famous English astronomer Edmond Halley towards the close of
the 17th century [Hal1695]. The book [HiCo1932] contains an elegant proof of
this fact.

Figure I.3: The stereographic projection

Although the stereographic and equirectangular projections are still in use
(the first in producing maps of the celestial sphere and the second as affording the
simplest means of sketching a map by computer from knowledge of the latitude
and longitude of certain towns), they have largely yielded in importance to other
projections. The most familiar projection is that invented by Mercator in 1569.

Mercator’s aim was to produce a rectangular map, like the plate carrée, with
the difference that now routes of constant heading3 on the sphere are represented
on the map by straight lines, making the map suitable for maritime navigation.
However, this constraint entails a wider and wider spacing of the images of the
parallels of latitude as one approaches the poles, resulting in the familiar distor-
tion of areas. Mercator actually constructed a model of his map, probably by
calculating graphically the necessary spacing between pairs of parallels differing

3That is, constant bearing relative to true north.
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by ten degrees latitude. Mercator’s is the second conformal projection after the
stereographic projection.

Figure I.4: Mercator’s projection

Introduction of the differential calculus. From a mathematical point of view the
18th century marked a renascence in both the conception and study of geograph-
ical map-making through the application of the differential calculus. The pioneer
in this development was Johann Heinrich Lambert.

Equally well known for his work in the physical sciences (the Law of Beer–
Lambert describes the absorption of light by a chemical solution as a function
of its concentration) and especially for giving the first proof of the irrationality
of π, in his work Beyträge zum Gebrauche der Mathematik und deren Anwen-
dung4, and especially Anmerken und Zusätze zur Entwerfung der Land und Him-
melscharten5 [Lam1772], written between 1765 and 1772, Lambert described nu-
merous methods of obtaining cartographical representations and opened the way
to a systematic analytic study of the various constraints, notably equivalence and
conformality. On the practical side, it is to him that we are indebted for Lam-
bert’s conformal conical projection., the present-day official projection used for
the maps of France, but he also gave the first analytic proofs of the conformal-
ity of the stereographic and Mercator projections, re-proved by Euler in 1777
in [Eul1777].

Inspired by Lambert’s translation of cartographical questions into mathemat-
ical language, Lagrange [Lag1779] saw that the subject suggests more general

4Contributions to the utilization of mathematics and its application.
5Notes and comments on the construction of terrestrial and celestial maps.
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questions than just those associated with the production of conformal maps and
the verification of their properties. The problem occurred to him of determining
all conformal maps that one can make of the Earth’s surface, but with a refinement
of the model of the Earth commonly used: he assumed a “spheroidal” shape for
the Earth — more precisely, that it is a surface “generated by the revolution of
some curve about a fixed axis”.

In summarizing the history of cartography, Lagrange observes, without citing
Mercator explicitly, that the possibility of producing conformal maps other than
by direct projection of the terrestrial sphere onto a tangential cone or cylinder
leads one to a more general and fruitful perspective on the problem, allowing its
transformation from a purely practical question into a mathematical one:

This investigation [of conformal maps], as interesting for the analytical
techniques it requires as for its potential application to the drawing of geo-
graphical maps, seems to me a topic worthy of the attention of geometers
and appropriate subject-matter for a memoir.

Thus he proposes determining all conformal planar representations of a sur-
face of revolution. His idea is to imitate Mercator’s projection in the sense of
identifying the constraints on the spacing of parallels ensuring conformality.

We first introduce appropriate notation: the surface in question is obtained by
revolving a planar arc about the axis joining its end-points, the poles of the surface.
Each point of the surface is then naturally coordinatized by the longitude ϕ and the
length s of the arc of the generating curve from the point to one of the poles. (In
the case of a sphere of radius 1, the coordinate s is π/2 minus the latitude.) Each
point (ϕ, s) of the surface lies on a horizontal circle (representing a parallel) of
radius q(s), say. (In the case of the unit sphere this radius is sin s, or, equivalently,
the cosine of the latitude.)

In this notation the Riemannian metric6 — also called “the first fundamental
form” — of the surface is easily seen to be ds2 + q(s)2dϕ2.7 Representing the
surface conformally on the plane then comes down to expressing the rectangular
Cartesian coordinates x and y as functions of s and ϕ in such a way that the
elements of distance computed in terms of x, y on the one hand and ϕ, s on the
other satisfy the proportionality relation

dx2 + dy2 = n(ϕ, s)2(ds2 + q(s)2dϕ2),

6We don’t hesitate to call this metric “Riemannian” even though it considerably predates Rie-
mann.

7This is the square of an infinitesimal element of length on the surface, considered em-
bedded in Euclidean space. Thus the length of a smooth arc (ϕ(t), s(t)), a ≤ t ≤ b, is∫ b

a

√
(ds/dt)2 + q(s(t))2(dϕ/dt)2dt. Trans
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where n is a non-vanishing function representing the dilation factor of distances
at each point.

Figure I.5: A surface of revolution

Lagrange finds a system of coordinates u,v solving this equation for x and y,
and representing a generalization, within the limits of his investigation, of Merca-
tor’s projection. The functions u,v in question are given by

u(s) =

∫ s

0

dσ
q(σ)

, v = ϕ,

which satisfy

du2 + dv2 =
ds2

q(s)2 + dϕ2 =
1

q(s)2 (ds2 + q(s)2dϕ2),

and therefore define (locally, away from the poles) a conformal coordinate system
for the surface of revolution.

Having found one conformal coordinate system, Lagrange goes on in his
memoir to consider the problem of determining the other possible such systems,
in particular, for practical reasons in the case where the graticule — the network
of images of the parallels and meridians — is made up of circles. In the evolution
of cartography this theoretical result represents the first occasion where conformal
coordinates are found for a relatively general class of surfaces.
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I.2.2. Gauss’s view of conformal representation

In 1822 the Royal Danish Academy of Sciences and Letters in Copenhagen pro-
posed as a prize problem that of representing portions of a given surface on an-
other in such a way that the representation be “similar to the original in infinites-
imally small regions.” In 1825 Gauss published in Schumacher’s Astronomische
Abhandlungen his famous memoir on the topic [Gau1825], also to be found in his
collected works [Gau1863].

The term “conformal representation” was introduced by Gauss only in 1844
in Section I of the first part of his memoir on higher geodesy. This work largely
bypasses the particular theme of geographical maps, playing in the theory of func-
tions a role analogous to that of his Disquisitiones generales circa superficies cur-
vas in the theory of surfaces.

To return to Gauss’s result of 1825: he shows that every (analytic) surface
is locally conformally equivalent to the Euclidean plane (whence it is immediate
that any two analytic surfaces are locally conformally equivalent)8. A local system
of coordinates (x, y) ∈ R2 on a surface is called conformal if in terms of x, y the
metric has the form m(x, y)(dx2 + dy2). Gauss’s theorem then states that:

Theorem I.2.1 (Gauss). Let g be a real analytic Riemannian metric defined in a
neighborhood of a point p of an analytic surface. Then there exists a conformal
map V → R2 from some open neighborhood V of p to the Euclidean plane.

We shall now sketch Gauss’s marvellous proof of this theorem.
We first choose coordinates in some neighborhood of p; expressed in terms

of these coordinates the metric on the surface may be considered as defining an
analytic metric g in an open neighborhood U of the origin in R2.

To ease understanding we first prove the exact analogue of Gauss’s theorem in
the case where the open set U is endowed with a Lorentzian metric g. This means
that at each point of U there is given a quadratic form of signature (+,−), and we
wish to show that this Lorentzian metric is conformal to the standard Lorentzian
metric dx2 − dy2 on R2 — in the sense of the obvious extension of conformal-
ity to the Lorentzian situation. One proceeds as follows. At each point of U the
metric g determines two directions where it vanishes — the two “isotropic” di-
rections of the metric. Hence locally one obtains two non-singular vector fields
determined by these directions, and on integrating them one obtains two fami-
lies of isotropic curves intersecting transversely. For example, in the case of the
standard Lorentzian metric dx2 − dy2 these curves will clearly be just the lines of
slopes ±1.

8Note that for Gauss the surfaces in question are embedded in Euclidean space, from which they
inherit their metric.
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We now choose the origin O as base point in U and denote by P0 any par-
ticular point of R2. Denote by C1 and C2 the two isotropic curves through O of
the Lorentzian metric g and by D1 and D2 the isotropic lines through P0 of the
standard Lorentzian metric on R2. Let f1 : U → R2 be any diffeomorphism send-
ing C1 onto D1 and f2 a diffeomorphism sending C2 onto D2. Now let m be an
arbitrary point of U close to the origin, and let C̃1 and C̃2 be the two isotropic
curves of the metric g passing through it. By replacing U by a smaller open set V
if necessary, we may assume that C̃1 intersects C2 in a single point p1 and likewise
that C̃2 intersects C1 in just one point p2.

The map ψ that we seek is then that sending each such point m of V 9 to the
point of intersection M = ψ(m) ∈ R2 of the isotropic lines of R2 through the
points P1 = f1(p1) and P2 = f2(p2). The map ψ so defined sends g-isotropic
directions in V to those of the standard Lorentzian metric on R2.

We now appeal to the crucial, and easily seen, fact that two quadratic forms of
signature (+,−) on a real vector space of dimension 2 are proportional
if and only if they have the same isotropic directions. We must therefore have
ψ∗g = m(x, y)(dx2 − dy2) for some non-vanishing function m(x, y). In other
words, ψ is a conformal map, and Gauss’s theorem is thus established in the
Lorentzian case — and moreover without the assumption of analyticity.

Figure I.6: The Lorentzian version of Gauss’s theorem

In the case where g is a real analytic Riemannian metric, although certainly
one no longer has isotropic directions to play with, nevertheless the same under-
lying idea can be made to work given sufficient imagination.

9Where now V is an open subset contained in U all of whose points have the property pertaining
to the point m. Trans
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We first express the basic ideas of the argument in modern terminology. That
argument begins with the complexification of the open set U into an open set
Û ⊂ C2; this is just an open neighborhood of U considered as a subset of C2. We
write ĝ0 = dx2 + dy2 for the standard “complex Riemannian” metric on C2, with x
and y now the standard (complex) coordinates of C2. (Strictly speaking this is
not a Riemannian metric since the underlying quadratic form takes on complex
values.) Since by assumption the coefficients of the metric g are real analytic
functions we can, by restricting Û if need be, extend g uniquely to a complex ana-
lytic — that is, holomorphic — metric ĝ on the open set Û. Furthermore, since the
coefficients of g are real the metric ĝ will be invariant under complex conjugation
(x, y) 7→ ( x̄, ȳ). Now in C2 one does have two transverse families of isotropic
complex lines of the metric ĝ0, with equations of the form y = ±ix + const., while
on Û the metric ĝ likewise gives rise to two families of holomorphic vector fields,
which one integrates to obtain two families of holomorphic curves intersecting
transversely. (Note that these holomorphic complex curves in C2 correspond to
surfaces in R4.)

Next one maps the origin O of U to an arbitrary real point P0 of R2 ⊂ C2.

Through O there passes a complex isotropic curve C1 and the complex curve C2
obtained by complex conjugation of the curve C1. By means of these curves
one defines, exactly as in the Lorentzian situation, a mapping ψ̂ of a suitable
neighborhood V̂ of O contained in Û , with image in C2. The diffeomorphism ψ̂

has the additional property of being invariant under complex conjugation, so that it
induces a diffeomorphism ψ from V = V̂∩R2 to its image ψ̂(V̂ )∩R2. The fact that
the complexification of the diffeomorphism ψ preserves the isotropic directions of
the complexification of the metric g means precisely that the map is conformal.
This completes the proof of Gauss’s theorem. �

Gauss does not set out his proof exactly as above, although his method is
essentially the same.

First he writes g out as

g = a(x, y)dx2 + 2b(x, y)dxdy + c(x, y)dy2, ac > b2.

Then he factors the quadratic form as a product of two conjugate linear forms
(defining the isotropic directions):

g =
1
a

(
adx + (b + i

√
ac − b2)dy

) (
adx + (b − i

√
ac − b2)dy

)
=

1
a
ωω̄.

Hereω is what is now called a “holomorphic 1-form” in the complex variables x, y.
The equation ω = 0 may be regarded as a differential equation whose solutions
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are locally of the form f (x, y) = const. where f is defined in some neighbor-
hood of the origin — in other words, ω has the form hdf for some function h.10
Resolving f into its real and imaginary parts, we have

ω = h(du + idv) (whence also ω̄ = h̄(du − idv)),

whence, finally,

g =
hh̄
a

(du2 + dv2).

Here the coordinates u,v are real by construction and the similarity coefficient
m := hh̄

a is obviously a real analytic function of x, y, so Theorem I.2.1 is proved. �

Conformal maps ψ are certainly not unique, but of course any two of them
differ by a conformal self-map of the Euclidean plane. Thus in order to classify all
locally conformal maps one needs to ascertain those coordinate transformations
(x, y) 7→ (X,Y ) between open sets of R2 that are conformal, that is, for which
dX2 + dY 2 = m(x, y)(dx2 + dy2) for an appropriate function m — in other words,
it is necessary and sufficient that the differential map determine a similarity at
each point. If one assumes in addition that orientation is preserved — that the
similarity is “direct” — then the condition is expressed by the formulae

∂X
∂x

=
∂Y
∂y

,
∂X
∂y

= −
∂Y
∂x
,

familiar as the so-called “Cauchy–Riemann” equations expressing the holomor-
phicity of X + iY as a function of x + iy. In fact this way of expressing the
conformality of a map in terms of dx + idy was known to Euler as long ago as
1777!

Here then in modern terminology is what Gauss showed:

Every (oriented and analytic) surface can be represented by a map to the
Euclidean plane (identified with the complex plane) that is locally conformal and
orientation-preserving. Any two such maps differ by a holomorphic change of
coordinates.

It follows from this theorem that any surface endowed with a (real analytic)
Riemannian metric is a “Riemann surface”, as defined in Chapter II below.

Gauss’s theorem, established here only in the situation of a real analytic met-
ric, remains true under the weaker assumption that the metric is C∞ or even just
measurable, but the proof is then much more difficult. The C∞ case was proved

10This is because ω and df both vanish exactly on vectors tangent to the curves f (x, y) = const.,
thus must be proportional. Trans
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by Korn in 1914 and Lichtenstein in 1916, and, finally, in 1960, Ahlfors and Bers
established the theorem in the measurable case (see [Ahl2006]).

Gauss does not rest content with merely proving his theorem, but illustrates
it with many examples: he begins by showing how to represent the surface of a
certain solid on the plane, and then a cone and a sphere. He does not lose sight of
the particular question prompting the Danish Academy’s choice of problem, and
ends his memoir with a treatment of the case of an ellipsoid of revolution. The
determination of conformal maps of a more general ellipsoid requires the use of
elliptic integrals, which form the theme of the next section.

I.3. Overview of the development of elliptic functions

By the end of the 19th century elliptic functions were at the center of mathematics.
They turned up everywhere: in geometry, algebra, number theory, analysis, and
even mechanics, and assumed the status of an indispensable accessory of mathe-
matical culture.

Elliptic functions proved useful in allowing certain algebraic curves (those of
genus 1) to be uniformized, and they are therefore important in relation to the
theme of this book. However, they played a more important role in providing a
source of inspiration for Riemann, Klein, and Poincaré — among others — in
their investigations of general algebraic curves. Poincaré, for example, presented
his theory of Fuchsian functions as a “simple” generalization of that of elliptic
functions, and for this reason we now describe the latter theory and its develop-
ment.

There are many excellent books on elliptic functions, including those taking
a historical tack. Among those we prefer, the reader may consult for example
[McKMo1997, Bos1992, Hou1978]. In view of the treatments in such works as
these, rather than going into the detailed history we shall confine ourselves here
to describing just the main developments, concentrating on just those aspects we
shall be needing in the sequel.

At the beginning of the 19th century analysts had essentially just a small num-
ber of types of elementary functions at their disposal11: polynomials and rational
functions, of course, algebraic functions y(x), that is, satisfying a polynomial
equation F (x, y) = 0 (even if many-valued), and also the exponential and trigono-
metric functions. Early attempts to “find new transcendental functions with which
to enrich analysis” consisted in studying the anti-derivatives of functions already

11Although in the 18th century Euler had introduced the zeta and gamma functions, for instance,
as well as the idea of a general function as being defined by a power series. Trans
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at hand. This method had already proven itself in connection with the “discovery”
of the natural logarithm

log x =

∫
dx
x
.

Euler, Gauss, Legendre, Abel, and Jacobi, among others, began the general in-
vestigation of Abelian integrals, as Jacobi called them, that is, integrals of the
form ∫

R(x, y)dx,

where R is a rational function of x and y with y an algebraic function of x. We
present here their respective contributions to this subject.

I.3.1. Euler

The first step consisted in a somewhat “magical” calculation performed by Euler
in commenting on an article by Fagnano. This concerned one of the very simplest
of anti-derivatives not expressible in terms of the known elementary functions,
namely ∫

dx
√

1 − x4
,

which conforms to the preceding definition of an Abelian integral with y2 = 1− x4

and R(x, y) = 1/y. This integral arises in the attempt to evaluate the length of an
arc of the lemniscate with equation, in polar coordinates, r2 = cos 2θ (the last of
the curves depicted in Figure 2 in the General Introduction).12

In 1752 Euler proved the following “addition theorem”:∫ x

0

dt
√

1 − t4
+

∫ y

0

dt
√

1 − t4
=

∫ z

0

dt
√

1 − t4
,

where

z =
x
√

1 − y4 + y
√

1 − x4

1 + x2y2 .

He was doubtless led to this by the analogy with the integral∫ x

0

dt
√

1 − t2
= arcsin x,

12Arc length in polar coordinates is calculated by means of the integral
∫ √

(dr/dθ)2 + r2dθ,
which reduces to

∫
1√

cos 2θ
dθ for the lemniscate (so that the length of a loop of the lemniscate is

obtained by evaluating this integral from θ = −π/4 to θ = π/4). The substitution x := tan θ then
yields the above indefinite integral. Trans
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for which the formula

sin(a + b) = sin a cos b + sin b cos a

yields the addition formula∫ x

0

dt
√

1 − t2
+

∫ y

0

dt
√

1 − t2
=

∫ z

0

dt
√

1 − t2
,

where

z = x
√

1 − y2 + y
√

1 − x2.

It should be observed that at this stage in the development these identities are
considered as holding for x, y in the interval [0,1]. For values of x and y outside
this interval the problem of choice of square root arises. Note also that Euler
makes no explicit use of complex variables in this work.

I.3.2. Gauss

Although during his lifetime Gauss published nothing on this topic, his letters
show that he had a clear understanding of the issue as early as 1796. His first idea
was to invert the function

a =

∫ x

0

dt
√

1 − t4

and consider x as a function of a, which he denotes by x = sin lemn a. The
analogy with the circular functions doubtless again played a role: the sine and
cosine are convenient for parametrizing the circle by arc length. He translates
Euler’s addition formula into an addition formula for sin lemn (a + b), but does
not stop there. Even though he is still, at that early stage of the game, hesitant
about letting x be complex in the above integral, he is tempted to choose x purely
imaginary, of the form iy, and to consider the integral∫ y

0

idt
√

1 − t4
.

This leads him to conclude that sin lemn (ib) = i sin lemn b, and this in turn,
in view of the addition formula, allows him to define sin lemn (a + ib) in terms
of sin lemn a and sin lemn b. Thus is the elliptic function sin lemn of a complex
variable a + ib born.
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Gauss continues his investigation of this function using the analogy with the
sine function. Starting from the addition formula, now conveniently extended to
all of R, he shows that the function sin lemn is periodic of period

2$ = 4
∫ 1

0

dt
√

1 − t4
.

By the same means he finds a second period equal to 2i$.13 Thus the function
sin lemn has two linearly independent periods, subsequently the defining property
of elliptic functions. The adjective “elliptic” originates from the fact that these
new transcendental functions arise not only in attempting to calculate arc length
of a lemniscate but also that of an ellipse.

Although the rest of Gauss’s work on this theme is of equal significance, it
would take us too far out of our way to discuss it. However, we cannot but mention
such marvellous expressions for sin lemn z involving doubly infinite products, as

sin lemn z = z

∏′
m,n (1 − z

αm,n
)∏′

m,n (1 − z
βm,n

)
,

where
∏′ denotes the product over all pairs (m,n) ∈ Z2 \ {(0,0)}, αm,n =

(m + in)$, and βm,n = ((2m − 1) + i(2n − 1))$/2. Note here the appearance of
the famous “Gaussian integers”.

I.3.3. Abel and Jacobi

We mentioned above that Gauss never published his discoveries on this theme.
Twenty-five years later Abel and Jacobi, in ignorance of Gauss’s work, retraced
his steps, until around 1827 they began to go well beyond him, in part indepen-
dently and in part mutually stimulated by a relatively protracted rivalry. On this
subject there has survived a lively correspondence between the young Jacobi and
an aging Legendre sometimes assuming the role of intermediary [LeJa1875].

The mention of Legendre’s name affords an opportunity to note that he also
must be considered one of the precursors of the theory, having dedicated forty
years of his life to it, beginning in 1786. His labors culminated in the publication
in 1830 of the three volumes of his Traité des fonctions elliptiques. In this connec-
tion one should mention, however, that Legendre’s elliptic functions are functions

13The notation is explained by the fact that the quantity 2$ is the length of the lemniscate in
question.
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of a single real variable, and that one of his chief motivations was to establish
numerical tables, with a view to applications. And moreover he never penetrated
to the double periodicity of the inverse of the anti-derivative of 1/

√
1 − t4.

We remind the reader that anti-derivatives of the form
∫

p(x)/
√

q(x)dx,
where p is a polynomial of any degree and q one of degree at most 2, can be
explicitly evaluated in terms of logarithms and rational functions. Geometrically,
this comes down to the fact that the curve defined by the equation y2 = q(x) is
a conic, which therefore admits a rational parametrization, by means of which
the problem is reduced to that of anti-differentiating a rational function, and for
these there is the well known standard procedure involving logarithms arising as
integrals of expressions cognate to 1/x.14

One of Legendre’s contributions was a systematic classification of integrals of
the form

∫ (
p(x)/

√
q(x)

)
dx when the degree of q is 3 or 4. He shows that in

this case the calculation reduces to three precise types of anti-derivative playing
in some sense a logarithm-like role, whose values he tabulates.

Be that as it may, Abel and Jacobi investigated integrals of the form

u =

∫ x

0

dt√
(1 − t2)(1 − k2t2)

,

in connection with which both hit on the good idea of considering x as a function
of u — unaware that Gauss had had the same idea earlier. The parameter k is
called the “modulus”, and since it is a parameter not varying within the integral,
they denoted the inverse function simply by x = sin am u. They “showed”, more
or less, that x is a single-valued meromorphic doubly-periodic function of u sat-
isfying a certain addition formula, and they went on to obtain a great number of
series expansions of such functions.

A central theme of their investigations concerned certain “transformations” —
rather magical-seeming formulae relating values of sin am u for different values of
the parameter k, some of which had been found earlier by Euler. This marked the
début of the theory of modular equations, which, however, we shall not broach
here, even though they will turn up in the course of our discussion of Klein’s
quartic.

I.3.4. Jacobi and the ϑ-functions

In 1835–36 Jacobi developed extremely powerful tools for constructing elliptic
functions as ratios of holomorphic functions. These are the so-called “ϑ-functions”.

14And also trigonometric functions. Trans
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They are relatively simply defined: taking ω to be a complex parameter, and writ-
ing p := exp(iπz), q := exp(iπω), we may define them as follows:

ϑ1(z) = ϑ1(z |ω) = i
∞∑

n=−∞

(−1)np2n−1q(n−1/2)2
,

ϑ2(z) = ϑ2(z |ω) = i
∞∑

n=−∞

p2n−1q(n−1/2)2
,

ϑ3(z) = ϑ3(z |ω) = i
∞∑

n=−∞

p2nqn2
,

ϑ4(z) = ϑ4(z |ω) = i
∞∑

n=−∞

(−1)np2nqn2
.

For Imω > 0 these series converge and define 1-periodic functions of z. Although
they themselves are not elliptic functions — having only the single basic period 1
— all the same ϑi (z + ω) can be expressed very simply in terms of ϑi (z). For
example,

ϑ1(z + ω) = −p−2q−1ϑ1(z).

The point is then that ratios of two ϑ-functions may be doubly periodic. Thus
ϑ1/ϑ4 is an elliptic function with periods 1 and ω. The ϑ-functions satisfy a
tremendous number of identities each more astonishing than the one before, and
their applications — notably in number theory — continue to prove their worth.

To learn much more on this theme, one may consult for example [McKMo1997,
Mum1983, Mum1999].

I.3.5. Bringing the theory into final form: Eisenstein, Liouville, and
Weierstrass

From 1840 onwards the theory of elliptic functions stabilized, taking on the form
familiar to us today. From that time on an elliptic function is defined as any
meromorphic function f of the complex plane admitting two independent periods
ω1, ω2:

f (z + mω1 + nω2) = f (z)

for all z ∈ C and all integers m,n.
The functions obtained by Abel and Jacobi as inverses of anti-derivatives of

1/
√

(1 − t2)(1 − k2t2) are examples of such functions, but are there any others?
Is there an elliptic function for every choice of the two periods? Here again we
must limit ourselves to merely stating the main results, obtained independently by
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Eisenstein, Liouville, and Weierstrass — results one may consider known when
Riemann began working on his thesis.

Given two complex numbers ω1 and ω2, linearly independent over R, the
lattice Λ they generate is the set of points of the form mω1 + nω2 ∈ C, m,n ∈ Z.
These form a discrete subgroup of C, and the fact that a function has periods ω1
and ω2 means that it is in fact defined on the quotient torus C/Λ, which is, as we
shall soon see, a basic example of a Riemann surface.

The Weierstrass ℘-functions are elliptic functions with prescribed periods, de-
fined by

℘(z) =
1
z2 +

∑
ω∈Λ\{0}

(
1

(z − ω)2 −
1
ω2

)
.

It can be shown that each such series converges where defined and defines a mero-
morphic function with lattice of periods precisely Λ. It has a pole of order 2 at the
origin of C/Λ and is holomorphic everywhere else.15

His next step was to show that this function satisfies a differential equation,
namely

(℘′)2 = 4℘3 − g2℘ − g3,

where g2 and g3 are the Eisenstein series

g2(Λ) = 60
∑

ω∈Λ\{0}

ω−4,

g3(Λ) = 140
∑

ω∈Λ\{0}

ω−6.

He establishes this equation using a method due to Liouville: the difference be-
tween the two sides represents a (meromorphic) elliptic function, and one then
chooses the coefficients in such a way as to eliminate the pole, thus obtaining a
holomorphic function. Since the only holomorphic elliptic functions are constants
(in view of the compactness of C/Λ and Liouville’s theorem), we have the result.

It follows that the projective algebraic curve C with affine equation

y2 = 4x3 − g2x − g3

is uniformized by the torus C/Λ via the parametrization

z ∈ C/Λ 7→ (℘(z),℘′(z)) ∈ C.

15It can be shown that every meromorphic doubly periodic function with basic periods ω1 and
ω2 is a rational expression in ℘,℘′ with coefficients in C, so that the totality of such functions is the
algebraic function field C(℘,℘′). Trans
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It remains to show that, conversely, for any g2 and g3 such that the curve C is
non-singular, that is, satisfying g3

2 − 27g2
3 , 0, there is a lattice Λ with Eisenstein

invariants equal to g2 and g3. This can be achieved in several ways, the simplest
of which is to consider the integral∫

dz√
4z3 − g2z − g3

,

and imitate Gauss, Abel, and Jacobi by inverting it. The periods of the elliptic
function thus obtained are then the required ones.

Furthermore, one can also show that every smooth curve of degree 3 in the
complex projective plane is projectively equivalent to a curve of the above form
(named after Weierstrass, although it was Newton who originally discovered this):
this is done effectively by projecting to infinity a tangent line at a point of inflec-
tion of the given cubic curve.

The upshot of our discussion is thus that:

Every smooth curve of degree 3 in the complex projective plane is isomor-
phic to a torus of the form C/Λ, and furthermore by means of an isomorphism
determined by an elliptic function.

A final point to end this preliminary chapter: since C/Λ is an Abelian group,
the same group structure is induced on the smooth cubic curve it parametrizes.
The addition formula discovered by Euler reflects this. It turns out that the rule of
addition on the cubic is extremely simple. First one chooses a point of inflection to
represent the identity (or zero) element, and then one declares that the three points
of intersection of the curve with any straight line have sum zero. This defines
the rule of addition completely. The proof that this geometric construction does
indeed yield an addition defining a group is an interesting exercise in projective
geometry (see for example [McKMo1997]).

It may be of interest to remark that the simple projective definition of this
group structure appears to have been unknown to the heroes of this chapter. From
[Cat2004, Scha1991] it appears that perhaps even Poincaré had no clear idea that
the rational points of a cubic curve defined over Q form an Abelian group (even
though he spoke of it as having “finite rank”).



Chapter II

Riemann

In this chapter we examine two of Riemann’s memoirs: his doctoral thesis [Rie1851]
defended in Göttingen in 1851, where he develops the theory of holomorphic
functions and proves the “Riemann mapping theorem”, and his article on Abelian
functions [Rie1857] published in Crelle’s journal six years later. In the latter
work Riemann applies the techniques developed in his thesis to the construction
of a general theory of algebraic functions and their associated Abelian integrals.
Recall that a function s(z) is called algebraic if it satisfies a polynomial equation
P(s(z), z) = 0, and that an Abelian integral is one of the form

∫
F (s(z), z)dz

where F is a rational function of two variables.

Subsequently the paper [Rie1857] came to be considered as initiating major
directions of mathematical research, including the topology and analytical ge-
ometry of compact Riemann surfaces, their moduli spaces, the Riemann–Roch
theorem, birational geometry, the theory of general theta-functions and Abelian
varieties, the Dirichlet problem, Hodge theory, etc. Over just the 25 years follow-
ing the publication of this article, we see its results geometrized by Clebsch, and
then by Brill and Noether, then arithmetized by Dedekind and Weber — and a
start made by Clebsch and Noether on extending the results to algebraic surfaces.

It has been an absorbing task to bring to light the seeds of all of these devel-
opments contained in this single article.

II.1. Preliminaries: holomorphic functions and Riemann surfaces

II.1.1. Holomorphic functions

We begin by explicating Riemann’s work on the uniformization of simply con-
nected open sets of the plane, contained in his thesis [Rie1851] published in 1851.
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We describe first of all how Riemann defines the concept of a holomorphic
function in the very first section of this memoir. He considers a complex-valued
function w(z) = u(z) + iv(z) of a quantity z = x + iy varying over an open set U
of the complex plane, and studies the differential quotient:

dw
dz

= lim
z′→z

w(z) − w(z′)
z − z′

,

observing that:

When the dependence of the magnitude w on z is chosen arbitrarily, the
quotient du+idv

dx+idy
will generally vary with the values of dx and dy.

This may be unpacked as follows: if we denote by

dwz : C ' R2 → C ' R2

the differential map at a point z of the function w considered as a real differentiable
function R2 → R2, and consider an infinitesimal increment dz = εeiϕ of the
variable z, then we have1

dwz (εeiϕ )
εeiϕ

=
1
2

((
∂u
∂x

+
∂v

∂y

)
+ i

(
∂v

∂x
−
∂u
∂y

))
+

1
2

((
∂u
∂x
−
∂v

∂y

)
+ i

(
∂v

∂x
+
∂u
∂y

))
e−2iϕ .

If the term (
∂u
∂x
−
∂v

∂y

)
+ i

(
∂v

∂x
+
∂u
∂y

)

does not vanish at the point z, the quantity dwz (εeiϕ )
εeiϕ

will vary with eiϕ . However,
as Riemann observes, for all functions w obtained from z by means of “elementary
computational operations”, the quantity dwz (εeiϕ )

εeiϕ
does not depend on dz = εeiϕ .

1This can be seen as follows. Suppose for simplicity that z = 0 and w(z) = w(0) = 0. The
differentiability of w(z) considered as a function of the two real variables x, y means that there
exist numbers α, β — in fact these are just ∂w/∂x and ∂w/∂y at z = 0 — such that w(z) =

αx + βy+η(z)z where η(z) → 0 as z → 0. Rewriting this as w(z) =
(
α−iβ

2

)
z +

(
α+iβ

2

)
z̄ +η(z)z,

it follows that w (z)
z =

(
α−iβ

2

)
+

(
α+iβ

2

)
z̄
z + η(z). Taking the limit as z → 0, that is, setting

z = dz = εeiϕ (and noting that dz̄/dz = e−2iϕ ), we obtain the formula that follows. Trans



II Riemann 27

He therefore proposes taking the vanishing of this term as the defining condition
of what he calls a function of a complex variable:

A variable complex quantity w is called a function of another variable com-
plex quantity z when it varies with z in such a way that the value of the
derivative dw

dz
is independent of the value of the differential dz.

In other words, for Riemann the term “function of a complex variable” always
means a holomorphic function. Thus such functions are by definition just those
satisfying the Cauchy–Riemann equations

∂u
∂x

=
∂v

∂y
and

∂u
∂y

= −
∂v

∂x
, (II.1)

which is equivalent to the closure of the complex differential 1-form

w(z)dz = (u + iv)(dx + idy).

It can be shown that then the function w′(z) := dw
dz is well-defined and again

holomorphic, so that w is in fact infinitely differentiable.2
If a function w = u + iv is holomorphic, it follows from the Cauchy–Riemann

equations and the fact that it is twice differentiable that the functions u and v

satisfy
∆u = ∆v = 0,

where ∆ := ∂2

∂x2 + ∂2

∂y2 is the Laplacian associated with the complex coordinate z.
Functions of two variables annihilated by the Laplacian are said to be harmonic.
Thus the real and imaginary parts of a holomorphic function are harmonic.

Conversely, given a function u defined and harmonic on a simply connected
open set U ⊂ C, there exists a holomorphic function fu : U → C, uniquely
defined to within a purely imaginary additive constant, such that u = Re( fu ). The
function fu is in fact simply a primitive of the holomorphic 1-form

du − idu ◦ i.

The function u∗ = Im( fu ), defined only up to an additive constant, is called the
conjugate function of u.

This close affinity between holomorphic and harmonic functions is central
to the methods used in [Rie1851, Rie1857], since his proofs of the conformal

2Even more, a function holomorphic in a neighborhood of a point z0 is analytic, that is, equal to
its Taylor series expansion, in some neighborhood of z0. Trans
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representation theorem (or “Riemann mapping theorem”) and the existence of
certain Abelian integrals are based on a close study of harmonic functions, and
especially “Dirichlet’s principle”.

We recall also the following “mean-value” property of harmonic functions. If
D(z0,r) = {z ∈ C| |z − z0 | ≤ r } is a disc contained in U , then

u(z0) =
1

2π

∫ 2π

0
u(z0 + reiθ )dθ

=
1
πr2

∫
D(z0,r )

u(x, y)dxdy.

In fact this property characterizes harmonic functions: a continuous (or even just
measurable) function is harmonic if and only if it has the above mean value prop-
erty on closed discs in U . It follows that harmonic functions satisfy the maximum
principle: if a harmonic function u has a local extremum at a point z0 of U , then
it must be constant in some neighborhood of z0. Another consequence is that a
function v : U → R that is a uniform limit of harmonic functions defined on
compact subsets of U is itself harmonic.

It is noteworthy that, in contrast with Abel, whose approach is essentially
algebraic, consisting of manipulations of functions of several variables and of
algebraic and differential equations, Riemann works with functions independently
of specific formulae, basing his argumentation on their defining properties, as he
explains in the introduction to [Rie1857]:

I shall consider as a function of x + yi any quantity w that varies with the
first quantity in such a way as to satisfy the equation

i
∂w

∂x
=
∂w

∂y
,

without resorting to an expression for w in terms of x and y.3

This desire to avoid starting out with particular expressions for his functions
is taken up again a little further on:

By a known theorem, mentioned earlier, the property of a function of being
single-valued comes down to the possibility of developing it by means of
positive or negative integer powers of increments of the variables, while
the many-valuedness of a function reduces to the impossibility of doing so.
However it does not appear to be useful to express properties independent
of the mode of representation by means of symbols based on an explicit and
determinate form of expression for the function.

3The reader will recognize here an alternative formulation of the Cauchy–Riemann equations.
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In order to read Riemann’s article the following must be kept in mind: by a
“function of x and y” he means a function without implicitly understood proper-
ties; but by a “function of x + iy” he means a holomorphic function, in both cases
allowing the function to be many-valued or even discontinuous. The following
excerpt from his thesis [Rie1851, §5] clarifies the type of discontinuities he had
in mind, and is also interesting for the light it sheds on the meaning he gives the
phrase “in a general manner”:

A variable quantity which, in a general manner, that is, without excluding
exceptional isolated points or lines, at every point O of a surface T takes on a
definite value varying in a continuous way with the position of the point, can
clearly be regarded as a function of x, y, and henceforth whenever functions
of x, y are being discussed, this definition is to be understood.

II.1.2. Riemann surfaces

The modern definition. — Nowadays a Riemann surface is defined as a complex
manifold of dimension 1:

Definition II.1.1 (Riemann surface). A Riemann surface is a (connected, Haus-
dorff) topological space X endowed with an atlas {(Uλ , φλ )}λ∈Λ where (Uλ )λ∈Λ
is an open cover of X and the maps φλ : Uλ → Vλ are homeomorphisms to open
sets of C (the charts of the atlas), such that the composite maps4

φλ ◦ φ
−1
µ : φµ (Uλ ∩Uµ ) → φλ (Uλ ∩Uµ )

are biholomorphic transformations (that is, holomorphic bijections).

Furnished with this definition one can immediately extend local properties and
objects from C to any Riemann surface; in particular the concepts of a holomor-
phic or meromorphic5 function or form on a Riemann surface, and holomorphic
and biholomorphic mappings (isomorphisms) between such surfaces now acquire
meaning.

Gauss’s theorem of Chapter I now provides us with a plentiful supply of ex-
amples: we can re-interpret that theorem as asserting that every analytic real Rie-
mannian metric on an analytic surface furnishes it with the structure of a Riemann
surface. The interplay between this structure and the geometry arising from the
metric will play a leading role in the work of Klein considered in the next chapter.

4Coordinate changes. Trans
5A meromorphic function is a function that is locally the quotient of two holomorphic functions.

It can be interpreted as a holomorphic function taking its values in C. Trans
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The Riemann sphere. — Apart from C and its open subsets the first examples of
Riemann surfaces that come to mind are the tori C/Λmet with in the introduction,
and the Riemann sphere: indeed, one can cover the unit sphere

S2 := {(X,Y, Z ) ∈ R3 | X2 + Y 2 + Z2 = 1}

by the two open sets S2 \ N and S2 \ S (where S = (0,0,−1) and N = (0,0,1) are
the south and north poles), on which one defines the stereographic projections

ϕN : S2 \ N → R2 ' C

P = (X,Y, Z ) 7→ X+iY
1−Z

and

ϕS : S2 \ S → R2 ' C

P = (X,Y, Z ) 7→ X−iY
1+Z .

For a point P of the sphere other than the poles, one checks that ϕN (P) =

1/ϕS (P); since z 7→ 1/z is a holomorphic function onC∗, this furnishes the sphere
with the structure of a Riemann surface, denoted by C, which can be thought of
as the natural compactification of C by a point at infinity, or, equivalently, as the
complex projective line CP1. These two notations for the Riemann sphere will
recur throughout the book.

As recounted in [Cho2007, p. 98], the construction of the Riemann sphere by
means of stereographic projections appeared first in print in [Neum1865], the first
textbook devoted to the theory of Riemann surfaces. In the introduction to his
book Neumann mentions that Riemann taught the above construction, which was
then handed down only orally.

The disc, the plane, the sphere, and their automorphisms. — It follows from
the uniformization theorem that the disc D, the plane C, and, lastly, the Riemann
sphere C are, up to isomorphism, the only simply connected Riemann surfaces.
We now describe the automorphism groups of these three surfaces.

Firstly, taking
D := {z ∈ C | |z | < 1},

the map

z 7→ w = i
1 + z
1 − z

(II.2)

is a holomorphic isomorphism from D onto the upper half-plane

H := {w ∈ C | Im w > 0}.
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It follows that the automorphism groups of D and H are isomorphic. Thus by
means of conjugation by the transformation (II.2) one can pass from the action
of an automorphism on D to that of the corresponding automorphism on H. The
modelH has the advantage that one can easily see that its group of automorphisms
is isomorphic to PSL(2,R) := SL(2,R)/{±I}. The precise action is as follows: an

element
(

a b
c d

)
∈ SL(2,R) acts on H on the left according to the rule(

a b
c d

)
· w =

aw + b
cw + d

.

The automorphism group of C is simply the group Aff(C) of complex affine
transformations of C:

(a,b) · z = az + b,

where a ∈ C∗ and b ∈ C.
In the case of C, the automorphism group is PSL(2,C), acting on the left by

the rule (
a b
c d

)
· z =

az + b
cz + d

.

The latter transformations are called homographies.6
These three automorphism groups are variously transitive:

1. Aut(D) is 1-transitive and each of its elements is completely determined by
its action on an arbitrary point of D and an arbitrary point of the boundary
∂D (to which the group action extends by continuity).

2. Aut(C) is 2-transitive and each of its elements is completely determined by
its action on any two distinct points of C.

3. Aut(C) is 3-transitive and each of its elements is completely determined by
its action on any three distinct points of C.

Many-valued functions and Riemann surfaces. — Our definition (above) of a
Riemann surface is anachronistic: for Riemann these surfaces arose as a means for
handling many-valued functions. Starting from a holomorphic function defined on
an open subset of the plane, he sought to extend its domain of definition by means
of analytic continuation. The first sentence of the following quotation announces
the procedure of analytic continuation and the second explains how one may by
such means be confronted with the problem of many-valuedness. It is precisely
this situation that justifies the introduction of the term “many-valued function”,
which is really not a function at all in the modern set-theoretic sense.

6Or “Möbius transformations” or “linear-fractional transformations”. Trans



32 II Riemann

A function of x + yi given on a part of the (x, y)-plane can be extended
continuously beyond [that region] in just one way. [. . . ] Now, depending on
the nature of the function being extended, either it will or will not always
take on the same value at a single z-value independently of the path along
which the continuation was performed.

In the first case I call the function single-valued: such a function is then
precisely determined for each value of z and it never becomes discontinuous
along any line. In the second case, where we call the function many-valued,
one must first of all, in order to grasp how it develops, pay attention to
certain points of the z-plane around which the function extends onto another
[plane]. Such a point is, for example, the point a for the function log(z− a).

The points at which the value of the function varies with the path along which
analytic continuation is carried out are so important in the sequel that Riemann
gives them a name:

We will call the various extensions of a single function over the same region
of the z-plane the branches7 of the function, and a point near which one
branch extends onto another a branch point of the function. Wherever there
is no branching the function is to be called monodrome or single-valued.

After explaining the types of functions he will be considering, he introduces
the surfaces now bearing his name, repeating a construction appearing in his the-
sis [Rie1851]. What’s novel here are the intuitive pictures he proposes, of an
“infinitely thin body” and of a “helicoid” of “infinitely narrow thread”:

Imagine a surface extended above the (x, y)-plane and coincident with it (or
if one likes a body infinitesimally thin [spread] over the plane), which ex-
tends exactly as far as the function is given. When the function is extended,
this surface is to be continued equally far. In a region of the plane where
the function has two or several continuations this surface will be double or
multiple. It is thus made up of two or more sheets each of which corre-
sponds to a branch of the function. Near a branch point of the function one
sheet of the surface extends onto another in such a way that in a neighbor-
hood of this point the surface can be considered as a helicoid with infinitely
narrow thread and with axis perpendicular to the (x, y)-plane at that point.
However, if the function, after z has traced several turns about the branch
point, should again take on its initial value (just as, for example, (z − a)

m
n ,

m,n relatively prime, does after z has executed n turns about a), one must
assume that the uppermost sheet reconnects with the bottom sheet, passing
through the others.

7Or “ramifications”. Trans



II Riemann 33

The last few lines show that Riemann did indeed picture the surface situated
in the 3-dimensional space of common intuition. Or did he use such language
merely to facilitate the understanding of his readers, while himself conceiving
the surface as an abstract manifold? Whatever the case may be, as is mentioned
in [Cho2007, p. 59], Hensel and Landsberg [HeLa1902, p. 91] continue describing
the situation in a manner close to that of Riemann:

Imagine n coordinate planes placed one above the other at an infinitesimally
small distance [. . . ] in such a way that their origins and axes are superim-
posed [. . . ]

Riemann’s description of the surface as situated in a space of dimension 3
forces him to talk of sheets which cross each other, which has historically been a
source of difficulty for those trying to learn his theory. The fact that these intersec-
tions need not and should not be considered is implied by the following property
of such a surface:

A many-valued function admits at each point of a surface which so repre-
sents its mode of branching, a single determinate value, and can therefore
be regarded as a function uniquely determined at the place (of a point) on
that surface.

From this it is clear that the surface associated with a many-valued function is
considered as a means of resolving the problem of its many-valuedness.

Box II.1: The Riemann surface of a germ of a function

We explain here how one nowadays constructs a Riemann surface as-
sociated with a germ of a holomorphic function f : (C, x) → C.a Let
G =

{
germs of holomorphic functions (C, x) → C ��� x ∈ C

}
. We first define a

Hausdorff topology on this set. For each open set U of C and each holomorphic
function f : U → C, we define

U (U, f ) =
{
germs f x : (C, x) → C ��� x ∈ U

}

and we endow G with the topology generated by theU (U, f ).

aThat is, the set (equivalence class) of all holomorphic functions g agreeing with f on some
open neighborhood (depending on g) of x. Trans
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It is then immediate that the map

π :
G → C

( f x : (C, x) → C) 7→ x

is continuous and that its restriction to each open set U (U, f ) defines a local
homeomorphism. These local homeomorphisms then allow us to endow G
with the structure of a one-dimensional complex manifold (leaving aside for
the moment the requirement of a countable open basis).
This topology is Hausdorff. To see this, note first that two germs based at
distinct points are already separated by the continuous function π. Consider
two germs f x : (C, x) → C and gx : (C, x) → C at x, and let U be a connected
open set of C containing x such that f x and gx are the germs of f ,g : U → C.
If there were a germ hy : (C, y) → C in the intersection U (U, f ) ∩ U (U,g),
the functions f and g would coincide on an open set contained in the domain
of h, whence f x = gx . Thus if f x , gx , the open sets U (U, f ) and U (U,g)
must be disjoint, and so serve to separate the two germs.

Now let f x : (C, x) → C be a germ of a holomorphic function. The Rie-
mann surface of f x is then defined to be the connected component S( f x ) of G
containing f x . The germs gy : (C, y) → C in S( f ) are obtained by analytic
continuation of ( f x : (C, x) → C) along a path joining x to y. In particular, if
f x : (C, x) → C is a germ of a function f that is many-valued in a neighbor-
hood of x, the surface S( f x ) will contain a point “above” x (that is, in π−1{x})
for each value of f at x. Thus the surface S( f x ) comes with a (single-valued)
holomorphic map f̂ : S( f ) → C determining f .

The Poincaré–Volterra theorem guarantees that the surface S( f ) has a
countable open basis (see Box XI.1).

One can imitate the above construction of S( f ) for other regularity classes
of germs. For example, one may construct in the same way the maximal mero-
morphic continuation. More generally, this procedure can be extended to a
sheaf on a topological spacea and what was called around 1950 the associated
“étale space” of the sheaf.

aA “sheaf” on a topological space X is a structure associating with each open set U of X an
Abelian group or ring (usually of functions defined on U), equipped with a restriction operation
satisfying certain conditions. Trans

The Riemann surface associated with an algebraic function. — In this section we
consider the Riemann surface associated with an algebraic function s(z). The
graph of s, in Cz × Cs , is determined by an irreducible polynomial equation
F (z, s) = 0; such an equation defines an irreducible algebraic curve in Cz × Cs .
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Although Riemann never used such geometrical terminology in his article,
he must have been aware of the geometric interpretation, as Klein explains in
[Kle1928].

From the beginning Riemann recognized the importance of his theory for
algebraic geometry. However, in his courses he went into detail only in the
case of quartics. This came out only much later from an examination of his
lecture notes. It required a much more extroverted nature to establish his
results on a broader basis and introduce them to a wider readership. It was
Clebsch who understood this.

Riemann proposed “determining the mode of branching of the function s or
of the surface T representing it”. Initially T is the Riemann surface of the regular
part of the function, that is, the maximal analytic continuation of any of its regular
(single-valued and holomorphic) germs. Next he shows that there exists a unique
smooth compactification of T obtained as follows. He first defines the simplest
possible branch points on the surface T :

A point of the surface T where just two branches of a function join in such
a way that near this point the first branch continues into the second and the
second into the first, I will call a simple branch point.

(We recognize here a branching like that of the two-valued function
√

z at the
origin.) Every other branch point is regarded as the limit of simple branch points:

A point around which the surface turns about itself (µ+1) times can then be
considered as consisting of µ coincident (or infinitely close) simple branch
points.

He then introduces local parameters (or, as we also call them nowadays, local
uniformizing parameters) in a neighborhood of every point of the closed surface T ,
choosing them explicitly as functions of z. Thus in a neighborhood of a point
z = a where the surface T does not branch, he chooses z − a, and then:

For a point where the surface T turns about itself µ times, when z is equal to
a finite value a, [we choose] (z − a)

1
µ [. . . ]; but at z = ∞, it is ( 1

z
)

1
µ , which

becomes infinitely small to the first order.

He next explains how to use such a local parameter to develop in series “the
functions we shall be dealing with here”, which is to say meromorphic functions
and their integrals.



36 II Riemann

Here we see that Riemann desingularizes the curve defined by the equation
F (z, s) = 0 using only local monodromy8 of the values taken on by s as z varies
around each branch point a: a set of µ branches around a are given simultane-
ously by one and the same meromorphic function of (z − a)

1
µ . Each irreducible

local component of the curve is thus parametrized by a disc, namely the image
of {|z − a | < ε} under the map (z − a)

1
µ . Of course, a point has been added to T

above a in order to compactify the irreducible local component. In this way Rie-
mann by-passes the so-called algorithm of Newton–Puiseux (which, moreover, he
does not refer to). The uniqueness of the resulting compactification is immedi-
ate from another theorem of Riemann, namely that on removable singularities,
according to which a holomorphic function bounded on a punctured disc can be
extended holomorphically to the missing point.

From all this it follows that the Riemann surfaces associated with two bira-
tionally equivalent algebraic curves (see Subsection II.3.1) are isomorphic: after
the removal of a finite number of points on each of them, the given birational map
will define an isomorphism between the punctured surfaces, which then extends
automatically to an isomorphism between compact surfaces.

Thus does Riemann open the way to the modern abstract notion of a Riemann
surface, with all local parameters obtained from each other by means of biholo-
morphisms considered equivalent.

Algebraicity of compact Riemann surfaces. — We saw in Box II.1 that every
germ of a holomorphic function f can be associated in a natural way with a Rie-
mann surface S( f ). When the function is algebraic, this surface compactifies
into a compact Riemann surface — its maximal meromorphic analytic continua-
tion. We now wish to consider the converse: if the maximal meromorphic analytic
continuation of f is compact, then f is algebraic.

In anticipation of the Riemann–Roch theorem (see Section II.2.4, Coro-
llary II.2.13) we remark that every (abstract) Riemann surface carries enough
meromorphic functions to separate its points. This allows one to prove the fol-
lowing theorem.

Theorem II.1.2. — Every compact Riemann surface T is isomorphic to the Rie-
mann surface of an algebraic function.

Proof. — Let f1 be a non-constant meromorphic function on T , and consider f1
as defining a branched covering of C of degree d.9 Let {P1, . . . ,Pd } be a generic
fiber of the covering, and f2 a meromorphic function separating these d points.

8“Monodromy” is a general term for the change in an appropriate mathematical object with
variation around a singularity. Trans

9This is a consequence of the compactness of T , which allows one to trace the various branches
of the inverse. Trans
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The image of S under ( f1, f2) is an analytic curve C in Cz ×Cw . We wish to show
that this curve is algebraic.

Since the non-constant function f1 : T → Cz defines a branched covering,
the fiber f −1

1 (z) over z always consists of the same number d of points of T ex-
cept for a finite number of points z1, . . . , zk of Cz . For z ∈ Cz − {z1, . . . , zk },
we write f −1

1 (z) = {P1(z), . . . ,Pd (z)}. It is important to observe that the Pi (z)
are many-valued: the set {P1(z), . . . ,Pd (z)} is well-defined but it is not possible
to arrange the preimages so as to obtain d holomorphic functions globally de-
fined on Cz − {z1, . . . , zk }. The ordinates of the d points where the line {z} × Cw
meets C are wi (z) = f2(Pi (z)), i varying from 1 to d. Once again we obtain d
“functions” wi , many-valued on Cz − {z1, . . . , zk }. We now consider the basic
symmetric expressions in the wi (z):

S1(z) = w1(z) + · · · + wd (z),
S2(z) = w1(z)w2(z) + · · · + wd−1(z)wd (z),

...

Sd (z) = w1(z) · · ·wd (z).

These functions are meromorphic onCz , whence they are rational functions10 of the
variable z. The polynomial F (z,w) obtained from wd−S1(z)wd−1+· · ·+(−1)dSd (z)
by multiplying by a suitable polynomial in z to cancel the denominators, vanishes
precisely on the curve C. The Riemann surface T is then just the Riemann sur-
face of any germ at which the above polynomial vanishes: these surfaces are both
compact and coincide except for a finite number of points. �

Observe that we have shown here that the field C( f1, f2) has degree pre-
cisely d over the subfield C( f1). The same argument shows that for every mero-
morphic function g, the field C( f1,g) has degree at most d over the same subfield.
It follows by the primitive-element theorem11, that the field generated by f1, f2
and g is the same as that generated by f1 and f2. We conclude, finally, that the
field of meromorphic functions on T is precisely C( f1, f2).

One infers from this that if we choose two other functions f ′1 and f ′2 as in
the above proof, then the resulting curve C ′ is birationally equivalent to C —
effectively since f ′1 and f ′2 can be expressed as rational functions of f1 and f2. We
conclude that two isomorphic compact Riemann surfaces give rise to birationally

10A meromorphic function from the Riemann sphere to itself is a holomorphic function with a
finite number of poles, possibly including ∞, and so, by an easy extension of Liouville’s theorem
that a bounded holomorphic function is constant, must be a rational function. Trans

11Asserting that if K ⊇ F is a finite field extension and (in particular) the characteristic is zero
then there is an element a ∈ K such that K = F (a)(= F[a]). Trans
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equivalent algebraic curves. It is this that Riemann expounds in Sections XI and
XII of [Rie1857], the point of departure for his investigation of moduli.

Theorem II.1.2 can be made more precise:

Theorem II.1.3. — Every compact Riemann surface S can be immersed12 in
CP2, injectively apart from a finite number of points, and with image an algebraic
curve C having as singularities only double points at which the two tangents are
distinct.

To see this one first embeds the given Riemann surface in some projective
space CPn . Such an embedding is given, in projective coordinates, by

z 7→ (1 : f1(z) : f2(z) : · · · : fn (z))

where we have supplemented the earlier functions f1 and f2 with further mero-
morphic functions f i on S in order to ensure injectivity:

— if all of the f i have the same value at some two points of S, one adds another
function taking distinct values at those points;

— if all the f i have a common critical point on S, one adds a function regular
at that point.

One may construct such functions directly from f1 and f2 (working in the
field they generate), or, better yet, by appealing to the Riemann–Roch theorem.
This achieved, a suitable projection CPn → CP2 affords us the desired immersion.

In fact the Riemann–Roch theorem provides a privileged representation of a
compact Riemann surface as an algebraic curve in a projective space. In genus
p ≥ 2, the dimension of this space is p − 1 for all non-hyperelliptic curves (com-
pare for example [GrHa1978]).

II.1.3. Theorems of “Analysis Situs”

There remains the major problem of actually defining meromorphic functions and
forms on a given Riemann surface. This will be the main goal of Section II.2
below.

Riemann bases his construction of meromorphic functions and forms on what
he calls “Dirichlet’s principle”, which plays a role also in his thesis [Rie1851].
To that end he needs to integrate a closed form Xdx + Y dy (that is, for which
∂X
∂y = ∂Y

∂x ), the integration to be carried out along paths on a surface above the
(x, y)-plane. He begins this section by declaring that he will be needing results
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from Analysis Situs (that is, topology). What is at issue here is nothing less than a
major conceptual leap: to investigate the construction of an algebraic function on
a surface using topological methods in relation to the surface. We now expound
these ideas.

By means of a special case of Stokes’ theorem, Riemann first of all shows
that:

[. . . ] the integral
∫

(Xdx +Y dy), evaluated along two different paths joining
two fixed points, yields the same value when the the union of these two
paths forms the complete boundary of part of the surface T .

In modern terminology, the integral of a closed form along a path with fixed
end-points depends only on the homology class of the path.

Riemann next introduces a measure of the connectivity of a surface, giving the
extent of its departure from simple-connectedness. His definition is the forerunner
of that of the Betti numbers with integer coefficients. Here he implicitly assumes
his surfaces are compact and connected with non-empty boundary. Faced with a
surface without boundary, he begins by removing a disc.

Figure II.1: “Riemann surfaces” (pp. 99, 100 of [Rie1857])

For him a simply connected surface (homeomorphic to a disc) is one with
degree of connectivity 1. When a surface is not simply-connected, he performs
cuts along sections of it until it becomes simply connected:

12An immersion of a manifold M in a manifold N is a differentiable map f : M → N such that
the induced map between tangent spaces (the derivative as linear transformation) is injective at each
point. Such a map f is an embedding if it is also injective. Trans
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A multiply connected surface can be transformed, by means of cuts, into a
simply connected surface. [. . . ]
When one can trace n closed curves a1,a2, . . . ,an on a surface F which,
whether one considers them separately or united, do not form the complete
boundary of a portion of the surface, but which, when supplemented by
any other closed curve do form the complete boundary of a portion of the
surface, the surface is said to be (n + 1) times connected.

Riemann provides four diagrams intended to aid comprehension of the notions
of a multiply connected surface and its degree of connectivity. These are the only
diagrams in the article [Rie1857]!

How does all this apply to the integration of a closed form of degree 1? Af-
ter having cut along certain curves of section13 he obtains a surface representing
a simply connected region of the original, so that the closed form is now exact
on that region, that is, is the differential of a single-valued function. In passing
across each curve of section this function undergoes constant jumps of disconti-
nuity, which Riemann calls moduli of periodicity. Nowadays one talks rather of
periods as the integrals of the closed form around loops, representing, therefore, a
concept dual to Riemann’s moduli of periodicity. Thus in Figure II.2 the modulus
of periodicity corresponding to the transverse section X X ′ is equal to the period
taken along the dual loop lX (X = A,B).

Box II.2: Simple connectedness

Note how the terminology has evolved: today a surface is called simply
connected if every loop on the surface is homotopic to a constant loop. How-
ever the definition Riemann used is different:

This gives rise to a distinction among surfaces into simply connected
ones, where every closed curve completely bounds a portion of the sur-
face [. . . ] and multiply connected ones, where this is not the case.

A modern reader will see here a homological definition: a surface is sim-
ply connected if every loop bounds a subsurface. In higher dimensions this
definition (which is just that H1(X,Z) = 0) is weaker than that given above
(equivalent to π1(X ) = 0 — weaker since we know that H1(X,Z) is always
the Abelianization of π1(X )). However for a surface the two definitions are
equivalent.

13That is, simple closed paths on the surface. Trans



II Riemann 41

An important consequence of simple connectedness is the vanishing of the
first homology group: every closed 1-form on a connected and simply con-
nected surface is exact.

To conclude this parenthetical terminological discussion, we note that in
1905 Poincaré was still not using the term “simply connected” in its modern
sense. For him a compact manifold of dimension 3 is “simply connected”
if it is homeomorphic to a ball. Thus, as he stated it, the famous Poincaré
conjecture sounds rather odd to a modern ear:

Is it possible for the fundamental group of V to reduce to the identity
substitution, and yet V not be simply connected?

Here is what Riemann says:

When the surface T [. . . ] is n-connected, one can decompose it into a simply
connected surface T ′ by means of n transverse sections. [. . . ] one obtains a
function of x, y, z =

∫
(Xdx + Y dy) completely determined at every point

of T ′ and varying continuously throughout the interior of T ′, but which in
crossing one of the transverse sections varies in general by a finite amount
all along the line leading from one vertex of the network of sections to the
next.

Figure II.2: Moduli/periods

Here we are confronted with a second method (the first being that described
above of constructing the associated Riemann surface) for passing from a many-
valued function to a single-valued one, namely, just that of making a choice of a
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particular value of the function on each sub-region of the full domain of definition.
Both methods are used throughout the article, the first in dealing with an algebraic
function and the second in dealing with an Abelian integral.

One might well ask what prevents Riemann from applying the first method
in the context of Abelian integrals. In this case he would have had to describe
a branched covering of the complex plane of infinite degree, which situation he
might have illustrated with the example of log(z−a), used in Section 2.1 to explain
the phenomenon of many-valuedness. However when he explains how one should
think about branched coverings, his illustrative examples are just the coverings of
finite degree associated with expressions of the form (z − a)

m
n . Was he in some

sense wary of infinite-degree coverings?
Note also that in the same section he considers differentials Xdx + Y dy as

real objects, while never throughout the article talking of the analogous complex
objects (that is, of holomorphic or meromorphic forms). Further on, when he
turns to Abelian integrals, the problem is, in modern language, that of finding
(many-valued) primitives of meromorphic forms on the surface in question.

For the particular case of a closed surface — that is, compact, connected and
without boundary — Riemann introduces the topological invariant that today we
call the genus.

Let us imagine [. . . ] we have decomposed that surface into a simply con-
nected surface T ′. Since the boundary curve of a simply connected surface
is uniquely determined, whereas a closed surface has, as the result of an odd
number of sections, an even number of bounded regions, and as a result of
an even number of sections an odd number of bounded regions, in order to
effect this decomposition of the surface it is necessary to execute an even
number of sections. Let 2p be the number of such transverse sections.

Box II.3: Degree of connectivity, genus, and Euler characteristic

For any compact, connected, orientable (topological) surface S there are
two particular topological invariants available: the Euler characteristic χ(S)
and the genus g(S) ≥ 0.

When S is without boundary these two invariants are linked by the formula

χ(S) = 2 − 2g(S).

The genus g(S) has the following interpretations:
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• as equal to 1
2 rankZH1(S);a

• as the largest number of homologically independent, pairwise disjoint,
simple closed curves that can be drawn on S.

If the boundary of S is non-empty, the genus g(S) is defined as the lat-
ter number after S has been modified as follows: for each component of the
boundary ∂S of S, attach a disc with boundary identified with that component.
One then has the formula

χ(S) = 2 − 2g(S) − b(S),

where b(S) denotes the number of components of ∂S.
Using this formula one can show that, if c(S) denotes the degree of con-

nectivity of S introduced by Riemann, then

c(S) = 2 + 2g(S) − b(S).

Figure II.3 shows the c(S) − 1 steps of the surgery yielding a disc in Rie-
mann’s fourth example (in Figure II.1 above), whence one sees via the latter
formula that S is a surface of genus 1.

Many details on the evolution of the notion of genus may be found in
[Pop2012].

aThe rank of the Abelian group H1(S). Trans

Here Riemann is tacitly assuming that the surfaces he considers are all ori-
entable. In fact in the case of a non-orientable surface, if one cuts along a sim-
ple closed curve along which the orientation reverses, one obtains just one “part
bounded by the curve”. Such a curve has a neighborhood that is a Möbius band,
which surface was described explicitly only many years later, in [Möb1886] (see
also [Pont1974, p. 108]). In Riemann’s article the opposition orientable/non-
orientable (or two-sided/one-sided as it came to be called for a certain time) is
never mentioned.

Note the use of the letter p, still largely in use nowadays to denote various
notions of genus arising in geometry and algebraic geometry (mainly in the form
of arithmetic and geometric genera of curves and surfaces). Riemann himself does
not name this invariant; it seems to have been Clebsch who introduced the term
“genus” in [Cle1865a].

We now return to the surface T associated with an algebraic function w(z) de-
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fined by an irreducible polynomial equation F (z,w) = 0. Riemann now proposes
calculating its genus g, to which end he establishes the special case of what we
now call the Riemann–Hurwitz theorem (see Box II.4) where the target surface
of the function is the Riemann sphere. He shows that if the irreducible algebraic
curve of bi-degree m,n defined by F (z,w) = 0 in Cz × Cw has as singularities
only r double points with distinct tangents, then T has genus g = (n−1)(m−1)−r .

Figure II.3: “Cuts” (or “sections”)

It follows in much the same way that a curve inCP2 defined by a polynomial of
degree n having as its only singularities r double points at which the two tangents
are distinct, has genus

g =
(n − 1)(n − 2)

2
− r. (II.3)

Box II.4: The Riemann–Hurwitz theorem

Let S and S′ be two compact, connected Riemann surfaces and f a holo-
morphic mapping from S to S′. A point s ∈ S at which df = 0 is called a
critical point of f , and the image of such a point under f a branch point of f .

With each point s ∈ S we associate its ramification index ν(s) ≥ 1, de-
fined as the local degreea of f in a neighborhood of s. There then exist local
coordinates z in some neighborhood of s and w in some neighborhood of f (s),

aThat is, the number of preimages of individual points in f (U), U some small neighborhood
of s. Trans
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where f takes the form w = zν (s). The critical points of S are then just those
points of ramification index at least 2.

If f has no critical points (in which case the covering defined by f is un-
ramified) the genera g of S and g′ of S′ and the global degree d of f are linked
by the simple formula 2 − 2g = d(2 − 2g′).

The Riemann–Hurwitz theorem generalizes this to the situation where there
are critical points (finite in number in view of the compactness of S):

2 − 2g = d(2 − 2g′) −
∑
s∈S

(ν(s) − 1).

A straightforward proof starts from a triangulation of S′ whose vertices include
all the ramification points of f . One then lifts this to a triangulation of S, and
shows that the Euler characteristic of the latter triangulation equals the right-
hand side of the above formula. We have already seen that it coincides with
the left-hand side expression.

II.2. Dirichlet’s principle and its consequences

II.2.1. Dirichlet’s problem

Given an open set U ⊂ C and a function u : ∂U → R— continuous, for example
— the Dirichlet problem is that of finding a harmonic function u : U → R defined
throughout U and continuously extending u.

We begin with a basic construction using the fact that the imaginary part Im w

of a holomorphic function w is harmonic and identically zero on the real axis. By
means of the biholomorphismH→ D ; w 7→ z = w−i

w+i , which maps the upper half-
plane H = {z ∈ C|Im z > 0} onto the unit disc D = D(0,1), we obtain a harmonic
function defined on the disc, namely z 7→ 1−|z |2

|1−z |2 , which is thus automatically
harmonic and extends onto ∂D \ {1} as the zero function there. By the mean-value
property of harmonic functions we must have, for any disc D(0,r), 0 < r < 1,

1
2πr

∫
∂D(0,r )

f = f (0) = 1.

Our function f is thus harmonic on the open unit disc and seems to extend contin-
uously to the zero function on the boundary with the point 1 deleted, while at the
same time having integral 1 over that boundary. We have here a “point charge” or
“Dirac mass” at 1.
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This observation together with the linearity of the Dirichlet problem allows us
to retrieve Poisson’s formula, providing the solution to the Dirichlet problem for
the unit disc.14 Indeed, given a continuous function u : ∂D → R, an harmonic
extension u of u to the whole of D is:

u(z) =
1

2π

∫ 2π

0

1 − |z |2

|z − eiθ |2
u(eiθ ) dθ. (II.4)

And when the boundary function u is not continuous but merely integrable, the
extension u will still satisfy, for radial limits,

lim
r→1

u(reiθ ) = u(eiθ )

for almost all angles θ (in the sense of Lebesgue measure).
Our present aim is to solve the Dirichlet problem for a simply connected open

set U of the plane with boundary ∂U a smooth Jordan curve, and for any continu-
ous function u : ∂U → C.

We begin by remarking that there exists at most one solution. For if u1 and u2
are two solutions, the function u1 − u2 : U → R is bounded and harmonic on U.
Let z0 be a point of U satisfying:

|u1(z0) − u2(z0) | = max
U
|u1 − u2 |.

If z0 ∈ U, u1 − u2 must be constant by the maximum principle for harmonic
functions (see earlier), so equal to zero since it vanishes on the boundary of U.
If z0 is on the boundary of U, then u1(z0) = u2(z0), and it is immediate from the
maximality property of |u1(z0) − u2(z0) | that u1 = u2 on U.

From Section 16 to Section 18 of [Rie1851], Riemann explains how to solve
Dirichlet’s problem by minimizing a certain functional. He starts with a smooth
function α : U → C satisfying α = u on the boundary of U . Then he adds a
function λ vanishing on the boundary and seeks to arrange that α+λ be harmonic.
Such a function λ will minimize the integral

Ω(α + λ) =

∫
U

(
∂α

∂x
+
∂λ

∂x

)2

+

(
∂α

∂y
+
∂λ

∂y

)2

dxdy.

Thus the problem arises as to whether the functional λ 7→ Ω(α + λ) has a mini-
mum. Write L =

∫
U

( ∂λ
∂x

)2
+

( ∂λ
∂y

)2dxdy. We quote from Riemann’s text where

14Poisson’s formula seems to have been unknown to Riemann and his immediate successors.
Schwarz presents the formula as if new in [Schw1870a]. According to [Die1978], Green was the
first to show, in 1828, that a continuous function of the points of any (simple, closed) curve extends
to a harmonic function in the interior. In the case of a sphere Poisson gave an explicit formula “in
1820”. Prym, in his 1871 commentary on Riemann’s works mentions that the only known method
of extending a function harmonically into the interior of a circle is by developing it in a Fourier
series, even though the convergence of the series is not guaranteed by continuity alone [Pry1871].
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he justifies the existence of such a minimum of the functional Ω:

For each function λ, Ω takes on a finite value tending to infinity with L and
varying in a continuous manner with the form of λ, but is bounded below
by 0; hence for at least one value of the function α+λ, the integralΩ attains
a minimum value.

It is the purported existence of a function realizing this minimum that Rie-
mann calls the “Dirichlet principle”. We must stress here the conceptual leap
that this form of the principle represents: a function is considered implicitly as a
particular point of an infinite-dimensional space.

Riemann next shows that for every function λ0 minimizing the integral
Ω(α + λ), the function α′ = α + λ0 is harmonic. He thinks he has thus solved the
Dirichlet problem.

Riemann’s argument concerning the existence of a minimum is, however, not
rigorous — and not only in the eyes of a 21st century reader: Weierstrass criticized
the argument already in [Weie1870]. The reader may also consult Volume II of the
Traité d’analyse [Pic1893d, p. 38] where Picard revisits Weierstrass’s criticisms,
as well as giving the counter-example appearing in [Weie1870] of a functional
which does not attain its greatest lower bound. As Picard says ([Pic1893d, p. 39]):

One cannot be certain a priori that there exists a function u satisfying conti-
nuity conditions, at which the integral actually attains its lower limit. This is
a serious objection and M. Weierstrass has shown by means of a very simple
example the danger of this kind of reasoning.

Here is Weierstrass’s counter-example. He considers the space of func-
tions y(x) of class C1 on the interval [−1,1] with values at the end-points equal to
a and b (with a , b), and introduces the functional defined by

J (y) =

∫ 1

−1
x2

(
dy
dx

)2

dx.

It is not difficult to check that, for the family of functions

yε (x) =
a + b

2
+

(b − a)arctan
(
x
ε

)
2 arctan

(
1
ε

) ,

one has that J (yε ) tends to 0 with ε. The greatest lower bound of J is thus 0,
which is not attained at any function in the given space since a , b. This is made
possible by the fact that the space C1([−1,1]) is not complete. Note that the space
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of functions with which Riemann is working here — consisting of the functions
continuous on U and smooth in the interior — is likewise not complete.

The modern method of skirting this obstacle, conceived in a famous 1900
paper of Hilbert [Hil1900a], is to work in a larger space of functions which is
complete; see for example [Jos2002].

II.2.2. The Riemann mapping theorem (or conformal representation
theorem)

We first quote Riemann’s own statement of the conformal representation theorem:

Any two given simply connected, planar surfaces can always be mapped
one to the other in such a way that to each point of one there corresponds a
unique point of the other whose position varies in a continuous manner with
that of the first, and such that the smallest corresponding portions of the
surfaces are similar; furthermore, for a point of the interior and for a point
of the boundary of one surface, the corresponding points of the other surface
may be given arbitrarily; but then this determines the correspondence for all
points.

The modern statement of this theorem is more general since it incorporates
regularity conditions on the boundaries. Recall that a Jordan curve is any contin-
uous embedding of the circle in the plane.

Theorem II.2.1. — Let U be any simply connected open set in the plane, not
equal to the whole plane. Then there exists a biholomorphic mapping f : U → D.
Furthermore if the boundary of U is a Jordan curve, then f extends to a homeo-
morphism from the closure of U onto the closed unit disc.

Note that Riemann implicitly assumes that the boundary — which he calls
the “frame” of the surface — is a Jordan curve since he defines the images of
the boundary points. In the present subsection we give a proof of the confor-
mal representation theorem (or “Riemann mapping theorem”) directly inspired by
Riemann’s ideas. We shall always assume the boundaries to be Jordan curves —
in fact even smooth Jordan curves. (The methods of proof when the boundary is
not a Jordan curve are different; see for example [Rud1987, Chapter 4].)

Proof of the first statement of the Riemann mapping theorem (assuming we know
how to solve the Dirichlet problem): Let U ⊂ C be open and simply connected
and let z0 be any particular point of U. We begin with a definition.
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Definition II.2.2.15 — A Green’s function for U relative to the point z0 is a func-
tion u : U \ {z0} → R with the following properties:

1. u is harmonic on the open set U \ {z0};

2. the function z ∈ U \{z0} 7→ u(z)+log|z−z0 | extends to a function harmonic
at z0;

3. u(z) tends to 0 as z approaches the boundary of U .

Note that there exists at most one such function: this follows in much the same
way as the uniqueness of a solution of Dirichlet’s problem. A similar argument
shows also that a Green’s function u must be strictly positive on U. Indeed, if u
assumed a non-positive value at a point z1 of U, then by invoking the facts that
limz→z0 u(z) = +∞ and limz→∂U u(z) = 0, we could infer that u attained its
minimum on U \ {z0}, whence, by virtue of its harmonicity u would be constant,
which is absurd in view of the fact that it has a logarithmic pole at z0.

We now show how to construct a Green’s function relative to a point z0 ∈ U
under the assumption that we know how to solve the Dirichlet problem.

Consider the function v : ∂U → R defined by v(z) = log |z − z0 |. Since
the Dirichlet problem is assumed to have a solution on U , we have an harmonic
extension v : U → R. Write uU (z, z0) = v(z) − log |z − z0 | for z in U \ {z0}. Then
since v is continuous on U , the function uU (·, z0) approaches 0 on the boundary
of U . Hence uU (·, z0) is the Green’s function of U relative to the point z0.
Example II.2.3. — For the unit disc D = {z ∈ C| |z | < 1}, the Green’s function
relative to the point z0 = 0 is

uD(z,0) = −log|z |.

Resuming our proof, we denote by v∗ a harmonic conjugate16 of v, and con-
sider the holomorphic function on U defined by

φ(z) = (z − z0)e−(v (z)+iv∗ (z)) .

Since (z − z0) = e |z−z0 |+i arg(z−z0), this may be rewritten “formally” as

φ(z) = e−(uU (z,z0)+iuU (z,z0)∗),

where uU (z, z0)∗ := v∗ − arg(z − z0). Since, as we have already observed, the
Green’s function is strictly positive, the function φ takes its values in the unit disc.
It can be inferred from the condition

uU (z, z0) −→ 0 as z → ∂U,

15One may find in [Taz2001] many details on the historical development of this notion.
16That is, such that v + iv∗ is holomorphic. See earlier. Trans
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that φ is proper.17 Hence it is surjective (its image being both open and closed)
and the cardinality (including multiplicities) of its fibres is constant. Since the
fibre above 0 is just {z0}, of cardinality 1, the map ϕ is injective, and we have the
desired biholomorphism between U and D.

Remark II.2.4. — The second part of the theorem was proved by Carathéodory
in 1916 (see [Coh1967] for example). It is interesting that his proof yields the
solution of the Dirichlet problem in the case where the boundary of U is a Jor-
dan curve. The Riemann mapping theorem and Carathéodory’s theorem are thus
equivalent to the solvability of the Dirichlet problem on U . �

II.2.3. Abelian integrals

Recall that our aim is to construct meromorphic functions on a given surface.
Riemann seeks such functions as primitives of meromorphic forms.

We have seen above how to associate a given Riemann surface T with an
algebraic function.

A similar system of algebraic functions with the same ramifications and
integrals of the functions will be first of all the object of our study.

In other words, once the surface T has been constructed, one investigates the
space of meromorphic forms on T (having the same ramifications as the equation
used to construct T) and their primitives.

Here is the title chosen by Riemann to present his vision of the construction
of such functions:

Determination of a function of a variable complex quantity by the conditions
it satisfies relative to the boundary and discontinuities.

Thus the functions in question should be determined by their values on the
boundary and by their behavior in the neighborhood of discontinuities. The holo-
morphicity of the function being sought renders all other data superfluous. And it
is once again the “Dirichlet principle” which allows one to construct the desired
functions starting from a “system of independent conditions among them”.

17That is, that the preimage of every compact set in D is compact in U. It follows that ϕ is a
closed map; it is also open since holomorphic. Trans
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Here is the theorem on which Riemann bases the whole of his theory of func-
tions of a complex variable — a theorem already present in his thesis [Rie1851]:

If on a connected surface T , decomposed by means of transverse sections
into a simply connected surface T ′, one gives a complex function α + βi of
x, y for which the integral∫ 

(
∂α

∂x
−
∂ β

∂y

)2

+

(
∂α

∂y
+
∂ β

∂x

)2
dT, (II.5)

evaluated over the whole surface, has a finite value, this function can al-
ways, and in a unique manner, be transformed into a function of x + yi by
the subtraction of a function µ + νi of x, y satisfying the following condi-
tions:

1. On the contour µ = 0, or at least differs from zero only at isolated
points; at one point ν is given arbitrarily.

2. The variation of µ on T and of ν on T ′ is discontinuous only at isolated
points, and then only in such a way that the integrals∫ 

(
∂µ

∂x

)2

+

(
∂µ

∂y

)2
dT and

∫ 

(
∂ν

∂x

)2

+

(
∂ν

∂y

)2
dT (II.6)

over the whole surface, remain finite; furthermore the variations of ν
along a transverse section should be equal on the two sides.

The steps in the proof sketched by Riemann have been explicated in intrin-
sically modern terminology by Ahlfors in [Ahl1953]. These involve harmonic
analysis, and we shall return to them in Section III.1. We now explain briefly the
above passage.

To ease our explanation of Riemann’s text we denote by the lower-case Ro-
man letters a,b,m,n the differentials (closed but not exact) of the discontinuous
functions α, β, µ, ν introduced by Riemann.

If T is a Riemann surface (ultimately with boundary), its real tangent bun-
dle is furnished with an operator J of square −1: multiplication by i. If a is
a real differential form of degree 1 on T , its conjugate differential is defined by
∗a = −a ◦ J. A form is said to be co-closed if its conjugate is closed. We write
also D[a] =

∫
T

a ∧ ∗a, the norm (also called the Dirichlet energy) of a. One
then sees that the three integrals in the above excerpt from Riemann’s paper are
respectively D[a + ∗b],D[m],D[n].

Given a real closed differential form a on T with its periods, (isolated) singu-
larities, and prescribed values on the boundary, we assume there exists a closed
differential form b such that the energy D[a + ∗b] is finite. One then chooses an
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exact form m whose restriction to the boundary is zero and whose distance from
a + ∗b in terms of the norm is least.

Here one encounters difficulties in proving the existence of such a form m
analogous to those we described in Section II.2.1 in connection with the “proof”
of Dirichlet’s principle via minimization. As there, so also here in order to cir-
cumvent these difficulties one needs to work in a more appropriate function space
not available to Riemann.

The existence of m is equivalent to the existence of an orthogonal decom-
position a + ∗b = m + ∗n with m exact and n closed, whence it follows that
a − m = ∗n − ∗b is both closed and co-closed, therefore harmonic.

From this the existence of a holomorphic form on T follows: the harmonic
form a − m has the prescribed periods, singularities, and values on the boundary
(those of a), and writing u := a − m and v := b − n, we see that u + iv is a holo-
morphic form whose integrals yield the “functions of x + yi” on T in Riemann’s
statement.

Riemann now uses his result on the existence of harmonic forms on a given
surface to construct meromorphic forms. Starting with a closed Riemann sur-
face T he takes a finite number of points P1, . . . ,Pm of T and in a neighborhood
of each of these he takes as principal part a finite sum expressed in terms of local
parameters zi :

(Ai z−1
i + Bi z−2

i + Ci z−3
i + · · · )dzi (II.7)

He chooses 2g cuts (not passing through any of the Pi) yielding a simply con-
nected surface, and then establishes the existence theorem, which, in modern ter-
minology, is as follows:

Theorem II.2.5 (The existence of meromorphic 1-forms on a surface). —
Assuming the sum of the residues Ai is zero, for each choice of 2g real numbers
there exists a unique meromorphic form on T with poles at just the points Pi and
the given principal parts, and with periods evaluated along the 2g cuts having as
real parts those prescribed 2g numbers.

The importance of this theorem was recognized well before a perfectly rig-
orous proof was given. It had a great influence on Riemann’s successors, in the
forefront of whom were Hermann Schwarz and Felix Klein, whose work will be
considered in the following chapters. A modern proof in the spirit of Riemann
may be found in [Coh1967], and we shall give another (inspired by [Spr1957]) in
Subsection III.2.1.

Certain of the forms figuring in this theorem were destined to play a special
role, the so-called forms of the first, second, and third kind. Nowadays a form is
said to be of the first kind if it is holomorphic, of the second kind if it is mero-
morphic with all residues zero, and, finally, of the third kind if it is meromorphic
and has only simple poles. The simplest forms of the second kind are then those
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with just one pole P on T : their many-valued primitives are what Riemann called
integrals of the second kind, denoted by tP . The simplest forms of the third kind
are those with just two simple poles P1,P2, and in this case Riemann called their
primitives integrals of the third kind $P1,P2 . His motivation in using such terms
derives from their use by Legendre in his classification of elliptic integrals.

We now turn to Riemann’s proof. He first shows using Theorem II.2.5 that the
complex vector space of integrals of the first kind has dimension g+1 (1 more than
that of the space of holomorphic forms on account of the constant of integration).
This affords an analytic interpretation of the genus g, originally defined topolog-
ically. He also shows that such an integral is uniquely determined to within an
additive constant by the real parts of the moduli of periodicity relative to a system
of transverse sections rendering the surface simply connected.

Similarly, an integral of the third kind is uniquely determined to within an
additive constant by the data of the poles, the residues of its differential at these
poles, and the real parts of its moduli of periodicity relative to the transverse
sections (chosen so as to avoid the poles).

The existence of meromorphic 1-forms on an algebraic curve. — It took until the
beginning of the 20th century before Dirichlet’s principle and the “proof” imag-
ined by Riemann of the existence of meromorphic 1-forms with prescribed poles
on the surfaces bearing his name were given a rigorous foundation. However,
then the question had become that of defining such forms on abstract Riemann
surfaces. In actuality, following on the work of Abel and Jacobi, 19th century
mathematicians knew how to construct meromorphic 1-forms explicitly (or rather
their many-valued integrals — Abelian integrals) on Riemann surfaces defined as
algebraic curves; we will now explain how they did this.

We begin with a compact Riemann surface T . By Theorem II.1.3, T can be
immersed in CP2 as an algebraic curve C with all of its singular points double
with distinct tangents. For a suitable choice of affine coordinates we may arrange
that the curve C is transverse to the line at infinity, and that in a neighborhood of
each double point the first projection x : C → CP1 is a coordinate on each branch
of the curve.

First we construct holomorphic 1-forms on T . Denote by E the vector space
of polynomials P ∈ C[x, y] of degree at most d − 318 which vanish at the double
points of C. For each point P ∈ E we write ωP for the lift onto T of the Abelian
differential

P(x, y)
dx
F ′y
, (II.8)

where F ′y = ∂F
∂y .19

18Where d is the degree of C. Trans
19Here F (x, y) = 0 is the polynomial equation (of degree d) defining the algebraic curve C. Trans
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Proposition II.2.6. — 1. For every polynomial P in E, the form ωP is holomor-
phic on T.

2. The map P 7→ ωP from E to the space Ω1(T ) of holomorphic 1-forms on T
is linear and injective.

3. The dimension of E is greater than or equal to g, the genus of T.

Proof. — 1. The formula (II.8) defines a priori a holomorphic 1-form on C from
which have been removed:

— the points where the first projection x : C → CP1 does not define a holo-
morphic local coordinate, that is, the points of intersection of C with the
line at infinity, and the branch points of x : C → CP1;

— the points where F ′y vanishes, that is, the double points of C and the branch
points of x : C → CP1;

— the points where F (x, y) becomes infinite, that is, the points of intersection
of C with the line at infinity.

Figure II.4: A symplectic basis for the homology

Next observe that the 1-form given by (II.8) extends holomorphically to the
ramification points of x : C → CP1; indeed it follows from the identity F ′xdx +

F ′ydy = 0 that (II.8) can be rewritten as

ω = −
P(x, y)

F ′x
dy
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(where this makes sense), and this expression defines a holomorphic 1-form in the
neighborhood of every ramification point of x. Then since at each double point
of C the polynomial F ′y has a zero of order 1 and the polynomial P(x, y) also
vanishes, the lift of the 1-form defined by (II.8) extends to the double points of T .
Finally, by means of the change of variables X = 1

x and Y = 1
y , one sees that the

1-form defined by (II.8) extends holomorphically to the points of intersection of C
with the line at infinity since the polynomial P has degree at most d − 3 (using
here the fact that C is transverse to the line at infinity).

2. This statement is immediate.
3. We count dimensions. The polynomials in x, y of degree at most d−3 form

a vector space of dimension (d−1)(d−2)
2 . In order for such a polynomial to vanish at

all of the r , say, double points of C, its coefficients must satisfy r linear equations.
Hence the dimension of the space E is at least

(d − 2)(d − 1)
2

− r,

which by (II.3) is equal to the genus of T . �

We shall now show that in fact the dimension of E is precisely g. As does
Riemann, we fix on 2g simple closed paths on T and cut along them so as to obtain
a simply connected surface. These are loops representing homology classes on T .

Reverting to modern terminology, we consider the intersection product de-
fined by these loops:

H1(T,Z) × H1(T,Z) → Z.

Being bilinear and antisymmetric, it defines a symplectic form. Moreover
H1(T,Z) has a basis which is symplectic relative to the intersection product, that
is, a basis (a1, . . . ,ag ,b1, . . . ,bg ) such that for i, j = 1, . . . ,g:

ai · a j = 0, bi · bj = 0, ai · bj = δi j

(see Figure II.4). Each such basis corresponds to a dissection of T into a 4g-sided
polygon. Riemann next shows — with the aid of Stokes’s theorem — that for
every symplectic basis (a1, . . . ,ag ,b1, . . . ,bg ) of H1(T,Z) and two given closed
1-forms η and η ′ on T , one has∫

T

η ∧ η ′ =

g∑
i=1

(∫
ai

η

∫
bi

η ′ −

∫
ai

η ′
∫
bi

η

)
. (II.9)

It follows from this that the linear map




Ω1(T ) −→ Cg

ω 7−→
(∫

ai
ω
)
i=1...g

(II.10)
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is injective. It follows in particular from (II.9) that a non-zero holomorphic
1-form ω satisfies

i
∫
T

ω ∧ ω > 0.

That is essentially the proof given by Riemann in Section 20 of [Rie1857]; and
it is also the first half of the proof establishing the bilinear relations of Riemann
(see [Bos1992] for further details).

Instead of Ψ we might have considered the linear map

Φ :



Ω1(T ) −→ (R × R)g

ω 7−→
(
Re

(∫
ai
ω
)
,Re

(∫
bi
ω
))

i=1...g
.

The injectivity of this map follows in much the same way, giving the uniqueness
assertion of Theorem II.2.5. As far as holomorphic forms are concerned, the exis-
tence claim — problematic for Riemann — is made good by Proposition II.2.6 and
its proof. The linear map Ψ is thus an isomorphism and we have Theorem II.2.5
in the case of holomorphic forms:
Proposition II.2.7. — For each g-tuple n = (n1, . . . ,ng ) of complex numbers,
there exists a unique holomorphic 1-form ωn on T whose integral along the
loop αi is equal to ni for i = 1, . . . ,g.

Furthermore the 1-form ωn depends linearly (so certainly holomorphically)
on the g-tuple n = (n1, . . . ,ng ).

It remains to construct meromorphic forms on T . We choose fixed loops
α1, . . . ,αg representing the classes a1, . . . ,ag , and denote their union by A. We
shall now prove Theorem II.2.5 for forms of the second and third kind.

We first consider the case of meromorphic 1-forms having only simple poles.
Such a form can always be expressed as a linear combination of meromorphic 1-
forms each with precisely two simple poles at which the residues are +1 and −1.
Moreover by adding suitable holomorphic 1-forms if necessary, in view of Propo-
sition II.2.7 we can assume without loss of generality that the integrals of these
1-forms around the loops α1, . . . ,αg are all zero. We are thus left to prove the
following result:
Proposition II.2.8 — Corresponding to any two distinct points p,q ∈ T \ A, there
exists a unique meromorphic 1-form ωp,q on T, having simple poles at p and q
with residues respectively +1 and −1, and without any other poles, and such that
the integral around each of the loops α1, . . . ,αg is zero.
Proof. — Consider the vector space Ωp,q of meromorphic 1-forms on T with
simple poles at p and q and no other poles. Write Θ : Ωp,q → C

g+1 for the
linear map associating with each element of Ωp,q its integrals around the loops
α1, . . . ,αg and its residue at p (the residue at q being the negative of that at p).
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Proving the above proposition is then equivalent to showing thatΘ is bijective. We
know it’s injective since any two elements in the kernel differ by a holomorphic
1-form whose integral around each of the loops α1, . . . ,αg is zero. It thus suffices
to prove that the dimension of the vector space Ωp,q is at least g + 1.

The proof of this is similar to that of Proposition II.2.6: as in the proof of
that proposition one constructs the desired forms on the curve C of degree d of
Theorem II.1.3 — the image under an immersion of T in CP2. We may assume
that the images of the points p and q in C do not coincide with any singular point
and do not lie on the line at infinity; we continue denoting them by p and q.

Let D denote the line of CP2 determined by p and q. We choose an equation
(ax + by + c = 0) for D and consider those elements of Ωp,q expressible in the
form

ω =
P(x, y)

(ax + by + c)F ′y
dx, (II.11)

for some polynomial P(x, y). The line D intersects the curve C in d points,
counted according to their multiplicities; to simplify the argument we shall as-
sume these points pairwise distinct and off the line at infinity. The formula (II.11)
defines a priori a holomorphic 1-form on the curve C from which the ramification
points of the map x : C → CP1, the points of intersection of C with the line at
infinity, the double points of C, and the points of intersection of C with the line D
have been removed. The same reasoning as in the proof of Proposition II.2.6 then
shows that the formula (II.11) lifts to an element of Ωp,q if and only if:

— the polynomial P has degree at most d − 2;

— the polynomial P vanishes at each double point of C; and

— the polynomial P vanishes at each of the d − 2 points of intersection of C
with D distinct from p and q.

The polynomials in the variables x, y of degree at most d − 2 form a vector space
of dimension d(d−1)

2 . The vanishing of a polynomial at the r double points of C
and the d − 2 points of C ∩ D distinct from p and q, yields r + (d − 2) linear
equations in its coefficients. Hence the dimension of the space Ωp,q is greater
than or equal to

d(d − 1)
2

− r − (d − 2) =
(d − 1)(d − 2)

2
− r + 1,

which by (II.3) is equal to g + 1.
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A similar (but trickier to expound) count of dimensions yields the same out-
come in the case where D has multiple intersection points with C. �

The 1-formωp,q given by Proposition II.2.8 “depends holomorphically on the
points p,q”. A precise meaning can be given to this assertion as follows. Choose
an open set U ⊂ T on which the coordinate x defines an injective map. Then on U
the form ωp,q can be expressed as:

ωp,q (r) =

(
1

xr − xp
−

1
xr − xq

+ Gx
p,q (r)

)
dxr ,

where xp , xq , xr are the values of the coordinate x at the points p, q, r . Then
for every pair (p,q) ∈ (UKA)2 of distinct points, the function r 7→ Gx

p,q (r) is
holomorphic on U. In fact:

Proposition II.2.9. — The function (p,q,r) 7→ Gp,q (r) with p , q is holomor-
phic in the three variables as a map to

{(p,q,r) ∈ (UKA) × (UKA) ×U |p , q} .

Furthermore it extends holomorphically to the diagonal p = q.

Proof. — We first repeat the construction of the 1-form ωp,q in the proof of the
previous proposition: that 1-form was given in terms of the x-coordinate by

ωp,q =
Pp,q (x, y)

(ax + by + c)F ′y
dx,

where (ax + by + c = 0) was an equation of the line determined by the points
p, q, and Pp,q (x, y) was a polynomial of degree at most d − 2. The coefficients
of this polynomial satisfy a system of affine equations made up of the following:
d(d − 3)/2 − (g − 1) + (d − 2) linear equations deriving from the fact that ωp,q

belongs to the space Ωp,q , then g linear equations expressing the condition that
the integral of ωp,q around each of the loops α1, . . . ,αg is zero, and finally one
equation from the condition that the residue of ωp,q at p should be 1. Clearly
the coefficients in these affine equations depend holomorphically on p and q. It
follows via the uniqueness of ωp,q and therefore of the polynomial Pp,q that this
system has maximal rank20, whence it follows in turn that the polynomial Pp,q

itself depends holomorphically on the points p and q. The first assertion of the
proposition is then immediate.

20Since there are altogether d(d − 1)/2 equations in the same number of coefficients of Pp,q .
Trans
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We now show that the function (p,q,r) 7→ Gp,q (r) extends holomorphically
to the diagonal p = q. For pairwise distinct p,q, t ∈ U K A, the uniqueness asser-
tion of Proposition II.2.8 implies that

ωp,q = ωp, t + ωt,q and Gp,q (r) = Gp, t (r) + Gt,q (r).

As the points p and q are allowed to merge into a single point (different from t),
the quantity Gp, t (r) + Gt,q (r) extends holomorphically; hence the same is true of
Gp,q (r). �

The same sort of arguments as above allow the construction of meromorphic
1-forms with poles of orders greater than or equal to 2. Not pretending to exhaus-
tiveness, we merely state a typical result in this direction:

Proposition II.2.10. — Given a point p ∈ T K A, there exists a unique meromor-
phic 1-form on T having a pole of order 2 at p, with principal part 1

(x−xp )2 , and
with no other poles, and whose integral around each of the loops α1, . . . ,αg is
zero.

Proof. — This follows as in the proof of Proposition II.2.8, except that the role of
the line D is now played by the tangent to the curve C at p. �

Remark II.2.11. — In the statements of Propositions II.2.7, II.2.8, and II.2.9,
one may — as in the statement of Theorem II.2.5 — replace the condition “whose
integral around each of the loops α1, . . . ,αg is zero” by the condition “whose
integral around each of the loops α1, . . . ,αg , β1, . . . , βg is purely imaginary. To
see this, it suffices to consider the map Φ defined earlier in place of the map Ψ.

II.2.4. The Riemann–Roch theorem

In Section V of his memoir, Riemann begins his investigation of the space of
meromorphic functions on a given compact surface T . He proposes determin-
ing the functions by means of their poles: this is the Riemann–Roch problem.
(According to Gray [Gra1998], this name was bestowed by Brill and Noether
in [BrNo1874].)

Riemann first considers a given set {P1, . . . ,Pm } of points, candidates for sim-
ple poles, the case of poles of greater order to be dealt with subsequently by pass-
ing to a limit where several poles merge. This procedure is used several times by
Riemann, and it is not always easy to make it work formally, even if it is clear
enough intuitively.

The set of meromorphic functions having at most simple poles at the points
P1, . . . ,Pm is obviously a complex vector space. Riemann quickly shows that it
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has finite dimension, and obtains an upper bound for the dimension by considering
such meromorphic functions as particular cases of many-valued functions of a
special kind (in the following quote we have taken the liberty of changing some
of the notation):

The general expression of a function s, which becomes infinitely large of
the first order at m points P1,P2, . . . ,Pm of the surface T is, by virtue of the
above,

s = β1t1 + β2t2 + · · · + βmtm + α1w1 + α2w2 + · · · + αgwg + const.,

where ti is any function tPi
and where the quantities α and β are constants.

If we wish to avoid using many-valued functions on T , we may instead couch
our argument in terms of the differentials of the functions in question: if f is
one of the functions under study, then its differential df is a linear combination
of differentials of the second kind associated with each point Pi (the dti) and of
differentials of the first kind (the dw j ).

The existence of these forms and the fact that those of the first kind constitute a
space of dimension exactly g constitute a special case of Theorem II.2.5. In taking
their (many-valued) primitives, one should not forget to add 1 to the dimension on
account of the constant of integration.

Next one needs to distinguish the differentials without periods, that is, those
that integrate to yield meromorphic functions, the object of the investigation. By
considering a basis for the first homology group, one obtains 2g conditions for
the vanishing of the periods, which one interprets as 2g linear conditions on the
space of forms in question. It follows that altogether their dimension is at most 2g,
whence the following:

Theorem II.2.12 (Riemann’s inequality). — Let T be a compact Riemann sur-
face of genus g. The vector space of meromorphic functions having at most simple
poles at the points P1, . . . ,Pm has dimension at least m − g + 1.

By varying the set of poles imposed, we infer the following corollary:

Corollary II.2.13 (Riemann). — A compact Riemann surface admits infinitely
many meromorphic functions linearly independent over C.

It was Gustav Roch, a student of Riemann — deceased, alas, very young, in
the same year as his supervisor — who subsequently succeeded, in [Roc1865], in
interpreting the difference between the dimension sought and the quantity m−g+1.

Here is the full statement, embracing also the case of multiple poles:

Theorem II.2.14 (Riemann–Roch). — Let T be a compact Riemann surface of
genus g, and let P1, . . . , Pm be points with which are associated “multiplicities”



II Riemann 61

n1, . . . , nm from N∗, and write m =
∑

ni , the sum of these multiplicities. Then the
difference between the dimension of the vector space of functions having a pole
of order at most ni at the point Pi and (m − g + 1) is equal to the dimension of
the vector space of holomorphic forms having a zero of order at least ni at the
point Pi .

Application to the uniformization of curves of genus 0 and 1. — It is difficult
to overestimate the importance of the Riemann–Roch theorem for the modern
approach to the theory of algebraic curves. In particular, it is this theorem that is
regularly invoked in order to prove that every compact, simply connected Riemann
surface is isomorphic to the Riemann sphere.
Theorem II.2.15. — A compact Riemann surface of genus zero is biholomorphic
to the Riemann sphere.

Proof. — It follows directly from the Riemann–Roch theorem that such a sur-
face S admits a meromorphic function with just one, simple, pole, that is, there
exists a holomorphic mapping S → C̄ of degree 1. Since S has genus zero, by the
Riemann–Hurwitz theorem this mapping can have no ramification points, so that
it is an isomorphism. �

Despite the simplicity of this proof, this result was most probably not thought
of by Riemann or Roch, whose interest, it must be recognized, was not centered
on the genus zero case. In Chapter IV we shall give an analytic proof of this
theorem due to Schwarz, and a little further on in the present section a proof due
to Clebsch using birational geometry.

In much the same way, the Riemann–Roch theorem allows one to uniformize
curves of genus 1.

Theorem II.2.16. — A compact Riemann surface of genus 1 is biholomorphic to
a quotient of C by a lattice of translations.

Proof. — Applied to the case m = 0, g = 1, the Riemann–Roch theorem tells
us that on a surface S of genus 1 there exists a nowhere vanishing holomorphic
form ω. Consider now the vector field dual to ω, that is, the non-singular vector
field X such that ω(X ) = 1. Integration of this field affords an action of C on
the surface S. Since X is non-singular, every (complex) integral curve of X —
the orbits of the action, in other words — are open. Then since the complement
of an orbit is a union of orbits, these must also be closed. Moreover since S is
connected, the action is transitive, so S can be identified with C/Λ, where Λ is the
stabilizer of a point, a closed subgroup of C. Since S is compact and has the same
dimension as C, Λ must necessarily be a lattice in C. �

Once again it seems that Riemann never wrote this result down explicitly, even
if, as seems likely, he had at some time conceived it.
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Box II.5: The Riemann–Roch theorem and Serre duality

A word on how the Riemann–Roch theorem is formulated nowadays. The
system of multiplicities ni attached to the points Pi of the surface T is called
a divisor D :=

∑
niPi . The sum

∑
ni is then defined to be the degree deg(D)

of D.
The (germs of) functions having at most a pole of order ni at the point Pi

form a sheaf, denoted by O(D). The two cohomology groups H0(O(D)) and
H1(O(D)) of this sheaf are naturally endowed with the structure of finite-
dimensional complex vector spaces, with dimensions denoted respectively by
h0(O(D)) and h1(O(D)). In the literature the dimension h0(O(D)) is also
often denoted by l (D).

The first vector space H0(O(D)) can be interpreted as that consisting of the
meromorphic functions in question with poles of order at most D and defined
globally on T . The second can be interpreted globally only via the Serre duality
theorem, affirming that there is a canonical isomorphism

H1(O(D)) ' (H0(Ω(−D)))∗,

where Ω(−D) is the sheaf of holomorphic forms vanishing at least to the or-
der D. If K is the divisor of a global holomorphic (or meromorphic) differen-
tial form, then the sheaf Ω(−D) becomes identified with the sheaf O(K − D),
whence the following version of the Riemann–Roch theorem (for curves):

l (D) − l (K − D) = deg(D) − g + 1.

The Euler characteristic χ(O(D)) of the sheaf O(D) is by definition the
difference h0(O(D)) − h1(O(D)). Thus the Riemann–Roch theorem may also
be stated in the form

χ(O(D)) = deg(D) − g + 1.

Thus, via Serre duality, one retrieves the version II.2.14 of the theorem.
Viewed this way, the above modern version might seem to be merely a tauto-
logical reformulation. However, the significance of this reformulation derives
from the fact that it allows the statement to be extended to higher dimensions,
as was shown by Kodaira, Hirzebruch, Serre, and Grothendieck in the 1950s:
the Euler characteristic χ(F ) of a sheaf F of sections of an algebraic
fibre bundle over a compact algebraic variety or of a holomorphic bundle
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over a compact analytic manifold is expressed uniquely in terms of topological
invariants of the bundle in question and the tangent bundle of the manifold; and
the vector spaces H i (F ) entering into the definition of χ(F ) are naturally
isomorphic to (Hn−i (Ω(F ∗)))∗, where n is the dimension of the variety or
manifold.

We shall now prove the preceding two results using an idea due to Cleb-
sch [Cle1865a, Cle1865b]. This method has the advantage of being completely
algebraic in the sense that it uses no analysis (unlike the proof of Riemann–Roch
via the Dirichlet principle). On the other hand, it has the shortcoming that it deals
only with Riemann surfaces assumed a priori to be algebraic.

By Theorem II.1.3 the surface S can be so immersed in CP2 that its image is
an algebraic curve C having as its only singularities double points with distinct
tangents.

Let n be the degree of C. Recall from the formula (II.3) that the genus of S is
equal to (n−1)(n−2)

2 − k, where k is the number of double points.

Curves of genus zero. — Suppose S has genus zero. Then the curve C has N =

(n − 1)(n − 2)/2 double points x1, x2, . . . , xN , say. Choose any particular n − 3
other points y1, . . . , yn−3 on C. Recall that the projective space of curves of a given
degree d has dimension d(d + 3)/2, so that the projective space E of curves of
degree n−2 passing through the N points xi and the n−3 points yi has dimension
at least

(n − 2)(n + 1)
2

− N − (n − 3) = 1.

Let z1 and z2 be any two distinct points of C. Through each of these there passes
at least one curve from E. By replacing E by the line in E determined by a curve
through z1 and a curve through z2 (considered as points of the projective space E),
we may suppose that E has dimension precisely 1.

By Bézout’s theorem, each curve of degree n − 2 meets C in n(n − 2) points,
counted according to their multiplicities. Thus apart from the xi and the yi , the
curves in E meet C in

n(n − 2) − 2N − (n − 3) = 1

points. This affords us a rational map from E to C. It is not constant since z1
and z2 are distinct points in the image. It is even birational since the preimage of a
point is a proper projective subspace of the one-dimensional space E, so consists
of a single point.
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Curves of genus 1. — Now suppose the genus of S is 1. In this case the curve C
has N = (n − 1)(n − 2)/2−1 double points x1, x2, . . . , xN . Choose any particular
n − 3 other points y1, . . . , yn−3 on C. The space E consisting of curves of degree
n−2 passing through the N points xi and through the yi has projective dimension
at least:

(n − 2)(n + 1)
2

− N − (n − 3) = 2.

Analogously to the case of genus 0, if E happens to have dimension greater than 2,
we replace it by a generic subspace of dimension precisely 2. By Bézout’s theo-
rem, apart from the xi and yi , the curves from E each meet C in

n(n − 2) − 2N − (n − 3) = 3

points. It follows that corresponding to each generic point x of C, there exists
exactly one curve from E tangent to C at x (and passing through the xi and yi).
This defines a rational map from the curve C to the projective plane E. We shall
now show that the image of this map is a cubic curve.

To this end we consider the pencil of curves in the projective space E deter-
mined by two of its elements, and find the condition that a curve in this pencil
be tangent to C. The condition takes the form of an equation of degree 3 since it
involves the vanishing of the discriminant of a polynomial of degree 3. The cubic
thus obtained must be non-singular since we know that a singular cubic has genus
zero. We have thus established a birational equivalence between the curve C and a
smooth cubic, which may now in turn be projectively transformed into Weierstrass
normal form.

II.3. The Jacobi variety and moduli spaces

After having investigated his surfaces individually, Riemann seeks to comprehend
them collectively. This represents the birth of the “space” of moduli. Difficul-
ties in defining this space notwithstanding, this opens the way to a topological
approach to the uniformization theorem: the method of continuity, forming the
theme of the second part of the present book.

II.3.1. Moduli spaces of Riemann surfaces

Birational equivalence. — At the beginning of his investigation, Riemann con-
siders the surface T to be associated with an algebraic function s(z) as a branched
covering of the sphere Cz associated with the plane of the complex variable z.21

21More precisely, above that plane. The use of the Riemann sphere is made explicit subsequently
in work of Neumann [Neum1865].
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However he next envisages changing the variable z employed to represent T :

A function z1 of z, ramified like T , which becomes infinite to the first order
at n1 points of that surface [. . . ], takes each of its values at n1 points of the
surface T . Consequently, when one imagines each point of T represented by
a point of a plane representing geometrically the value of z1 at that point, the
totality of these points forms a surface T1 everywhere covering the z1-plane
n1 times, a surface which is, one understands, a representation, similar to
it in its smallest parts, of the surface T . To each point of either of these
surfaces there then corresponds a unique point of the other.

Mathematicians later learned to say that T and T1 are isomorphic as Riemann
surfaces, and, in particular, homeomorphic. However, in order to begin using such
language, it would be necessary to come to the recognition that various sorts of
mathematical objects have internal structures defining their form, and it was to
this realization that in fact the work of Riemann contributed in no small measure.

After having represented T in a new way with the aid of a meromorphic func-
tion z1, one can go on to consider the representation one obtains by means of a
further meromorphic function:

If one denotes by s1 any other function whatever of z, ramified like T [. . . ],
then (§V) s1 and z1 will be linked by an equation of the form F1(s1, z1) = 0,
where F1 is a power of an irreducible entire function of s1, z1, and when
this power is the first, one can express every function of z1 ramified like T
rationally in terms of s1 and z1, and, consequently, all rational functions of
s and z (§VIII). The equation F (s, z) = 0 can thus, by means of a rational
transformation, be transformed into F1(s1, z1) = 0 and vice versa.

The equivalence relation that he introduces stemming from such considera-
tions represents the point of departure of birational geometry (see Klein [Kle1928,
Chapter VII]):

We now consider as forming part of the same class, all irreducible algebraic
equations in two variable quantities that can be transformed one to the other
by means of rational substitutions [. . . ].

The choice of an equation F (s, z) = 0 in such a class, and of one of the two
variables s say, as representing, via this equation, an algebraic function of the
other variable z, allows us to define “a system of identically ramified algebraic
functions”, or, in modern terminology, a finite extension of the field C(z), that is,
the field of rational functions over the curve defined by the equation F (s, z) = 0



66 II Riemann

(which may also be thought of as the field of meromorphic functions on the asso-
ciated Riemann surface). One thus arrives at the present definition: two algebraic
curves are birationally equivalent if their fields of rational functions are isomor-
phic as field extensions of C. And in fact two non-singular curves are birationally
equivalent if and only if they are biholomorphic.

Counting moduli. — At this point Riemann introduces the moduli problem for
Riemann surfaces of genus g — the problem of studying the birational equivalence
classes for each fixed topological type of Riemann surface, that is, for each fixed
value of the genus.

Riemann explains that, for g ≥ 2:22

[. . . ] a class of systems of functions identically ramified and (2p + 1)-
connected and the class of algebraic equations belonging to it, depend on
3p − 3 quantities varying in a continuous manner, which will be called the
moduli of the class.

Nowadays we speak of the moduli space, but here we see that Riemann refers
only to the number of parameters needed to determine the points of the space,
that is, its complex dimension, without any mention of the possibility of a global
construction of such a “space”. Nonetheless he has thought of this possibility, as is
shown by the following excerpt from his habilitation address [Rie1854, pp. 282–
283], delivered three years earlier:

Concepts of size are possible only where there exists a general concept al-
lowing different modes of determination. According to whether it is or is
not possible to pass from one of these modes of determination to another
in a continuous manner, they form a continuous or discrete manifold [. . . ]
the occasions giving rise to concepts whose modes of determination form a
continuous manifold are so rare in everyday life that the positions of sensi-
ble objects and their colours are practically the only simple concepts whose
modes of determination form a manifold of several dimensions. It is only
in higher mathematics that occasions for the formation and development of
such concepts become more common.

Such investigations have become necessary in many areas of mathematics,
notably in the study of analytic many-valued functions, and it is primarily
on account of their imperfection that Abel’s celebrated theorem, as well as
works of Lagrange, Pfaff, and Jacobi on the general theory of differential
equations, have remained sterile for so long.

22In the following quotations the genus is denoted by p.
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Riemann proposes two methods for calculating the number of moduli, the first
valid only for g > 1, and the second for g ≥ 1. (We saw in the preceding chapter
that a Riemann surface of genus g = 0 is isomorphic to Cz ' CP1.)

First method. — Here for each µ > 2g Riemann considers the set of meromor-
phic functions on T with exactly µ poles (counted according to their multiplic-
ities). In other words he considers the space of holomorphic maps of degree µ

from T to CP1. It follows from the Riemann–Roch theorem (Theorem II.2.14 and
Box II.5) that this space has dimension 2µ − g + 1.

By the Riemann–Hurwitz theorem (see Box II.4) a function from T to CP1

with µ poles has 2(µ + g − 1) ramification values, that is, the set of images of its
critical points is a finite subset of points of the Riemann sphere of this cardinality.
By allowing the function to vary (by varying the “arbitrary constants” on which it
depends), this finite set can be varied. And then:

These constants can be given values in such a way that the 2µ − p + 1
ramification points take on any prescribed values provided the functions
determined by these constants are independent, which can be achieved in
only finitely many ways since the equations expressing this condition are
algebraic.

Riemann now asserts that the condition that the functions be independent is
satisfied provided g > 1. In this case, by choosing the meromorphic function
on T so that the 2µ − g + 1 “ramification points take on any prescribed values”,
there remain 3g−3 unused ramification values, which therefore afford a complete
system of parameters for the moduli of T .

Second method. — Rather than considering, as in the above approach, properties
of meromorphic functions on T , the second method exploits properties of inte-
grals w of holomorphic forms (“integrals of the first kind”) — or, more precisely,
of their periodicity moduli relative to a fixed system of sections transforming T
into a simply connected surface T ′ and their values at the zeros of the associated
holomorphic form, that is, the critical values of w |T ′.

The calculation yielding the desired 3g − 3 moduli of the surface T is then as
follows:

[. . . ] we can, in the quantity w = α1w1 + α2w2 + · · · + αpwp + c, treated
as an independent variable, determine both the quantities α, where of 2p
periodicity moduli p can be given prescribed values, and the constant c,
provided p > 1, and in such a way that one of the 2p − 2 ramification
values of the periodic functions of w take on a prescribed value. In this
way w is completely determined, and consequently the remaining 3p − 3
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quantities on which depend the mode of ramification and the periodicity of
these functions of w likewise [. . . ].

The question that suggests itself next is whether the set of isomorphism classes
of Riemann surfaces of a fixed genus g can be naturally endowed with supplemen-
tary structures. Is there, for example, a topology on that set with respect to which
the parameters considered by Riemann in the above two approaches become con-
tinuous functions? It is only when one has imposed on the set of isomorphism
classes some sort of structural concepts of a geometrical nature that one can speak
of the space of moduli. The problem of moduli, as it arose following Riemann,
is that of defining such structures reflecting the properties of the objects under
examination.

For example, if we consider compact Riemann surfaces as complex algebraic
curves, we may ask if the space of moduli can itself be regarded as a complex
algebraic variety. Contemporary research has shown that this is indeed the case
(see the book [HaMo1998]).

Proposition II.3.1. — There exists an irreducible quasi-projective complex vari-
etyMg (hence connected) that is a moduli space for the compact complex smooth
algebraic curves of genus g.

We now elucidate the meaning of this statement. It is easy to define the con-
cept of an algebraic family of curves of genus g: such an object is given by an
algebraic morphism X

π
−→ B with fibres π−1(b) curves of genus g. Thus we have

a family of curves “parametrized” by the base B. Our spaceMg is characterized
by the property that for each family of this sort, there exists a unique algebraic
map B

γ
−→ Mg such that for each b ∈ B the curve π−1(b) belongs to the isomor-

phism class represented by the point γ(b) ∈ Mg . In particular, therefore, there
is a canonical bijection between the points of Mg and the isomorphism classes
of curves of genus g, by means of which the algebraic structure ofMg induces a
geometric structure on the set of moduli.

An important point here is that Mg itself is not the base of any algebraic
morphism X

π
−→ Mg for which for every b ∈ Mb , the fibre π−1(b) is in the

isomorphism class represented by b. For this reason one says thatMg is only a
coarse moduli space.

In the above two methods of Riemann one is in effect considering Riemann
surfaces endowed with certain supplementary structures: a meromorphic function
defined on the surface together with an enumeration of its critical values, or again
a basis for its homology. The question of the existence of moduli spaces for such
“enriched” Riemann surfaces turns out to be an important one. The advantage
of such an approach is that by enriching the additional structure sufficiently one
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obtains objects without nontrivial automorphisms, which facilitates study of the
moduli problem. For example, this allows one to show that Mg is in fact the
quotient of a smooth algebraic variety by a finite group action.

II.3.2. The “Abelian” uniformization of Jacobi and Riemann

A further important contribution of [Rie1857] was the solution of the “inversion
problem” left open by Abel and Jacobi. In order to better explain Riemann’s
contribution, we go back to Abel, who — around 1829 — managed to generalize
Euler’s addition theorem to Abelian integrals. He starts with an integral∫ x

x0

y dx

where y(x) is an algebraic function defined by an irreducible polynomial equa-
tion F (x, y) = 0, and he shows that there exists an integer µ ≥ 0 such that for
any given µ + 1 complex numbers x1, x2, . . . , xµ+1 one can find µ complex num-
bers x ′1, . . . , x

′
µ — uniquely determined up to order — depending rationally on

x1, x2, . . . , xµ+1 such that∫ x1

x0

y dx +

∫ x2

x0

y dx + · · · +

∫ xµ+1

x0

y dx =

∫ x′1

x0

y dx + · · · +

∫ x′µ

x0

y dx,

to within a period of
∫
y dx. One should think of this as merely a formal equality

between sums of anti-derivatives. For example, for the integral of the form of the
second kind dx/x, that is, the complex logarithm, one has∫ a

1

dx
x

+

∫ b

1

dx
x

=

∫ ab

1

dx
x
.

By applying Abel’s theorem several times one sees that it leads to an “addi-
tion” of µ-tuples of points. More precisely:

For any given µ-tuples (x1, . . . , xµ ) and (x ′1, . . . , x
′
µ ), defined up to order,

there is a µ-tuple (x ′′1 , . . . , x
′′
µ ), uniquely determined up to order, depending ratio-

nally on (x1, . . . , xµ ) and (x ′1, . . . , x
′
µ ), such that

µ∑
1

∫ xi

x0

y dx +

µ∑
1

∫ x′i

x0

y dx =

µ∑
1

∫ x′′i

x0

y dx.

Thus whereas Euler and Gauss found an addition rule for the points of a lem-
niscate (the case µ = 1), Abel found such a rule for sets of size µ.
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The situation remained for some time in this rather mysterious — and more-
over not quite valid — form. In particular, the significance of the integer µ re-
mained hidden from view. It had to wait for the work of Jacobi and especially
Riemann before it was understood that when the Abelian integral is of the first
kind, µ is equal to the genus g of the Riemann surface associated with y, and
when the integral is of the second kind — as in the case of the logarithm — µ is
g + 1. We should not forget that at the time of Abel and Jacobi no one thought of
an algebraic curve as a surface endowed with a topology.

For an exposition of Abel’s theorem from his point of view, the reader may
consult [Cat2004, Kleim2004], where it will be seen that Abel considered several
rather different versions of his theorem.

Hyperelliptic functions and Jacobi’s inversion problem. — One of the first fami-
lies of Abelian integrals beyond elliptic integrals consists of those of the following
form:

u =

∫ x

0

(α + βx) dx
√

P
,

where P is a polynomial of degree 6. This corresponds to the curve C with equa-
tion y2 = P(x), a Riemann surface S of genus 2 to which (α + βx) dx/y lifts as
a holomorphic differential. The integral therefore has precise meaning provided
one specifies the homotopy class of the path of integration joining the two limits
of integration. We note once again that the concepts expressed in this sentence
were not available to Jacobi.

Thus the “function” u lifts to a many-valued function on S. Recall that in the
case of a polynomial P of degree 3 or 4 the analogue of the map u (where P is
assumed to have degree 6) has a doubly periodic inverse. In the present case the
study of the inverse of u encounters two major difficulties.

The first difficulty arises from the vanishing of the form (α + βx) dx/y at two
points on the surface (x = −α/β corresponds to the two points of the surface
arising from the two values taken by

√
P at that x). Hence u has critical points,

whence its “inverse” — assuming it existed — would have branch points and so
not be single-valued! This difficulty did not arise in the elliptic case because the
form dx/

√
P (with P of degree 3 or 4) does not vanish on the corresponding

elliptic curve.
The second difficulty arises from the fact that (α + βx) dx/y affords four

periods, given by integrals around four loops encircling pairs of roots of P. If it
existed, the inverse function would thus have four independent periods. Jacobi
established the fact, clear to a modern mathematician, that a subgroup of rank 4
of C cannot be discrete, and so cannot serve as the group of periods of a non-
constant meromorphic function.
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Following on the appearance of Abel’s article on the laws of addition of µ-
tuples of points, Jacobi had two brilliant new ideas for finding a way out of the
impasse.

The first of these consisted in using two holomorphic forms simultaneously
on C. Given any loop γ on C, one can integrate dx√

P
and x dx√

P
, obtaining a pair

of periods (ω1(γ),ω2(γ)) ∈ C2. As γ ranges over all loops on C, these pairs of
periods range over a subgroup Λ of rank 4 of C2 and no longer of C as previously.
It is therefore possible that Λ is a discrete subgroup of C2 and indeed this turns
out to be the case. Thus one now has available a holomorphic map — called the
“Abel–Jacobi map” — utilizing two forms, namely:

x ∈ C 7→
(∫ x

0

dx
√

P
,

∫ x

0

x dx
√

P

)
∈ C2/Λ.

The complex torus C2/Λ is today called the Jacobian of the curve C. However,
uniformization has not been achieved here since the torus C2/Λ has dimension 2,
so could not possibly parametrize the curve C, of dimension 1.

Jacobi’s second idea was to use pairs of points, that is, to use the map

(x1, x2) ∈ C2 7→

(∫ x1

0

dx
√

P
+

∫ x2

0

dx
√

P
,

∫ x1

0

x dx
√

P
+

∫ x2

0

x dx
√

P

)
∈ C2/Λ.

The domain and codomain of this map have the same dimension, but the map
is not bijective since it sends (x1, x2) and (x2, x1) to the same image. One gets
around this by working instead with the “symmetric square” C (2) of C, the quo-
tient of C2 by the involution switching the two factors; the elements of C (2) are
therefore essentially just the unordered pairs of not necessarily distinct points
of C. By means of elementary symmetric functions one then endows C (2) with the
structure of a smooth algebraic variety of dimension 2. Thus one now has at one’s
disposal a holomorphic map from C (2) to C2/Λ, and it is this map that Jacobi
seeks to invert. The question of its surjectivity is the “Jacobi inversion problem”,
which he himself failed to solve. This particular problem was solved around that
time by Adolph Göpel and Georg Rosenhain in the special case of hyperelliptic
curves that we have been expounding here. But it is to Riemann that we owe the
complete solution of the problem.

Riemann and the Jacobi inversion problem. — Riemann begins by generalizing
the construction to any surface S whatever, not necessarily hyperelliptic. Recall
that by Theorem II.2.5 the space of holomorphic forms on S has dimension equal
to the genus g of S. By integrating g such forms comprising a basis for that space
over all loops on S we obtain a subgroup Λ of Cg . Riemann proves that this
subgroup is a lattice, that is, that it is discrete with compact quotient Cg/Λ. Much
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as above one constructs an Abel–Jacobi map from C to Cg/Λ. By taking the sum
of the images in Cg/Λ, one then obtains a map from the symmetric power C (g) to
Cg/Λ. Riemann now establishes the following two fundamental theorems:

Theorem II.3.2. — The Jacobian Cg/Λ of an algebraic curve is an algebraic
variety, that is, it embeds holomorphically in a projective space of sufficiently
high dimension as an algebraic subvariety.

Theorem II.3.3. — The Abel–Jacobi map C (g) → Cg/Λ is birational.

This does not mean that this map is an isomorphism — in fact a little topo-
logical reasoning shows that for g ≥ 2 these two spaces are not even homeomor-
phic. However, by way of compensation we get the existence of a rational map
Cg/Λ→ C (g) that is inverse to the Abel–Jacobi map where defined.

To give the proofs of Theorems II.3.2 and II.3.3 would take us too far afield.
We limit ourselves to sketching briefly a proof of the surjectivity of the map in
Theorem II.3.3.

Proof. — We shall show that the Abel–Jacobi map has non-zero “topological de-
gree”. Recall (see [Mil1965]) that the topological degree of a C∞ map between
two compact orientable manifolds is the sum of the signs of the Jacobian determi-
nants over the preimages of a regular value. Hence a map of non-zero topological
degree must be surjective.

The Abel–Jacobi map is holomorphic and is therefore orientation-preserving.
Thus it suffices to prove that its image contains a regular value. We shall show that
there exists a g-tuple l ∈ C (g) where the derivative is invertible; this will suffice
since then by the (local) Inverse Function Theorem the image of our map must
contain a non-trivial open set and hence at least one regular point.

Observe that the derivative of the Abel–Jacobi map fails to be invertible at a
g-tuple l = (x1, . . . , xg ) ∈ C (g) if and only if there exists a form ω of the first
kind on C that vanishes at all of the xi . It therefore suffices to find a g-tuple l at
which no form vanishes. To this end we consider the projective space P(Ω1(C)),
of dimension g−1. The subset A of P(Ω1(C)) × C (g) consisting of all pairs (ω̄, l)
where ω̄ is the complex line defined by a differential form ω vanishing on the
g-tuple l, is an analytic subset of dimension g − 1, so that its projection on the
factor C (g) cannot be surjective. �

With a little more work it can be shown that the topological degree of this map
is exactly 1. This implies that there exist dense open sets in C (g) and in Cg/Λ that
are biholomorphic to one another, so that the Abel–Jacobi map is birational.

One can find a proof of the first of Riemann’s theorems above (giving a neces-
sary and sufficient condition — in terms of the “Riemann bilinearity conditions”
— for a torus Cg/Λ, which is automatically a holomorphic manifold, to be in
fact an algebraic variety) in [Bos1992]. This proof exploits a higher-dimensional
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generalization of the Jacobi ϑ-functions, called since then the “Riemann theta-
function”.

While the Jacobian naturally carries the structure of an Abelian group, Theo-
rem II.3.2 endows it besides with the structure of an algebraic variety. This can be
phrased more concisely by saying that “the Jacobian is an Abelian variety”, which
serves to join in a single statement the names of the two protagonists whose rivalry
should not be allowed to obscure the similarity of their mathematical visions23.

These theorems afford a new global perspective on the theories of the integrals
of algebraic functions and of algebraic curves:

— the birational identification of the first theorem renders transparent Abel’s
theorem on the law of addition of g-tuples of points: a mysterious addi-
tion formula becomes a simple consequence of the group operation on the
Jacobian;

— without yielding a parametrization of the points of the curve, Riemann’s
theorems provide a simple algebraic model for g-tuples of points by refer-
ring them to a given algebraic model.

However, in the course of time, it transpired that one could do much better than
this “Abelian uniformization”. Twenty-five years later Klein and Poincaré showed
that the points of C itself (and not just of C (g)) can be uniformized.

23In a letter addressed to Legendre which has remained famous, dated July 2, 1830, Jacobi writes:
“But M. Poisson should not have reproduced in his report the not very clever statement of the late
M. Fourier, by which the latter reproaches us, Abel and me, for not having occupied ourselves
instead with the motion of heat. It is true that M. Fourier was of the opinion that the principal aim
of mathematics is public utility and the explanation of natural phenomena; but a philosopher like
him should have known that the only aim of science is to honor the human spirit, and that under
this banner a question about numbers is worth just as much as a question about the system of the
world.”





Chapter III

Riemann surfaces and Riemannian
surfaces

In 1881 Felix Klein gave a course [Kle1881] on Riemann’s work, in which he
tried to make the theory of Riemann surfaces more intuitive. By then, of course, a
considerable length of time had elapsed since the appearance of Riemann’s mem-
oirs of 1851 and 1857 [Rie1851, Rie1857]; this reworking of Riemann’s results
was contemporaneous with the first announcements of the uniformization theo-
rem, which we shall be considering in Part B and of which Klein was one of the
major heroes.

Especially notable was his reinterpretation of Riemann’s Theorem II.2.5 on
the existence of meromorphic forms on a Riemann surface, in terms of fluid flow
on the surface. The better to grasp his idea, we reconsider the Riemann Mapping
Theorem from this point of view. Thus consider a bounded, simply connected
(open) region of the complex plane, and imagine that its boundary is a perfectly
conducting wire. If we attach one terminal of a battery to a point inside the re-
gion and the other to a point on the boundary, we obtain a flow of charge in the
region, following the flow lines of the gradient of the potential. One sees that
this potential has a logarithmic singularity at the point in the interior to which the
battery is attached, and is constant on the boundary in view of the assumption
that the boundary wire is perfectly conducting. Thus we have a Green’s function
on the open set, and have thereby “proved” the Riemann Mapping Theorem by
experimental means.

In his course, Klein aimed at illustrating Riemann’s theory by extending this
physical intuition to an arbitrary compact surface.

In order to describe Klein’s physical illustration in mathematical terms, one
needs to introduce a Riemannian metric on the surface under consideration. Even
though this is far removed from Klein’s actual preoccupations and techniques, it
will show how this new structure allows one to look at Riemann’s theory from a
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more modern point of view. In particular, it sheds new light on Theorem II.2.5
on the existence of meromorphic forms on a given surface and also on the moduli
problem.

III.1. Felix Klein and his illustration of Riemann’s theory

As was explained in the preceding chapter, with each algebraic function of a com-
plex variable z Riemann associates a surface covering the z-plane several times.
For most of his exposition of the theory, Riemann uses the parameter z of the
plane to describe objects that today we would consider as living on the surface.
Getting to the point of rendering unto the surface that which belongs to it has been
a long and difficult process. Here, for instance, is how Klein talks of the matter in
the preface to his course [Kle1882c], taught in 1881:

I am not sure if I’d have been able to develop a coherent conception of the
current subject as a whole if, many years ago now (1874), during an oppor-
tune conversation, M. Prym had not said something to me that has assumed
more and more importance in the course of my subsequent reflections. He
said that “Riemann’s surfaces are, fundamentally, not necessarily surfaces
of several sheets above the plane, but on the contrary, complex-valued func-
tions of position that can be studied on arbitrarily given curved surfaces in
exactly the same way as on surfaces above the plane”.

In [Kle1882c] Klein proposes expounding the theory of meromorphic forms
and functions living on a compact Riemann surface in an intrinsic language no
longer employing projections on the plane. And, even more important, he wants
to teach his students to think in physical terms, since:

[. . . ] there are certain physical considerations that have been developed sub-
sequently [. . . ]. I have not hesitated in taking these physical conceptions as
my point of departure. As we know, Riemann used Dirichlet’s principle in-
stead. However, I have no doubt that he started from precisely these physical
problems and then, in order to lend the support of mathematical reasoning
to what was obvious from a physical point of view, he replaced them with
Dirichlet’s principle.

The path from the “physically obvious” to mathematical rigour is thus strewn
with pitfalls. And in progressing towards rigour, one risks losing all intuition. Ac-
cording to Klein that is what happened in this particular case, and what motivated
him to to design his course:
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We are familiar with all the tortuous and difficult considerations by means of
which, over the last several years, some, at least, of the theorems of Riemann
that we deal with here have been given reliable proofs. Such considerations
play a completely negligible part in what follows and I thus renounce the
use of anything except intuitive foundations for the theorems stated. These
proofs should not in any way be subsequently mixed up with the ideas that
I have tried to preserve [. . . ]. However they should obviously follow them
[. . . ].

We are unable to resist quoting the following excerpt from the review by
Young [You1924] of the third volume of Klein’s collected works:

A topic that will interest the reader of Volume III is Klein’s attitude to Rie-
mann. Although Klein never saw Riemann, they can be freely compared to
Plato and Socrates. Many philologists maintain that the Platonic Socrates
is unhistoric. I would put this otherwise. What Plato tells us of Socrates is
what he thought he saw in his master, and in order to see [what he did see] a
“formidable mind” such as Plato’s was necessary. What Klein tells us about
Riemann is what he thought he saw of the master in his writings, and, I dare
say, this intuition gave Klein access to points of view of Riemann that none
of the latter’s disciples had suspected. One has only to look at Riemann’s
portrait to see that he was modest. I am prepared to believe that he had many
latent ideas of which he himself was not conscious.

One should read what Klein relates on p. 479 on the subject of his paper
“Algebraische Funktionen und ihre Integrale” (1882), where he claims to
have revealed the actual basis of the ideas underlying Riemann’s concep-
tion of his theory of functions, an essentially concrete and physical basis
for abstract and metaphysical notions. Just as the real values of an algebraic
function were then represented by points on a curve, so Riemann introduced
flat surfaces consisting of several superimposed sheets meeting only at their
branch points, in order to separate the complex values of an algebraic func-
tion f (x + iy). Klein claimed that it was only by reflecting on physical
phenomena that Riemann arrived at this idea, and that Riemann’s original
surface was not so very abstract and complicated but a completely natural
curved surface realizable in space, such as the torus.

On such a surface the phenomena of stable flow of heat or electricity is
represented mathematically by a function, the potential, satisfying the fun-
damental differential equation ∂2 f /∂x2 + ∂2 f /∂y2 = 0 of the theory of
complex functions f (x + iy). In his paper Klein develops this idea in a
very satisfying way, and shows that from this point of view most of the the-
orems of function theory become intuitive. According to Klein, Riemann
must have introduced the surfaces bearing his name only later on, in order
to elucidate his arithmetized exposition. In this connection Klein cites the
statement of Prym, a student of Riemann, that “the surfaces of Riemann
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were originally not necessarily surfaces of several sheets superimposed on
the plane. One can study complex functions of position on any curved sur-
face just as well as on planar ones”.

However, Klein realized that he had interpreted Prym’s thought incorrectly.
The latter issued a formal denial (April 8, 1882) of having said that Riemann
had conceived the idea of separating the values of a complex function on a
curved surface as Klein does in his paper.

The above remarks are a response to the reproach made against Klein of
lacking mathematical rigour in the notions forming the basis of his paper,
as also, incidentally, in other places in his writings. Klein defends himself
with the principle of intuitive methods that he makes use of.

“I seek”, he says, “to arrive by means of reflections on physical nature at
a true understanding of the fundamental ideas of the Riemannian theory. I
would wish for like procedures be used more often, since the usual style of
mathematical publication involves a habitual relegation to the background
of the important question as to the means by which one was led to formulate
certain problems or to make certain deductions. I am of the opinion that
the fact that most mathematicians pass over in total silence their intuitive
reflections, publishing only proofs (certainly necessary) in rigorous form
and for the most part mathematized, is a fault. They seem to be held back
by a certain fear of not appearing scientific enough to their colleagues. Or
is the reason, in some cases, that of not wishing to reveal the source of their
own ideas to the competition?” He also says: “It is as physician that I wrote
my note on Riemann, and furthermore in this I met with the approval of
several other physicians.”

In the following sections we first of all explain the intuitions developed by
Klein about meromorphic forms and functions on a Riemann surface. Then we
give a modern proof of Theorem II.2.5 on the existence of meromorphic forms
on a given surface: being much less physically intuitive, this nicely illustrates the
above statements of Klein.

Klein’s physical explanations are based on the idea of considering on the given
Riemann surface a Riemannian metric compatible with its complex structure.
Such a metric allows us to regard, via duality, real forms as vector fields. When
a real form is the real part of a meromorphic 1-form, the associated dual field in-
herits particular dynamical properties which can be formulated in the terminology
of Riemannian geometry and interpreted in hydrodynamic or electrostatic terms.
(The very name “electric current” bears witness to the analogies between different
branches of physics observed in the 19th century.)

Further details of these physical interpretations and their history may be found
in [Coh1967].
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III.1.1. Compatible metrics on a Riemann surface

Klein uses the following fact. Given a Riemann surface S, there is always a Rie-
mannian metric g = 〈·, ·〉 on S that is compatible with the complex structure,
meaning that it determines the same angle measure. Such a metric has the follow-
ing form, expressed in terms of a holomorphic local coordinate system z = x + iy:
g = eu (x,y)

√
dx2 + dy2, where u is a smooth function. It is very easy to construct

such a metric by modern means. It is enough to cover S by open sets Ui en-
dowed with holomorphic maps zi : Ui → C, and consider a partition of unity (ρi )
subordinate to the open cover by the (Ui ).1 One may then use the metric

g =
∑
i

ρi · z∗i (
√

dx2 + dy2).

Remark III.1.1. — If we assume the Riemann surface S embedded in some pro-
jective space CPN , we can construct globally a real analytic Riemannian metric
compatible with the complex structure on S; it suffices to restrict to S the Fubini–
Study metric on the projective Fubini–Study space (see for example [GrHa1978]
for the definition of this metric).

The complex structure on S also induces an orientation of S, determined via
the holomorphic charts by the standard orientation of C. Indeed the coordinate
changes on the overlaps of charts are biholomorphisms between open subsets ofC,
so preserve the standard orientation.

It can be shown that, conversely, a given oriented surface (S,g) endowed with
a smooth Riemannian metric admits a unique compatible Riemann-surface struc-
ture (see Section I.2.2). This local uniformization theorem is much more difficult
to prove than Gauss’s theorem I.2.1 (which is the particular case of this local uni-
formization theorem for real analytic metrics).

In summary: defining the structure of a Riemann surface on a given differ-
entiable surface S is the same thing as choosing an orientation and a conformal
class of Riemannian metrics.

The unique Riemann-surface structure on S allows us to define an associated
almost complex operator2 J : T S → T S, which, from a geometric point of view,
is just rotation through the angle π/2 in the positive sense. In fact the existence
of such an operator (satisfying the equation J2 = −I) is equivalent to the spec-
ification of an orientation and a conformal class of metrics, and therefore of a

1Thus each ρi is a continuous map S → [0,1] with support contained in Ui , and for each s ∈ S
all but finitely many of the ρi vanish in some neighborhood of s and

∑
i ρi (s) = 1. Trans

2Here T S denotes the tangent bundle over S. Trans
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Riemann-surface structure on S. By means of J one can rotate both tangent vec-
tors and real differential forms3:

∗~v := J (~v), for ~v ∈ T S,
∗α := −α ◦ J, for α ∈ T∗S.

(III.1)

Once we have fixed on a metric g compatible with the complex structure, we
can associate with each real-valued differential 1-form α on S the vector field ~vα
dual to it relative to g:

α(·) = 〈~vα , ·〉.

This then allows us to define pointwise a scalar product of two 1-forms as that of
the respective dual vector fields. Denoting by vol the area form determined by g

and the fixed orientation of S, we have the following formulae:{
vol(∗~v1,~v2) = −〈~v1,~v2〉, ∀~v1,~v2 ∈ T S
〈α1,α2〉vol = α1 ∧ ∗α2, ∀α1,α2 ∈ T∗S,

(III.2)

easily proved by calculating in terms of an orthonormal basis.
With the aid of the duality between forms and vectors one can also define the

concepts of the curl (or rotation) and divergence of a vector field (see Box III.1).

Box III.1: The curl and divergence

Let (S,g) be an oriented surface endowed with a smooth Riemannian met-
ric. Denote by vol the associated area form. Let ~v be a smooth vector field
on S and α = 〈~v, ·〉 the form dual to ~v. The 2-form dα is then the product of
the area form by a smooth function called the curl of ~v:

dα = curl~v · vol.

By Stokes’ theorem, for every region U of S with smooth boundary ∂U , one
has ∫

∂U
〈~v,~t〉 dl =

∫
U

curl~v · vol,

where ~t is the unit tangent vector field to ∂U and dl the element of length
on ∂U . The left-hand side of this equation is called the circulation of the
field ~v around the curve ∂U . The field ~v is said to be irrotational if its curl is
identically zero, or, equivalently, if the 1-form α is closed.

3Note the (usual) sign convention here.
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Now consider the 1-form ∗α. The 2-form d(∗α) is the product of the area
form vol by a smooth function called the divergence of ~v:

d(∗α) = div~v · vol.

By means of Stokes’ theorem this equality translates into the following stan-
dard form: for every region U of S with smooth boundary,∫

∂U
〈~v,~n〉 dl =

∫
U

div~v · vol,

where ~n is the vector field normal to the boundary ∂U. The left-hand side
quantity here is called the flux of the field ~v across the curve ∂U . If ~v mod-
els a fluid flow, this measures the infinitesimal change in the amount of fluid
contained in U . The flow is called incompressible if the divergence of v is
everywhere zero, or, equivalently, if the form ∗α is closed.

III.1.2. Meromorphic forms and vector fields

Suppose now that the field ~v is irrotational. The dual 1-form α is then closed, and
therefore locally exact. Thus in a neighborhood of each point of S there exists a
function u such that du = 〈~v, ·〉; in other words ~v is the gradient of the function
u : ~v = gradu. This is often expressed the other way around by saying that the
function u is a potential from which ~v is derived.

If ~v is both incompressible and irrotational, then u is a harmonic function.
This follows from the relation

∆u := div gradu.

(Note that even though the definition of the Laplacian depends on the metric, the
concept of a harmonic function depends only on the associated conformal struc-
ture.) It follows in particular that the function u and the field ~v are automatically
analytic. Conversely, every harmonic function defines via its gradient an incom-
pressible and irrotational flow.

Consider next the field ∗~v. The following equations hold:

curl(∗~v) = div~v and div(∗~v) = −curl~v.

Hence if ~v is incompressible then ∗~v is irrotational, and vice versa. It follows that
if the field~v is both incompressible and irrotational, then so is the field ∗~v, whence,
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in particular, it is the derivative of a potential function u∗. Like u, the function u∗

is only defined locally and up to an additive constant. The complex-valued 1-form
η = du + idu∗ is, however, well-defined on the whole surface S.

Lemma III.1.2. — The 1-form η is holomorphic.

Proof. — Consider an open set U of S on which the field ~v does not vanish. Since
the gradients of u and u∗ are orthogonal and of the same norm, the map u + iu∗ :
U → C is holomorphic. Observe that, since this map is a local diffeomorphism,
the functions u and u∗ give conformal local coordinates on U. Another way of
saying this is that the 1-form η is holomorphic on the set consisting of S with the
zeros of ~v removed. However, since that form is defined on the whole of S (and
the zeros of ~v are isolated), η must then in fact be a holomorphic 1-form on S. �

Conversely, given a holomorphic 1-form η on S, the dual field of the real part
of η, that is, the field ~v defined by

Re η = 〈~v, ·〉,

is both incompressible and irrotational. This allows us to gain an understand-
ing of the local properties of the critical points of incompressible and irrotational
vector fields. In a neighborhood of such a point we have η = df for some
holomorphic function f . Hence there exists a local holomorphic coordinate z
and a non-negative integer n such that f (z) = zn , whence η = nzn−1dz and
〈~v, ·〉 = Re (nzn−1dz). In the case n = 3 the field lines are as in Figure III.1.

Figure III.1: A figure taken from Klein’s book [Kle1882c]: the neighborhood of
a critical point
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In his course Klein also considered the case where the form η has poles. The
field ~v is then defined only on the surface with the poles of η removed, which are,
of course, finite in number. We shall now examine qualitatively the behaviour of
the flow lines of ~v in the vicinity of the poles. In a neighborhood of a pole of η
one can always find (see Box III.2) a holomorphic local coordinate w such that

η =

(
λ

w
+

1
wν

)
dw,

where λ ∈ C. Hence the field ~v dual to the real form Re η decomposes as a
superposition of the fields dual to the forms λdw/w and dw/wν . Consider first
the case ν = 1, where we have η = µdw/w, with µ = λ + 1. We now further
decompose the field dual to Re (µdw/w) as the superposition of a field with µ

real and another with µ purely imaginary. For real µ one finds that the potential
of ~v is, to within an additive constant, the function u = µ log r , where w = reiθ .
In this case the field lines are orthogonal to the concentric circles about the point
w = 0, which is then either a positive source or a negative sink, depending on the
sign of µ (see Figure III.2).

Figure III.2: Taken from Klein’s book [Kle1882c]: sink/source and vortices

When µ is purely imaginary the potential is, to within an additive constant,
the function u = iµθ, and the flow lines are then concentric circles about w = 0,
traced out with speed |µ|. We have here the case of a vortex (see Figure III.2).

The case of the field dual to the 1-form dw/w2 is dealt with by first observing
that

1
2ε

(
dw

w − ε
−

dw
w + ε

)
−→

dw
w2 as ε → 0.

For real ε this represents the superposition of a source “of flow ε” and a sink “of
flow −ε” positioned at points p and p′ a distance 2ε apart (see Figure III.3).
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Figure III.3: Taken from Klein’s book [Kle1882c]: a dipole

The same procedure can be used to investigate the fields dual to the form
Re (dw/wν ), ν any integer ≥ 2. Thus one arranges for ν points representing
sources, sinks, or vortices to approach the same limit.

We next consider how to interpret the periods of the holomorphic 1-form η in
terms of the vector field ~v. Let a ∈ H1(S,Z) be any particular homology class.
The real part of the period of η on the class a is then by definition

[Re η](a) := Re
(∫

γ
η

)
,

where γ is an oriented (multi-)curve representing a. As in Box III.1, we denote
by ~t the unit vector field tangent to this curve and by ~n the unit normal vector
field to the curve, chosen so that (~t,~n) furnishes an indirect basis for the tangent
space4 at each point of the curve. As before, ~v denotes the field dual to Re η;
thus Re η = 〈~v, ·〉. Observing then that 〈~v,~t〉 = −〈∗~v,~n〉, we deduce the following
equality (where dl is the element of length along γ):

[Re η](a) =

∫
γ
〈−(∗~v),~n〉dl .

Thus the period [Re η](a) is equal to the flux of the field −(∗~v) across the curve γ.
Furthermore, by means of the first of the relations (III.2) we may rewrite the

equality Re η = 〈~v, ·〉 in the form Re η = −vol(∗~v, ·), whence

[Re η](a) = −

∫
γ

vol(∗~v, ·).

4That is, one not agreeing with the chosen orientation of the surface. Trans
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The period [Re η](a) is therefore also equal to the surface area of the infinitesimal
cylinder obtained by displacing the curve γ by the flow of −(∗~v).

Box III.2: The local normal form of a meromorphic form

Consider a meromorphic form η in a neighborhood of one of its poles.
We explain here how one finds a local coordinate w in such a neighborhood in
terms of which η assumes the normal form η =

(
λ
w + 1

wν

)
dw.

In terms of an arbitrary fixed holomorphic local coordinate z, the form η

can be written as

η =
λ

z
dz + d

(
h(z)
zν−1

)
,

where h is a holomorphic function, λ ∈ C is the residue of the form η at 0, and
ν ≥ 2 is an integer. We seek a coordinate change of the form w(z) = z · u(z)
where u is holomorphic and u(0) = 1, such that

λdz
z

+ d
(

h
zν−1

)
=

dw
wν

+ λ
dw
w
.

In view of the assumed expression for w, this simplifies to

dw
wν

+ λ
du
u

= d
(

h
zν−1

)
.

Integrating, we obtain

−1
(ν − 1)wν−1 + λ log u −

h
zν−1 = C,

where C ∈ C is a constant. Multiplication by zν−1 then yields:

−1
(ν − 1)uν−1 + λzν−1 log u − h − Czν−1 = 0.

Denote by Φ(u, z) the left-hand side of this equation. In a neighborhood of the
point (1,0), Φ(u, z) is a holomorphic function of the two variables u and z. Its
derivative with respect to u at the point (u, z) = (1,0) is 1, so the holomor-
phic version of the Implicit Function Theorem may be applied, yielding the
holomorphic local function u(z) required for the coordinate change from z to
w(z) = z · u(z).
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The above considerations thus allow us to interpret Theorem II.2.5 (on the
existence of meromorphic forms on a given surface) in terms of vector fields (or, in
more physical terminology, “flows”). Finding a meromorphic 1-form η with poles
at prescribed points then becomes equivalent to constructing an incompressible
and irrotational vector field ~v having singularities at the poles of η (sinks, sources,
or vortices). Similarly, prescribing the periods amounts to pre-determining the
flux across curves forming a basis for the homology of the surface.

III.1.3. Experimental proof of Theorem II.2.5

In his course [Kle1882c] Klein described electrostatic or hydrodynamical exper-
iments yielding incompressible and irrotational vector fields. His idea was to ex-
hibit a stationary flow with prescribed singularities and flux across certain curves.

To that end we imagine the given surface to be made of a perfectly conducting,
infinitely thin material. If one attaches the two terminals of a battery to the sur-
face, a flow of charge will occur with a source and a sink at the points where the
terminals are attached. The physics of the motion of electric charges assures us
that this flow will be incompressible and irrotational away from the singularities.
We can further imagine that we can arrange by means of suitable electromotive
forces5 for the flux across certain curves to be as prescribed. As we have seen,
this amounts to fixing the real parts of the periods.

By way of example, we investigate how one might generate a prescribed flow
in the plane. We first recall a few relevant facts. The curl of a given vector field Y ,
denoted by curl Y , in Euclidean R3 is the vector field defined by the following
equality of differential 2-forms:

d(〈Y, ·〉) = vol(curl Y, ·, ·),

where 〈·, ·〉 and vol are respectively the Euclidean scalar product and the usual
volume form in R3.

In R3 the electric field
−→
E and magnetic field

−→
B of a stationary electromagnetic

field are given by the following special case of Maxwell’s equations:

div
−→
E =

ρ

ε0
, curl

−→
E = 0,

div
−→
B = 0, curl

−→
B = µ0 j,

5The practical realization of such constraints poses a problem. Klein found himself obliged to
imagine surfaces made up of pieces kept at different temperatures. Our treatment will remain at the
level of a thought experiment.
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where ε0 (the dielectric permittivity of the vacuum) and µ0 (the magnetic perme-
ability of the vacuum) are constants, ρ is the charge density, and j is a vector field
representing current density. Note that where the quantities ρ and j vanish, both
the electrostatic and magnetic fields are incompressible and irrotational.

This allows one to produce examples of incompressible and irrotational flows
on the plane. Thus consider finitely many points P1, . . . ,Pn of the plane6 R2,
and arrange a sequence of charges of uniform density on each of the vertical
lines {Pi } × R ⊂ R

3. Since this configuration is invariant under the symme-
try (x, y, z) 7→ (x, y,−z), the electrostatic field must be tangential to horizontal
planes, and therefore determines an incompressible and irrotational flow on the
plane R2×{0} away from the singularities, which will be sources or sinks depend-
ing on the charge densities one has chosen (see Figure III.4).

Figure III.4: A planar electrostatic field

Similarly, one may have constant electric currents passing through the ver-
ticals {Pi } × R, in which case the magnetic field

−→
B in the stationary regime is

again tangential to horizontal planes and induces an incompressible and irrota-
tional flow on the horizontal (x, y)-plane away from finitely many points where
there are vortices.

By superimposing these two sorts of fields, one obtains experimentally all the
types of poles possible for meromorphic 1-forms on C.

6Considered as the (x, y)-plane of (x, y, z)-space R3. Trans
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III.2. Revisiting Riemann’s theory in modern terms

III.2.1. Hodge theory and a modern proof of the existence of meromorphic
forms on a given surface

Klein’s idea of endowing a given Riemann surface with a Riemannian metric com-
patible with the complex structure underlies modern proofs of the existence of
meromorphic forms on the surface (Theorem II.2.5). The proof we give here was
inspired by Springer’s book [Spr1957].

Once again we consider a compact Riemann surface S endowed with a com-
patible Riemannian metric. Let ω be a smooth 1-form on S. Recall that such a
form ω is called co-closed if ∗ω is closed, and harmonic if it is both closed and
co-closed.

Our proof of Theorem II.2.5 relies on the following particular result of Hodge
theory, a theory applying in all dimensions, and developed precisely in order to
generalize the two-dimensional situation:

Theorem III.2.1. — Every real, smooth 1-form ω decomposes uniquely as a sum
of three 1-forms:

ω = ωh + dF + ∗dG,

where ωh is a smooth harmonic form and F and G are real-valued, smooth func-
tions defined globally on S.

Of course the uniqueness applies to the 1-forms ωh , dF, ∗dG, and not to the
functions F and G, which are defined only to within additive constants. We first
explain why this result implies Theorem II.2.5.

Derivation of Theorem II.2.5 from Theorem III.2.1.
We begin by proving the theorem in question for holomorphic forms. Since a

holomorphic 1-form is completely determined by its real part and since harmonic
1-forms are just the real parts of holomorphic 1-forms, it suffices to prove that
there is a unique harmonic 1-form with the prescribed periods.

We shall use, without justification, a very elementary version of de Rham’s
theorem — a result, needless to say, very substantially postdating Klein: firstly,
on a compact orientable surface of genus g one can define a closed 1-form with
its 2g periods prescribed, and, secondly, such a form is exact if and only if these
periods are all zero.

Hence for the existence of the desired harmonic 1-form, consider a real-valued
closed 1-form ω with the prescribed periods (as guaranteed by de Rham’s theo-
rem), and apply Theorem III.2.1 to it. Since ω is closed its co-exact part ∗dG
is also closed. The following proposition shows that in fact we must then have
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∗dG = 0, so that ω is in the same cohomology class as its harmonic compo-
nent ωh , which thus provides a solution to the problem.

Proposition III.2.2. — For every smooth function G : S → R one has∫
S

| ∗ dG |2 vol = −

∫
S

G · d(∗dG).

Proof. — Since the sum

G · d(∗dG) + dG ∧ ∗dG

is exact (being equal to the differential of the 1-form G · ∗dG) we have∫
S

G · d(∗dG) = −

∫
S

dG ∧ ∗dG,

and since here the left-hand side is zero (∗G being closed), so is the right-hand
side. On the other hand since the forms dG and ∗dG are orthogonal and have the
same norm, we have dG ∧ ∗dG = | ∗ dG |2 vol, whence the desired conclusion. �

For the uniqueness it suffices to prove that a harmonic 1-form ω with all its
periods zero must itself be zero. Now such a form is exact (by de Rham’s theorem
— see above) and its primitive is a harmonic function. The maximum principle
for harmonic functions then implies that such a function is constant, so that ω is
zero.

We now turn to the case of meromorphic forms. Thus let P1, . . ., Pm be any
prescribed points of the surface, A1,. . ., Am any complex numbers summing to
zero, and choose any real numbers for the prescribed real parts of the periods. We
seek a meromorphic form on S with its poles at the points Pi with principal parts
given by the Ai , and with the real parts of its periods as chosen.

Let α0 be a smooth real 1-form on S \ {P1, . . . ,Pm } satisfying

α0 = Re
(
(Ai z−1

i + Bi z−2
i + Ci z−3

i + · · · )dzi
)

in a neighborhood of each point Pi . Since α0 is harmonic in a neighborhood of
each of the points Pi , the 2-form dα0 is zero there, and therefore extends to a
smooth form on all of S.
Lemma III.2.3. — We have

∫
S

dα0 = 0.

Proof. — For each i = 1, . . . ,m, let Di be a disc centered at Pi on which dα0 = 0.
We then have by Stokes’ theorem∫

S

dα0 =

∫
S\∪iDi

dα0 = −
∑
i

∫
∂Di

α0.
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The last sum is equal to

Re *
,
2iπ

∑
i

Ai
+
-
,

which is zero by the assumption on the prescribed residues of the principal parts. �
Since dα0 is a smooth form with zero integral over S, it admits a primitive ω,

say. Consider the closed 1-form α1 = α0−ω on S\{P1, . . . ,Pm }. As earlier, the 2-
form d(∗α1) extends to a smooth 2-form on S with zero integral over S. Taking β

to be a smooth primitive of the 2-form d(∗α1) on S and applying Theorem III.2.1
to it, we obtain β = βh + dF + ∗dG. From the equality dβ = d(∗α1) we then
infer that

d(∗dG) = d(∗α1).

The 1-form α2 = α1 − dG is closed (since α1 is closed) and co-closed by the pre-
ceding equation. It is therefore harmonic away from its poles. We have thus found
the real part of the desired meromorphic form, and the proof of Theorem II.2.5 is
complete. �

Proof of Theorem III.2.1. — We introduce the space Ω1
L2 (S) of differentiable real

1-forms on S whose coefficients are measurable square integrable functions. This
is a Hilbert space once endowed with the scalar product

〈ω1,ω2〉L2 :=
∫
S

〈ω1,ω2〉P volP =

∫
S

ω1 ∧ ∗ω2,

where the second equality comes from (III.2).
We denote by E the closure of the set of exact smooth forms in Ω1

L2 (S), and
by E∗ the closure in Ω1

L2 (S) of the set of smooth co-exact forms — that is, those
expressible as ∗dF for a smooth function F. For any smooth 1-formω and smooth
function F, one has∫

S

〈dF,ω〉 vol = −

∫
S

dF ∧ ∗ω =

∫
S

Fd(∗ω), (III.3)

where the first equality follows from III.2, and the second from Leibniz’s formula
d(F ∗ ω) = dF ∧ ∗ω + Fd(∗ω) and Stokes’ theorem.

By substituting a co-exact formω = ∗dG, G a smooth function, in these equa-
tions, one infers that 〈dF,∗dG〉L2 = 0. Thus the spaces E and E∗ are orthogonal.
Writing H for the orthogonal complement of E ⊕ E∗, one then has the following
decomposition of our original Hilbert space as a direct sum:

Ω
1
L2 (S) = H ⊕ E ⊕ E∗.

It remains to show that H is actually the space of smooth harmonic forms. For this
it suffices to prove that every element of H is locally a smooth harmonic form.



III Riemann surfaces and Riemannian surfaces 91

Since S comes with locally conformal coordinates, by choosing the metric to
be locally the standard Euclidean one (which is permitted since the above function
spaces depend only on the conformal structure of S), the problem is reduced to
the following local lemma:

Lemma III.2.4 (Weyl’s lemma). — Consider the unit disc D endowed with the
Euclidean metric dx2 + dy2. If a measurable square integrable 1-form on D is or-
thogonal to all exact or co-exact forms with compact support, then it is harmonic.

Proof. — Let ω be a square integrable 1-form on D orthogonal to every exact
or co-exact form on D with compact support. We first prove that if ω is also
assumed smooth, then it is harmonic. For this we need to show that ω is both
closed and co-closed. Since ∗ω has the same basic properties as ω, it suffices to
show, for instance, that ∗ω is closed. Now since by assumption ω is orthogonal to
all exact forms with compact support, by (III.3) the form d(∗ω) is orthogonal to
all functions with compact support, so must in fact be zero.

The idea is now to regularize ω by convolution. If the convolution kernel is
chosen to be rotation-invariant, then, as we shall show, the form ω will be equal
to its convolution, by virtue of the mean-value property of a harmonic function
according to which its value at a point is equal to its average on any circle centered
at the point. Thus we now prove that ω coincides with its convolute, whence its
smoothness.

The details are as follows. For each ρ ∈ (0,1), we denote by Dρ the closed
disc of radius ρ centered at 0, and choose a regularizing kernel (Kρ )ρ∈(0,1), with,
for each ρ ∈ (0,1), the following properties:

1. Kρ is a smooth non-negative function on D with support Dρ and integral
equal to 1;

2. Kρ (x, y) depends only on x2 + y2.

Then for every integrable function f : D → R and every ρ ∈ (0,1), we consider
the function Mρ f defined by

Mρ f (x, y) =

∫
D

Kρ (x ′ − x, y′ − y) f (x ′, y′)dx ′dy′ .

Similarly, for every 1-form ω = ωxdx + ωydy on D and every ρ ∈ (0,1), we
consider the 1-form Mρω defined by

Mρω = (Mρωx )dx + (Mρωy )dy.
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Such functions and forms have the following properties:

(i) For every integrable function f , the function Mρ f is defined and smooth on
D1−ρ .

(ii) For every integrable function f , one has Mρdf = d
(
Mρ f

)
on D1−ρ . Simi-

larly, for every 1-form ω, one has Mρ (∗ω) = ∗(Mρω) on D1−ρ .

(iii) For every two 1-forms ω1 and ω2 where the support of ω1 is contained in
D1−ρ , one has 〈Mρω1,ω2〉 = 〈ω1,Mρω2〉.

(iv) For every integrable function f , and all ρ, ρ′ ∈ (0,1), one has MρMρ′ f =

Mρ′Mρ f on D1−ρ−ρ′.

(v) For every 0 < r < 1 and function f in L2(Dr ) the functions Mρ f tend to f
as ρ tends to 0.

(vi) If u is a harmonic function on D then Mρu = u on D1−ρ .

The last point is crucial, and follows from the mean-value property of har-
monic functions and the choice of Kρ as rotation-invariant.

Properties (ii) and (iii) show that if ω is orthogonal to all smooth exact or co-
exact forms with compact support, then Mρω is orthogonal to all smooth exact
or co-exact forms with support contained in D1−ρ . Then since Mρω is smooth on
D1−ρ by property (i), it follows, as we have already seen, that it is in fact harmonic
in D1−ρ .

It remains to prove that Mρω is almost everywhere equal toω on D1−ρ . To this
end, note that properties (ii) and (vi) imply that for every ρ, ρ′ with 0 < ρ, ρ′ < 1,
one has

Mρ′Mρω = Mρ′ (du) = d
(
Mρ′u

)
= du = Mρω

on the disc D1−ρ−ρ′, where u is the potential of Mρω. It then follows from (v) that

Mρω = Mρ′Mρω = MρMρ′ω = Mρ′ω

on the disc D1−ρ−ρ′. Hence for each r, 0 < r < 1, the family Mρω is constant for
0 < ρ < 1 − r and approaches ω in Ω1

L2 (B(0,r)) as ρ approaches 0.
We have thus proved that ω is almost everywhere equal to a smooth harmonic

form, and the lemma follows. �

To conclude the proof of Theorem III.2.1, we need a second local lemma.
Lemma III.2.5. — Let D be the unit disc endowed with the Euclidean metric
dx2 + dy2, and let ω be a smooth 1-form on D. There then exist smooth functions
F and G on the disc such that

ω = dF + ∗dG.



III Riemann surfaces and Riemannian surfaces 93

Remark III.2.6. — This lemma might seem to indicate that in the statement of
Theorem III.2.1 the harmonic form ωh is always zero. However, this is certainly
not always the case: Lemma III.2.5 is a local result applying specifically to the
disc.

Proof. — If ω is closed then it is exact on D. Thus we seek a function G such that
ω − ∗dG is closed. Write dω = φdx ∧ dy, the measure of the departure of ω from
being closed. We may assume ω is defined throughout the plane by extending it
smoothly to the whole of R2.

It follows from (III.3) that

d(ω − ∗dG) = (φ − ∆G)dx ∧ dy .

Thus it remains to solve the equation ∆G = φ on D. If φ is a Dirac point-mass
at 0, the Green’s function G0(reiθ ) = − log(r) is a solution. In the general case
it suffices by linearity to take the convolution of φ with G0. Thus one checks that
the following function works:

G(x, y) = −
1

2π

∫
D

log
√

(x ′ − x)2 + (y′ − y)2ϕ(x ′, y′)dx ′dy′ .

�

We are now within reach of the completion of the proof of Theorem III.2.1.
Let ω be a smooth 1-form on S. We have already shown that

ω = ωh + a + b,

where ωh is harmonic, a belongs to E and b belongs to E∗. We first show that
a and b are smooth. It suffices, of course, to prove this locally, so we con-
sider a disc D in S, sufficiently small to admit conformal coordinates (x, y). By
Lemma III.2.5 there exist smooth functions F and G such that

ωh + a − dF = ∗dG − b.

Here the left-hand side form is orthogonal to co-exact forms with compact support
on D, while the right-hand side form is orthogonal to exact forms with compact
support on D. This differential form is therefore harmonic and smooth by Weyl’s
lemma (Lemma III.2.4), forcing the regularity of the forms a and b.

Finally, we need to show that a and b are exact. This is done by showing, for
instance by means of Ascoli’s theorem, that a smooth form that is a limit of exact
smooth forms in the L2-topology, is itself exact. �
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III.2.2. The continuity of the dependence of the moduli on the metric

As before, our context is that of a compact Riemann surface S endowed with a
compatible Riemannian metric h. We saw in Section II.3.1 that for g > 1 Riemann
defined certain complex local parameters, or moduli, for what is now called the
“moduli space”Mg of complex curves of genus g. Here we are interested in those
of the second type, namely the “periods” of a holomorphic 1-form on S.7

One may ask whether these moduli depend continuously on the chosen Rie-
mannian metric. The space Met(S) of Riemannian metrics on S is naturally en-
dowed with a topology8. As we have seen, each such metric h determines the
structure of a Riemann surface on S, which we shall denote by SC(h). We may
therefore ask how the moduli vary with h. To be precise, the aim of the present
section is to indicate why the map

Met(S) → Mg

h 7→ SC(h)

is continuous with respect to the topology “defined” by Riemann on the spaceMg

of (isomorphism classes of) Riemann surfaces of genus g.
We briefly expound the ideas allowing one to prove that this map is in-

deed continuous. With each Riemannian metric h one can associate a sub-
space of dimension 2g of the space of real differential 1-forms, namely the space
Harm1

h (S,R) of harmonic forms. One can view this space as the kernel of the
Laplacian ∆h = dd∗ + d∗d9 associated with h. This is an elliptic operator vary-
ing continuously with h. Fredholm theory allows one to establish the following
theorem (see [Hod1941]):
Theorem III.2.7 (Hodge). — Let (S,h) be a Riemannian surface (compact, ori-
ented, and without boundary) of genus g. Then in the space Ω1(S,R) of C∞ 1-
forms on S, the subspace Harm1

h (S,R) of harmonic forms (that is, both closed and
co-closed) has dimension 2g and varies continuously with the metric h.

To see that SC(h) depends continuously on h, one first observes that the Hodge
star operator ∗h defines a complex structure on Harm1

h (S,R) since ∗2
h

= −Id in
this degree. Since moreover the Hodge star commutes with the Laplacian, the
eigenspace of holomorphic forms

H1,0(h) = ker(∗h + i Id) ⊂ Harm1
h (S,C)

also varies continuously with h. (Here Harm1
h (S,C) stands for the space of har-

monic complex-valued 1-forms on S.)

7Recall that for this a basis for the homology of S needs to be distinguished.
8The C∞ topology.
9Here d∗ is the adjoint of d with respect to the scalar product on L2 defined above, now extended

to all forms.
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Let (Ai ,Bi )1≤i≤g be a fixed basis for the homology H1(S). The forms ωi

defined by ∫
A j

ωk (h) = δ jk , 1 ≤ j, k ≤ g ,

then comprise the intersection of the space of holomorphic forms (which depends
continuously on h) with some affine subspace (independent of h), and so vary
continuously with h.

In particular, the periods
∫
B j
ωk (h) = Π jk (h) are continuous, as well as the

zeros Pi (h) of the ω j (h), and so linear combinations of them (with constant co-
efficients), whence also the integrals

∫ Pi (h)
P1 (h) ω(h) between two such zeros.

Note that we know today that in fact the Π jk determine the complex curve
(Torelli’s theorem).





Chapter IV

Schwarz’s contribution

In this chapter we expound the relevant works of Hermann Schwarz. Around 1870
he undertook to prove the Riemann Mapping Theorem in particular cases and to
find expressions for the uniformizing functions.

In the introduction to the article [Schw1869], Schwarz tells of how, when he
was attending Riemann’s course on the theory of analytic functions during the
winter of 1863–1864, Franz Mertens remarked to him that it was extraordinary
that, although the existence of a biholomorphic mapping between the disc and,
say, a triangle was “established” by Riemann’s theorem, it was not at all clear
how one might go about determining such a mapping explicitly. It is primar-
ily to the problem of explicit uniformization of certain simply-connected regions
of the plane that Schwarz addresses himself in [Schw1869]. We shall see that
in large measure he succeeds: he obtains a necessary expression for the biholo-
morphism in each of the cases he considers. However this expression depends
on certain constants — accessory parameters — which he is able to determine
explicitly only in the case of a “triangle” with sides arcs of circles. Schwarz’s
method — marking the first connection between the Schwarzian derivative and
the uniformization problem — is the direct forerunner of Poincaré’s approach via
differential equations. When, following on the publication of Poincaré’s papers,
Schwarz eventually discovered this, he added a note to his paper as it appeared in
his complete works (see Chapter IX).

Interest in the existence of biholomorphisms between the disc and certain re-
gions of the plane was quickened at the time by Weierstrass’s objections to Rie-
mann’s proof. In his next article [Schw1870a] Schwarz, abandoning the search for
explicit formulae, gives a different proof of the Riemann Mapping Theorem for
compact regions with analytic boundary. His method is constructive, proceeding
via successive approximations. This represents a decisive stage on the way to the
uniformization theorem; it will later be taken up and elaborated on by Poincaré
under the name “the scanning method”. We shall expound Schwarz’s results and



98 IV Schwarz’s contribution

examine their influence in detail in Chapter IX; here we confine ourselves to de-
scribing the method in a simple case yielding nonetheless the first result in the
direction of the uniformization of abstract compact surfaces, namely the unique-
ness of the conformal structure on the sphere.

IV.1. Explicit cases of conformal representation

One of the first directions taken by Schwarz’s work was the explicit determination
of certain conformal maps. The point of departure of the paper [Schw1869] is the
symmetry principle, to which his name was thenceforth attached.

Theorem IV.1.1 (Symmetry principle). — Let U be an open set of the upper
half-plane H, with closure intersecting the real axis in an interval I, and let
z 7→ f (z) be a holomorphic function on U. We assume that f extends via con-
tinuity to the union U ∪ I and that I is sent by this extension to (an arc of) a
circle C. Then, denoting by U ′ the image of U obtained by reflecting in the real
axis and by σ the Möbius inversion relative to the circle C, one can extend f to a
function holomorphic on U ∪ I ∪U ′ by means of the formula f (z) = σ ◦ f (z).

With the aid of this principle, Schwarz was able to infer the form of uni-
formizing functions first for polygonal regions and then for such regions bounded
by circular arcs. He was unable to deduce directly the existence of the uniformiz-
ing functions — except in the case of triangular regions — since there remained
accessory parameters to be determined. We shall expound this work here.

IV.1.1. Uniformization of polygonal regions with straight sides

Here we begin with a simply connected polygonal region P of the plane1. The
boundary of P is made up of a finite number of line segments meeting in vertices
w1, . . . ,wn . The interior angle at wi will be denoted by λiπ, 0 < λi < 2 (with
λi , 1 at vertices where the boundary of the polygon is not “flat”). The assump-
tion of simple connectedness implies that

∑
(1 − λi ) = 2. The problem Schwarz

sets himself is that of finding a biholomorphism s from H onto the interior of
the region P, extending to a homeomorphism on the boundary (where here the
boundary of H is understood to be its boundary in the Riemann sphere, which is a
circle).

1In [Schw1869] Schwarz considers to begin with the case of a square; however his approach is
completely general.
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We begin with the following local problem. Suppose a is a point on the real
axis and that some function s sends the half-disc

V = {z = a + reiϕ | 0 ≤ ϕ ≤ π, 0 < r < r0}

to an angular sector

S = {z = reiθ | 0 ≤ θ ≤ λπ, 0 < r < r0},

where 0 < λ < 2. We shall assume that s is a homeomorphism from V to its image
and that it is holomorphic on V ∩H. We further suppose that the intersection of V
with the real axis is sent to the union of the two half-lines delimiting S.

Consider the mapping s(z)
1
λ . This is defined and continuous on the intersec-

tion of H, the closure of H, with a small disc D(a, ε ) centred at a; furthermore, it
is holomorphic on D(a, ε ) ∩ H and is real-valued at real values of its argument.
Schwarz now applies his symmetry principle to infer that s(z)

1
λ extends to a func-

tion holomorphic on D(a, ε ). One may therefore write, in a neighborhood of a:

s(z) = (z − a)λH (z), (IV.1)

where z 7→ H (z) is holomorphic in that neighborhood, and does not vanish at a
(since otherwise the injectivity of s would be contradicted). Moreover since H (z)
is real-valued at real values of its argument, the coefficients of the Taylor series
for H about a, that is, of the expansion as a series in powers of (z − a), are
themselves real.

When a is the point at infinity, the above analysis, applied now to the function
s1(z) = s

(
− 1

z

)
, gives

s1(z) = z−λH
(

1
z

)
(IV.2)

where H is a function holomorphic in a neighborhood of 0, whose Taylor series
expansion about 0 has real coefficients.

Returning to our initial problem, we assume there exists a homeomorphism
s : H → P holomorphic on H. In order to determine the form of such an s
we show that it must satisfy a certain natural differential equation. Note that
the problem is invariant under the action (on the codomain) of the affine group.
Denote by a1, . . . ,an the (putative) preimages of the vertices w1, . . . ,wn under s.
Modulo the application of a suitable Möbius transformation to the domain, we
may assume that an is the point at infinity.

Thus we seek a quantity that is invariant under the affine group. The function
z 7→ d

dz log ds
dz (z) will do: it is holomorphic on H and invariant under affine

transformations following s. The symmetry principle together with the above
local investigation then allows us to prove the following lemma.
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Lemma IV.1.2. — Let s : H → P be a uniformizing function which extends to a
homeomorphism on the boundary. Then one has

d
dz

log
ds
dz

(z) =

n−1∑
i=1

λi − 1
z − ai

.

Proof. — For each open interval (ai ,ai+1), one can apply the symmetry principle
to extend s to a function si holomorphic on

H ∪ (ai ,ai+1) ∪ H−

where H− denotes the lower half-plane. This extension satisfies the condition
si (z) = hi ◦ si (z) where hi is the reflection in the edge (wi ,wi+1). It follows,
in particular, that si is injective, so that its derivative does not vanish. Hence the
function z 7→ d

dz log ds
dz (z) extends by continuity to H with the points a1, . . . ,an

removed.
Since s maps each segment (ai ,ai+1) onto the segment (wi ,wi+1), there exist

complex numbers Ai and Bi such that ŝ = Ai s + Bi maps (ai ,ai+1) onto an
open interval of the real axis. We thus conclude, invoking the affine invariance,
that d

dz log dŝ
dz = d

dz log ds
dz is real-valued on (ai ,ai+1) (for each i = 1, . . . ,n).

By examining the situation locally near each of the points ai we will be able to
identify the function d

dz log ds
dz (z).

Indeed, from the local formula (IV.1), considered at each ai , i = 1, . . . ,n − 1,
we infer that

d
dz

log
ds
dz

(z) =
λi − 1
z − ai

+ d1 + d2(z − ai ) + d3(z − ai )2 + · · · , (IV.3)

where the coefficients d j are real. Hence the map defined by the difference

z 7→
d
dz

log
ds
dz

(z) −
n−1∑
i=1

λi − 1
z − ai

is holomorphic on H, extends to a continuous map on H \ {∞}, and is moreover
real-valued at real values of its argument. We shall now show that this difference
is in fact zero.

To prove this, we once again apply the symmetry principle to extend this func-
tion to an entire function. This done, in a neighborhood of the point at infinity the
formula (IV.2) gives s(z) = wn + (z)−λn H ( 1

z ), from which one infers that

lim
z→∞

d
dz

log
ds
dz

(z) = 0 .
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Thus the entire function d
dz log ds

dz (z) −
∑n−1

i=1
λi−1
z−ai

approaches 0 out to infinity, so
must be identically zero. �

One now has only to integrate twice to obtain:
Proposition IV.1.3 (The Schwarz–Christoffel formula). — Let P be a sim-
ply connected polygonal region with vertices w1, . . . ,wn and interior angles
λ1π, . . . , λnπ. Let s : H → P be a uniformizing function which extends to a
homeomorphism on the boundary and which maps the point at infinity to wn .
Then there exist n − 1 real numbers a1, . . ., an−1 such that

s(z) = C
∫ z

z0

dw
(w − a1)1−λ1 . . . (w − an−1)1−λn−1

. (IV.4)

This expression is called the Schwarz–Christoffel formula. Such formulae had
in fact been introduced independently by Christoffel [Chr1867]2. Returning to the
above argument, we see that we have shown that if there is a transformation s
sending the upper half-plane onto the region P biholomorphically and extending
to a homeomorphism on the boundary, then the composite of s with an appropriate
Möbius transformation applied to the domain, is given by the formula (IV.4) for
an appropriate choice of the real constants a1, . . . , an−1. On the other hand, if
the polygon P is fixed from the start, one is unable in general to determine the
corresponding real numbers ai , so that this approach does not provide a complete
proof of Riemann’s theorem for polygonal regions.

IV.1.2. Uniformization of polygonal regions with sides in the form of
circular arcs

Schwarz also considers the more general case of a polygonal region P with ver-
tices w1, . . . ,wn with sides arcs of circles or straight-line segments. It is assumed
that the vertices wi are so indexed that as one traverses [wi ,wi+1] from wi to wi+1,
the interior of P lies to the left, that the interior angle at each vertex wi is λiπ,
0 < λi < 2, and, once again, that we have a map s sending the upper half-plane H
biholomorphically onto the interior of the polygon P and extending to a home-
omorphism on the boundary. By composing, if necessary, with an appropriate
Möbius transformation acting on the domain, we may assume that the point at
infinity is not mapped to a vertex of P, and denote by a1 < a2 < · · · < an the
preimages of the vertices under s.

Here one has that the problem is invariant under the action on the codomain of
the group of complex Möbius transformations, that is, the group consisting of all

2A classic reference for conformal representation of planar regions is [Neh1952]; for construc-
tive aspects one may consult [DrTr2002].
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transformations of the form z 7→ az+b
cz+d , a,b,c,d ∈ C, ad−bc , 0. Schwarz seeks a

new differential expression in s, invariant under complex Möbius transformations
applied to s, playing a role analogous to that of d

dz log ds
dz in the previous section.

This leads him to consider the Schwarzian derivative

{s, z} =
d2

dz2 log
ds
dz
−

1
2

(
d
dz

log
ds
dz

)2

.

Box IV.1: The Schwarzian derivative

The cross ratio of four points x, y, z, t of the projective line CP1 = C∪ {∞}

is defined to be
[x, y, z, t] =

(x − z)(y − t)
(x − y)(z − t)

.

This is a “projective invariant”, that is, it is unchanged by any Möbius trans-
formation applied to x, y, z, t.

The Schwarzian derivative is a “local” projective invariant measuring the
“departure from infinitesimal projectivity” of a local biholomorphism w of
CP1. It can be defined in several ways — for instance by means of a com-
parison of the cross ratios of the four points x, y = x + ε, z = x + 2ε, t = x + 3ε
with that of their images under w (assuming x in the domain of w and ε suffi-
ciently small). An elementary calculation shows that

[w(x),w(y),w(z),w(t)] = [x, y, z, t] − 2{w, x}ε2 + o(ε2),

where

{w, x} :=
d2

dx2

(
log

dw
dx

)
−

1
2

(
d
dx

(
log

dw
dx

))2

.

This defines the Schwarzian derivative {w, x} and furnishes its intuitive in-
terpretation as a sort of projectively invariant derivative. It was actually first
introduced by Lagrange in connection with his investigations into the drawing
of geographical maps (see [Lag1779, p. 652], where it has the form Φ′′(z)

Φ(z) with
Φ = 1√

F′(z)
, according to [OvTa2009]). It was later called the “Schwarzian

derivative” by Cayley, unaware of Lagrange’s work.
The third-order differential equation {w, x} = 0 has the Möbius trans-

formations as general solutions. From its very definition it is clear that the
Schwarzian derivative is invariant under Möbius transformations, that is, that
{h ◦ w, x} = {w, x} for all such transformations h.
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The Schwarzian derivative of a composite of any two local biholomor-
phisms is calculated via the formula

{ f ◦ g, x} =

(
dg
dx

)2

{ f , x} ◦ g + {g, x}. (IV.5)

Here the presence of the term involving
(
dg
dx

)2
indicates that it may be useful to

interpret the Schwarzian derivative as a quadratic differential { f , x}dx2. This
allows one to interpret the preceding formula as a “cocycle”

{ f ◦ g, x}dx2 = g∗({ f , x}dx2) + {g, x}dx2.

More generally, if U is an open set of a Riemann surface furnished with a
coordinate x : U → C, one can still define the Schwarzian derivative {w, x} of
a local biholomorphism w : U → CP1. Given another coordinate y on U , one
has the following transformation rule:

{w, x}2 = {w, y}dy2 + {y, x}dx2. (IV.6)

This gives in particular a verification of the fact that the the quadratic dif-
ferential {w, x}dx2 is invariant under projective coordinate changes, that is,
{y, x} = 0.

Let q(x)dx2 be a local holomorphic quadratic differential. The third-order
differential equation { f , x} = q then admits local solutions any two of which
differ by a Möbius transformation (acting on the codomain).

Here is yet another way of looking at the Schwarzian derivative. If f is a
local biholomorphism between two open sets of C∪ {∞}, at each point x of its
domain one can determine a unique Möbius transformation m(x) in PSL(2,C)
coinciding with f up to order two in x. In this way one obtains a curve in
PSL(2,C) (a “Frenet frame” à la Darboux) whose derivative again measures
the deviation of f from a Möbius transformation. This derivative is defined to
be m−1dm, regarded as an element of the Lie algebra of PSL(2,C), consisting
of the zero-trace matrices. A simple calculation then yields

m(x)−1dm(x) = −
{ f , x}

2

(
x x2

1 −x

)
dx.

Note that for the above reasons the Schwarzian derivative is also a basic
tool in real projective geometry in connection with the study of the diffeomor-
phisms of the circle; see the book [OvTa2005].
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The approach in this case is thus very similar to the earlier one, and yields as
upshot:

Proposition IV.1.4. (The Schwarz equation). — Let P be a simply connected
polygonal region with sides circular arcs and with vertices w1, . . ., wn and inte-
rior angles λ1π, . . ., λnπ. Let s : H→ P be a uniformizing function extending to
a homeomorphism on the boundary. Then there exist 2n real numbers a1, . . ., an

and β1, . . ., βn such that

{s, z} =

n∑
i=1

1
2

1 − λ2
i

(z − ai )2 +
βi

z − ai
. (IV.7)

Furthermore, the λi , ai , and βi are linked by the following relations:

(i)
∑n

i=1 βi = 0 ;

(ii)
∑n

i=1
1−λ2

i

2 + βiai = 0 ;

(iii)
∑n

i=1 ai (1 − λ2
i ) + βia2

i = 0.

Proof. — For each i = 1, . . . ,n, one can by means of the symmetry principle
extend s to a function si holomorphic on H ∪ (ai ,ai+1) ∪ H−, satisfying si (z) =

hi ◦ si (z), where here hi denotes inversion in the circle having (wi ,wi+1) as an
arc. In particular, therefore, these extensions are injective, so their derivatives
are non-vanishing. It follows that {s, z}, which is holomorphic on H, extends by
continuity to H with the points a1, . . . ,an removed. Now for each i = 1, . . . ,n,
there is an appropriate choice of complex numbers Ai ,Bi ,Ci ,Di , with the property
that the transformation ŝ =

Ai s+Bi

Ci s+Di
sends ai to 0 and the two segments [ai−1,ai],

[ai ,ai+1] onto two straight-line segments meeting at 0 and with the angle between
them equal to λiπ at 0. Applying the formula (IV.1) to ŝ, one then obtains, locally,

ŝ(z) = (z − ai )λi Hi (z),

with Hi holomorphic in a neighborhood of ai . Moreover the coefficients of the
power series expansion of each Hi in a neighborhood of ai are real.

The invariance of the Schwarzian derivative under complex Möbius transfor-
mations then yields

{s, z} = {s′, z} =
1
2

1 − λ2
i

(z − ai )2 +
βi

z − ai
+ d2i + d3i (z − ai ) + · · · (IV.8)

The coefficients of this series are real, determined by the power series expansions
of the Hi .
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One infers, setting

F (z) =

n∑
i=1

1
2

1 − λ2
i

(z − ai )2 +
βi

z − ai
,

that the function z 7→ {s, z} − F (z), which is holomorphic on H, extends to a
continuous function on H. Since it is real-valued at real values of the argument,
we can once again apply the symmetry principle to extend it to an entire function.
It then remains to investigate the behaviour of this function at infinity in order to
deduce that it is zero.

Thus we apply the symmetry principle relative to the segment [an ,a1]: the
map s extends holomorphically to a neighborhood of infinity, so that we must
have s(z) = b0 +

b1
z +

b2
z2 + · · · for z of large modulus in H. It follows that

ds
dz

= −
b1

z2 −
2b2

z3 − · · · ,

d2s
dz2 =

2b1

z3 +
6b2

z4 + · · · ,

and hence that
d
dz

(
log

ds
dz

)
=
−2
z

(1 +
c1

z
+ · · · ) .

This allows us to calculate the Schwarzian up to order 3:

{s, z} = (
2
z2 +

4c1

z3 + · · · ) −
1
2

(
4
z2 +

8c1

z3 + · · · ) .

Thus the Schwarzian {s, z} has a zero of order at least 4 at infinity. Hence the
function {s, z} − F (z) is entire and vanishes at infinity. It is therefore identically
zero, which establishes the first part of the proposition.

We now establish the interdependence of the ai , λi and βi . In the expansion

in powers of 1
z of the rational function

∑n
i=1

1
2

1−λ2
i

(z−ai )2 +
βi

z−ai
, the coefficient of 1

z

is
∑n

i=1 βi , the coefficient of 1
z2 is

∑n
i=1

1−λ2
i

2 + βiai , and the coefficient of 1
z3 is∑n

i=1 ai (1 − λ2
i ) + βia2

i .
The vanishing of {s, z} to the order 4 at infinity then yields the desired condi-

tions:

(i)
∑n

i=1 βi = 0 ;

(ii)
∑n

i=1
1−λ2

i

2 + βiai = 0 ;

(iii)
∑n

i=1 ai (1 − λ2
i ) + βia2

i = 0. �
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IV.1.3. The special case of a triangle

In Proposition IV.1.4, the constants ai and βi are in general impossible to deter-
mine for a given polygon. However, there is an important case where they can
be found: that of a triangle with sides circular arcs. Since this case will be of
central significance in Chapter IX, we provide the details here. Thus we choose a
fixed such triangle in the plane, and denote by s a uniformizing function extending
continuously onto the boundary.

Let w1,w2, and w3 denote the vertices and λπ, µπ, and νπ the interior angles
of the triangle, and let a, b, and c on the real axis be the preimages of the vertices
under s.

The equations (i), (ii), (iii) of Proposition IV.1.4 constitute a linear system in
the βi as unknowns. On solving this system one finds that the Schwarzian {s, z}
must satisfy

{s, z} =
1

(z − a)(z − b)(z − c)

[
1 − λ2

2
(a − b)(a − c)

(z − a)

+
1 − µ2

2
(b − a)(b − c)

z − b
+

1 − ν2

2
(c − a)(c − b)

z − c

]
.

The crucial point now is that the parameters a, b, and c can be determined com-
pletely: by composing with a suitable Möbius transformation acting on the do-
main, we can arrange that a = 0, b = ∞, and c = 1. This done, after a little
reorganization of the terms, the preceding formula becomes

{s, z} =
1 − λ2

2z2 +
1 − ν2

2(1 − z)2 −
λ2 − µ2 + ν2 − 1

2z(1 − z)
. (IV.9)

We have thus found a differential equation with rational coefficients defined
on H \ {0,1,∞}. In the case where the triangle is convex, every solution of this
differential equation will be a uniformizing function for a triangle with appropriate
angles. Then by mapping its vertices to w1, w2, and w3 by a suitable Möbius
transformation applied to the codomain, we obtain a uniformizing function for
the triangle we began with. Thus we have the following result:
Theorem IV.1.5 (Uniformization of triangles). — Let T be a triangle with
vertices w1, w2 and w3 and with angles respectively λ1π, λ2π and λ3π, where
λi ∈ (0,1). Then the solution of equation (IV.9) sending 0, ∞ and 1 to w1,
w2 and w3, sends the upper half-plane biholomorphically onto the triangle T.
Moreover, this solution extends to H and sends ∂H homeomorphically onto the
boundary of the triangle.

We conclude by examining the means employed by Schwarz to uniformize all
polygonal regions with circular arcs as sides, thereby settling the question of the
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accessory parameters. Here is the key result proved by Schwarz in [Schw1870a];
it goes significantly further than the the situation of plane polygons. Before enun-
ciating it we define one of our terms precisely: an open set U of a Riemann surface
is uniformizable right to the boundary by the unit disc if there exists a biholomor-
phism from U onto the disc which extends to a homeomorphism between the
boundary of U and the unit circle.

Theorem IV.1.6. — Let S be a Riemann surface and U, V two open sets of S
uniformizable right to the boundary by the unit disc. If the intersection U ∩ V
is homeomorphic to a disc, then the union U ∪ V is uniformizable right to the
boundary by the unit disc.

This theorem can then be used in the following way to prove the existence
of a uniformizing function for any polygon with circular arcs as sides: one de-
composes an arbitrary quadrilateral into a union of two triangles (which we know
how to uniformize) with intersection a simply connected region. Theorem IV.1.6
then assures us that we can uniformize the quadrilateral. Then one can inductively
increase the number of sides.

Schwarz’s proof of Theorem IV.1.6 uses his “alternating method” (the term
he himself employs in [Schw1870b]), proceeding by successive approximations.
We refer the reader to [Cho2007, p. 123 et seqq.] for another exposition of this
method, and also of the very similar one of Neumann [Neum1884]. Schwarz, and
then Poincaré and Koebe, extended this strategy very much further (see part C).
Thus ultimately this led to a complete proof of the uniformization theorem. We
ourselves shall adapt the method to prove, in Corollary XI.1.6, that any simply
connected region with analytic boundary of a Riemann surface is uniformizable
right to the boundary.

IV.2. The conformal structure of the sphere

We propose now to explain how Schwarz uses his alternating method in
[Schw1870a] to uniformize spheres. The precise result is as follows:

Theorem IV.2.1. — Every compact, simply connected Riemann surface S is bi-
holomorphic to the Riemann sphere C.

A few preliminary remarks are in order. First, although Schwarz’s proof of
this theorem in [Schw1870a] is not complete, he does not hesitate to enunciate it.
Here is his original statement (where by “surface of a circle” he means a disc and
by “surface of a ball” a sphere) with an approximate translation.

Dem von Riemann ausgesprochenen Satze, dass es stets möglich sei, einen
einfach zusammenhängenden Bereich zusammenhängend und in den kle-
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insten Theilen ähnlich auf die Fläche eines Kreises abzubilden, kann der
folgende Satz zur Seite gestellt werden :

Es ist stets möglich, einen einfach zusammenhängenden und geschlosse-
nen Bereich zusammenhängend und in den kleisten Theilen ähnlich auf
die Fläche einer Kugel abzubilden und zwar nur auf eine Weise so, dass
drei beliebig vorgeschriebenen Punkten jenes Bereiches drei ebenfalls
vorgeschriebene Punkte der Kugelfläche entsprechen.

Our translation is as follows:

The theorem announced by Riemann that it is always possible to represent
a simply connected region [of the plane] on the surface of a circle continu-
ously and in such a way that similarity is preserved in infinitely small parts
allows one to establish the following theorem:

It is always possible to represent a simply connected and closed region on
the surface of a ball continuously and in such a way that similarity is pre-
served in infinitely small regions, and furthermore uniquely if three pre-
scribed points of the region are to correspond to three prescribed points of
the surface of the ball.

He does not, however, give a convincing proof except in the case of polyhedral
surfaces, which case does not strictly speaking fall within the purview of the theo-
rem since the latter concerns smooth surfaces. Schwarz shows in effect that every
finite, simply connected polyhedron can be mapped homeomorphically onto the
Riemann sphere in such a way that the mapping is conformal on the faces. Yet
in 1881 in his note [Kle1881], Klein mentions the uniqueness of the conformal
structure for surfaces of genus 0 and attributes the result to Schwarz.

In order for Schwarz’s argument to genuinely yield the statement of Theo-
rem IV.2.1, it is necessary to know beforehand how to uniformize a simply con-
nected region with analytic boundary of a Riemann surface. This result is not,
however, fully established in [Schw1870a], although it is possible to obtain a
complete proof via an elaboration of the alternating method. This is in fact what
we undertake to do in Chapter IX. In the meantime we give a proof of Theo-
rem IV.2.1 assuming ahead of time the uniformization of simply connected re-
gions with boundary.

Before starting the proof we note that by 1860 the topological classification
of compact surfaces was considered as achieved (even if a long interval of time
had to elapse before it was finally established rigorously — see the box in the
introduction to Part C — so that, in particular, it was considered “known” that a
connected, simply connected surface without boundary is homeomorphic to the
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2-dimensional sphere. It was also considered “clear” that the sphere with a disc
removed is homeomorphic to a disc.

Proof. — Thus to prove the theorem we need to construct a meromorphic func-
tion f on S with a single pole of order 1 on S. We achieve this by constructing a
harmonic function u, which will then serve as the real part of the desired function
on S with the pole removed.

Choose two distinct points n and s of S (the north and south poles3), and con-
sider a holomorphic chart ϕn : U → D defined on an open set U containing n
whose closure avoids the south pole s, and extending to a homeomorphism from
the boundary of U to the unit circle. Write V for the open set S \ ϕ−1

n (D1/4).
Since we are presupposing the uniformization theorem for simply connected re-
gions with analytic boundary (see Corollary XI.1.6), we may assume there exists
a conformal map ϕs : V → D sending the point s to 0. The argument mainly
involves the disc U. The following diagram depicts the situation.

n

s

ϕn

ϕs

Figure IV.1: The sphere S and Schwarz’s charts

The mapping ϕn (resp. ϕs) allows us to solve the Dirichlet problem for the disc
U (resp. V ) with any continuous boundary value. In fact it suffices to consider the

3Note that in view of the discussion preceding this proof, it is assumed that S is a topological
2-sphere. Trans
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problem on the unit disc, whither it has been transferred by the map ϕn (resp. ϕs).
Recall (from §II.2) that in order to solve the Dirichlet problem on the unit disc
with a continuous boundary value u, we use Poisson’s formula, assuring us that
the following function is harmonic on the disc and extends continuously via u to
the boundary (here z = reiθ):

u(z) =
1

2π

∫ 2π

0
u(eit )

1 − r2

1 − 2r cos(θ − t) + r2 dt .

This formula (a variant of the formula (II.4)) allows one to obtain an upper bound
for the modulus of u when the mean of u is zero on the unit circle. The value
of u at the origin is clearly zero and we shall show that its values in a disc of
radius 1/4 are uniformly bounded in terms of the supremum of the modulus of u
on the boundary. The precise result is as follows:
Lemma IV.2.2. — Let u be a continuous function of mean zero on the unit
circle and let u be its harmonic extension to the whole of the unit disc. Then
for every point z of modulus less than 1

4 , one has |u(z) | ≤ 2
3 ‖u‖D, where

‖u‖D = maxz∈D |u(z) |).
Proof. — This bound is established by means of a straightforward calculation
using Poisson’s formula. Thus for all θ one has

2πu(reiθ ) =

∫ 2π

0
u(eit )

1 − 2r cos(θ − t) + r2 + 2r cos(θ − t) − 2r2

1 − 2r cos(θ − t) + r2 dt

=

∫ 2π

0
u(eit )dt +

∫ 2π

0
u(eit )

2r cos(θ − t) − 2r2

1 − 2r cos(θ − t) + r2 dt

= 2r
∫ 2π

0
u(eit )

cos(θ − t) − r
1 − 2r cos(θ − t) + r2 dt.

Examination of the function a 7→ a−r
1−2ar+r2 on [−1,1] quickly shows that the

modulus |u(reiθ ) | is bounded above by 2r
1−r ‖u‖D. Hence in particular for r < 1

4 ,
the modulus |u(reiθ ) | is bounded above by 2

3 ‖u‖D. �

It is now not difficult to construct the function f with a pole at n. We set
u−1(z) = 1

r cos θ where ϕn (z) = reiθ , and write û−1 for the harmonic function
on the disc U satisfying the boundary condition (û−1) |∂U = (u−1) |∂U . Write
u0 = u−1 − û−1; the function u0 then vanishes on the circle ∂U .

We now begin the procedure of successive approximation, constructing induc-
tively two sequences of functions uk and vk satisfying:

• u0 is as just defined;

• for every k ≥ 0, the function vk is the harmonic function on the disc V
satisfying the boundary condition (vk ) |∂V = (uk ) |∂V ;
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• for every k ≥ 1, the function uk is the harmonic function on the disc U
satisfying the boundary condition (uk ) |∂U = (vk−1) |∂U .

We wish next to bound these two sequences in order to establish the convergence
of the corresponding series. To this end, we note first that the maximum-modulus
principle affords us the following bounds:

• for every k ≥ 1, the modulus of vk is bounded above by its maximum on
the circle ∂V , and hence by the maximum value of |uk | on the circle ∂V . It
follows that |vk | is bounded above by the maximum value of |uk |;

• similarly, for every k ≥ 1, |uk | is bounded above by the maximum value of
|vk−1 |.

Thus the sequences of the ‖uk ‖U and ‖vk ‖V are decreasing. However, that
does not of course suffice for the corresponding series to converge. We shall use
Lemma IV.2.2 to show that for every k ≥ 1, the function |vk | is in fact bounded
above by 2

3 ‖uk ‖U . For this purpose we need to be sure that the mean of the
functions uk ◦ ϕ−1

n on the unit circle is zero:
Lemma IV.2.3. — The means of all of the functions uk ◦ ϕ−1

n and vk ◦ ϕ
−1
n on the

circles of radius 1 and 1
4 are zero.

Proof. — Let A denote the annulus bounded by the circles of radii 1
4 and 1. A

function holomorphic on A will have equal integrals around the bounding circles
in view of the residue formula. Recall also that a harmonic function on a simply
connected region is the real part of a holomorphic function. Hence considering U
and V in turn, we infer that for k ≥ 1 the functions uk and vk are the real parts of
holomorphic functions on ϕ−1

n (A). This is also true of u0 by construction. Hence
the means of the functions uk ◦ ϕ−1

n and vk ◦ ϕ
−1
n on the two bounding circles are

equal.
Since the function u0 ◦ ϕ

−1
n has zero mean on the unit circle, it now follows

that this is likewise true for the circle of radius 1
4 . Since on the one hand uk ◦ ϕ−1

n

and vk ◦ ϕ
−1
n coincide on the circle of radius 1

4 , and on the other hand uk+1 ◦ ϕ
−1
n

and vk ◦ ϕ
−1
n coincide on the circle of radius 1, this property propagates itself

inductively to all of the uk ◦ ϕ−1
n and vk ◦ ϕ

−1
n , that is, they all have mean zero on

the circles of radii 1
4 and 1. �

Now Lemma IV.2.2 assures us that for every k ≥ 1 the function uk ◦ ϕ−1
n has

2
3 ‖uk ◦ ϕ

−1
n ‖D as an upper bound on the circle of radius 1

4 . Hence the function uk
is bounded above by 2

3 ‖uk ‖U on ∂V . Now vk was defined as the function solving
the Dirichlet problem on V with boundary condition given by the restriction of uk
to ∂V . Hence a further application of the maximum-modulus principle yields the
upper bound 2

3 ‖uk ‖U for |vk | on V .
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We thence obtain, again by induction, the following bounds (for all k ≥ 1):

‖uk+1‖U ≤ ‖vk ‖V ≤

(
2
3

)k+1

‖u1‖U .

Hence the two series with terms uk and vk respectively, k = 1,2, . . . , are dom-
inated in modulus by the geometric series with common ratio 2

3 , and therefore
converge respectively to a function û defined and continuous on U and harmonic
on U, and a function v̂ defined and continuous on V and harmonic on V . Writing
u = û + u0 and v = v̂ + v0, we have by construction that the functions u and v co-
incide on the boundaries ∂U and ∂V . Hence the function u − v is harmonic in the
interior of U ∩V and zero on the boundary. Then by the maximum-modulus prin-
ciple it must vanish also in the interior, so that u = v on the whole annulus. The
function defined on S as equal to u on U \ {n} and to v on V is then well-defined
and harmonic on the whole of S\{n}. It is therefore the real part of a meromorphic
function, and with a single pole at n of order 1 since u0 ◦ ϕ

−1
n = Re( 1

z ). We have
thus found the function sought.

Finally, such a function with prescribed images of any three distinct points
will be unique since the only conformal bijection of the Riemann sphere to itself
fixing three arbitrarily chosen points is the identity map. This completes the proof
of the theorem. �

The above proof is a good illustration, though in a rather simple situation, of
Schwarz’s alternating method. Recall that that method is interesting chiefly for its
use in proving Theorem IV.1.6, which we have for the time being assumed. Thus
we shall be returning to the method in Chapter IX.
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Chapter V

The Klein quartic

The theory of elliptic integrals, so intensively developed over the course of the
19th century, gave rise to new functions. With each elliptic integral there is as-
sociated the marked lattice of its periods, that is, a given discrete subgroup of
rank 2 of the additive group (C,+) and a basis (ω1,ω2) ∈ C∗ × C∗ for this lattice
satisfying Im(ω1/ω2) > 0. It is therefore natural to introduce the set

M =
{
(ω1,ω2) ∈ C∗ × C∗ |ω1/ω2 ∈ H

}
of marked lattices. Observe that M is invariant under the natural action of
SL(2,Z) on C2 (and that SL(2,Z)\M may be identified with the set of lattices
of C— see [Ser1970]). This action induces an action of SL(2,Z) on H by Möbius
transformations: (

a b
c d

)
· τ =

aτ + b
cτ + d

.

We recall in Section V.1 below the proof that there exists a function

j : H→ C,

invariant under the action of SL(2,Z), such that two lattices Λ1 and Λ2 of C are
homothetic1 if and only if j ([Λ1]) = j ([Λ2]), where [Λi] denotes the homoth-
ety class of the lattice Λi . Following on foundational work, notably of Gauss,
Legendre, Abel, and Jacobi, a basic problem became that of linking j (τ) and
j ′(τ) = j (Nτ) for τ ∈ H and N an integer ≥ 2. It can be shown2 (see Subsec-
tion V.1.3 below) that there exists a polynomial ΦN ∈ C[X,Y ] such that

ΦN ( j ′, j) = 0. (V.1)

1Or similar, meaning that there exists a λ ∈ C∗ such that λΛ1 = Λ2, which is equivalent to the
statement that C/Λ1 and C/Λ2 are isomorphic.

2Recall, by way of analogy, that the trigonometric functions cos(x) and cos(N x) are linked by
an algebraic equation

cos(N x) = TN (cos x),
where TN is the N th Chebyshev polynomial.
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When ΦN is minimal, this is called the modular equation3 associated with trans-
formations of order N . The modular equation associated with transformations of
order 7 (that is, the case N = 7) is the main subject of the article [Kle1878c].
There Klein produces a remarkable geometric model of the surface X (7) obtained
by compactifying the quotient of H by the action of the subgroup

Γ(7) = {α ∈ SL(2,Z) |α ≡ I2 (mod 7)} ,

where I2 denotes the identity matrix. More generally, one defines the principal
congruence subgroup of level N by

Γ(N ) = {α ∈ SL(2,Z) |α ≡ I2 (modN )} .

We show in Section V.1 below that the quotient Γ(N )\H can be compactified to
form a Riemann surface, denoted by X (N ). The group Γ(1) coincides, of course,
with SL(2,Z) and we shall see that the surface X (1) is isomorphic to the Riemann
sphere CP1.

Klein shows that the surface X (7) is isomorphic to the smooth plane quartic C4
with equation4 x3y+y3z+z3x = 0, invariant under the action of a group G isomor-
phic to PSL(2,F7) (the automorphism group of X (7) — see Proposition V.1.1 be-
low). In this projective model the natural morphism from X (7) onto X (1) ' CP1

is made concrete as the projection of C4 on G\C4 (identified with CP1); this is
a Galois covering whose generic fibre is considered by Klein as “the Galois re-
solvent”5 of the modular equation of level 7. Relying on numerous geometric
properties of his quartic and on his investigations of the equation Φ7(·, j) = 0,
Klein arrived at a description of the fibre over a given value j (τ) in terms of quo-
tients of explicit modular forms defined on the half-plane H, the domain of the
variable τ (the ratio of periods). This result was the most significant one of the
article [Kle1878c]. In addition to that he presents another novelty: the explicit
parametrization of a curve of genus > 1 (to within a finite number of points) by
means of a uniform complex variable. He proves the following theorem:

Theorem V.0.6. — The Riemann surface associated with the plane quartic C4
defined by the equation

x3y + y3z + z3x = 0

3An earlier version, Jacobi’s modular equation, concerns the modulus λ = k2.
4In terms of homogeneous coordinates for 2-dimensional complex projective space. Trans
5Meaning that the function field of C4 is the splitting field of this equation over C( j).
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with its 24 points of inflection removed, is uniformized by the variable τ ∈ H via
the formulae

x
z

= q−1/7
∑

m∈Z(−1)m[q
1
2 (21m2+37m+16) − q

1
2 (21m2+19m+4)]∑

n∈Z(−1)n+1q
1
2 (21n2+7n)

, (V.2)

y

x
= q−4/7

∑
m∈Z(−1)m[q

1
2 (21m2+25m+8) − q

1
2 (21m2+31m+12)]∑

n∈Z(−1)n+1q
1
2 (21n2+7n)

, (V.3)

z
y

= q−2/7
∑

m∈Z(−1)m[q
1
2 (21m2+m) + q

1
2 (21m2+13m+2)]∑

n∈Z(−1)n+1q
1
2 (21n2+7n)

, (V.4)

where q = e2iπτ .

In other words, the above formulae give a concrete universal covering map
H → C4 r I4, where I4 is the set of points of inflection of C4. Over the two year
period 1878–1879, Klein published a series of papers on modular equations, in
particular [Kle1878b, Kle1878c, Kle1879b], devoted respectively to transforma-
tions of order p = 5, 7 and 11. In each case he constructs by geometric means a
Galois resolvent, gives its roots explicitly — using modular forms — and shows
how to find the modular equation itself (of degree p + 1) as well as a resolvent
of degree p for each of these particular values of p. For p = 5, the geomet-
ric model of X (5) he uses is the regular icosahedron6, the resolvent of degree 5
being linked, as had been shown by Hermite [Her1858], to the general quintic
equation. Just as the sphere has a regular tiling induced from the faces of an in-
scribed icosahedron, so also does the modular surface X (7) admit a regular tiling
by triangles. This tiling is inherited combinatorially from a tiling of H of type
(2,3,∞)7, and its triangles are of type (2,3,7). This is described in [Kle1878c]
(or see pp. 125–127 of his complete works) and depends on elementary geometric
properties of C4. Arithmetic, algebraic, geometric, and combinatorial facets are
tightly imbricated in this work of Klein, revealing the quartic C4 to be a central
and fascinating mathematical object. The reader may also consult [Levy1999a],

6Klein shows that the morphism X (5) → X (1) is isomorphic to that taking the quotient of the
unit sphere in R3 by the action of the symmetry group of the regular icosahedron.

7A tiling of H by triangles is said to be of type (a,b,c) if it is realized by hyperbolic triangles
(a,b,c), that is, with angles ( 2π

a ,
2π
b ,

2π
c ).
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and especially [Elk1999] who places C4 in the context of modern number theory.
We ourselves, following [Kle1878c], will be concentrating here on a particular
result, namely the parametrization of the Klein quartic, representing an important
stage in the explicit uniformization of algebraic curves. In particular, the above
formulae of Theorem V.0.6 will be derived in the final Section V.2.5

V.1. V.1. Modular forms, the invariant map j

V.1.1. Modular surfaces

It has been known since the time of Gauss (see Box V.1 and Figure V.1) that the
set

D (1) = {τ ∈ H| |τ | ≥ 1, |Re(τ) | ≤ 1/2}

is a fundamental region of the action of SL(2,Z) on H, meaning that every orbit of
the action of SL(2,Z) meetsD (1) and that the translates of int(D (1)) by SL(2,Z)
are pairwise disjoint. We shall be returning to this topic in Chapter VI.
Proposition V.1.1. — Let Γ be a subgroup of finite index of SL(2,Z). The quotient

YΓ = Γ\H

admits the structure of a noncompact Riemann surface, biholomorphic to a com-
pact Riemann surface XΓ with a finite number of points removed.

Box V.1: Gauss’s reduction theory

The theory of the reduction of quadratic forms consists in the study of the
orbits of the group SL(n,Z) acting on the vector space of quadratic forms in
n variables according to the rulea (A · q)(x) = q(AT x). This action is natural
from the point of view of number theory: two quadratic forms in the same
orbit have the same integer values. It is of interest, in particular, to look for a
fundamental region of the action of SL(n,Z) on the set X of positive definite
quadratic forms.

In his Disquisitiones Arithmeticae Gauss considers the case n = 2. Every
such positive definite quadratic form q can be factored uniquely as

q(x, y) = a(τx + y)(τx + y) (V.5)

where a > 0 and τ lies in the half-plane H.

aHere x stands for the column vector with components x1, . . . , xn .
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The action of positive scalars on X commutes with that of SL(2,Z), and it
follows from (V.5) that the quotient X/R∗+ is isomorphic to the half-plane H.
The group SL(2,Z) acts via Möbius transformations on H. Gauss proves the
following celebrated result concerning a fundamental region of this action (see
[Ser1970]):

Theorem V.1.2 (Gauss). — The subset

D (1) = {τ ∈ H | |τ | ≥ 1 and |Re(τ) | ≤ 1/2}

of H is a fundamental region for the action of SL(2,Z) on H.

Proof. — We begin with the case Γ = SL(2,Z). It is easy, starting from the
fundamental region D (1), to equip the quotient Y (1) = YΓ with the structure of a
non-compact Riemann surface of genus 0 and with one end; this construction is
carried out in the most general case of an arbitrary Fuchsian group in Chapter VI.
The horoballs8 centered at infinity, given by

Ba = {τ ∈ H | Imτ ≥ a} (a > 0)

become in the passage to the quotient punctured discs forming neighborhoods of
the ends of YΓ. Setting q = e2iπτ , understood as defining a chart, one obtains
thereby a compact surface XΓ representing a completion of the open Riemann
surface YΓ.

In the general case of a subgroup Γ ⊂ SL(2,Z) of finite index, the quotient YΓ
is a branched covering of Y (1). It compactifies uniquely to a branched cover-
ing XΓ of X (1). The projective action of SL(2,Z) on QP1 is transitive; the set
XΓ rYΓ is finite, in one-to-one correspondence with the classes Γ\QP1, whose el-
ements are still called cusps of XΓ (or of Γ). Let x = ρ(∞) be a representative of
a cusp (ρ ∈ SL(2,Z)) and denote by Γx the stabiliser of x in Γ. The group ρ−1Γx ρ

is, independently of the choice of representative of the cusp and of ρ, generated
by γ(z) = z + m for some integer m ≥ 1. Setting q = e2iπτ , one takes as chart
ρ(w) with

w = e2iπτ/m = q1/m . (V.6)

Note finally that each inclusion Γ1 ⊂ Γ2 of finite-index subgroups of SL(2,Z)
induces a holomorphic map from XΓ1 onto XΓ2 . �

8In hyperbolic n-space a horoball is the limit of an increasing sequence of balls sharing a tangent
hyperplane and its point of tangency. Trans
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For Γ = SL(2,Z) one has YΓ ' C and XΓ ' C ' CP1 (the case of a single
cusp). When Γ is one of the principal congruence subgroups Γ(N ), the numerical
invariants (genus, the number of cusps) of the associated Riemann surface are
known (see [Shi1971, pp. 20–23]). In particular, the surface X (7) has genus 3 and
24 cusps (see Section V.2.1).

P

j
i

− j2

−1 −
1
2

0 1
2

1

Figure V.1: A tiling for PSL(2,Z)

V.1.2. Modular forms

For greater detail concerning the contents of this section, one may consult
[Ser1970]. As above we consider a subgroup Γ of finite index of SL(2,Z). Recall
that the set M of marked lattices is stable under the natural action of SL(2,Z)
on C2.

An automorphic form of weight k on H relative to Γ is defined to be any
function f : H→ C for which

f (τ) = f̂ (τ,1)

where f̂ : M → C is a homogeneous function of degree −2k, invariant under Γ
and such that f̂ (τ,1) is meromorphic on H and also at the cusps coordinatized by
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the variable w defined by (V.6). In particular, the function f satisfies

f
(

aτ + b
cτ + d

)
(cτ + d)−2k = f (τ)

(
τ ∈ H,

(
a b
c d

)
∈ Γ

)
. (V.7)

Among the automorphic forms it is useful to distinguish certain subsets.
First, we denote by K (Γ) the set of such forms of weight k = 0, which may
be identified with the field of meromorphic functions on XΓ. Next there is the
set Mk (Γ) of forms of weight k holomorphic on H and holomorphic in the vari-
able w at each cusp of Γ: the modular forms. Under multiplication, the direct sum
M (Γ) =

⊕
k ∈Z Mk (Γ) is a graded C-algebra.

Consider now the case Γ(1) = SL(2,Z), and assume k > 2. For each
(ω1,ω2) ∈ M we write

Gk (ω1,ω2) =
∑
λ∈Λ

′ 1
λ2k

, (V.8)

where Σ′ designates summation over the non-zero vectors of the lattice
Λ = Zω1 ⊕ Zω2, convergence being assured by the assumption k > 2. By con-
struction, Gk (ω1,ω2) is homogeneous of degree −2k and SL(2,Z)-invariant; an
argument using normal convergence — in a fundamental region of SL(2,Z) —
shows that Gk (τ,1) is holomorphic on H and also at the point ∞ (see [Ser1970,
Chapter VII]). It is also known that the algebra of modular forms for SL(2,Z)
is a polynomial algebra, generated by g2 = 60G2 and g3 = 140G3 of respective
weights 2 and 3: M (SL(2,Z)) = C[g2,g3] ' C[X,Y ].

In order to construct a meromorphic function on H that is SL(2,Z)-invariant
and non-constant, one considers the first homogeneous summand of M (SL(2,Z))
of dimension at least 2, with a view to forming the quotient of two linearly in-
dependent modular forms of the same weight. One shows (see [Ser1970, Chap-
ter VII]) that this first summand is in fact M6(SL(2,Z)), which contains the form
∆ = g3

2 − 27g2
3 , not vanishing on H. Hence it is natural to define

J = g3
2/∆, and j = (12)3 J. (V.9)

The function j, called a modular invariant, is holomorphic on H with a simple
pole at infinity of residue 1. Via passage to the quotient, it induces an isomorphism
between X (1) and CP1.

By considerations of symmetry, one obtains g3(i) = 0 and g2(ρ) = 0 for
ρ = (1 + i

√
3)/2 (see equation (V.8)), whence the particular values

j (i) = 123 = 1728 and j (ρ) = 0. (V.10)

Finally, the field of meromorphic SL(2,Z)-invariant functions coincides
with C( j), which is isomorphic to the field of rational functions over C in a sin-
gle variable. Hence for every finite-index subgroup Γ of SL(2,Z), the field of
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functions K (Γ) is a finite extension of C( j), Galois if and only if Γ is a normal
subgroup of Γ(1), which is the case for the principal congruence subgroup Γ(N ),
whose degree is equal to that of the branched covering XΓ → X (1) [Rey1989,
p. 60].

V.1.3. Modular equations

Given an integer N ≥ 2, we seek an equation linking j (τ) and j ′(τ) = j (Nτ) for
τ ∈ H. It is easy to check that j ′ is left invariant by the group

Γ0(N ) =

{(
a b
c d

)
∈ SL(2,Z) |c ≡ 0 (mod N )

}
, (V.11)

which is, in fact, precisely the stabiliser of j ′.
On the other hand j ′ is meromorphic at the cusps of Γ0(N ). Indeed, by means

of the action of Γ(1) = SL(2,Z), one reduces the situation to the cusp ∞ and to a
function of the form j ◦

( a b
0 d

)
with a, b and d integers; for sufficiently large k the

product of the latter with qk/m (see equation (V.6)) is bounded in a neighborhood
of q1/m = 0. The extension K (Γ0(N ))/C( j) being finite, this implies the existence
of an algebraic relation between j and j ′. In order to exhibit such a relation, one
considers the transforms of j ′ by the elements of Γ(1), that is, the j ◦ α with α
ranging over the orbit ON of the point

pN = Γ(1)
(

N 0
0 1

)
∈ Γ(1)\∆N ,

under the action of Γ(1) on the right; here ∆N denotes the set of integer matrices
of determinant N . One readily checks that the stabiliser of the point pN in Γ(1)
is Γ0(N ), so that the orbit ON may be identified with the quotient Γ0(N )\Γ(1).
Write dN for the index of Γ0(N ) in Γ(1) and αk ∈ ∆N (k = 1, . . . dN ) for a
system of representatives of the orbit ON . Then the coefficients of the polynomial∏dN

k=1(X − j ◦ αk ) are invariant under Γ(1), holomorphic on H and (by the same
argument as above) meromorphic at the cusp∞. We have thus found a polynomial
ΦN ∈ C[X,Y ] of degree dN in X such that

ΦN ( j ′, j) = 0. (V.12)

This is the modular equation associated with transformations of order N . The
stabiliser of j◦αk is conjugate to Γ0(N ) (the stabiliser of j ′), whence the subgroup
fixing all the j ◦ αk coincides with Γ(N ) =

⋂
γ∈Γ(1) γΓ0(N )γ−1. It follows that

the splitting field of ΦN ∈ C[ j][X] is K (Γ(N )). Moreover Γ(1) acts as a set of
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automorphisms of K (Γ(N )) in permuting transitively the roots of this polynomial,
which is therefore irreducible, whence, in particular, K (Γ0(N )) = C( j, j ′) (see
also [Shi1971, p. 34]). When N = p, a prime, one readily sees that the matrices( 1 k

0 p

)
(0 ≤ k < p) and

( p 0
0 1

)
form a system of representatives of Op = Γ(1)\∆p ;

the index of Γ0(p) is thus dp = p + 1.
An elementary calculation shows that Γ0(N ) is normalized by the matrix

(
0 N−1/2

−N1/2 0

)
(V.13)

which induces an involutary automorphism of the surface X0(N ) = XΓ0 (N ) and of
its function field: this is the Fricke involution interchanging j and j ′. One infers
from its existence that ΦN ∈ C[X,Y ] is symmetric. Klein relies on this symmetry
in his investigation of the modular equation for N = 2,3,4,5,7 and 13 [Kle1878b,
§II]. For these values of N the surface X0(N ) is of genus 0 and there exists
ξ ∈ K (Γ0(N )) such that K (Γ0(N )) = C( j, j ′) = C(ξ); one then has j = F (ξ)
and j ′ = F (ξ ′) with F ∈ C(Z ), the function ξ ′ being linked to ξ by a Möbius
transformation (the Fricke involution). In each of these cases Klein describes
a fundamental region for the action of Γ0(N ) on the half-plane9, then deduces
from ramification data an expression for F and gives the relation between ξ (in
its alternative guise as a function of q) and ξ ′. Note that for N ∈ {2,3,4,5}, the
surface X (N ) is also of genus 0, with respective automorphism groups (leaving
the set of cusps globally fixed) the dihedral group, the tetrahedral group A4, the
group S4 of the cube and the octahedron, and the group A5 of the dodecahedron
and icosahedron.

V.1.4. The surface X0(7)

We shall now expound in detail the case N = 7. Our first task is to determine
a fundamental region for the action of the group Γ0(7). For γ =

( a b
c d

)
from

SL(2,R), there is the following well-known formula:

Imγ(z) =
Imz
|cz + d |2

(z ∈ H). (V.14)

Since for each fixed z there are only finitely many pairs (c,d) ∈ Z2 for which
the modulus |cz + d | is less than a given number, it follows that each orbit of the
action of Γ0(7) on H contains a point z ∈ H whose imaginary part is greatest, that

9He uses the
( a b
c d

)
∈ SL(2,Z) with b ≡ 0 (mod N ), which comes to the same thing.
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is, such that |cz + d | ≥ 1 for all
( a b
c d

)
∈ Γ0(7). Hence every orbit of Γ0(7) meets

the set
D ′ =

⋂
d<7Z

{|z + d/7| ≥ 1/7} ∩ {|Rez | ≤ 1/2}.

Here the inequality |Rez | ≤ 1/2 is a consequence of the fact that the translation

t : τ 7→ τ + 1

is an element of Γ0(7). By applying the rotations r1 =
( 2 −1

7 −3
)

and r2 =
(
−2 −1
7 3

)
,

the set D ′ is transformed into the fundamental region D of Figure V.2.

0 1/2!1/2

r
r
2

t

1

Figure V.2: A fundamental region for Γ0(7)

There we see a tiling by eight translates ofD (1) by Γ(1), and since the image
Γ0(7) of Γ0(7) in PSL(2,Z) is a subgroup of index 8, we conclude that D and D ′

are fundamental regions for Γ0(7). Finally, we see in Figure V.2 that X0(7) is of
genus 0 with two cusps (0 and ∞) and that Γ0(7) is generated by r1, r2 and the
translation t realizing the identifications used to obtain X0(7).
Proposition V.1.3. — The expression

ξ =

(
∆(τ)
∆(7τ)

)1/6

=
1
q

∞∏
n=1

(
1 − qn

1 − q7n

)4

(V.15)

affords a rational coordinate on X0(7).
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Proof. — The second equality is a consequence of the following one (see
[Ser1970]):

∆ = (2π)12 q
∞∏
n=1

(
1 − qn)24 .

One next verifies that, as for j (7τ), ∆(7τ) is modular for Γ0(7), whence
ξ6 ∈ M (Γ0(7)). It then follows that ξ ◦ γ = χ(γ)ξ for all γ ∈ Γ0(7), where χ is
a character of the group Γ0(7) with values sixth roots of unity. Recall that Γ0(7)
is generated by t, r1 and r2. One has ξ ◦ t = ξ (since ξ is expressible uniquely in
terms of integer powers of q) and χ(r1) = χ(r2) = 1 because these rotations have
a fixed point in H. Hence the character χ is trivial. Finally, since ∆ is holomor-
phic and does not vanish on H (see Section V.1.2), ξ can take the values 0 and ∞
only at cusps. In view of the fact that X0(7) has only two cusps, the function ξ is
thus necessarily of degree 1. Hence, in particular, the subgroup of Γ(1) leaving ξ
invariant is Γ0(7). �

V.1.5. The modular invariant as a function on X0(7)

We can now determine j as a function of ξ following the method employed by
Klein in [Kle1878b, II §14]. The result is as follows:

Proposition V.1.4. — We have

j =
1
ξ7 (ξ2 + 13ξ + 49)(ξ2 + 245ξ + 2401)3.

Proof. — Write j = φ(ξ)/ψ(ξ), a rational function of degree 8 in ξ. The equation
j = ∞ has a simple root ξ = ∞— corresponding to q = 0 — and a root of mul-
tiplicity 7 at ξ = 0 (see equation (V.15) and Figure V.2); we may therefore take
ψ(ξ) = ξ7. Similarly, φ has two triple roots and two simple ones, and φ − 1728ψ
has four double roots (equation (V.10) and Figure V.2). Furthermore ψ must be
monic since j (q) has a simple pole of residue 1 at q = 0. These conditions serve
to determine φ uniquely. Indeed, we must have φ = UV 3 and φ − 1728ψ = W 2

where U, V and W are monic polynomials of degrees 2, 2 and 4 respectively; and
moreover U , V , W and ξ are pairwise relatively prime. The “functional determi-
nant” φ′ψ − ψ ′φ is therefore a monic polynomial of degree 14 divisible by both
ξ6V 2 and W , whence φ′ψ − ψ ′φ = ξ6V 2W . This relation gives W in terms of the
coefficients of U and V ; carrying this over to UV 3 − 1728ξ7 = W 2 then yields the
expression claimed for j. �
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The Fricke involution sends ξ to ξ ′(τ) = ξ (−1/(7τ)). It induces an involutary
automorphism σ of the surface X0(7), so that ξ ′ is an involutary homographic
function of ξ. One has j = F (ξ) and j ′ = F (ξ ′). The two cusps of X0(7) make
up the fibre common to j and j ′ above infinity, and are interchanged by σ, whence
ξξ ′ = C for some constant C. In similar fashion σ interchanges the simple roots of
F = 0 (the images of the centres of rotation of r1 and r2 — see Figure V.2) linked
by the equation z1z2 = −1/7), at which j = j ′ = 0; hence ξ2 + 13ξ + 49 = 0
implies that also ξ ′2 + 13ξ ′ + 49 = 0, whence C = 49. Finally, therefore, the
Fricke involution is given by

ξξ ′ = 49. (V.16)

It then follows from Proposition V.1.4 that j = (ξ ′2 +13ξ ′+49)(ξ ′2 +5ξ ′+1)3/ξ ′.
This is actually the expression obtained by Klein in [Kle1878b] for J = j/1728.

The description of the fibre of j : X0(7) → CP1 will be important in the
sequel as an essential intermediate step towards the parametrization of C4. From
the above expression for J as a function of ξ ′, we infer the following expression
for J ′ as a function of ξ:

J ′ − 1 =
1

123ξ
(ξ4 + 14ξ3 + 63ξ2 + 70ξ − 7)2. (V.17)

At the points −1/7τ and (τ + k)/7 (k = 0, . . . ,6), the function J ′ takes the same
value J (τ). Hence ξ∞ = ξ ′ = ξ (−1/7τ) and ξk = ξ (τ/7 + k/7), k = 0, . . . ,6, are
roots of the equation

(z4 + 14z3 + 63z2 + 70z − 7)2 − 123(J − 1)z = 0. (V.18)

Since the functions −1/7τ and (τ + k)/7 (k = 0, . . . ,6) are distinct modulo Γ0(7),
the same holds for the ξk (k = ∞,0, . . . ,6) as functions on H. Changing the
point τ in the fibre above J, induces a permutation of the ξk (k = ∞,0, . . . ,6) as
roots of the equation (V.18) — the permutation can be made explicit using (V.15).
We now set q1/2 = eiπτ , ∆1/2 = (2π)6q1/2 ∏∞

n=1(1− qn )12. Since J −1 = 27g2
3/∆

(see equation (V.18)), the square roots of the solutions of (V.18) are up to sign
solutions of

w8 + 14w6 + 63w4 + 70w2 − 63g3w/∆
1/2 − 7 = 0. (V.19)

They can be expressed in terms of ±ξ1/2, ξ1/2 = q−1/2 ∏∞
n=1(1− qn )2(1− q7n )−2.

The sign is determined by the behaviour of the leading term of (V.19) as q
tends to 0. Using limq→0(g3) = 280ζ (6) [Ser1970, Chapter VII, §2.3], one
finds that 63g2/∆

1/2 = q−1/2(1 + o(q)). Hence the roots of equation (V.19) are
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w∞ = −ξ1/2(−1/7τ) and wk = (−1)k ξ1/2(τ/7 + k/7) (k = 0, . . . ,6), or, setting
γ = e2iπ/7,

w∞ = −7q1/2
∞∏
n=1

(
1 − q7n

1 − qn

)2

, (V.20)

wk = γ−4kq−1/14
∞∏
n=1

(
1 − γnkqn/7

1 − qn

)2

(k = 0, . . . ,6). (V.21)

V.2. How Klein parametrized his quartic

V.2.1. The group PSL(2,F7) and the surface X (7)

As we have seen above (§V.1.3), the function field K (Γ(7)) of the surface X (7) is
the splitting field of the polynomialΦ7 ∈ C( j)[X] associated with transformations
of order 7 (equation (V.1)). We first need to examine the action of “homographic
substitutions modulo 7”10 [Kle1878c, §§1–2] on X (7). Let F7 = Z/7Z be the field
of seven elements. Since SL(2,F7) is generated by

( 1 1
0 1

)
and

( 1 0
1 1

)
, the reduction

morphism modulo 7 from SL(2,Z) to SL(2,F7) is surjective, whence the exact
sequence

1→ Γ(7) → PSL(2,Z) → PSL(2,F7) → 1. (V.22)

In particular, the quotient G = PSL(2,Z)/Γ(7) is isomorphic to PSL(2,F7), a
simple group of order 168 (see Remark V.2.2 below). The group G acts on X (7)
via automorphisms and G\X (7) can be identified with X (1). Thus the fibres of
the projection X (7) → X (1) are the orbits of the action of G on X (7). There
are therefore three singular fibres corresponding to the values J = ∞,0 and 1
(recall that J = j/1728), whose elements are called A-points, B-points and C-
points in Klein’s terminology, with stabilisers of orders respectively 7, 3 and 2.
These fibres have cardinality 24, 56 and 84; all others have 168 elements. By the
Riemann–Hurwitz formula, the genus g of X (7) satisfies the relation

2 − 2g = 2 · 168 − 6 · 24 − 2 · 56 − 84, (V.23)

whence g = 3.

10That is, Möbius transformations modulo 7. Trans
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Remark V.2.1. — The automorphism group of a compact Riemann surface of
genus g ≥ 2 is finite of cardinality at most 84(g − 1); this is the Hurwitz bound.
Thus the surface X (7) attains this bound.11

On lifting to X (7) the decomposition of X (1) ' CP1 into two triangles with
vertices (1,0,∞), one obtains a polyhedral triangular structure of type (2,3,7)
on X (7). The surface is tiled by 336 triangles which can be grouped to obtain
either a tiling by 24 heptagons (centered at the A-points) with 84 edges centered
at the C-points and 56 vertices (the B-points), or the dual tiling comprised of
56 triangles centered at the B-points, 84 edges centered at the C-points, and 24
vertices, the A-points (see [Kle1878c, Kle1921a] and Figure V.3.).

Figure V.3: Polyhedral triangular structure of X (7)

Each g ∈ G lifts to a matrix γ ∈ SL(2,F7) uniquely defined up to sign.
The order of g is therefore related to the trace of γ. For example, if g has

11This is a consequence of the fact that the triangle (2,3,7) has least hyperbolic area among all
hyperbolic triangles of type (a,b,c). By the Gauss–Bonnet theorem, this derives from the fact that
the largest value less than 1 of the sum 1

a + 1
b + 1

c is attained uniquely by (2,3,7).
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order 4, the minimal polynomial of γ is one of the factors of the polynomial
x4 + 1 = (x2 − 3x + 1)(x2 − 4x + 1) and one has trγ = ±3; conversely, this con-
dition clearly implies that g has order 4. One thus obtains that the elements of
orders 2, 3, 4 and 7 are characterized respectively by ±trγ = 0,1,3 and 2 (with
γ , ±I2). An easy count then shows that G has respectively 21, 56, 42 and 48
elements of these orders.

We now make an inventory of the cyclic subgroups of G. First one observes
that the involutions in G form a single conjugacy class (their lifts to SL(2,F7)
all have x2 + 1 as minimal polynomial) so must have fixed points; in fact each
of the 21 involutions must fix four C-points. These involutions are in one-to-one
correspondence with the subgroups of order 4, also all conjugate. Each element
g ∈ G of order 4 is fixed-point free and acts by means of a bi-transposition on the
4 fixed points of the involution g2. For topological reasons (a surface of genus 3
cannot be an unramified triple covering), the elements of order 3 all have fixed
points. Thus they form 28 subgroups each fixing a pair of B-points, and all conju-
gate since G is transitive on the B-points. In similar fashion, one sees that the 48
elements of order 7 make up altogether 8 subgroups forming a single conjugacy
class, and each fixing three A-points.

A few additional remarks will facilitate the determination of a geometric
model of X (7). Since the action of G by conjugation on the set of 8 subgroups
of order 7 is transitive, the normalizer of each such subgroup has order 21, and
is non-Abelian since G has no elements of order 21. Denote by G′21 (in the nota-
tion of [Kle1878c]) any one of these normalizers; its structure is necessarily that
of the semi-direct product generated by two elements h and r satisfying (up to
interchanging r and r−1) the relations

h7 = r3 = 1 and rhr−1 = h4. (V.24)

The three A-points fixed by h, which have cyclic stabilizer, are permuted cycli-
cally by r . Analogous reasoning shows that the centralizer of r is a subgroup
of G′6 isomorphic to the symmetric group S3, generated by r and an involution s
permuting the two B-points fixed by r .

Remark V.2.2. — Klein makes no mention of the simplicity of G, although
this may be deduced using the elementary argument given by him in [Kle1884,
p. 19] for PSL(2,F5). From the knowledge that all cyclic subgroups of the
same order are conjugate — in fact all elements of the same order are conju-
gate — it follows that the cardinality of a normal subgroup H of G is of the form
1 + 21α1 + 56α2 + 42α3 + 48α4 with αk = 0 or 1 (k = 1, . . . ,4). The only pos-
sibilities yielding a divisor of 168 are then quickly seen to be αk = 0 for all k
(H trivial) and αk = 1 for all k (H = G).
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V.2.2. The quartic C4

In this section we determine an explicit algebraic equation for the Riemann
surface X (7). Recall that, given a compact Riemann surface X and the dual
V = Ω(X )∗ of the space of holomorphic 1-forms on X , there is a natural em-
bedding of X in the projective space P(V ). This map sends each point x of X
to the projectification of the space of holomorphic 1-forms vanishing at x. One
shows that this space is always a vector hyperplane of Ω(X ), so may be identified
with a point of P(V ). It is further known that the map φ from X to the projective
space P(V ) so defined is a holomorphic embedding except for the case when X is
hyperelliptic12 (see [Rey1989, p. 102]).

In order to exclude the latter possibility in the case of X (7), Klein uses a
specific known model for plane hyperelliptic curves of genus 3 (see [Levy1999b,
p. 295]). The fact that X (7) is not hyperelliptic may also be inferred from the
behaviour of its involutions13: they each have four fixed points (§V.2.1), whereas
a hyperelliptic involution in genus 3 must have eight. When g = 3 the projective
space P(V ) has dimension 2; hence the image C4 of the embedding of X (7) is a
plane smooth quartic.

The group G of automorphisms of X (7) acts linearly on the space
V = Ω(X (7))∗ as follows:

(g · ξ)(ω) = ξ (g∗ω) (g ∈ G, ξ ∈ V, ω ∈ Ω(X )). (V.25)

This projective action of G is essential to the geometric investigation of this quar-
tic. Observe that the representation (V.25) takes its values in SL(V ) ' SL(3,C)
since G has no nontrivial quotient (see Remark V.2.2).

Recall that every plane curve possesses special points, notably: inflections,
points of contact with bitangents14, and points where the curve admits a super-
osculating conic, that is, having contact with the curve of order at least 6. Fol-
lowing Cayley, these last are called sectactic; for example, if the curve has an
axis of symmetry, its intersections with that axis will be sectactic by symmetry.
For a smooth projective curve with equation f = 0 of degree at least 4, each
of these three sets of special points are obtained as the intersection with another
curve associated with f (for C4 see equation (V.31) of §V.2.3 below), for example
with det Hess f = 0 in the case of inflections, where Hess f is the Hessian of f .
Smooth curves of degree 4 have 24 inflections, 56 contacts with bitangents, and
84 sectactics points (counting multiplicities).

12Recall that a Riemann surface X is said to be hyperelliptic if there exists a branched covering of
degree 2 of CP1 by X . The unique nontrivial covering automorphism is then called a hyperelliptic
involution.

13Or from the simplicity of G, since a hyperelliptic involution is always central.
14That is, lines tangent at two points of the curve. Trans
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Henceforth we shall identify G with the subgroup of SL(V ) leaving C4 invari-
ant under the projective action (V.25). Being projectively invariant, each family
of special points of C4 is the union of orbits of the action of G. This leads to the
following single possibility: the inflections correspond to the A-points, the points
of contact with bitangents to the B-points, and the sectactic points to the C-points
(the other orbits each having 168 elements). Since the inflections are simple, each
tangent line to such a point P ∈ C4 meets C4 in another point P′. As P ranges
over the set I of inflection points, the corresponding points P′ range over a orbit
consisting of 24 elements, which therefore coincides with I itself by uniqueness.
Furthermore, an element of G fixing P must also fix P′. Knowing that the sta-
bilizers of A-points each fix a triplet of them, we obtain a decomposition of the
set I into 8 cycles of length 3. Hence the tangents to inflection points subdivide
into 8 inflection triangles (in Klein’s terminology) which will have an important
role to play subsequently. For instance, they allow us to prove the following:
Theorem V.2.3. — An equation for C4, invariant under G, is

x3y + y3z + z3x = 0. (V.26)

Proof. — Let f = 0 be an equation for C4, invariant under the action of G. The
simplicity of the group G imposes an additional constraint. Indeed, since each
character of G with values in C∗ is trivial, every projectively G-invariant poly-
nomial is G-invariant; in particular f is G-invariant. Since the linear projective
group is 3-transitive on the plane, one can choose coordinates [x, y, z] so that the
axes form an inflection triangle of C4 and the tangent to the point [1,0,0] is y = 0.
In terms of these coordinates the polynomial f is then of the form

f = ax3y + by3z + cz3x + xyz(ux + vy + wz). (V.27)

We also know from §V.2.1 that there exists an element of order 3 of G which per-
mutes the three base points of the coordinate system cyclically. Such an element
is necessarily conjugate by a diagonal matrix from GL(3,C) to the matrix r in-
troduced above (see equation (V.28)). By applying a diagonal coordinate change
(necessarily preserving the form of f ), we may suppose that r acts as a cyclic
permutation of x, y and z. The invariance of f under r then entails a = b = c
and u = v = w. On the other hand, each of the base points is fixed by a (diago-
nal) element h ∈ G of order 7. The diagonal entries of h must have the form γk ,
γl and γm where k, l,m are integers and γ = exp(2iπ/7). From the invariance
of f under h it follows that l = 4k, m = 2k, whence u = 0, yielding the desired
equation. �

One can in fact characterize the homogeneous coordinate systems relative to
which C4 has equation (V.27). They are those for which xyz = 0 defines an



132 V The Klein quartic

inflection triangle and x, y, z are permuted cyclically by an element of order 3
of G.

From now on f will denote the polynomial x3y + y3z + z3x. One also in-
fers from the above proof that the stabilizer of the inflection triangle xyz = 0
is the non-Abelian subgroup G′21 of order 21 of G (see §V.2.1) generated by the
following two matrices:

r =
*..
,

0 1 0
0 0 1
1 0 0

+//
-

and h =
*..
,

γ 0 0
0 γ4 0
0 0 γ2

+//
-
. (V.28)

In order to complete the description of G, it remains to find an involution s
normalizing r . By means of a change of coordinates, Klein obtains

s =
*..
,

a b c
b c a
c a b

+//
-

with




a = i(γ2 − γ5)/
√

7 = − 2√
7

sin( 3π
7 ),

b = i(γ4 − γ3)/
√

7 = 2√
7

sin( π7 ),

c = i(γ − γ6)/
√

7 = − 2√
7

sin( 2π
7 ).

(V.29)

Here is how one can reconstruct this result. First, it follows from the relation
srs−1 = r−1 that s has the form shown in the left-hand matrix in (V.29). Next, the
relation s2 = 1 yields ab + bc + ca = 0 and a2 + b2 + c2 = 1. This implies that the
conic C2 with equation xy + yz + zx = 0 is also stabilized by s. The intersection
of C2 with C4 is comprised of the points [1,α,α2], [1,α2,α] (α = e2iπ/3), the
3 base points [1,0,0], [0,1,0], [0,0,1] and the 3 points [a,b,c], [b,c,a], [c,a,b]
with a,b,c defined as in (V.29). Up to replacing s by rs or r2s (which amounts to
permuting a,b,c cyclically), one sees in this way that s is as in (V.29). Note also
that one has a + b + c = −1 and abc = 1/7.

The normalizer G′6 of r in G, generated by r and s, is isomorphic to the sym-
metric group S3 (see §V.2.1). It acts on the intersection C4 ∩ C2 as follows: the
two inflection triangles are each permuted cyclically by r and interchanged by s;
the points of tangency B = [1,α,α2] and B′ = [1,α2,α] with the straight line
x + y + z = 0 are fixed by r and interchanged by s, which therefore stabilizes this
bitangent line. Since the polynomial x2 + y2 + z2 is invariant under s, each conic
of the pencil

u(xy + yz + zx) + v(x2 + y2 + z2) = 0, ([u,v] ∈ CP1) (V.30)

is stable under the action of G′6 (this is the pencil of conics bitangent at B and B′).
A single conic of this pencil passes through each point P ∈ C4, and its intersection
with C4 contains the orbit of P under the action of G′6, generally consisting of 6
points.
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By means of an ad hoc use of various coordinate systems, Klein locates a
subgroup G′′24 isomorphic to the symmetric group S4, whose existence had been
intimated in his investigation of G [Kle1878c, §1]. This subgroup realizes every
permutation of the 4 bitangents and stabilizes the conic C of the pencil (V.30)
corresponding to u/v = (−1 + i

√
7)/2 [ibid., §§4–5]. The action of G on C

defines a family of 7 conics using which Klein then infers a “resolvent of degree 7”
[ibid., §10].

V.2.3. Invariant polynomials

After having constructed a projective model of X (7), Klein returns to the funda-
mental problem of describing the modular invariant in this context, that is, the
function from C4 to CP1 denoted by J whose fibres are the orbits of the group G.
To this end, he determines all polynomials left invariant by G — in any case of
use in the sequel — and then deduces the expression for J.

In order to find new invariant polynomials (other than f = x3y + y3z + z3x),
Klein uses his knowledge of “covariants”. Denote by Sd (C3) the subspace of
C[x, y, z] of homogeneous polynomials of degree d. A covariant is a polynomial
map Φ : Sd (C3) → Sd′ (C3) equivariant under the action of the special linear
group; for example, the Hessian is a covariant with d ′ = 3(d−2). If P ∈ Sd (C3) is
G-invariant, then so also isΦ(P). Klein introduces three G-invariant polynomials:

∇ =
1
54

����������

f "
x2 f "

xy f "
xz

f "
yx f "

y2 f "
yz

f "
zx f "

zy f "
z2

����������

, C =
1
9

�������������

f "
x2 f "

xy f "
xz ∇′x

f "
yx f "

y2 f "
yz ∇′y

f "
zx f "

zy f "
z2 ∇′z

∇′x ∇′y ∇′z 0

�������������

and K =
1

14

�������

f ′x ∇′x C ′x
f ′y ∇′y C ′y
f ′z ∇′z C ′z

�������
, (V.31)

of respective degrees 6, 14 and 21, with ∇ = 5x2y2z2− (xy5+x5z+z5y). To verify
the invariance, for any three polynomials P,Q,R from C[x, y, z], denote by ∇(P),
C(P,Q), K (P,Q,R) the polynomials obtained by replacing ( f ,∇,C) by (P,Q,R)
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in (V.31). Writing P · u = P ◦ u, u ∈ GL(3,C), one then sees that

∇(P · u) = (det u)2 ∇(P) · u, (V.32)

C(P · u,Q · u) = (det u)2 C(P,Q) · u, (V.33)

K (P · u,Q · u,R · u) = (det u) K (P,Q,R) · u. (V.34)

Proposition V.2.4. — The algebra of G-invariant polynomials is generated by
f ,∇,C and K.

Proof. — The intersections of the quartic C4 with the curves defined by∇, C and K
are unions of orbits of the group G; by Bézout’s theorem they have respectively
24, 56 and 84 points. Thus they are comprised of the inflection points (∇ = 0),
the points of contact with bitangents (C = 0), and the sectactic points (K = 0).
Furthermore, the quotient C3/∇7 defines a nonconstant meromorphic function,
hence surjective, from C4 to CP1. Since the degree of both ∇7 and C3 is 42, the
intersection of a curve of the form λ∇7 + µC3 = 0 with C4 can have at most 168
points. On the other hand, since C3/∇7 is G-invariant, the fibres are unions of
orbits of G, so in fact have size exactly 168 (counting multiplicities). Since the
cardinality of a union of orbits of G must be of the form 24α + 56β + 84γ + 168ζ ,
where α, β,γ = 0 or 1, the only possibility is for just one of α, β,γ, ζ to be
nonzero; in other words each fibre consists of a single orbit.

Thus each orbit of the action of G on C4 is given by a curve of the pencil
λ∇7 + µC3 = 0 ([λ, µ] ∈ CP1). Hence if P is a G-invariant polynomial not
proportional to f , the intersection {P = 0} ∩ C4 must be a finite union of G-
orbits, and there exists Q ∈ C[∇,C,K] such that {P = 0} ∩ C4 coincides with the
intersection {Q = 0} ∩ C4 (with equality of multiplicities). Thus P/Q defines a
holomorphic function on C4, implying the existence of a constant λ ∈ C such that
P − λQ = 0 on C4. It follows (choosing an affine chart) that P − λQ belongs to
the ideal generated by f and therefore P belongs to C[ f ,∇,C,K]. �

Hence in particular f , ∇ and K are the only homogeneous invariant polynomi-
als (up to multiplication by a constant) of degrees 4, 6 and 21. By the uniqueness,
one sees that K is necessarily the product of 21 degree-one factors corresponding
to the straight lines made up of points fixed by the involutions of G (for example,
(a + 1)x + by + cz = 0 in the case of s — see equation (V.29)), each meeting C4
in 4 sectactic points; the group G permutes these 21 straight lines, whence the
invariant polynomial of degree 21.

The orbit of the sectactic points (counted twice) is the intersection of C4 with
some curve with equation λ∇7 + µC3 = 0 and is clearly also the intersection with
K2 = 0. Hence there is a relation of the form λ∇7 + µC3 + νK2 = 0 modulo f .
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Evaluating this at the point [1,0,0], and using the fact that C = x14 +y14 + z14 + · · ·

and K = −(x21 + y21 + z21) + · · · , one infers that µ = −ν. In order to obtain
another such relation, Klein evaluates the above equation at the points of contact
with bitangents, a calculation most simply carried out in terms of the following
coordinates [y1, y2, y3], introduced by Klein in connection with his investigation
of the involutions [Kle1878c, §5]:

−i
√

3
3√

7x = y1 + βy2 + β′y3 (V.35)

−i
√

3
3√

7y = y1 + α2 βy2 + αβ′y3 (V.36)

−i
√

3
3√

7z = y1 + αβy2 + α2 β′y3 (V.37)

where α = e2iπ/3, β3 = 7(3α2 + 1) and β β′ = 7. In terms of these coordinates,
the bitangent x + y + z = 0 has equation y1 = 0 and the points of contact become
[0,1,0] and [0,0,1]. The polynomial f (x, y, z) becomes

F = 3−17−4/3(y4
1 + 21y2

1 y2y3 − 147y2
2 y

2
3 + 49y1(y3

2 + y3
3 )). (V.38)

Since (V.35) et seqq. defines an element of SL(3,C), one can apply (V.32) et
seqq. to the calculation of the transforms of ∇, C and K directly from F, yielding
∇ = 72y6

3/3
3 + · · · and K = −2377y21

3 /3
9 + · · · , whence λ + 123ν = 0 and, finally,

the desired relation

123∇7 + C3 − K2 = 0 (mod f ). (V.39)

One may consult [Adl1999, p. 262] for a relation linking ∇, C, K and f . The
determination of the function J is now at hand. One observes that the function
J∇7/C3 is holomorphic on C4 and so constant; its value can be obtained by eval-
uating the relation (V.39) at the sectactic points (using the fact that J takes the
value 1 at those points), whence one obtains

J = −
C3

123∇7 and j = −
C3

∇7 . (V.40)

V.2.4. Inflection triangles and a resolvent of degree 8

The following step is essential [Kle1878c, §8]: in his systematic study of the
action of G on C4, especially noteworthy are his investigation of the action of G
on the inflection triangles and the reappearance of a degree-8 equation already
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solved in his earlier article [Kle1878b, §18]; the equation in question is (V.19)
above, now linked to X0(7) (see §V.1.5). We now supply the details.

Recall that the stabilizer of the inflection triangle xyz = 0 is the subgroup G′21
of G, generated by r and h (see equations (V.24) and (V.28)). Let s be the in-
volution defined by (V.29). The right cosets of G′21 are G′21 itself and G′21shk

(k = 0, . . . ,6). The action of G on δ∞ = −7xyz yields the following polynomials:

δk = xyz + γ−k (x2y − z3) + γ−4k (y2z − x3) + γ−2k (z2x − y3)

+ 2γk z2y + 2γ4k x2z + 2γ2k y2x (k = 0, . . . ,6)

which determine the 8 inflection triangles of C4 (with γ = e2iπ/7). It follows that
the coefficients of P = (δ − δ∞)

∏6
k=0(δ − δk ), considered as a polynomial in δ,

are G-invariant polynomials. By taking account of degrees, one sees that

P = δ8 + a6∇δ
6 + a4∇

2δ4 + a2∇
3δ2 + a1Kδ + a0∇

4 (mod f ) (V.41)

where the a j are constants.
Klein indicates that one may determine the coefficients a j by identification.

However, to ease the calculation we shall find them by evaluating (V.41) at judi-
ciously chosen points. The coefficients of P correspond to symmetric functions in
the polynomials δ∞, δk , so the a j are real; the coefficient of δ6 is proportional to ∇
(up to a constant factor the unique invariant polynomial of degree 6), but the others
are as shown in (V.41) only modulo f . Setting (x, y, z) equal to (1,1,1) and then
to (1,α,α2) (with α = e2iπ/3), one obtains a6 = −14 and a0 = −7. Substitution
of the point of inflection (1,0,0) and δ = δ0 yields immediately a1 = −1 since
K (1,0,0) = δ0(1,0,0) = −1. Evaluating the polynomials δ∞, δk at the points of
inflection yields δ8 + δ = 0. Next, the fact that the a j are real gives a2 = −70
and a4 = 63 on substituting δ = δ∞ and (x, y, z) = (1,α,α2) (here the value
K (1,α,α2) is calculated using the coordinate change of (V.35) et seqq of §V.2.3.
Finally, at a point [x, y, z] ∈ C4, the polynomials δ∞ and δk (k = 0, . . . ,6) are
roots of

δ8 − 14∇δ6 + 63∇2δ4 − 70∇3δ2 − Kδ − 7∇4 = 0. (V.42)

Compare this equation with (V.19). Since 123(J − 1) = −K2/∇7 on C4, it follows
that if δ is a root of (V.42), then δ/

√
−∇ is a root of (V.19) (for a appropriate square

root) and its square −δ2/∇ is a root of (V.18) describing the fibre of X0(7) → X (1)
(see §V.1.5). In fact Klein begins by showing that the solutions of the “modular
equation” (V.18) can be expressed as rational functions of a point of the curve C4
(namely −δ2

∞/∇ and −δ2
k
/∇, k = 0, . . . ,6), and then infers the relation (V.42). He

remarks that −δ2
∞/∇ induces an isomorphism between G′21\C4 ' X0(7) and CP1.
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V.2.5. Conclusion

The modular equation (V.42) — or degree-8 resolvent — has a remarkable prop-
erty, discovered by Jacobi [Jac1828, p. 308]: the square roots of its 8 solutions,
chosen appropriately, depend linearly on 4 parameters.

It is easy to bring this property to light starting from the expressions for δ∞
and δk . Following Klein, we write, for [x, y, z] ∈ C4,

A0 =
√

xyz, A1 =

√
−y3 − z2x, A2 =

√
−z3 − x2y and A3 =

√
−x3 − y2z.

(V.43)

Then, to within a change of sign of A1, A2 or A3, we have A0 A1 = x2y,
A0 A2 = y2z and A0 A3 = z2x. Hence A1 A2 = xy2, A2 A3 = yz2, A3 A1 = zx2,
and the equations of the inflection triangles (see the expressions δ∞, δk above)
take the form15√

δ∞ =
√
−7A0, (V.44)√

δk = A0 + γ−k A1 + γ−4k A2 + γ−2k A3, (k = 0, . . . ,6). (V.45)

Recall that δ∞/
√
−∇ and δk/

√
−∇ are solutions of equation (V.19). It remains

only to express the ratios A1/A0 = x/z, A2/A0 = y/x and A3/A0 = z/y as
functions of the ratios

√
δk/
√
δ∞, that is, in terms of the solutions w∞ and wk

(k = 0, . . . ,6) of equation (V.19), in order to obtain a parametrization of C4 by
the single variable q. The appropriate choice of signs for the square roots can be
determined by eliminating the Aj in the equations (V.44) and (V.45). We take (see
equations (V.20), (V.21))

√
w∞/

√
−7 = −q1/4

∞∏
n=1

1 − q7n

1 − qn
, (V.46)

√
wk = γ−2kq−1/28

∞∏
n=1

1 − γnkqn/7

1 − qn
(k = 0, . . . ,6). (V.47)

Clearly, it should be possible to express the Aj/A0 ( j = 1,2,3) directly in terms
of the δk/δ∞ (k = 0, . . . ,6). The approach via the square roots allows the use of
Euler’s “pentagonal identity” (see, for example, [McKMo1997, p. 143]):

∞∏
n=1

(1 − qn ) =
∑
n∈Z

(−1)nqn(3n+1)/2, (V.48)

15Klein also gives an interpretation of these formulae in terms of “cubics of contact” containing
the inflection triangles [Kle1878c, §9].
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while expanding
∏

n≥1(1 − qn )2 is not easy. From the relations (V.44) and (V.45)
one infers that 7A1 =

∑
0≤k≤6 γ

k
√
δk and A0 =

√
δ∞/
√
−7, whence, taking

account of (V.46), (V.47) and (V.48), one obtains:

7q2/7
∞∏
n=1

(1 − q7n )
A1

A0
= −

6∑
k=0

γ−k
∞∏
n=1

(1 − γnkqn/7)

= −
∑
n∈Z

(−1)nq
n (3n+1)

14

6∑
k=0

(γ
n (3n+1)

2 −1)k . (V.49)

Here the sum over k is zero except when n(3n+1)/2−1 is divisible by 7 (in which
case the sum is 7). This occurs if and only if n is of the form 7m + 3 or 7m + 6,
whence n(3n + 1)/14 is 1/7 + (21m2 + 19m + 4)/2 or 1/7 + (21m2 + 37m + 16)/2.
By means of a similar calculation for Aj/A0 ( j = 2,3), one finally obtains the
formulae of Theorem V.0.6.

To within a permutation of the variables x, y, z and replacing q1/2 by q = eiπτ ,
these are the formulae given by Klein16 in [Kle1878c, §9].

It is also of interest to consult [Elk1999, p. 84] where a direct parametrization
is described (via the canonical embedding — see §V.2.2) in terms of 1-forms
on X (7):

x, y, z = εqa/7
∞∏
n=1

(1 − qn )3(1 − q7n )
∏

n>0,n≡±n0 mod 7

(1 − qn )

where q = e2iπτ and the triple (ε,a,n0) is (−1,4,1) for x, (1,2,2) for y, and
(1,1,4) for z. In this version, the G-invariant polynomials define parabolic mod-
ular forms for SL(2,Z) and may therefore easily be linked to the variable q. Thus
x3y + y3z + z3x = 0 or ∇(x, y, z) is proportional to the discriminant ∆.

16He revisits the question again in [Kle1880b] in order to obtain more pleasing formulae, ex-
pressed in terms of the average of partial values of theta functions and also allowing of a uniform
treatment for transformations of orders 5, 7, and 11.
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The years 1880–1882 are crucial to our theme. It was then that Klein and
Poincaré announced and then “proved” that all algebraic curves of genus at least 2
can be uniformized by the disc. This came as a great surprise to the mathemati-
cians of the time. Examples were known — we saw some of them earlier — but
that the result held in such generality seemed incredible. Even today it has the sta-
tus of a major and highly nontrivial fact about the geometry of algebraic curves —
to such an extent, indeed, that many mathematicians profess to know it “so well”
that they forget that it is so highly nontrivial and all too often confuse it with one
or another of two theorems which, although certainly important, are much older
(and much simpler): the Riemann Mapping Theorem (the first convincing proof
of which, as we shall see, was given by Osgood) according to which a nontrivial
simply connected open subset of the plane is conformally equivalent to the disc,
and Gauss’s theorem (often wrongly attributed to Riemann) stating that a (real
analytic) surface is locally conformal to an open subset of the plane.

Even though the present work is not a history book, a brief introduction to the
protagonists may nonetheless be useful.

In 1880 Poincaré was a 26-year-old assistant professor17. He had defended
his thesis two years earlier on the research topic of differential equations. It is
undeniable that differential equations were at the root of almost all of his sub-
sequent discoveries. The Paris Academy had proposed in 1878, as the theme of
its competition for the Grand Prize in the mathematical sciences to be awarded
in 1880, the following problem: “To bring to perfection in some significant as-
pect the theory of linear differential equations in a single independent variable”.
Since he had founded the qualitative theory of dynamical systems a few months
earlier18, Poincaré now began to investigate differential equations in a single vari-
able. In March 1880 he submitted a first memoir on the real theory, and then
withdrew it in June of the same year. In the meantime he had become aware — in
May 1880 — of an article by Fuchs on second order linear differential equations
with algebraic coefficients. The memoir that he finally submitted to the Academy
— in June 1880 — contains reflections inspired by Fuchs’s article, reproduced
in [Poin1951, Tome I, pp. 336–373]. In the work that so stimulated Poincaré,
Fuchs sought to generalize Jacobi’s inversion. He considered in particular the
inverse function of the quotient of two independent solutions of a second-order
differential equation and gave a necessary and sufficient condition for this func-
tion to be meromorphic. Since Fuchs’s theory is essentially only local, Poincaré
was struck by the result but found it unconvincing. He understood that Fuchs’s

17Actually a maître de conférences, equivalent to senior lecturer in a British university or assistant
professor in North America. Trans

18At this time Poincaré was also feeling the need to develop an autonomous topological theory
(which, as we know, he subsequently realized).
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result was an (excessively strong) version of uniformization19. Be that as it may, at
that time Poincaré was in the midst of an attempt to understand second-order lin-
ear differential equations with algebraic coefficients via Fuchs’s theory — and it
was in connection with this aim that he created the theory of Fuchsian groups. De-
tails of this first stage in this engaging story20 are omitted from the present book.
Happily, the existence of [Poin1997] excuses us somewhat. We might summarize
these first months by saying simply that Poincaré immersed himself, with all his
genius but also with a certain “naïveté”, in the new theory. His correspondence
with Klein shows, for instance, that at that time he had not read Riemann!

Klein was six years older than Poincaré. He had by that time been a professor
already for ten years, and, possessed of an immense mathematical culture, was
probably the most prominent mathematician of the era. He was certainly one of
the finest connoisseurs of Riemann’s works and knew the theory of elliptic func-
tions thoroughly. He was one of the most influential propagators of the group
concept in mathematics: his “Erlanger Programm” of 1872, announced on the
occasion of his nomination to a professorship (at the age of 23), shows aston-
ishing perspicacity. He had at that time already published major articles on the
uniformization of certain particular algebraic curves arising in number theory. He
had also established the projective character of (real) non-Euclidean geometry.
When Professor Klein learns of Poincaré’s first notes on Fuchsian groups (dating
from February 1881) he is astounded both at the generality of the latter’s construc-
tions and his ignorance of the literature — in particular German — on the topic.
On June 12, 1881 he begins a correspondence with his young colleague on the
other side of the Rhine, destined to continue till September 22, 1882.

We reproduce this celebrated correspondence in an appendix, and strongly
recommend it to the reader. One sees there a (scientific!) confrontation between
a beginner and an established professor, tinged with oblique political references.
Also in evidence is the increase in mutual respect over the course of the correspon-
dence. But best of all one sees there the genesis of the uniformization theorem,
gaining in precision of formulation almost day by day. It should also be mentioned
how Poincaré’s genius compels Klein’s respect — respect he gladly acknowledges
subsequently.

19The day after the submission of his memoir to the Academy, Poincaré also sent to Fuchs the
first of a series of letters in which the young assistant professor tried — without success — to
explain to Professor Fuchs that a local diffeomorphism need not necessarily be a covering. Note
in this connection that, throughout his work on uniformization, the ease with which Poincaré deals
with what is not yet explicitly covering-space theory is certainly one of his essential assets — to
such an extent that some have wished to see in the construction of the universal covering space
Poincaré’s main contribution to the problem. However, as we will see, the latter contention is
largely an exaggeration.

20That is, the part consisting not only of the memoir submitted to the Academy but also the three
supplements brought to light by Gray in 1979 and published in [Poin1997].



143

The first Fuchsian functions Poincaré constructs (in a note of May 23, 1881,
[Poin1951, T. II, pp. 12–15]) uniformize surfaces obtained by removing a finite
number of real points from a sphere (Poincaré also allows what are now called
“orbifold singularities”21). He arrives independently at functions introduced ear-
lier, as Klein points out to him, by Schwarz (see Chapter IV). Poincaré’s method
is quite different, however. He considers (Fuchsian) groups generated by reflec-
tions in the sides of ideal n-sided hyperbolic polygons. These groups depend on
n − 3 real parameters 1 < x1 < . . . < xn−3 and he identifies the space of these
groups with the space of moduli of spheres with n real points removed. This rep-
resents the first appearance of the method of continuity22. It is clear that “from the
beginning Poincaré has a lead that Klein can no longer make up” [Freu1955]. On
August 8, 1881 Poincaré makes the following announcement [Poin1951, Tome II,
pp. 29–31]:

We conclude from this that:

1. Every linear differential differential equation with algebraic coeffi-
cients is integrable by means of zeta Fuchsian functions;

2. The coordinates of the points of every algebraic curve can be ex-
pressed by means of functions of an auxiliary variable.

This represents the very first enunciation of the uniformization theorem. It is,
however, always necessary to moderate the enthusiasm of the young Poincaré a
little. What he had actually proved (but completely rigorously) was appreciably
weaker: every algebraic curve can be “uniformized” by means of a function from
the disc to the curve except for at most a finite number of points. For Poincaré, mo-
tivated as he was by the integration of differential equations by means of functions
given explicitly by series, excepting a finite number of points was not a problem.
Moreover the proof of his result was in fact especially simple and elegant: given
an algebraic curve branched over the sphere, up to removing the branch points one
obtains a covering of the sphere with a finite number of points removed. It then
only remains to show that up to the removal of finitely many more points, one has
a covering of the sphere with finitely many real points removed. (This last step is
an elementary exercise which we recommend to the reader.)

It is in fact Klein to whom the honor belongs of enunciating the uniformiza-
tion theorem for algebraic curves as we now understand it. Klein, less interested
in differential equations, in effect prefers finite polygons. Moreover his intimate

21An “orbifold” is a certain generalization of a manifold with singularities. Trans
22The method of continuity, as conceived by Poincaré, is explicitly described in Chapter IX in

the case of spheres with 4 points removed. We leave to the reader as an exercise the verification that
the method becomes considerably simpler when the 4 points are real.



144

knowledge of Riemann’s work allows him to identify the number of moduli of
curves of a fixed genus with the number of parameters on which Poincaré’s poly-
gons of the same genus depend. He is thus more naturally inclined to produce
the “correct formulation” (see Freudenthal [Freu1955] and Scholz [Schol1980]);
“this is the only essential point in which Klein, in his research on automorphic
functions, surpassed Poincaré” [Freu1955]. The great principle is still the method
of continuity, however implementing it in the needed generality is difficult. The
correspondence between Klein and Poincaré shows very clearly just how each
interprets it according to his own point of view.

Thus Klein observes that Poincaré’s construction of Fuchsian groups produces
uniformizable algebraic curves, and that these depend on parameters equal in
number to those of the moduli space of curves of fixed genus. He notes also
that if a Riemann surface can be uniformized, then this is possible in one way
only. Thus the problem reduces to showing that the space of uniformizable curves
is both open and closed. The question of the connectedness of the moduli space is
mentioned by Klein as established in his book [Kle1882c], which we have already
described23.

Poincaré, on the other hand, was interested in second-order linear differential
equations on an algebraic curve and showed that their description depended on
a “monodromy” representation of the fundamental group (which he had then not
as yet “invented”) in SL(2,C). When a differential equation on a fixed algebraic
curve is allowed to vary, so also does this representation vary. In his examples of
uniformizable curves (given by Fuchsian groups) one of these differential equa-
tions is privileged and has real monodromy group: Poincaré calls this equation
Fuchsian. He asserts that every algebraic curve possesses a Fuchsian equation
and that this allows him to show that his construction of Fuchsian groups is flex-
ible enough to yield a description of all algebraic curves. The “proof” that he
proposes also contains a component devoted to openness and another to closure.
His attachment to ideal polygons allows him to more easily identify the difficulties
associated with closure; see [Schol1980].

Both Klein and Poincaré later published descriptions of this period in their
lives. Poincaré’s text on “mathematical invention”, dating from 1908, is fa-
mous [Poin1908]. There he describes his discovery of the link between differ-
ential equations and hyperbolic geometry as pre-dating his first epistolary contact
with Klein.

At that time I left Caen, where I was then living, in order to take part in a
geology course undertaken by the School of Mines. The hazards of the trip
caused me to forget my mathematical labors; when we arrived in Coutances

23His “proof” is hardly convincing.
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we climbed into an omnibus to go I knew not whither. At the instant I placed
my foot on the step, the idea came to me, seemingly without anything in my
mind having prepared me for it earlier, that the transformations I had used to
define Fuchsian functions were identical to those of non-Euclidean geome-
try. I carried out no verification of this, I wouldn’t have had the time since
scarcely had I entered the omnibus when I resumed an earlier conversation;
nonetheless I immediately felt complete certitude. Once back in Caen, I
checked the result at leisure to satisfy my conscience.

It is indisputable that Poincaré had grasped the essentials of the theory before
beginning his correspondence with Klein. In his third supplement to the memoir
for the prize of the Academy, submitted on December 20, 1880, he “conjectures”
that Fuchsian functions allow one to solve all linear differential equations with
algebraic coefficients [Poin1997]:

I have no doubt, moreover, that the many equations envisaged by M. Fuchs
in his memoir in Volume 71 of Crelle’s journal. . . will furnish an infinity of
transcendentals. . . and that these new functions will allow the integration of
all linear differential equations with algebraic coefficients.

One observes here, however, the absence of any formulation of the situation
in terms of the uniformization of algebraic curves.

As for Klein, in his book on the development of 19th century mathematics
[Kle1928] he explains:

During the last night of my journey, that from March 22 to March 23 [1882],
which I spent sitting on a couch on account of an attack of asthma, suddenly,
towards 3:30, the central theorem dawned on me as if it had been sketched
in the figure of the 14-sided polygon. Next morning, in the coach which at
that time travelled between Norden and Emden, I thought about what I had
found, going over all the details once more. I knew then that I had found
an important theorem. Once arrived in Düsseldorf, I wrote up the memoir,
dated March 27, sent it off to Teubner, and had copies sent to Poincaré and
Schwarz, and also to Hurwitz.

In [Kle1921a, Vol. 3, pp. 577–586], there is an addendum to the effect that he
considered that neither he nor Poincaré had a complete proof and that the proof
using the method of continuity had been firmly established only by Koebe in 1912
[Koe1912]. He also describes that episode in his life as marking “the end of his
productive period”. He fell ill in the autumn of 188224.

24“Leipzig seemed to be a superb outpost for building the kind of school he now had in mind:
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Unfortunately the second part of his book makes only a superficial contribu-
tion to the description of this mathematical adventure. Freudenthal’s fine arti-
cle [Freu1955] served us as a point of departure. Klein’s book [Kle1928] is an
essential reference for the history of 19th century mathematics, written by one of
the heroes of the present work. By way of complementing these, the reader may
also consult the relevant chapter of the historical book by J. Gray [Gra1986], the
remarkable analysis [Die1982] by J. Dieudonné, the introduction [Poin1997] to
Poincaré’s three supplements to his memoir on the discovery of Fuchsian func-
tions, J. Stillwell’s commentary to his translation into English of Poincaré’s ar-
ticles on Fuchsian functions [Poin1985], the relevant chapter of the impressive
thesis by Chorlay [Cho2007], the commentaries attached to the French version of
the Klein–Poincaré correspondence [Poin1989], or Fricke’s article [Fric1901] in
the Encyklopädie der mathematischen Wissenschaften. Finally, there is the article
by Abikoff [Abi1981], from which, while interesting also mathematically speak-
ing, we quote, for our present historical purposes, only his version of the reception
by Hurwitz, Schwarz, and Poincaré of the latter’s proof of the uniformization the-
orem:

– Hurwitz: I accept it without reservation.

– Schwarz: It’s false.

– Poincaré: It’s true. I knew it and I have a better way of looking at the
problem.

Chapter VI is an introduction to Fuchsian groups. The reader will find there,
for instance, the construction of the Fuchsian group associated with a fundamental
polygon, and also the construction of automorphic forms and Fuchsian functions
invariant under the action of a given Fuchsian group. As current references for
Fuchsian groups we might mention the books [Kat1992] and [Bea1983], the lat-
ter dealing also with their generalization to higher dimensions: discrete groups
of isometries of hyperbolic space, notably the Kleinian groups in dimension 3.
For Kleinian groups one may also consult [Dal2007] and [Mas1988]. The pa-
per [Mas1971] gives the first complete and correct proof of Poincaré’s polygon
theorem (Theorem VI.1.10 below).

one that would draw heavily on the abundant riches offered by Riemann’s geometric approach to
function theory. But unforeseen events and his always delicate health conspired against this plan.
[In him were] two souls [. . . ] one longing for the tranquil scholar’s life, the other for the active
life of an editor, teacher, and scientific organiser. [. . . ] It was during the autumn of 1882 that the
first of these two worlds came crashing down upon him [. . . ] his health collapsed completely, and
throughout the years 1883–1884 he was plagued by depression” [Row1989].
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Chapter VII is a variation on Klein’s approach, and there we make no attempt
to pronounce on the validity of the proofs proposed by him25. We propose a “re-
constitution” of what purported to be a proof of the theorem on the uniformization
of algebraic curves along the lines of the method of continuity as viewed by Klein.
This proof uses tools developed later, but in a weak form. In sum, Chapter VII is
in some sense the article Klein might have written if he had more tools at his dis-
posal. In the space of twenty years the literature on the representations of surface
groups has grown enormously. The article [GolW1988] is an important reference
for the questions evoked in this chapter. For a presentation adhering more closely
to the ideas of Klein, the reader may consult the classic book [FrKl1897].

Chapter VIII is an introduction to the approach of Poincaré. We first explain
there how uniformization theory can be expressed in terms of second-order lin-
ear differential equations, and then give a proof of the openness of the space
of uniformizable curves. In this connection it is necessary to complete some of
Poincaré’s arguments, but in a relatively light-handed manner. However, as far
as his approach to closure is concerned, we do not expound it because it fails to
convince us, and also because we cannot see our way to “repairing” it without in
fact using the arguments of Chapter VII.

Finally, in Chapter IX we put Poincaré’s approach to work in the analysis of
special cases, and also describe the subsequent life of these methods. In particular,
we expound there the explicit examples of uniformization obtained by Schwarz in
his investigation of the hypergeometric equation.

As we have already mentioned, the uniformization theorem is not confined to
algebraic curves. Emboldened by this “special case” (yet an already enormously
general one), Poincaré went on to attempt to generalize it to all simply-connected
Riemann surfaces not necessarily universal covering spaces of compact surfaces.
Here he can no longer resort to finite-dimensional moduli spaces or monodromy
groups. Koebe and Poincaré succeeded in 1907, and we shall explain how in
Part C.

25Except to say that his approach to closure does not appear convincing to us.





Chapter VI

Fuchsian groups

In his articles of 1882–1886 in Acta Mathematica, Poincaré proposes new “tran-
scendentals” on the model of elliptic functions (Chapter I). His initial motivation
was to develop in power series global solutions of linear differential equations
with algebraic coefficients. The then recent work of Fuchs on singular points
of linear differential equations [Fuc1880, Fuc1881] showed that the solutions can
be expressed as analytic functions of a finitely ramified variable, z1/q , or an in-
finitely ramified one, log(z) (corresponding to the case “q = ∞”). Poincaré seeks
a global analogue, at first in the form of the universal cover of CP1 with finitely
many points removed, including the singular points of the differential equation;
then, in conjunction with the successive appearances of notes in the Comptes ren-
dus de l’Académie des sciences de Paris between February 1881 and April 1882,
one sees the statement become progressively more precise, culminating in the uni-
versal covering space of a compact Riemann surface with an “orbifold structure”.
First, however, we expound his construction of Fuchsian groups.

VI.1. Fuchsian groups, the fundamental polygon, and hyperbolic tilings

Recall that H denotes the Poincaré half-plane

H = {x +
√
−1y = z ∈ C | y > 0}

endowed with the hyperbolic metric y−2dzdz. Here the geodesics are semicircles
centered on the real axis y = 0 together with the vertical half-lines.

Sometimes the disc model of the hyperbolic plane is used instead, that is, the
disc D = {z ∈ C | |z | < 1} endowed with the hyperbolic metric 4(1− |z |2)−2dzdz,
where the geodesics are the arcs of circles and segments orthogonal to the unit
circle ∂D.
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VI.1.1. The isometries of the Poincaré half-plane

The group PSL(2,R) acts on H by Möbius transformations: z 7→ az+b
cz+d where

a,b,c and d are real numbers satisfying ad− bc = 1. This action is isometric with
respect to the hyperbolic metric. We remind the reader that, even more, PSL(2,R)
coincides with the group of holomorphic self-diffeomorphisms of H.

There are three types of elements in PSL(2,R), characterized by their respec-
tive fixed points in H = H ∪ ∂H. (Here we are thinking of H as a disc in the
Riemann sphere, so that ∂H contains the point at infinity.) The first type consists
of elliptic transformations, which are just those for which the inequality |a+d | < 2
holds; each such transformation has just one fixed point inH, which is in fact inH.
Every elliptic transformation is conjugate to a unique transformation of the form
z 7→ cos θ z+sin θ

− sin θ z+cos θ for some θ ∈ R. (For these transformations it is more conve-
nient to use the disc model, where every elliptic transformation is conjugate to
a rotation z 7→ eiθ z.) Note that an elliptic transformation generates a relatively
compact subgroup of PSL(2,R).

The second type of isometry is characterized by the inequality |a + d | > 2.
These are the hyperbolic transformations, and are each conjugate in PSL(2,R) to
a unique transformation of the form z 7→ λz, with λ > 0 and not equal to 1. A
transformation ϕ of this type has exactly two (distinct) fixed points in H, both on
the boundary ∂H. One of these points, which we denote by p+, is attractive, and
the other, p−, is repulsive, in the following sense: if z ∈ H is different from p−,
then ϕn (z) tends to p+ as n tends to +∞, and, analogously, if z ∈ H is different
from p+, then ϕn (z) tends to p− as n tends to −∞. The hyperbolic geodesic
connecting p+ and p− is called the axis of ϕ.

Lastly, the elements of PSL(2,R) different from the identity and satisfying
|a + d | = 2 are called parabolic. A parabolic transformation ϕ is conjugate in
PSL(2,R) to one of the two transformations z 7→ z ± 1, and has just one fixed
point p in H, which is in fact located on the boundary ∂H. For every z ∈ H, ϕn (z)
tends to p as n tends to∞.

VI.1.2. Fuchsian groups

A Fuchsian group is defined to be a discrete subgroup Γ of PSL(2,R).
Proposition VI.1.1. — A subgroup Γ of PSL(2,R) is discrete if and only if it acts
discontinuously on H, that is, if and only if each of its orbits is discrete.
Proof. — The group PSL(2,R) acts freely and transitively on the unit tangent
bundle UH. Hence Γ is discrete if and only if it acts discontinuously on UH. Then
since the fibres of the projection UH → H are compact, the orbits are discrete
in UH if and only if the orbits of H under the action of Γ are discrete. �
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VI.1.3. A fundamental polygon and its associated tiling

A polygon P ⊂ H is defined to be a closed, convex subset with piecewise geodesic
boundary, where the number of bounding geodesic arcs is locally finite in H. A
side of P is then a maximal geodesic arc contained in the boundary of P. Thus
the intersection of two sides of P is either empty or consists of a single point, in
which case we call this point a vertex of P. We say that P is finite if it has only
finitely many sides.

Given a Fuchsian group Γ, a polygon P ⊂ H is called a fundamental polygon
for Γ if each orbit Γ(z), z ∈ H, intersects P in at least one point and intersects the
interior P̊ in at most one point. It follows that the set of translates ϕ(P), ϕ ∈ Γ,
defines a tiling of the hyperbolic plane:⋃

ϕ∈Γ

ϕ(P) = H and ϕ(P̊) ∩ ψ(P̊) = ∅ for all ϕ , ψ.

The set of tiles {ϕ(P) | ϕ ∈ Γ} is thus in one-to-one correspondence with Γ.
We saw a classic example of a tiling for PSL(2,Z) in the preceding chapter (see
Figure V.1). Two more are given in Figure VI.1 below.

Figure VI.1: Two more tilings for PSL(2,Z) (variants)

Theorem VI.1.2. — Let Γ ⊂ PSL(2,R) be a Fuchsian group and z0 a point of H
not fixed by any nontrivial element of Γ. Then the set

P =
{
z ∈ H | dhyp(z, z0) = dhyp(z,Γ(z0))

}

of points z ∈ H that are closer to z0 than to any other point of the orbit Γ(z0)
is a (convex) fundamental polygon for Γ. Furthermore P is finite if Γ is finitely
generated.
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Poincaré considers only finitely generated Fuchsian groups, showing that for
such a group there exists a fundamental region bounded by a finite number of
curvilinear arcs, and explaining how to modify such a region to make it polygo-
nal. However, it seems that here he glosses over a genuine difficulty. There do in
fact exist finitely generated discrete subgroups of PGL(2,C) having no finite fun-
damental polyhedron in the hyperbolic space H3 (see [BoOt1988]). We describe
here the construction of the polygon P, the Dirichlet polygon, for an arbitrary
Fuchsian group. It is in fact finite if the Fuchsian group is finitely generated, but
we refer the reader to [Dal2007] for a proof of this additional fact.
Proof without the finiteness assertion. — Let z0 be a point of H not fixed by any
nontrivial element of Γ and consider the set P of points z ∈ H closer to z0 than to
all other points of the orbit Γ(z0):

P =
{
z ∈ H | dhyp(z, z0) = dhyp(z,Γ(z0))

}
.

First of all, since Γ is Fuchsian, the orbit Γ(z0) is discrete, so P contains a neigh-
borhood of z0. Next observe that P is the intersection of the “half-planes”

Pi =
{
z ∈ H | dhyp(z, z0) ≤ dhyp(z, zi )

}
, zi ∈ Γ(z0) \ {z0} ,

and since each Pi is convex (with respect to the hyperbolic metric) their inter-
section P must also be convex, whence, in particular, connected and simply con-
nected. The part of P contained in a hyperbolic disc of radius r > 0 coincides
with the intersection of finitely many of the Pi , namely those corresponding to
points zi ∈ Γ(z0) contained in the disc of radius 2r . Hence P is a polygon with
piecewise geodesic boundary.

Now consider any point z ∈ H. Its distance to Γ(z0) is attained by some
point z1 ∈ Γ(z0): indeed, since Γ(z0) is discrete it must be closed. Let ϕ1 ∈ Γ

be an element sending z0 to z1; since ϕ1 is an isometry, the point z0 ∈ Γ(z0)
minimises the distance to z′1 := ϕ−1

1 (z) in Γ(z0), so that z′1 must belong to P.
Hence Γ(z) ∩ P , ∅. Finally, if Γ(z) intersected P in at least two distinct points,
say z′1 and z′2 = ϕ−1

2 (z), then z would be equidistant from z1 and z2 = ϕ2(z0), so
that z′1 would be equidistant from z0 and ϕ−1

1 ϕ2(z0). Hence z′1 and z′2 must in fact
both lie on the boundary ∂P. �

VI.1.4. Finite polygons

In what follows we consider only Dirichlet polygons, that is, those constructed as
in Theorem VI.1.2 above.
Proposition VI.1.3. — Let Γ ⊂ PSL(2,R) be a Fuchsian group and P a Dirichlet
fundamental polygon. If P is finite then Γ is finitely generated. More precisely,
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there exists a decomposition of the oriented boundary P into an even number
of oriented geodesic arcs δ1, . . . , δ2n , together with a fixed-point free involutary
permutation σ of the set {1, . . . ,2n}, and generators ϕ1, . . . , ϕ2n for Γ, satisfying

ϕi (δi ) = δ−1
σ (i) and ϕσ (i) = ϕ−1

i , i = 1, . . . ,2n.

A fundamental polygon with a specified such even decomposition of its
boundary is said to be adapted to the group Γ. Note that the assumption that P
be Dirichlet is significant here: in [Bea1983, pp. 210–213] an example is given
of a Fuchsian group with a convex fundamental polygon with just 5 sides, one of
which is not associated with the others and is the limit of sides of infinitely many
translates ϕ(P), ϕ ∈ Γ. Thus in this example the tiling is not locally finite.

Proof. — Let δ1, . . . , δp denote the sides of P, with the orientation inherited from
that chosen for the boundary of P. Observe first that for every point z ∈ ∂P
there is at least one nontrivial transformation ϕ ∈ Γ sending z to a point z′ ∈ ∂P
(possibly the same). To see this, let z0 be a point used to define P as a Dirichlet
polygon (as in the statement of Theorem VI.1.2); then the distance of z from the
orbit Γ(z0) is attained at z0 and at least one other point z1 , z0 of the orbit. It
then suffices to choose a transformation ϕ ∈ Γ sending z1 to z0: the distance from
z′ = ϕ(z) to Γ(z0) is then attained at both z0 = ϕ(z1) and ϕ(z0), so that z′ is on
the boundary of P.

Now in the case where z and z′ are “smooth” points of ∂P (that is, not ver-
tices), ϕ is determined uniquely and must send germs (δi , z) of segments of the
side containing z to germs (δ−1

j , z
′) of the side containing z′, since otherwise there

would be points arbitrarily close to z each of whose orbits intersected the interior
of P at least twice. The equivalence class1 of a point z ∈ ∂P is finite, since the
sum of the corresponding angles must be ≤ 2π and the angles of ∂P are all strictly
positive. (Here we are of course considering only points in H). By regarding the
points of the equivalence classes of non-smooth points of ∂P as new vertices, we
obtain a new decomposition of ∂P into geodesic arcs δ1, . . . , δp , with the property
that for each i = 1, . . . ,p there exist a unique j and ϕi ∈ Γ such that ϕi (δi ) = δ−1

j ;
and moreover the orbit of a point z ∈ δi other than its end-points intersects ∂P in
just the two points z and ϕi (z). It is possible that i = j, in which case ϕi has a
fixed point in the middle of the arc δi ; if this should occur, we add this point to
the set of vertices and subdivide δi into two arcs to fulfil the claim of the theorem
(see Figure VI.2).

To verify that the elements ϕ1, . . . , ϕ2n ∈ Γ thus constructed do indeed gen-
erate Γ, we argue in terms of the tiling as follows. Note first that the tile adjacent
to P along the side δi is ϕ−1

i (P). Thus if ϕ(P) and ϕ′(P) (with ϕ,ϕ′ ∈ Γ) are

1That is, the set Γ(z) ∩ P. Trans



154 VI Fuchsian groups

two tiles sharing the side ϕ′(δi ), we must have ϕ′−1 ◦ ϕ(P) = ϕ−1
i (P), whence

ϕ′ = ϕ ◦ ϕi . Now given any element ϕ ∈ Γ, we choose a path γ joining P to the
tile ϕ(P) avoiding all the vertices of the tiling (that is, all the translates by Γ of
the vertices of P). Suppose the path γ successively traverses the tiles

P0 = P, P1, P2, . . . ,PN = ϕ(P).

If it enters Pk across the side δik (that is, the side of Pk sent to δik by a (unique)
element of Γ), k = 1, . . . ,N , then it follows immediately that Pk = ϕi1 ◦ϕi2 ◦ · · · ◦

ϕik (P), whence ϕ = ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕiN . �

δ1

δ2 δ3

δ4
ϕ1 = ϕ−1

4

ϕ2 = ϕ−1
3

P ϕ1(P)

ϕ1ϕ2(P)

ϕ1ϕ2ϕ4ϕ2ϕ1
= ϕ1ϕ2ϕ

−1
1 ϕ2ϕ1

Figure VI.2: A generating system for PSL(2,Z)

From this proof we see that a shortest word in the generators ϕ1, . . . , ϕ2n rep-
resenting a given element ϕ of Γ corresponds to a path from P to ϕ(P) meeting
the least possible number of tiles.

Henceforth we shall consider only adapted fundamental polygons with sides
understood to be the δi of the above proposition.

VI.1.5. The angle of an elliptic cycle and relations

The group Γ determines an equivalence relation on the boundary ∂P of the fun-
damental polygon, and, more particularly, on the set of its vertices. We shall call
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the equivalence class of a vertex under this relation a cycle, and define the angle
of a cycle to be the sum of the angles at the vertices of the cycle in question. We
shall ignore for the moment sides that go to infinity and do not intersect in H:
we are concerned for the time being only with the vertices (that is, at finite dis-
tances). We index the sides δi and vertices si of P cyclically, so that si = δi ∩δi+1
(assuming always that the polygon is connected and simply connected). For non-
compact P, the set of indices of the vertices is a proper subset of {1, . . . ,2n}. We
denote by σ̃ ∈ Perm{1, . . . ,2n} the permutation defined by σ̃(i) := σ(i) − 1 for
i = 1, . . . ,2n (with the convention 0 ≡ 2n) where σ is the permutation given in
Proposition VI.1.3. It is then immediate that the cycle of a vertex si is

si , sσ̃ (i), sσ̃2 (i), . . . , sσ̃l (i)

where l ∈ N is the least number such that σ̃l+1(i) = i.
Proposition VI.1.4. — The angle of each cycle is an integer fraction of 2π.
Furthermore, in the notation introduced above, if the angle of the cycle of the
vertex si is 2π

q , q ∈ N∗, then the following relation holds:

(ϕσ̃l (i) ◦ · · · ◦ ϕσ̃ (i) ◦ ϕi )q = id .

Every relation between the generators ϕ1, . . . , ϕ2n follows from these relations
(with si ranging over a system of representatives of cycles) together with the re-
lations ϕσ (i) = ϕ−1

i .

We have thus obtained an explicit presentation of the group Γ in terms of n
generators and r relations, where 2n is the number of sides of the fundamental
polygon P and r the number of finite-distance cycles.
Proof. — Let si be a vertex of P, and consider the tiling of H by the ϕ(P), ϕ ∈ Γ.
The transformation ϕi sends the side δi to its conjugate δ−1

σ (i), and in particular si
to sσ (i)−1: the tile P1 := ϕ−1

i (P) is the one encountered on leaving the polygon P
across the side δi . In turning about si , we successively encounter

P0 = P,

P1 = ϕ−1
i (P),

P2 = (ϕσ̃ (i) ◦ ϕi )−1(P),

P3 = (ϕσ̃2 (i) ◦ ϕσ̃ (i) ◦ ϕi )−1(P), . . . .

Writing ϕ := ϕσ̃l (i) ◦ · · · ◦ ϕσ̃ (i) ◦ ϕi , we have ϕ(si ) = si . Hence ϕ is an
elliptic transformation, and since Γ is discrete, there exists an integer q for which
ϕq (P) = P, so that ϕq = id. Writing Q = P0 ∪ P1 ∪ P2 ∪ . . . ∪ Pl , we see that
the polygons Q, ϕ(Q), . . . , ϕq−1(Q) have pairwise disjoint interiors and cover a
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neighborhood of si . The angle at the vertex si of the polygon Q is therefore
of size 2π

q , and is equal to the angle of the cycle containing si . Moreover Q
and ϕ−1(Q) are, by construction, adjacent along ϕ−1(δi+1), so the angle of the
rotation ϕ is 2π

q . Note that the element ϕ generates the stabilizer of si in Γ.

s1
s2 s3

ϕ2

ϕ−1
1 ◦ ϕ2

P

Figure VI.3: Two cycles of angles 2π
3 and 2π

2 for PSL(2,Z)

It remains to show that every relation among the generators ϕi is a conse-
quence of the relations given by the cycles, just discussed, together with the re-
lations ϕ−1

i = ϕσ (i). To this end, we denote by G the group generated by 2n
generators a1, . . . ,a2n , say, subject to the relations aσ (i) = a−1

i , i = 1, . . . ,2n,
together with others corresponding to the cycles, and define a group morphism
ρ : G → Γ by setting ai 7→ ϕi , with kernel denoted by N . We need to prove that
in fact N is trivial.

With this in view, we introduce the space H = P × G endowed with the
product topology, with the topology on G taken to be discrete, and consider the
equivalence relation on this space generated by

(z,g) ∼ (z′,g′) whenever there exists 1 ≤ i ≤ 2n, z′ = ϕi (z) and g = g′ · ai .

Denote by H ∗ the topological quotient space of H by this equivalence and by π
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the natural projection ofH ontoH ∗. One easily checks that this map is proper2.
The group G acts onH in the obvious way: each element g ∈ G determines a

homeomorphism
τg : (z,g′) ∈ H 7→ (z,g · g′) ∈ H .

This action is proper3 and free, and has P × {id} as a fundamental region. This
action of G onH induces an action of G on the quotientH ∗, also proper since the
projection π : H → H ∗ is proper. On the other hand, if (z,g) ∈ H is equivalent
to (z,g′), where g , g′, then z must of necessity be a vertex si , and we then have
g′ = gaσ̃k (i), . . . ,aσ̃ (i)ai , with 0 ≤ k < (lsi + 1)qsi , where 2π

qsi
is the angle of

the cycle containing si and lsi + 1 the number of vertices in this cycle. Since for
0 ≤ k < (lsi + 1)qsi we have ρ(aσ̃k (i) . . . aσ̃ (i)ai ) , id, we infer that for all
nontrivial ν ∈ N , (z,g) is not equivalent to (z, νg). Hence the action of N onH ∗

is free (as well as proper).
We now introduce the map p : H → H defined by p(z,g) = ρ(g)(z). This

map preserves the equivalence relation ∼ and therefore induces a continuous map
p∗ : H ∗ → H. Note that p∗ is a local homeomorphism. To see this, let s be a
vertex of ∂P, ls + 1 the size of the cycle to which s belongs, and 2π

qs
the angle

of this cycle. Then on taking the union of P with the ϕi (P), i = 1, · · · ,2n, and
the ϕσ̃k (i) ◦ . . . ◦ ϕσ̃ (i) ◦ ϕi (P), 0 ≤ k < (lsi + 1)qsi , where si ranges over the
vertices of P, we obtain a neighborhood of P. Hence the projection on H ∗ of
P× {id}, together with the P× {ai }, i = 1, · · · ,2n, and the P× {aσ̃k (i) . . . aσ̃ (i)ai },
0 ≤ k < (lsi + 1)qsi yields a neighborhood W of π(P × {id}) and p∗ is a home-
omorphism from W to its image. It follows further that for all g ∈ G, gW is a
neighborhood of π(P × {g}), and p∗ is a homeomorphism from gW to its image.
Finally, observe that since the ϕi generate Γ and

⋃
ϕ∈Γ ϕ(P) = H, the map p∗ is

surjective.
We shall now show that the fibres of p∗ are precisely the orbits of

the action of N on H ∗. Clearly, those orbits are contained in the fibres.
Now if p(z,g) = p(z′,g′), then ρ(g)(z) = ρ(g′)(z′), implying in turn that
(z,g) ∼ (z′,ga) where a = g−1g′. Hence ρ(ga)(z′) = ρ(g′)(z′). If z′ is
not a vertex of P, we obtain directly the existence of a ν ∈ N such that
ga = νg′. In other words, π(z,g) = π(z′, νg′), so π(z,g) is certainly in
the same N-orbit as π(z′,g′). If z′ is a vertex, si , say, then there will exist
0 ≤ k < qsi such that ga = νg′(a

σ̃lsi (i) . . . aσ̃ (i)ai )k . Since (z′,g′) is equiv-
alent to (z′,g′(a

σ̃lsi (i) . . . aσ̃ (i)ai )k ), we have that π(z,g) and π(z′,g′) are in the
same N-orbit. Thus we conclude that H ∗/N is homeomorphic to H. Then since
H is simply connected, N must be trivial, and in fact G is isomorphic to Γ. �

2That is, the preimage of every compact set is compact.
3An action a : G × X → X is proper if the map a × pr2 : G × X → X × X is proper.
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Remark VI.1.5. — We mention by the way the fact that if Γ contains a nontrivial
element ϕ fixing a point z0 ∈ H, then z0 is in the orbit of a cycle of P and ϕq = id
where 2π

q is the angle of the cycle. In particular, ϕ is conjugate in Γ to an element
(of order q) of the isotropy group of z0. Hence the cycles of angle < 2π are in one-
to-one correspondence with the conjugacy classes of maximal elliptical subgroups
of Γ.

VI.1.6. Cycles at infinity

We shall now consider the intersection of the closure of P with the circle at in-
finity ∂H. We denote by P the closure of P in H = H ∪ ∂H. The boundary of P
at infinity P ∩ ∂H decomposes into a finite number (possibly zero) of points and
closed intervals in ∂H; we call the isolated such points and the endpoints of the
intervals contained in P ∩ ∂H the vertices at infinity of P. Recall that we are
assuming P to be convex, so that its closure P is also. Extending the convention
adopted above, we denote by si the connected component of the boundary of P
at infinity connecting the side δi to the side δi+1. Once again the group Γ induces
an equivalence relation on the boundary of P at infinity, or, more specifically, on
the set of connected components of that boundary. The cycles at infinity of P are
then the latter equivalence classes. Such a cycle will be called parabolic if it con-
sists only of isolated points, and hyperbolic if it also contains intervals of positive
length. As for finite-distance cycles, one may consider the isotropy subgroup of a
vertex x = si contained in a parabolic cycle. A nontrivial element of this group is
then ϕ := ϕσ̃l (i) ◦ · · · ◦ ϕσ̃ (i) ◦ ϕi where l ∈ N is the smallest natural number for
which σ̃l+1(i) = i.

Proposition VI.1.6. — If the vertex x ∈ P ∩ ∂H belongs to a parabolic cycle,
then the element ϕ ∈ Γ indicated above is parabolic and generates the isotropy
group of x.

Proof. — By suitably dissecting and reassembling the fundamental polygon we
can arrange for the various ends corresponding to the cycle in question to coin-
cide; in this way we are reduced to the case of a fundamental polygon where the
parabolic cycle of interest consists of a single point x. The two sides of P adjacent
to x are then sent one to the other by ϕ so that of course ϕ(x) = x.

To see that ϕ is parabolic, we consider the two geodesics γ0 and γ1 bound-
ing P in a neighborhood of x and such that ϕ(γ0) = γ1. Supposing ϕ hyperbolic,
consider the position of its second fixed point y relative to these two geodesics.
If y, or (what comes to the same thing) the geodesic γ joining x to y, is between
γ0 and γ1, one readily sees (by considering the germ of P at x along γ) that the
intersection P ∩ ϕ(P) must have non-empty interior, contradicting the fact that P
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is a fundamental region. Hence γ cannot lie between γ0 and γ1. By replacing ϕ
by ϕ−1 if necessary, we may suppose that x is repulsive and y attractive in order
that the sequence of geodesics γn := ϕn (γ0) tend to γ. The side of P along γ0
will then be sent by ϕn to a side of Pn = ϕn (P) along “larger and larger” portions
of γn , that is, tending to the whole of γ. Hence the tiling cannot be locally finite
in a neighborhood of γ, giving a contradiction.

The preceding argument shows in fact that the isotropy group contains only
parabolic elements. That isotropy group is therefore contained in a one-parameter
group {ψt } of parabolic elements, where ϕ = ψ1, say. If the isotropy group con-
tained an element not a power of ϕ, then on multiplying it by ϕ, we would obtain
an element ϕ̃ = ψt0 , 0 < t0 < 1, sending γ0 to a geodesic lying strictly between
γ0 and γ1, from which it would follow that P ∩ ϕ̃(P) had nonempty interior. This
contradiction shows that in fact the isotropy group of x is generated by ϕ. �

VI.1.7. Orbifolds and Riemann surfaces

If a discrete group Γ acts properly on a Riemann surface S, the quotient space S/Γ
can be endowed with the structure of a Riemann surface in such a way that the
projection S → S/Γ is holomorphic. If we are given that the action is free and S
simply connected, then Γ and S and the action of Γ on S can actually be retrieved
from knowledge of S/Γ; in fact S is just the universal covering space of S/Γ and Γ
the fundamental group of S/Γ acting via covering transformations. However, if the
action is not free, this is no longer the case. For example, as we have seen in Chap-
ter V, the quotient ofH by the action of PSL(2,Z) is a Riemann surface isomorphic
to C, which is simply connected. In this case, in order to recover Γ and its action
on S from S/Γ, one needs supplementary information about the latter Riemann
surface. This leads to the concept of a 2-dimensional “orbifold”, originally intro-
duced in all dimensions by Satake [Sat1956] under the name of “V-manifold”, and
popularized by Thurston [Thu1980, Chapter 13] under the name orbifold4. Here
we shall rest content with a naive approach, close to that of Poincaré.

Thus for us an orbifold is a Riemann surface X on which there is specified
a family (xi ) of isolated points assigned integer weights ni ≥ 2. One some-
times hears the points xi called ramification points of the orbifold and the ni their
multiplicities. When a group Γ acts properly on a Riemann surface S (preserv-
ing orientation), the quotient S/Γ naturally acquires the structure of an orbifold.
Each point of S with nontrivial (finite cyclic) stabilizer defines a ramification point
of S/Γ whose multiplicity is the order of the stabilizer. The quotient S/Γ is then
called a quotient orbifold.

With two exceptions, described below, every orbifold X determines a unique

4The corresponding object of algebraic geometry bears the name “stack”.
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proper action of a group Γ on a simply connected Riemann surface S such that
X is isomorphic to S/Γ. The Riemann surface S is called the universal cover of
the orbifold X and Γ its fundamental group. The exceptions referred to above
are just the sphere with either one ramification point or two ramification points
of different multiplicities. Here are examples that we have already encountered
(see Chapter V): the quotient of H by PSL(2,Z) is C with two ramification points
of multiplicities 2 and 3; the quotient of CP1 by the icosahedral group is CP1

with three ramification points of multiplicities 2, 3 and 5; and the quotient of H
by Γ0(7) is C∗, with two ramification points of multiplicity 3 (see §V.1).

Thus orbifolds represent a generalization of Riemann surfaces. One can define
the concepts of a holomorphic mapping between two orbifolds, a covering of
orbifolds, and so on. If X is a compact orbifold, with ramification points xi of
multiplicities ni ≥ 2, its orbifold Euler–Poincaré characteristic χorb is defined
to be χorb(X ) = χ(X ) +

∑
(1/ni − 1). This definition is dictated mainly by the

fact that if X1 → X2 is a covering map of degree d, then χorb(X1) = dχorb(X2), a
version of the Riemann–Hurwitz relations5.

VI.1.8. Quotients viewed as Riemann surfaces, then as orbifolds

Consider now the quotient

π : H→ S := H/Γ.

The structure of S as Riemann surface can be described as follows. As topological
space S is homeomorphic to the quotient of the fundamental polygon P by the
relation identifying each side δi with its conjugate δ−1

σ (i); thus in particular each
finite-distance cycle corresponds to a single point of S. It is also quite natural
to consider the compactification S obtained by making the same identifications
of P.6 A cycle at infinity then projects to a point or a circle according as it is
parabolic or hyperbolic. The map π : H → S is a ramified covering; or, more
precisely, it is totally ramified above each cycle of angle 2π

q with q > 1, and, at
each point of the fibre π can be expressed in the form z 7→ zq in terms of local
complex coordinates; and elsewhere the covering π is regular.

Proposition VI.1.7. — The genus g of the Riemann surface S = H/Γ is equal
to n+1−c

2 where 2n is the number of sides of the polygon P and c the number of
cycles, both infinite and finite.

5Another interpretation involves understanding an “ordinary” point as having characteristic 1
and an orbifold point characteristic 1

n .
6One must take into account here thatH/Γ, endowed with the quotient topology, is not Hausdorff

if Γ is infinite.
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Proof. — The genus of S is by definition that of the compact surface without
boundary S′ = S ∪

⋃
Di , where the Di are discs attached to the connected com-

ponents ∂iS of the boundary of S via identifications between the ∂iS and the ∂Di .
Denote by chyp (resp. cpar, cell) the number of hyperbolic (resp. parabolic,

elliptic) cycles of Γ. We then have

2 − 2g = χ(S′) = χ(S) + chyp = χ(S) + cpar + chyp,

and also χ(S) = cell − n + 1, by considering the images of the vertices and sides
of P in its quotient S. Hence 2 − 2g = 1 − n + c as claimed. �

Since Γ acts by conformal transformations, one can endow S with a complex
structure in such a way that π is holomorphic; a conformal local coordinate w

at a point π(z0) is given by the formula w = (z − z0)q , where q is the order of
the isotropy subgroup of z0 in Γ. At a parabolic end, for instance z0 = ∞ with
isotropy group generated by ϕ(z) = z + 1, the function w = exp(2iπz) projects to
a conformal local coordinate in a neighborhood of the corresponding point of the
compactification S. Hence in the case when the group Γ has no hyperbolic cycles,
the Riemann surface S so defined is compact without boundary; the surface S is
then obtained by removing from S a finite number of points, one for each parabolic
cycle.

When the group Γ has one or more hyperbolic cycles, the compactification S
is naturally endowed with the structure of a Riemann surface with boundary.

∞

∞

P

S

π

δ1

δ2

δ1

δ2
s1

s2

s1

s2

Figure VI.4: The quotient orbifold H/PSL(2,Z)

The hyperbolic metric on H is invariant under the action of Γ and therefore π
induces a metric of constant curvature −1 with orbifold singularities on the quo-
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tient S: corresponding to each elliptical cycle one has an orbifold (or conical)
singularity with angle that of the cycle. In this way one may view π : H → S
as providing an “orbifold uniformization” of S. As far as parabolic ends are con-
cerned, it is natural to consider them as orbifold points of angle zero in S.

The area of a hyperbolic triangle with angles measuring α, β and γ is

π − (α + β + γ),

even if one or more of the angles is zero. Hence, in particular, parabolic ends have
finite area, or, to be more precise, by dissecting the polygon into triangles, and
calculating directly, one obtains:

Proposition VI.1.8. — If the polygon P is without hyperbolic ends, then its hy-
perbolic area is finite, given by

area(P) = (2n − 2)π − α,

where 2n is the number of sides of P and α =
∑

i αi , the sum of the angles of P
over all its vertices.

It follows that the orbifold Euler–Poincaré characteristic of the quotient S is
given by χorb = −area(P)/2π — a particular case of the Gauss–Bonnet theorem.
Since the polygon P has area > 0, we conclude that the Euler–Poincaré character-
istic of S is necessarily < 0.

If the polygon P has a hyperbolic end its area is infinite. To give a fundamen-
tal polygon for the action of a group Γ, is to give a “tessellation” of, or piecewise
geodesic graph on, the quotient orbifold S whose vertices include all the orbifold
points and whose complement is connected and simply connected. Hence one
may construct new fundamental polygons by modifying or deforming this graph.
For instance, one can always modify the graph in such a way that a given orbifold
point becomes a vertex on a single side; the corresponding cycle of the new funda-
mental polygon is thus reduced to a single vertex. In the particular case of a cycle
of angle 2π, it becomes an interior point of the new fundamental polygon. One
cannot, however, use this device to eliminate all cycles of angle 2π — for exam-
ple, in the case of a compact surface (without orbifold points). All the same, they
can be moved about relatively freely in the course of deforming the fundamental
polygon.

Remark VI.1.9. — Given any Fuchsian group Γ (not necessarily finitely gener-
ated), one can form the quotient H/Γ and endow this with an orbifold structure
rendering the projection a universal orbifold covering map. The number of orb-
ifold points or ends may then be infinite. In fact it follows from the topologi-
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cal classification of connected oriented surfaces7 that the (orbifold) fundamental
group of such a surface is finitely generated if and only if it has a finite number
of orbifold points and ends. Thus the quotient of H by a finitely generated sub-
group Γ of PSL(2,R) must be geometrically finite; it is then easy, starting from a
geodesic triangulation, to infer the existence of a finite fundamental polygon.

VI.1.9. The polygon theorem

Hitherto we have always started with a Fuchsian group Γ and constructed from it
a fundamental polygon. We now reverse this point of view and look for conditions
on a polygon for it to be the fundamental polygon of a Fuchsian group.

Theorem VI.1.10. — Let P ⊂ H be a connected and simply connected polygon
with boundary consisting of an even number of geodesic arcs δ1, . . . , δ2n in cyclic
order. Suppose given the following:

— an involutary fixed-point free permutation σ of {1, . . . ,2n} allowing the
pairwise identification of the arcs;

— for each i, a transformation ϕi ∈ PSL(2,R) sending δi onto δ−1
σ (i) and

satisfying ϕσ (i) = ϕ−1
i .

Suppose in addition that:

— the angle of each finite-distance cycle is an integer fraction of 2π;

— for each parabolic cycle at infinity the corresponding “return” transforma-
tion ϕ defined in §VI.1.6 is parabolic.

Then the group Γ generated by ϕ1, . . . , ϕ2n is Fuchsian and P is a fundamental
polygon for Γ.

Remark VI.1.11. — Given two oriented geodesic arcs δ and δ′, there exists an
element ϕ ∈ PSL(2,R) sending δ onto δ′ (and matching the orientations) if and
only if one of the following conditions holds:

— δ and δ′ are of the same finite length;

— δ and δ′ are either both future half-geodesics or both past half-geodesics;

— δ and δ′ are both complete geodesics.

7This classification came later than the work of Poincaré we are concerned with here; see the
introduction to the final part (Part C).
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The transformation ϕ is unique except in the third case where it is defined only
modulo the action of a one-parameter group. Consequently, if the polygon of the
above theorem has no “doubly infinite” sides, then, once the involution σ is given,
it determines the group Γ uniquely. Hence for instance in the case of a compact
polygon, the theorem can be stated without reference to the ϕi , requiring only that
for each i the sides δi and δσ (i) have the same length. In the non-compact case the
parabolicity condition has to be appropriately translated. As Proposition VI.1.6
shows, this condition is necessary. For example, if one chooses to identify the two
sides of the polygon {(x, y) ∈ H | 1

2 ≤ x ≤ 1} using the hyperbolic transformation
ϕ(z) = z

2 , then the associated tiling covers only a quarter of the plane {x, y > 0}.
In his first notes Poincaré omits this needed assumption.

P
V

?

Figure VI.5: The tiled neighborhood V

Proof of Theorem VI.1.10. — It suffices to show that the polygons ϕ(P), ϕ ∈ Γ
constitute a tiling of the half-plane H, that is:

— the union of the ϕ(P) covers H;

— the intersection of two translates ϕ(P) and ψ(P) is empty or a union of
sides (or else vertices) or ϕ(P) = ψ(P) in which case ϕ = ψ.

Observe first that the condition on the elliptic cycles at least allows one to tile
a neighborhood of P in H. This is done by first attaching the germ of Pi = ϕ−1

i (P)
to the side δi . Next one fills in the region around each (finite-distance) vertex si
using a sequence

Pi, j = ϕi, j ◦ · · · ◦ ϕi,1(P), j = 1, · · · , ki

of tiles, as in Proposition VI.1.4. (Here one considers the germ of each Pi, j in a
neighborhood of the vertex si , except for j = 1 and j = ki where one considers
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germs neighbouring the sides δi and δi+1). Let V be a neighborhood of P for
which the tiling so constructed is well defined. In order to appreciate the difficulty
and thus the force of this theorem, note that a priori this neighborhood of P is
tiled only by germs (see Figure VI.5).

We shall now construct a global tiling of a surface covering H. To that
end we again employ the construction used in the proof of Proposition VI.1.4.
The group G, the morphism ρ : G → Γ, the spaces H and H ∗, and the maps
p : H → H and p∗ : H ∗ → H are all as in that proof.

The action of G onH ∗ is discrete and π(P × {id}) is a fundamental region for
that action. To obtain the polygon theorem we need to show that p∗ is a home-
omorphism between H ∗ and H. Since we do not know a priori that the ϕ(P),
ϕ ∈ Γ, tile H, it is no longer clear that p∗ is surjective. Nonetheless it is still true
that p∗ defines a local homeomorphism from H ∗ to H. We verify this first in a
neighborhood of π(P × {id}). Just as we constructed above the tiled neighbor-
hood V of P in H, we now construct the analogous neighborhood W of P × {id}
inH by adjoining the corresponding germs P × {g} obtained by replacing the ϕi
by the ai . Write U = π(W ), the projection of W onH ∗. The map p∗ |U : U → V
is a homeomorphism by construction. Noting that p∗ ◦ τg = ρ(g) ◦ p∗ for all
g ∈ G, we see that τg (U) defines a neighborhood of π(P × {g}) and p∗ restricts to
a homeomorphism from τg (U) onto ρ(g)(V ).

In order to show that the local homeomorphism p∗ : H ∗ → H is in fact a
global homeomorphism, it is enough to prove that p∗ is a covering map fromH ∗

onto H. We establish this by showing that p∗ has the homotopy lifting property
for paths. It is in this connection that the condition on parabolic cycles comes into
play. Thus let si be a vertex of P belonging to a parabolic cycle with ni+1 vertices
at infinity. By gluing together germs at si of the ϕσ̃k (i) ◦ · · · ◦ ϕσ̃ (i) ◦ ϕi (P), 0 ≤
k ≤ ni , one obtains a tiling of an angular sector Ci lying between two geodesic
arcs α and β issuing from si . The return map ϕ, which generates the isotropy
group of si , is a parabolic transformation sending α onto β. By considering the
union of the ϕm (Ci ) as m ranges over Z, one can tile the whole of the interior
of a horosphere based at si . This procedure is repeated for each parabolic vertex
of P, and the interiors of the horospheres thus tiled are adjoined to the region V ,
yielding a new neighborhood V ′ of P. The analogous construction on H with
the ϕi replaced by the ai , yields a neighborhood W ′ of P × {id}, and then by
projecting to H ∗, we obtain a new neighborhood U ′ of π(P × {id}) on which
p∗ : H ∗ −→ H is still injective.

Now for the neighborhood V ′, there exists a ε > 0 such that for all z ∈ P, the
hyperbolic disc with centre z and radius ε is contained in V ′. This implies that the
open set

⋃
ϕ∈Γ ϕ(P) coincides with its ε-neighborhood in H, or, in other words,

that the map p∗ is surjective. Let h∗ be the metric on H ∗ obtained by lifting the
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Poincaré metric via p∗. Since p∗ is a homeomorphism between U ′ and V ′, we
have that for each a ∈ π(P × {id}), p∗ determines an isometry between D∗(a, ε ),
the disc centred at a and of radius ε with respect to the metric h∗, and its image
D(p∗(a), ε). Since G acts isometrically on H ∗, we conclude that every h∗-disc
centred at a point ofH ∗ and of radius ε is sent isometrically by p∗ onto its image.
It is then easy to show that every path in H lifts to H ∗, so that p∗ is indeed a
covering map. �

VI.2. Examples

We now apply the preceding theorem to the construction of certain Fuchsian
groups and thence of uniformizable orbifolds.

P S

Π

s1

s2

s3

s4

s1

{s2, s4}

s3

π

k1

π

k2

π

k3

Figure VI.6: Hyperbolic triangles and orbifold spheres

VI.2.1. The sphere with 3 orbifold points

Consider a hyperbolic triangle T with vertices s1, s2 and s3, and angles

α1 =
π

k1
, α2 =

π

k2
and α3 =

π

k3
,

with ki ∈ N∗ ∪ {∞}. If ki = ∞, then si ∈ ∂H. We denote by σi the reflection in
the side s j sk , {i, j, k} = {1,2,3}. These three reflections generate a discrete group
of isometries of H. The subgroup Γ generated by

ϕi = σi+1 ◦ σi+2, i = 1,2,3 mod 3
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has index 2: it is the subgroup of orientation-preserving transformations. The
group Γ is Fuchsian, with fundamental region P := T ∪ σ2(T ), for example. The
vertices of P are then s1, s2, s3 and s4 = σ2(s2). Writing δi for the geodesic arc
si si+1, we have

ϕ1(δ1) = δ4, ϕ3(δ3) = δ2 and ϕ1 ◦ ϕ2 ◦ ϕ3 = id.

s1

s2

s3

s4
s5

s6

s2

s4s6

{s1, s3, s5}ϕ2

ϕ4

ϕ6

Π

Figure VI.7: The sphere with 4 points removed

The cycles are
{s1}, {s2, s4}, {s3}

with angles respectively
2π
k1
,

2π
k2
,

2π
k3
,

and with isotropy groups generated respectively by

ϕ1, ϕ2 = (ϕ3ϕ1)−1, ϕ3.

The group relations are just
ϕkii = id

for each i = 1,2,3 for which ki is finite. When ki = ∞, one verifies that the
parabolicity condition holds for the cycle associated with the vertex si , i = 1,2,3.
The surface S is compact, of genus 0, and has 3 orbifold points (possibly of an-
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gle zero). Every sphere with 3 orbifold points is obtained in this way provided
1
k1

+ 1
k2

+ 1
k3
< 1, that is,

area(T ) = π −

(
2π
k1

+
2π
k2

+
2π
k3

)
> 0 ,

which is just the necessary and sufficient condition for a hyperbolic triangle with
these angles to exist.

VI.2.2. The Riemann sphere with n + 1 points removed

Next we consider an n-sided polygon P in the hyperbolic disc D with all of its
vertices s1, . . . , s2n on the boundary ∂D, and cyclically ordered. We denote by
δi+1 the side si si+1 and by ϕ2k the parabolic transformation fixing s2k and sending
δ2k+1 to δ2k . The cycles are then

{s2}, {s4}, . . . , {s2n } and {s1, s3, . . . , s2n−1}.

The corresponding isotropy groups are generated by

ϕ2, ϕ4, . . . , ϕ2n and ϕ := ϕ2 ◦ ϕ4 ◦ · · · ◦ ϕ2n .

The transformation ϕ is parabolic if and only if

(s1 − s3)(s3 − s5) · · · (s2n−1 − s1)
(s2 − s4)(s4 − s6) · · · (s2n − s2)

= −1.

If this condition is satisfied, the group Γ generated by the ϕi is Fuchsian. The
surface S is compact, smooth, of genus 0, and has n + 1 orbifold points of zero
angle. Once endowed with the complex structure defined in §VI.1.8, S is just CP1,
while S = H/Γ is CP1 with n + 1 points removed. Modulo the action of PSL(2,R)
one can fix three vertices, say s2, s4 and s6; there then remain 2n − 3 parameters
subject to the cyclic inequalities and the parabolicity condition. Hence the set of
such polygons forms a real semi-algebraic subset of R2n−3 of dimension 2n − 4.
Given two (n+1)-tuples E1 and E2 of points ofCP1, the Riemann surfacesCP1\E1
and CP1 \ E2 are biholomorphically equivalent if there exists a transformation
from PSL(2,C) sending E1 onto E2. Since the action of PSL(2,C) is transitive on
triples of points, a structure of this form is completely determined by a given n−2
distinct points of CP1 \ {0,1,∞}, again yielding the real dimension 2n − 4.
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VI.2.3. The surface of genus g > 1

s1
s2

s3

s4 s5
s6

s7

s8

P Π

Figure VI.8: The surface of genus 2

Lastly, we consider a 4g-sided polygon P in H with cyclically ordered vertices
s1, . . . , s4g ∈ H, writing as before δi = si si+1. We assume also that δi has the
same length as δi+2g and denote by ϕi the transformation sending the first of
these onto the second and reversing the orientation induced from P. The vertices
then form a single cycle; we shall further assume that the sum of their angles is
exactly 2π. The quotient by the Fuchsian group generated by the ϕi is then a
compact Riemann surface of genus g. Modulo PSL(2,R), one needs 8g − 3 real
parameters to determine such a polygon. These parameters are subject to 2g + 1
equations, of which 2g arise from the condition that opposite sides be congruent
and one from the condition on the sum of the angles. This leaves 6g − 4 param-
eters, which is two more than the dimension of the space of possible complex
structures on the compact orientable surface of genus g. These two dimensions
are accounted for by the circumstance that the same Riemann surface can be rep-
resented by a 2-parameter family of such polygons: the cycle (of angle 2π) plays
no role in the surface and may be changed at will; one can also continuously
deform the geodesic graph on the surface. In other words, one can deform the
polygon without changing either the surface or the group Γ. Hence one obtains
finally 6g − 6 essential real parameters.
Remark VI.2.1. — These dimensional calculations allow us to glimpse the con-
ceptual leap involved in introducing Fuchsian groups; while earlier uniformized
Riemann surfaces seemed to represent only exceptional cases — consider for ex-
ample the case of the Klein quartic — one now saw entire open sets of complex
structures uniformized by means of Fuchsian groups. We shall provide a more
rigorous treatment of this aspect in the next chapter.
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VI.3. Algebraisation according to Poincaré

VI.3.1. Automorphic forms

Recall (see §V.1.2) that an automorphic form of weight ν ∈ N for a subgroup Γ of
PSL(2,R) is a (holomorphic or meromorphic) differential form on H of degree ν

Θ = θ(z)(dz)ν

invariant under Γ, that is, satisfying

θ ◦ ϕ(z) · (ϕ′(z))ν = θ(z), ∀z ∈ H, ϕ ∈ Γ.

This is only of interest if Γ is discrete. Abusing terminology, we also call the
function θ an automorphic form of weight ν.
Theorem VI.3.1. — Let Γ be a Fuchsian group, ν ≥ 2, and f a rational function
such that the differential form Θ0 = f (z)(dz)ν has no poles on ∂H (and the
function f vanishes to the order 2ν at z = ∞). Then the series

θ(z) :=
∑
ϕ∈Γ

f ◦ ϕ(z) · (ϕ′(z))ν

converges uniformly to a meromorphic automorphic form on every compact subset
of H.

Proof. — To establish the convergence we go over to the disc model of the hyper-
bolic plane

D = {z ∈ C | |z | < 1}

via the identification ψ : D → H, given, for example, by ψ(z) = i 1−z
z+1 .

We have to prove the convergence in mean of the differential form ψ∗Θ0 =

f ◦ ψ(z)(ψ ′(z))ν (dz)ν under the action of the group ψ ◦ Γ ◦ ψ−1. To avoid undue
notational complexity, we shall henceforth understand the group Γ as acting on D
and the differential formΘ0 = f (z)(dz)ν as given by a rational function f without
poles on ∂D.

Now choose a point z0 of the disc not fixed by any element of Γ \ {Id}, and
denote by D = D(z0, ε) a closed disc centred at z0 of radius ε (in the Euclidean
metric) contained in D. We first establish the uniform convergence of the series∑

ϕ∈Γ

|ϕ′(z) |2

on D for sufficiently small ε. For ε small enough the ϕ(D), ϕ ∈ Γ will be pairwise
disjoint, whence the total (Euclidean) area

∑
ϕ∈Γ area(ϕ(D)) will be finite.
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We claim (see below) that there exists a constant K (ε) > 0 such that for every
ϕ ∈ Γ one has

Maxz∈D |ϕ
′(z) |2 < K2 area(ϕ(D))

area(D)
.

It follows from this that∑
ϕ∈Γ

|ϕ′(z) |2 ≤
K2

area(D)

∑
ϕ∈Γ

area(ϕ(D)) < ∞,

whence the normal convergence of the series of interest on D. In particular, the
quantities |ϕ′(z) | are uniformly bounded on D by a constant C > 0. Hence for
every ν > 2, the quantities |ϕ′(z) |ν−2 are bounded above by Cν−2, whence the
normal convergence on D of the series∑

ϕ∈Γ

|ϕ′(z) |ν ≤ Cν−2
∑
ϕ∈Γ

|ϕ′(z) |2 < ∞.

Now if f (z) is a rational function, or even just meromorphic in a neighborhood
of the closed disc D, without poles on the boundary ∂D, then it will be uniformly
bounded on all the ϕ(D) possibly except for a finite number of them on which it
is meromorphic, whence the convergence of the series∑

ϕ∈Γ

f ◦ ϕ · (ϕ′(z))ν

on D for all ν ≥ 2.
It remains to establish the above upper bound for |ϕ′ | on D. If ϕ(z) = az+b

cz+d ,
ad − bc = 1, then

|ϕ′(z) | =
1

|cz + d |2
=

1
|c2 |
·

1

dist(z,− d
c )2

,

where the only variable quantity on D is the Euclidean distance from z to the point
ϕ−1(∞) = − d

c . Note that the equality ϕ(∞) = ∞ holds only for finitely many
elements of the group. Leaving aside the terms corresponding to these elements,
we may assume c , 0. Let Mϕ and mϕ be the largest and smallest values of
|ϕ′(z) | on D. Then

Mϕ

mϕ
≤

(
dist(D, ϕ−1(∞)) + 2ε

dist(D, ϕ−1(∞))

)2

<

(
1 +

2ε
dist(D, ∂D)

)2

.

Writing K for the right-hand majorant here, A for the Euclidean area of D, and Aϕ
for the Euclidean area of ϕ(D), we then have

Aϕ > m2
ϕ · A >

M2
ϕ

K2 · A,
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which gives directly

Maxz∈D |ϕ
′(z) |2 < K2 area(ϕ(D))

area(D)
.

�
The number of poles of θ(z) · (dz)ν in the fundamental region P is (neglecting

simplifying reductions) equal to the number of poles of f in the disc. In the
notation of §VI.1.8, the quotient S = H/Γ is a Riemann surface of finite type.
Its compactification S obtained by adjoining the cycles at infinity is a Riemann
surface with boundary.
Lemma VI.3.2. — The automorphic form θ(z)(dz)ν of Theorem VI.3.1 defines a
meromorphic differential form Θ of degree ν on the compact Riemann surface S.

Proof. — Since θ(z)(dz)ν is meromorphic on H and automorphic (Γ-invariant),
it projects to a meromorphic differential form of degree ν on

S∗ = S − elliptic cycles.

Thus we now need to examine the behaviour of Θ in a neighborhood of each type
of cycle.

We begin with elliptic cycles. We again work in the disc model, and assume
that 0 belongs to an elliptic cycle of angle 2π/q, so that the isotropy subgroup of 0
in Γ is generated by the elliptic transformation ϕ(z) = e2iπ/q z. The form Θ is
invariant under ϕ, in particular, and can be written as

Θ =
∑
k≥k0

akq zkq
(

dz
z

)ν
=

∑
k≥k0

akq

qν
wk

(
dw
w

)ν
,

where w = zq is a local coordinate on S in a neighborhood of the corresponding
cycle. Hence the form Θ is meromorphic on S.

Note that even if the rational function f of Theorem VI.3.1 is holomorphic
in a neighborhood of the orbit of 0, the form Θ will still have a pole at the cor-
responding point of S. Indeed, if f (z) =

∑∞
n=0 an zn , then averaging over the

isotropy subgroup one obtains

q∑
l=1

f ◦ ϕl · (dϕl )ν = q
∞∑

k≥ νq

akq−ν zkq
(

dz
z

)ν
= q

∞∑
k≥ νq

akq−ν

qν
wk

(
dw
w

)ν
.

Hence the form Θ will in general have order k − ν, where k is the smallest inte-
ger ≥ ν

q . Since ν,q ≥ 2, as in our case, one has k − ν < 0.
We next consider parabolic cycles. We return toH and assume that the point∞

belongs to a parabolic cycle, with isotropy group generated by ϕ(z) = z + 1. To
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that cycle there corresponds a point s on the surface S at which a local coordinate
is given by w = e2iπz ; a neighborhood base is given by the family of horospheres
HM := {Im(z) > M }, M > 0. By modifying the fundamental polygon P if
necessary, one may assume that

PM := P ∩ HM =

{
−

1
2
≤ Re(z) ≤

1
2

}
∩ HM

for M � 0. By construction, the form θ(z)(dz)ν has only a finite number of
poles in P and is therefore holomorphic on PM for M � 0. On the other hand,
θ(z)(dz)ν is ϕ-invariant, so projects to a form

Θ = θ̃(w)
(

dw
w

)ν
:=

1
(2iπ)ν

θ

(
log(w)

2iπ

) (
dw
w

)ν
.

The whole difficulty consists in showing that θ̃(w), which is defined holomorphi-
cally a priori only on a punctured neighborhood, grows at a moderate rate and so
extends to w = 0. We first prove this for the series

θ0(z) :=
+∞∑

k=−∞

f (z + k).

Recall that the rational form f (z)(dz)ν is, by assumption, holomorphic in a neigh-
borhood of the limit set of Γ; since dz has a pole of order 2 at ∞, it follows that
the function f vanishes to the order 2ν at∞. Hence for M � 0 one has

| f (z) | ≤
C
|z |2ν

∀z ∈ HM ,

where C > 0 is a constant. Hence for all z0 ∈ PM

|θ0(z0) | ≤
+∞∑

k=−∞

C
|z0 + k |2ν

≤

+∞∑
k=0

2C
( |z0 |2 + k2)ν

≤
2C
|z0 |2ν

+∞∑
k=0

1(
1 +

(
k
|z0 |

)2
)ν ,

and since there are at most |z0 | + 1 integers k ∈ N such that n ≤ k
|z0 |

< n + 1, it
follows that

|θ0(z0) | ≤
2C
|z0 |2ν

(|z0 | + 1)
+∞∑
n=0

1(
1 + n2)ν ≤ C ′

|z0 |2ν−1
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for some constant C ′ > 0. Therefore

θ0(z)(dz)ν = θ̃0(w)
(

dw
w

)ν
with θ̃0(w) holomorphic in a neighborhood of w = 0 and vanishing at w = 0.

The general case now follows readily. One chooses from each right coset of Γ
modulo 〈ϕ〉 a representative ϕi , i ∈ I, and rearranges the series

θ(z) =
∑
i∈I

+∞∑
k=−∞

f i (z + k) · (dz)ν =
∑
i∈I

θi (z)(dz)ν ,

where f i := f ◦ ϕi · (ϕ′i )
ν , i ∈ I. By Theorem VI.3.1 this series converges uni-

formly on every compact subset ofH, so in particular in the annulus {r ≤ |w | ≤ r ′}
defined about w = 0 by PM \ PM+1. Each function f i is rational and vanishes to
the order 2ν at ∞; hence each series θ̃i (w) is holomorphic and vanishes at the
point w = 0. Thus on the annulus {r ≤ |w | ≤ r ′} the series θ̃(w) is a uni-
form limit of holomorphic functions on the disc {|w | ≤ r ′} vanishing at w = 0.
The limit is therefore holomorphic, vanishing at w = 0, and the differential form
Θ = θ̃(w)

(
dw
w

)ν
is meromorphic of order ≤ ν − 1.

It remains to show that Θ extends meromorphically to the compact Riemann
surface S in the case where Γ has hyperbolic cycles. To this end, we return to the
disc D and consider the fundamental region P′ symmetric relative to ∂D, obtained
by applying a Schwarz reflection to P. The convergence of the series∑

ϕ∈Γ

|ϕ′(z) |ν

holds on every compact set D ⊂ C not approaching the orbit Γ(∞), once estab-
lished at a point z0 ∈ D. To see this it suffices to observe that, for z ∈ D, one
has

|ϕ′(z) |
|ϕ′(z0) |

=

(
dist(z0, ϕ

−1(∞))
dist(z, ϕ−1(∞))

)2

<

(
dist(z0, ϕ

−1(∞))
dist(D,Γ(∞))

)2

;

since Γ acts discretely on CP1 \ D, one can uniformly bound dist(z0, ϕ
−1(∞)) on

all nontrivial elements of Γ, thus establishing the convergence of the series on D.
In fact, provided the compact set D contains no limit point of Γ(∞), then possibly
after omitting a finite number of terms containing a pole, the series still converges.
Hence the form Θ extends meromorphically to S. �

When there are no hyperbolic cycles (and the differential form Θ of degree ν
is not identically zero on the compact surface S) one has

number of zeros − number of poles = 2ν(g − 1)
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where g is the genus of the surface S, or, equivalently, by Proposition VI.1.7:

number of zeros − number of poles = ν(n − c − 1)

where 2n is the number of sides of P and c the number of distinct cycles (elliptic
or parabolic). In order to use Theorem VI.3.1 to construct a form Θ that is not
identically zero, it is enough to ensure that it has a pole. Note however that several
of the poles of f may belong to the same orbit of Γ and simplify in the series θ.
To avoid this eventuality, one might for instance choose the function f (z) with
all of its poles in the interior P̊ of the fundamental polygon: these poles will then
persist (with the same orders) in the form Θ.

VI.3.2. Fuchsian functions and the algebraisation of the Riemann surface

We define a Fuchsian function for the group Γ to be any meromorphic func-
tion f (z) on the disc D left invariant by Γ:

f ◦ ϕ(z) = f (z), ∀z ∈ D, ϕ ∈ Γ

(in other words, an automorphic form of weight ν = 0). One constructs such
functions by taking the quotient of two automorphic forms of the same weight; in
order to ensure nontriviality, it suffices to make an appropriate choice of poles of
the rational functions used in Theorem VI.3.1. These are the “new transcenden-
tals” proposed by Poincaré.

Proposition VI.3.3. — Suppose the polygon P has no hyperbolic cycles. Then the
field of Fuchsian functions is generated by just two of them, that is, has the form
C(x, y), where x = x(z) and y = y(z) satisfy an algebraic relation F (x, y) = 0,
F ∈ C[X,Y ]. The map

H→ X = {F (x, y) = 0} ; z 7→ (x(z), y(z))

identifies the compact quotient S with a compactification/desingularization of the
algebraic curve X = {F (x, y) = 0} ⊂ C2. The genus of this curve is as calculated
above.

Remark VI.3.4. — Here the curve is considered up to birational equivalence (that
is, to within an isomorphism of the function fields). When the genus g is ≥ 3, it is
possible that the curve obtained be non-smooth. It may have “apparent” singular-
ities depending on the choice of the generators x and y. We can nevertheless talk
of the underlying Riemann surface by passing to its desingularization, or, what
amounts to the same thing, to an embedding in some projective space PN . The
genus of the curve is thus well defined.
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Proof. — First of all, it is easy to construct a non-constant Fuchsian function
on the quotient S by forming the quotient of two automorphic forms of the same
weight: here one should choose the poles of the second so that they do not cancel
those of the first. Let x(z) be the function so constructed. We shall now show
that the field K of meromorphic functions on S is a finite extension of k = C(x).
With this in view, we first prove that every element y(z) ∈ K is algebraic over k.
Since x(z) effectively defines a ramified covering of the Riemann sphere of de-
gree d, say, its inverse has at a generic point x exactly d values zi (x), i = 1, . . . ,d.
The elementary symmetric functions σk (x) of the d local values of y(zi (x)) are
then well defined and meromorphic on the Riemann sphere, whence rational in x.
Finally, y(z) satisfies the polynomial equation

yd − σ1(x)yd−1 + · · · + (−1)d−1σd−1(x)y + (−1)dσd (x) = 0.

Hence the degree over k of every element of K is bounded by d, and it follows
(from the primitive-element theorem) that K is a finite extension of k and that
K = C(x(z), y(z)) for some y ∈ K . �

VI.3.3. The dependence of Fuchsian functions on the group Γ

Consider a fundamental polygon P0 of a Fuchsian group Γ0, with generators
ϕ1, . . . , ϕn as given by Proposition VI.1.3. Now imagine a deformation

t 7→ Pt ⊂ H

of the polygon P0 where the finite and infinite vertices vary continuously with
the parameter t without collisions, and with the assumptions of Theorem VI.1.10
preserved identically throughout. Then the generators deform continuously:

t 7→ ϕt1, . . . , ϕ
t
n ,

in such a way that the groups Γt they generate are all Fuchsian. For example,
in the compact case, it is enough for the angles of the cycles to be kept constant
and for the sides conjugated by the ϕti to remain conjugate — that is, of the same
length.

In this case the family of automorphic forms

θt (z) :=
∑
ϕ∈Γt

f ◦ ϕ(z) · (ϕ′(z))ν

constructed from a given rational function f will also depend continuously on the
parameter t; to see this it suffices to note that in the proof of Theorem VI.3.1, all
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of the constants involved in bounding the series∑
ϕ∈Γt

|ϕ′(z) |2

on D depend continuously on t. This continuous dependence automatically ex-
tends to parabolic cycles of the surface St . In taking the quotient of two such
forms, one obtains a meromorphic function xt (z) again depending continuously
on t. In particular the degree of the meromorphic function xt : S → CP1 must be
constant. Hence the function yt (z) constructed from xt as in the proof of Propo-
sition VI.3.3 will depend continuously on t, and, finally, so also will the curve
Xt = {Ft (X,Y ) = 0}.

VI.4. Appendix

We conclude this chapter with two technical lemmas to be used in Chapter IX in
connection with appreciating how Poincaré uniformized the complex structures
obtained by removing 4 points from the Riemann sphere. The reader may wish to
omit this section at first reading.

Consider the unit disc D furnished with the hyperbolic metric. We will denote
distance and area with respect to this metric by “dist” and “area” respectively. For
example, the open disc centred at 0 and of radius R > 0 (in the hyperbolic metric)
is

D(0,R) := {z ∈ D | dist(0, z) < R}
(
= D

(
0,

eR − 1
eR + 1

))
and its (hyperbolic) area grows exponentially with R:

area(D(0,R)) = 2π(cosh(R) − 1), cosh(R) =
eR + e−R

2
.

Suppose now that Γ is a Fuchsian group acting on the disc D.

Lemma VI.4.1. — For every radius R > 0, there exists k ∈ N and ε > 0 such
that for all z0 ∈ D(0,R), the disc D(z0, ε) contains at most k other points of the
orbit Γ(z0). If Γ is finitely generated then k may be chosen independently of R
provided one takes ε(R) = ce−c

′R , c,c′ > 0.

Proof. — Consider first the case where Γ has no elliptic cycles in some neigh-
borhood of D(0,R): in such a neighborhood no nontrivial element of Γ will have
a fixed point. Hence there is an ε > 0 separating every two distinct points of
D(0,R) in the same orbit under Γ — if this were not the case, then there would
have to exist a sequence of points zn ∈ D(0,R) and elements ϕn ∈ Γ such that zn
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and ϕn (zn ) converged to the same point z0 ∈ D(0,R), since this set is closed, and
then we could find a transformation ϕ fixing z0 in the closure of the ϕn . However
since Γ is discrete, such a sequence of transformations would eventually become
constant, whence ϕ ∈ Γ, a contradiction. Thus in this case we have k = 0.

If on the other hand Γ has an elliptic fixed point z0 ∈ D(0,R), of order l, say,
then in the orbit of a point arbitrarily close to z0 we can find l points arbitrarily
close to one another. Thus by choosing k + 1 as an upper bound for the highest
order of an elliptic point in D(0,R), we can apply the above argument to obtain
an appropriate ε.

If Γ is finitely generated, then for R sufficiently large the complement of
D(0,R) will contain only finitely many parabolic and hyperbolic cycles of a suit-
able fundamental polygon. In the case of a parabolic end the distance between
any two points in one and the same orbit will not have a positive lower bound:
if ϕ is parabolic, direct calculation shows that dist(z, ϕ(z)) ≤ ce−c

′dist(0,z) where
c′ > 1 can be chosen arbitrarily close to 1 for suitable choice of c > 0. �

For each n ∈ N, we denote by Cn the annulus

Cn := D(0,n + 1) \ D(0,n),

and write the series of Theorem VI.3.1 as the sum θ(z) =
∑

n∈N θn (z) where

θn (z) :=
∑

ϕ∈Γ, ϕ (z)∈Cn

f ◦ ϕ(z) · (ϕ′(z))ν .

Lemma VI.4.2. — Given a Fuchsian group Γ and ν > 1, R > 0, there exists a
constant K > 0 depending only on ν, R, and the constants ε and k of the preceding
lemma, satisfying ∑

ϕ∈Γ, ϕ (z)∈Cn

|ϕ′(z) |ν ≤ Ke(1−ν)n .

Proof. — Given a value R > 0 for the radius, the preceding lemma tells us there
exist constants ε > 0 and k ∈ N with the property that for all z0 ∈ D(0,R), each
point of the disc D is contained in ϕ(D(z0, ε)) for at most k distinct elements
ϕ ∈ Γ. Hence the number of points of the orbit of z0 contained in the disc D(0,n),
n ∈ N∗, is bounded above as follows:

|Γ(z0) ∩ D(0,n) | ≤ k
area(D(0,n))
area(D(z0, ε))

≤ k
2π(cosh(n + ε) − 1)

2π(cosh(ε) − 1)
≤ k

en + ε

ε2 .

Certainly, therefore, the number of such points in the annulus Cn also satisfies

|Γ(z0) ∩ Cn | ≤ k
en+1 + ε

ε2 .
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One also readily verifies that for every automorphism ϕ of the disc D, one has

|ϕ′(z) | =
1 − |ϕ(z) |2

1 − |z |2
.

And since for ϕ(z0) ∈ Cn , one also has

|ϕ(z0) |2 ≥
en − 1
en + 1

,

it follows that
1 − |ϕ(z0) | ≤

2
cosh(n) + 1

≤
4
en
,

whence
|ϕ′(z0) | ≤

4
(1 − R2)en

.

Thus ∑
ϕ (z0)∈Cn

|ϕ′(z0) |ν ≤ Ke(1−ν)n where K = k
e1+ε

ε2

(
4

1 − R2

)ν
.

�

It follows from these lemmas that∑
n≥N

sup{|θn (z) | | z ∈ D(0,R)} ≤ K
e(1−ν)N

(ν − 1)N
sup{| f (z) | | z ∈ D(0,R)}.

Hence in the situation of a subgroup Γ′ of Γ with the property that the Γ-orbits
of the points of D(0,R) coincide with the Γ′-orbits on restricting to a sufficiently
large disc D(0,N ), the corresponding series θ and θ ′ will be close to one another
on D(0,R). This property will be useful to us in understanding the behaviour of
the map Pt 7→ Xt constructed in §VI.3.3 above, in the case where the family of
polygons Pt approaches the boundary of the moduli space.





Chapter VII

The “method of continuity”

The aim of this chapter is to establish the uniformization theorem for compact
Riemann surfaces in the spirit of the “method of continuity” developed in parallel
by Klein and Poincaré. This method consists in showing that the space of uni-
formizable Riemann surfaces is both open and closed in the space of all Riemann
surfaces. The proof we present here is more along the lines of Klein’s approach,
at least insofar as the “closure” is concerned; Poincaré’s approach will be con-
sidered in the next chapter. What we actually show in the present chapter is that
every compact Riemannian surface of negative Euler–Poincaré characteristic is
conformally equivalent to a quotient of the hyperbolic plane. Since every Rie-
mann surface admits a Riemannian metric compatible with its complex structure,
this then certainly shows that every compact Riemann surface of negative Euler–
Poincaré characteristic is uniformizable by the hyperbolic plane. We describe
the set of uniformizable metrics as the continuous image of a space of Fuchsian
groups (modulo conjugation) in the space Tg of metrics (modulo conformal equiv-
alence). Then, noting that Tg is a real connected manifold of dimension 6g − 6
(g ≥ 2), we prove that the set of uniformizable metrics is both open and closed in
that space.

VII.1. Preliminaries

VII.1.1. Introduction

We now give the definitions of these various objects. Let S be an oriented, closed,
connected surface of genus g ≥ 2 endowed with a smooth structure, and let MetS
be the space of Riemannian metrics on S endowed in turn with the uniform conver-
gence topology. We shall say that two metrics m1 and m2 are equivalent (m1 ∼ m2)
if there exists ϕ ∈ diff0(S) (the group of diffeomorphisms isotopic to the identity
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map) such that m1 is conformal with ϕ∗m2. We denote by

Tg = MetS/ ∼

the quotient by this relation. By the local theorem of Gauss on the existence
of locally conformal coordinates — extended to the smooth case by Korn and
Lichtenstein — the space Tg is isomorphic to the Teichmüller space of complex
structures on the surface S, up to an isotopy.1

On the other hand the space of Fuchsian groups is described in terms of rep-
resentations. Denoting by Γ the fundamental group of the surface S, we write
Rep f d

R (g) for the set of discrete faithful representations of Γ in SL(2,R) (with
the topology induced from the product topology on SL(2,R)Γ) and consider the
quotient with respect to conjugation

R
f d
R (g) = Rep f d

R (g)/SL(2,R).

We shall show that R f d
R (g) is a manifold of dimension 6g−6; in fact it is a union of

connected components of the manifold of irreducible representations, considered
up to conjugation (see §§VII.2, VII.3).

VII.1.2. From representations to metrics

We wish to construct a continuous map from the manifold of representations
R

f d
R (g) to the Teichmüller space Tg . Henceforth we fix on a connected com-

ponent X of R f d
R (g), and denote by X the component of Rep f d

R (g) above X. The
action of the group Γ on X × H, where H is the Poincaré half-plane, is given by

γ · (ρ, z) = (ρ, ρ(γ) · z), (ρ, z) ∈ X × H.

The projection of X ×H on X extends to the quotient as a submersion of the space
E = Γ\(X × H) onto X ; it is a C∞ fibration, locally trivial by Ehresmann’s theo-
rem. Furthermore, the fibre Sρ above each ρ ∈ X is a compact surface naturally

1The fact that this space is a manifold (in fact a smooth manifold) of real dimension 6g−6 can be
proved using Riemann’s methods. The space Riemann considered implicitly, namely the modular
space Mg of complex structures modulo diffeomorphisms, is singular (an orbifold) at the points
corresponding to surfaces having nontrivial automorphisms (such as Klein’s surface!), but one can
get around this problem by means of “level structures” (one takes a fixed basis for H1(S,Z/nZ) for
n ≥ 3); see the discussion following Proposition II.3.1. One obtains in this way a space intermediate
between Tg andMg and Riemann’s methods allow one to prove that it is in fact a smooth complex
manifold of dimension 3g − 3, and therefore a fortiori a smooth real manifold of dimension 6g − 6.
For further details on this matter, consult for example [HaMo1998]. Otherwise, there are many
expositions available of the theory of Teichmüller spaces themselves, from which it follows directly
that the space in question is diffeomorphic to R6g−6. One may consult for instance [ImTa1992],
which also contains substantial historical asides.
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endowed with a hyperbolic metric mρ . As our surface of reference, we choose
the fibre S = Sρ0 above a fixed base point ρ0 ∈ X . For each ρ ∈ X , denote by
c(t) = ρt (t ∈ [0,1]) a piecewise-smooth path from ρ0 to ρ. The fibration c∗E is
trivializable, and every trivialization F : [0,1] × S → c∗E determines a continu-
ous family of diffeomorphisms f t = F (t, ·) ∈ diff(S,Sρt ). We may always assume
that f0 is the identity map on S.

Lemma VII.1.1. — The isotopy class of the metric f ∗1 mρ ∈ MetS is independent
of the choice of trivialization of c∗E (normalized as above) and the choice of the
path c from ρ0 to ρ.

Proof. — By construction, the group Γ acts via ρ as a group of automorphisms
of the universal covering H of Sρ (for every ρ ∈ X). The above trivialization F
lifts to F̃ : [0,1] × H → [0,1] × H (between universal covers), whence we obtain
a continuous family f̃ t : S̃ → S̃ρt of lifts; here we may assume that f̃0 is the
identity map of S̃. Each f̃ t defines an automorphism θt of the group Γ via the
equality f̃ t ◦ ρ0(γ) = ρt (θt (γ)) ◦ f̃ t , where γ ∈ Γ. However, since θt depends
continuously on t, we must have θt = θ0 = IdΓ for all t ∈ [0,1]. In other words f̃ t
is Γ-equivariant, whence, in particular,

f̃1 ◦ ρ0(γ) = ρ(γ) ◦ f̃1 (γ ∈ Γ). (VII.1)

Now consider another path σt from ρ0 to ρ (possibly equal to ρt ) in order
to deal with a change of trivialization. Suppose g1 ∈ diff(S,Sρ ) is obtained via
a normalized trivialization. Its lift g̃1, constructed as above, also satisfies (VII.1).
Hence for all γ ∈ Γ we have

f̃1
−1
◦ g̃1 ◦ ρ0(γ) = ρ0(γ) ◦ f̃1

−1
◦ g̃1.

The diffeomorphism ϕ = f −1
1 ◦ g1 clearly satisfies ϕ∗( f ∗1 mρ ) = g∗1mρ . Moreover

the above equation shows that the outer automorphism of the group Γ = AutS S̃
determined by ϕ is trivial. It follows that ϕ is isotopic to the identity map (see
[ZVC1970, 5.13]). �

Now consider two conjugate representations ρ,σ ∈ X , joined by paths ρt and
σt to the base point ρ0 (t ∈ [0,1]). Choose continuous families f t ∈ diff(S,Sρt )
and gt ∈ diff(S,Sσt ) as in the above proof, with f0 = g0 = IdS . Let A ∈ SL(2,R)
be such that ρ = AσA−1 and let At be a smooth path from I to A in SL(2,R)
(t ∈ [0,1]). Each element At induces a diffeomorphism ht between Sσ and
SAtσA−1

t
, with h0 = IdSσ and h∗1mρ = mσ . Hence gt (t ∈ [0,1]) followed by

ht ◦ g1 (t ∈ [0,1]) yields a continuous family of diffeomorphisms above a path
from ρ0 to ρ. By Lemma VII.1.1 (and invoking g0 = IdS) we have that the iso-
topy classes of the metrics f ∗1 mρ and (h1 ◦ g1)∗mρ = g∗1mσ coincide.
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Write [ρ] ∈ X for the conjugacy class of ρ ∈ X and [m] ∈ Tg for the class
of a metric m ∈ MetS . In view of the foregoing, we can define a map Φ from X
to Tg by setting

Φ([ρ]) = [ f ∗1 mρ] ∈ Tg ([ρ] ∈ X).

It is then immediate that Φ is a continuous trivialization of the fibration E above a
contractible open set containing ρ and ρ0. The uniformization theorem à la Klein
is then subsumed in the following result.

Theorem VII.1.2. — Let X be a connected component of R f d
R (g). Then the map

Φ : X → Tg is a homeomorphism.

VII.2. Representations of surface groups

VII.2.1. The manifold of representations

Let Γ be the fundamental group of a closed, connected, orientable surface of genus
g ≥ 2 (with a distinguished base point), and let (γi )i=1, ...,2g be a set of generators
of Γ satisfying

∏g
i=1[γi , γi+g] = 1, which we shall henceforth call a standard

generating set. The set of representations of Γ in SL(2,C) is then identifiable
with the subset RepC(g) consisting of the 2g-tuples (A1, . . . , A2g ) ∈ SL(2,C)2g

satisfying
g∏
i=1

[Ai , Ai+g] = I .

The subset RepC(g) is an affine algebraic subvariety of M2(C)2g . Write
Rep∗C(g) for the subset of RepC(g) consisting of the irreducible representations ρ
over C (that is, such that the only invariant subspaces of ρ(Γ) are C2 and {0}). By
§VI.2.3 this is a non-empty subset of RepC(g) since a faithful discrete representa-
tion is necessarily irreducible, as one may readily verify2. It is moreover an open
subset (even in the Zariski topology) since the set

{(ρ,D) ∈ RepC(g) × CP1 | ρ(Γ)D ⊂ D}

of pairs made up of a representation ρ and a nontrivial ρ-invariant subspace D
of C2 is a closed set whose first projection (closed since CP1 is compact) is
RepC(g) \ Rep∗C(g).

2If the group ρ(Γ) had a proper, nontrivial invariant subspace of C2 (in other words an invariant
line) ρ(Γ) would then be solvable since contained in a conjugate of the subgroup of upper-triangular
matrices of SL(2,C).
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For each representation ρ of Γ in SL(2,C), one may view the Lie algebra
sl(2,C) as a Γ-module via the adjoint action defined by γ · ξ = Adρ(γ)(ξ) =

ρ(γ)ξ ρ(γ)−1; we shall denote this module by sl(2,C)ρ . Recall that a 1-cocycle is
a map c from Γ to sl(2,C)ρ such that for all γ,γ′ ∈ Γ

c(γγ′) = c(γ) + γ · c(γ′),

and that a 1-cobordism is a 1-cocycle of the form cξ (γ) = ξ − γ · ξ

with ξ in sl(2,C)ρ . We write Z1(Γ,sl(2,C)ρ ) for the space of 1-cocycles and
B1(Γ,sl(2,C)ρ ) for the subspace of 1-cobordisms, and define

H1(Γ,sl(2,C)ρ ) = Z1(Γ,sl(2,C)ρ )/B1(Γ,sl(2,C)ρ ).

The tangent space to SL(2,C) at any point σ is isomorphic to sl(2,C); the
map ξ 7→ exp(ξ)σ affords via sl(2,C) a local chart on SL(2,C) in a neighborhood
of σ.
Proposition VII.2.1. — The space Rep∗C(g) is a complex submanifold of dimen-
sion 6g − 3 of SL(2,C)2g . For every ρ ∈ Rep∗C(g) the map associating with each
c ∈ Z1(Γ,sl(2,C)ρ ) the element (c(γi ))1≤i≤2g ∈ sl(2,C)2g , induces an isomor-
phism from Z1(Γ,sl(2,C)ρ ) to TρRep∗C(g).
Proof. — We follow the argument given by Hubbard in [Hub1981]. Consider the
map f : SL(2,C)2g → SL(2,C) defined by

f (σ1, . . . ,σ2g ) =

g∏
i=1

[σi ,σi+g].

The set RepC(g) has f = I as analytic equation. A straightforward calculation
beginning with

[eξ1σ1,eξ1+gσ1+g] = eξ1 (σ1eξ1+gσ−1
1 )(σ1σ1+gσ

−1
1 e−ξ1σ1σ

−1
1+gσ

−1
1 )[σ1,σ1+g]e−ξ1+g

= eξ1eAdσ1 ·ξ1+ge−Ad(σ1σ1+gσ
−1
1 ) ·ξ1e−Ad[σ1,σ1+g ]·ξ1+g [σ1,σ1+g],

and ending by invoking eχ1eχ2 = eχ1+χ2 +O(| χ1 |
2+ | χ2 |

2), implies that the differ-
ential of f at σ = (σ1, . . . ,σ2g ) ∈ SL(2,C)2g in the direction ξ = (ξ1, . . . , ξ2g ) ∈
sl(2,C)2g is

g∑
i=1

i−1∏
j=1

[σ j ,σ j+g] ·
(
(1 − σiσi+gσ

−1
i ) · ξi + (σi − [σi ,σi+g]) · ξi+g

)
.

Observe that a similar calculation shows that the map γi 7→ ξi (i = 1 . . . 2g)
extends to a (necessarily unique) 1-cocycle Γ → sl(2,C)ρ if and only if
dσ f (ξ1, . . . , ξ2g ) = 0, where σ = (ρ(γi ))i=1, ...,2g .
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Thus it suffices to verify that the map dσ f : sl(2,C)2g
ρ → sl(2,C) is surjective

if ρ is irreducible. We deduce this by means of two applications of the following
lemma:
Lemma VII.2.2. — If σ1,σ2 ∈ SL(2,C) do not commute, then the map sl(2,C)ρ×
sl(2,C)ρ → sl(2,C)ρ sending (ξ1, ξ2) to (1−σ1) · ξ1 + (1−σ2) · ξ2 is surjective.

Resuming the proof of Proposition VII.2.1, we first assume that for some in-
teger i, 1 ≤ i ≤ g, the elements σi and σi+g do not commute. Then, since
(1 − σiσi+g ) · ξi + (σi − [σi ,σi+g]) · ξi+g

= σi

(
(1 − σi+gσi )σ−1

i · ξi + (1 − σi+gσ
−1
i σ−1

i+g )ξi+g
)
,

we infer from Lemma VII.2.2 that the restriction of the map dσ f to ξi and ξi+g
is surjective. If we now assume that each σi commutes with σi+g , then the differ-
ential of f takes the form

dσ f (ξ) =

g∑
i=1

(
(1 − σi+g ) · ξi + (σi − 1) · ξi+g

)
and Lemma VII.2.2 can be applied again since, by virtue of the irreducibility
of ρ there exist at least two indices i and j in [1,2g] such that σi and σ j do not
commute. �

Proof of Lemma VII.2.2. — Let σ ∈ SL(2,C), σ , ±I. The endomorphism
fσ (ξ) = (1−σ)·ξ has rank 2 and ker fσ = C(2σ−trσI). One verifies directly that
ker fσ is the orthogonal complement of im fσ with respect to the nondegenerate
bilinear form on sl(2,C) defined by b(ξ, ξ ′) = tr(ξξ ′). Therefore, since σ1 and σ2
do not commute the images of fσ1 and fσ2 must be distinct . �

The action of the group SL(2,C) on RepC(g) by conjugation preserves
Rep∗C(g), and restricted to this subspace this action is locally free. To see this,
let C2

ρ be the simple C[Γ]-module defined by ρ. The ring EndC[Γ](C2
ρ ) reduces

to homotheties (in particular since each of its elements is either null or invertible,
and has a single eigenvalue), so that the centralizer of ρ in SL(2,C) is just {±I}.
We write

R∗C(g) = Rep∗C(g)/SL(2,C)

for the quotient by this action. For every ρ ∈ Rep∗C(g) the differential at
the identity of the inclusion map of SL(2,C)/{±1} in Rep∗C(g) defined by
σ 7→ σ ◦ ρ ◦ σ−1, is the map from sl(2,C)ρ to Z1(Γ,sl(2,C)ρ ) given by ξ 7→ cξ .
The following theorem now follows readily from Proposition VII.2.1.
Theorem VII.2.3. — The space R∗

C
(g) is naturally endowed with the structure

of a complex manifold of dimension 6g − 6. Its tangent space at a point ρ is
canonically isomorphic to H1(Γ,sl(2,C)ρ ).
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Proof. — It remains only to verify that the action of SL(2,C) on Rep∗C(g) is
proper, that is, that the set

EK = {σ ∈ SL(2,C) | σKσ−1 ∩ K , ∅}

is compact in SL(2,C) for all compact K of Rep∗C(g). To this end, observe that
the set F of all pairs (ρ, ρ′) ∈ Rep∗C(g)2 for which the linear equation

X ρ − ρ′X = 0

admits a non-zero solution X ∈ M2(C) is closed (since the projection
P(M2(C)) × (Rep∗C(g))2 −→ Rep∗C(g)2 is proper) and non-empty; furthermore,
in F the solution space represents a line D(ρ, ρ′) = HomC[Γ](C2

ρ ,C
2
ρ′) — gener-

ated by an invertible element — depending continuously on (ρ, ρ′). For any given
sequence (σk ) of elements of EK , there exists a pair (ρk , ρ′k ) ∈ (K × K ) ∩ F
such that σk ρk = ρ′

k
σk , the sequence (ρk , ρ′k ) being assumed convergent to

(ρ∞, ρ′∞), say, by compactness. Hence we have D(ρk , ρ′k ) = Cτk where τk is
invertible (k = 0, . . . ,∞), lim τk = τ∞ (as k tends to∞), and we can normalize so
as to ensure τk ∈ SL(2,C). It follows that σk = ±τk (k < ∞) and, by choosing a
suitable subsequence if necessary, we have limσk = ±τ∞. The set EK is therefore
compact. �

We now turn to the set Rep∗R(g) of C-irreducible representations of Γ in
SL(2,R), that is, the intersection of the set of real points RepR(g) of RepC(g)
with Rep∗C(g). Note that as before this is a non-empty open set of RepR(g).
Corollary VII.2.4. — The space R∗R(g) = Rep∗R(g)/SL(2,R) is a real manifold
of dimension 6g − 6.
Proof. — The points of Rep∗R(g) are smooth points of RepR(g) since by Propo-
sition VII.2.1 they are smooth points of RepC(g) and this manifold is defined
over R. As earlier, one verifies that the action of SL(2,R) on Rep∗R(g) is locally
free (for ρ ∈ Rep∗R(g) the module C2

ρ is simple). The argument showing that this
action is proper is then analogous to that of the proof of Theorem VII.2.3. �

Remark VII.2.5. — More generally, let S be a compact surface of genus g with M
points removed (where M ≥ 1 and 2g + M > 2). The fundamental group Γ

of S (which is free on 2g + M − 1 generators) is generated by 2g + M elements
σ1, . . . σ2g , c1, . . . cM satisfying the single relation

∏g
i=1[σi ,σi+g]

∏M
j=1 cj = 1.

Write RC(g,M) for the space of representations ρ of Γ in SL(2,C) satisfying
the supplementary constraint trρ(cj ) = −2 (1 ≤ j ≤ M). One can then show
as above that the spaces R∗

C
(g,M) of irreducible representations, and their quo-

tients R0
C

(g,M) = R∗
C

(g,M)/SL(2,C), are complex manifolds of dimensions
6g − 3 + 2M and 6g − 6 + 2M respectively. Moreover these results continue to
hold when C is replaced by R.
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VII.2.2. Characters and the fundamental invariants

Let Γ be a finitely presented group and ρ a representation of Γ in SL(N,C). The
character of ρ is then the function χρ from Γ to C defined by χρ (γ) = tr(ρ(γ)).
Note that conjugate representations in SL(N,C) have the same character.

Poincaré was interested in the reciprocal relation when he considered, in the
first section of his memoir [Poin1884b], a monodromy representation ρE arising
from a differential equation on a surface. In this situation the group Γ is the
fundamental group of the surface and the χρE (γ), for γ ∈ Γ, are invariants that
he associates with the substitutions ρE (γ) ∈ SL(2,C). He states that:

If one knows the invariants of all the substitutions ρE (γ), the group Γ will
be completely determined, since we do not consider it as distinct from its
transforms σ−1Γσ. But it is not necessary to know all of these invariants, it
suffices to know a certain number of them which we will call fundamental
invariants and of which all the others are functions.

We shall now give a proof of this assertion (which Poincaré states without
proof). It will also be used in Chapter VIII. The following proposition captures
the first statement of the above quotation.

Proposition VII.2.6. — Let ρ and ρ′ be two representations of Γ in SL(N,C).
If χρ = χρ′ and if ρ and ρ′ are irreducible, then ρ and ρ′ are conjugate
in SL(N,C).

The proof we give is due to Selberg [Sel1960], and reduces to the following
two lemmas.

Lemma VII.2.7. — Let ρ be an irreducible representation of Γ in SL(N,C). Then
there exist N2 elements γ1, . . . , γN 2 of Γ such that the family (ρ(γ j )) j=1, ...,N 2

spans the complex vector space MN (C) of square matrices.

Proof. — It suffices to prove that the vector subspace R spanned by the ρ(γ),
with γ ranging over Γ, is the space MN (C). This is just Burnside’s lemma: see
for instance [Lan2002, XVII, Corollary 3.4]; in fact R is a subalgebra of MN (C)
and the space CN is a simple R-module. �

Lemma VII.2.8. — Every algebra automorphism ψ : MN (C) → MN (C) is inner.

Proof. — Consider the basic matrices Ei j . The images pi = ψ(Eii ) satisfy
p2
i = pi , pipj = 0 if i , j, and

∑
pi = Id, so they represent projections

on n independent lines. Hence pi = Eii to within a conjugation. It follows that
Ekkψ(Ei j ) = 0 if k , i and ψ(Ei j )Ekk = 0 if k , j, whence ψ(Ei j ) = ai jEi j

(ai j ∈ C). We have ai ja jk = aik , whence ai j = bi/bj , and ψ is conjugation by
the matrix (δi jbi ). �
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Proof of Proposition VII.2.6. — Let γ j ∈ Γ ( j = 1, . . . ,N2) be as in Lem-
ma VII.2.7. If

∑N 2

j=1 λ j ρ(γ j ) = 0, then λ j = 0 for every j (by choice of the γ j ),

whence in turn
∑N 2

j=1 λ j ρ
′(γ j ) = 0. The endomorphism of MN (C) sending a lin-

ear combination
∑N 2

j=1 λ j ρ(γ j ) to the matrix
∑N 2

j=1 λ j ρ
′(γ j ) ∈ MN (C) is therefore

well-defined. We shall now show that if a linear combination
∑
λγ ρ(γ) (λγ ∈ C)

is zero in MN (C), then also
∑
λγ ρ

′(γ) = 0. For all γ0 ∈ Γ, we have

tr
(∑

λγ ρ
′(γ)ρ′(γ0)

)
=

∑
λγtr(ρ′(γγ0))

=
∑

λγtr(ρ(γγ0))

= tr
(∑

λγ ρ(γ)ρ(γ0)
)

= 0.

It follows from Lemma VII.2.7 (and from the fact that the trace defines a non-
degenerate bilinear form on MN (C)) that

∑
λγ ρ

′(γ) = 0. Hence, finally, our
endomorphism is an algebra morphism, and we can invoke Lemma VII.2.8 to
complete the proof. �

In the second statement of the above quotation from Poincaré’s memoir, he
claims that it is in fact enough to know the invariants of only a finite number of
substitutions, his “fundamental invariants”.

Proposition VII.2.9. — Let Γ be the fundamental group of a closed surface of
genus g, and for each γ ∈ Γ consider the function τγ : RC(g) → C defined by
τγ (ρ) = trρ(γ) = χρ (γ). The ring T generated by the functions τγ (γ ∈ Γ) is
finitely generated.

Proof. — Here N = 2. The proof depends on the identity

tr(A)tr(B) = tr(AB) + tr(AB−1) (A,B) ∈ SL2(C)2,

(an immediate consequence of the Cayley–Hamilton theorem) and on the fact
that Γ is finitely generated. (As before we denote standard generators by γi ,
1 ≤ i ≤ N .) We recall the argument (see [Hor1972] or [CuSh1983, p. 116]):
Let T0 be the ring generated by the τγ with γ = γi1 · · · γik , and the indices
i1, . . . , ik all distinct (so that in particular k ≤ N). Consider a general element

δ = γm1
i1
· · · γmr

ir
∈ Γ

with m j , 0 ( j = 1, . . . ,r). Assuming to begin with that the indices i1, . . . , ir
are distinct, we verify that in this case τδ ∈ T0. We proceed by induction on
q =

∑r
j=1 max(m j − 1,−m j ). When q = 0, we have τδ ∈ T0 by definition. For
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q > 0, up to replacing δ by a conjugate we may assume that mr , 1. If mr < 0,
then by the above trace identity we have

τδ = τδγir τγ−1
ir
− τδγ2

ir
∈ T0

since τδγir , τδγ2
ir
∈ T0 (by the inductive hypothesis) and τγ−1

ir
= τγir ∈ T0 by

definition. If mr ≥ 2 we write τδ as above with γir replaced by γ−1
ir

. We dispose of
the general case by means of a second induction on r . In view of what we have just
proved, we may suppose that r ≥ 2, and then, by conjugating if need be, that there
exists an index j < r such that i j = ir . It now suffices to define α = γm1

i1
· · · γ

m j

i j
,

β = γ
m j+1
i j+1
· · · γmr

ir
and express τδ in the form τδ = ταβ = τατβ − ταβ−1 . �

Let (α1, . . . ,αm ) be a fixed finite sequence of elements of Γ such that the func-
tions τα1 , . . . , ταm generate the ring T . One then defines a mapping t from RC(g)
to Cm by

t(ρ) = (τα1 (ρ), . . . , ταm (ρ)). (VII.2)

The numbers ταi (ρ), i = 1, . . . ,m are then exactly what Poincaré called funda-
mental invariants of the group ρ(Γ).

VII.3. Real faithful and discrete representations

VII.3.1. The faithful and discrete representations form an open set

As in §VII.2.1, let Γ be the fundamental group of a connected, closed surface S
of genus g ≥ 2. In what follows we will understand the group Γ to have a fixed
action as a group of automorphisms of the universal cover S̃. Consider the set
Rep f d

R (g) of faithful, discrete representations of Γ in SL(2,R) (a nonempty set
— see §VI.2.3). These representations are C-irreducible — see §VII.2.1. For
ρ ∈ Rep f d

R (g), the action of ρ(Γ) on the half-plane H is faithful — since Γ has no
elements of order 2 — and the surface ρ(Γ)\H is diffeomorphic to S.

We denote by R f d
R (g) the quotient of Rep f d

R (g) by the conjugations. The first
thing to note is that, by virtue of the following proposition, R f d

R (g) is a manifold
of dimension 6g − 6.

Proposition VII.3.1. — The set R f d
R (g) is an open subset of the manifold R∗R(g)

of irreducible representations.
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Proof. — This reduces to showing that Rep f d
R (g) is an open subset of Rep∗R(g).

Consider ρ0 ∈ Rep f d
R (g) and let δ0 : S̃ → H be a smooth and (Γ, ρ0(Γ))-equi-

variant diffeomorphism. Choose a compact set K of S̃ such that
⋃
γ∈Γ γ(K ) = S̃.

For any given ρ ∈ RepR(g), we shall show that there is a map δρ : S̃ → H
that is smooth, (Γ, ρ(Γ))-equivariant, and C1-close to δ0 on K when ρ is close
to ρ0. For the moment we assume this. Then if ρ is sufficiently close to ρ0, the
map δρ is an immersion in a neighborhood of K (immersions forming an open
set in the C1-topology), and therefore by equivariance an immersion on S̃. By
considering the inverse image of the hyperbolic metric of H under δρ , we see
that S̃ inherits a Γ-invariant metric. Then since the action of Γ on S̃ is cocompact,
it follows from the Hopf–Rinow theorem that this metric is complete. Hence the
local isometry δρ is a covering map for H, and therefore a diffeomorphism. The
(Γ, ρ(Γ))-equivariance then ensures that ρ is faithful and discrete.

It remains to show how to construct δρ . Choose a fixed open cover of K by
open sets U1

1 , . . . ,U
1
s , together with successive refinements U l

1 , . . . ,U
l
s (2 ≤ l ≤ s)

of this cover. More precisely, the refinements are to be chosen so that U
l+1
j is

contained in U l
j (l ≤ s − 1, j ≤ s) while maintaining K ⊂

⋃s
j=1 U l

j for 1 ≤ l ≤ s,
and the initial U1

j are chosen so as to satisfy γ(U1
j ) ∩ γ′(U1

j ) = ∅ for γ , γ′

in Γ. Now set V l
j =

⋃
γ∈Γ γ(U l

1 ∪ . . . ∪U l
j ) for all 1 ≤ j, l ≤ s. The map δρ we

are seeking is now constructed by means of successive “restriction-extensions”
from V l

l
to V l+1

l+1 . We first define δ1
ρ as the (Γ, ρ(Γ))-equivariant map from V 1

1 to
H coinciding with δ0 on U1

1 . We then suppose that for some l ∈ {1, . . . , s − 1},
we have constructed a smooth, (Γ, ρ(Γ))-equivariant map δlρ from V l

l
to H. The

open set U l+1
l+1 ∩ V l+1

l
has compact closure in V l

l
, so that, given a smooth map

f : V l
l
→ H, it is possible, by means of suitable plateau functions, to extend the

restriction of f to U l+1
l+1 ∩ V l+1

l
to a smooth map f : U l+1

l+1 → H. Furthermore this
extension procedure may be arranged so as to be continuous in the C1-topology,
so that if f is C1-close to δ0 on V l

l
∩ K , then f is C1-close to δ0 on U l+1

l+1 ∩ K .
It is therefore possible by means of this process to extend the restriction of δlρ
to V l+1

l
to a smooth map from U l+1

l+1 ∪ V l+1
l

to H; one completes via (Γ, ρ(Γ))-
equivariance to obtain δl+1

ρ : V l+1
l+1 → H. After s steps one arrives at a smooth and

(Γ, ρ(Γ))-equivariant map δρ = δsρ from V s
s = S̃ to H. Now if a sequence (ρk )k≥1

converges to ρ0, then for each γ ∈ Γ the sequence (ρk (γ)) converges to ρ0(γ) on
the compact set K , in the sense of the C1-topology; moreover, for 1 ≤ j, l ≤ s, the
set of those γ ∈ Γ for which γ(U l

j ) ∩ K , ∅ is finite. This explains why, if ρ is
chosen sufficiently close to ρ0, each of the maps δlρ (1 ≤ l ≤ s) will be C1-close
to δ0 on V l

l
∩ K . �
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VII.3.2. Closure of the faithful and discrete representations

We now show that R f d
R (g) is closed in R∗R(g), a result due in this form to Wielen-

berg [Wiel1977].
Proposition VII.3.2. — A limit of discrete, faithful representations of Γ in
SL(2,R) is again faithful and discrete.

A few preliminaries are in order. Denote by | | · | | the algebra norm on
M2(R) determined by the usual Euclidean norm on R2. Given two matrices
A,B ∈ SL(2,R), and writing α = A − I and β = B − I, we have:

[A,B] − I = (AB − BA)A−1B−1 = (αβ − βα)A−1B−1.

If | |α | |, | | β | | < 1, then | |A−1 | | = | |
∑∞

n=0(−α)n | | ≤ (1 − ||α | |)−1 and also
| |B−1 | | ≤ (1 − || β | |)−1. Hence

| |[A,B] − I | | ≤
2| |α | | | | β | |

(1 − ||α | |)(1 − || β | |)
. (VII.3)

In particular, if | |A − I | | and | |B − I | | < 2 −
√

3, then | |[A,B] − I | | < | |B − I | |.
The following classical lemma, which in a much more general form is due to

Zassenhaus, is also known as Margulis’s lemma by reason of the latter’s non-linear
generalization of it (see for example [Kap2001, §4.12]).
Lemma VII.3.3. — Let A and B be two elements of SL(2,R) with | |A − I | | and
| |B − I | | strictly less than 2 −

√
3. If A and B generate a discrete subgroup of

SL(2,R), then they commute.

Proof. — Since the group Π generated by A and B is discrete, there exists
an element C ∈ Π − {I} such that the norm | |C − I | | is least. Hence by the
inequality (VII.3) we have

[A,C] = [B,C] = I,

so that C is a nontrivial element in the centre of Π. This element is hyperbolic,
parabolic, or elliptic. In the first case, the group Π preserves the axis of C and is
therefore Abelian. If C is parabolic, Π fixes the fixed point of C at infinity, and
is therefore a subgroup of the group of similarities of R. However since C cannot
commute with a strictly contracting or dilating similarity, the group Π must again
be Abelian. Lastly, if C is elliptic, then Π fixes the unique fixed point of C and is
therefore once again Abelian. �

Proof of Proposition VII.3.2. — Recall first of all that if a representation
ρ : Γ → SL(2,R) is discrete and faithful, then all elements of ρ(Γ) must be hy-
perbolic by the compactness of ρ(Γ)\H— see for example [ImTa1992, p. 46] —
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and two elements of ρ(Γ) commute if and only if they have a fixed point in com-
mon (since their commutator would then necessarily be parabolic). Note also that
if A ∈ SL(2,R) is hyperbolic, then the only finite subsets of H ∪ ∂H left invariant
by A are the subsets of the set comprised of the two fixed points. Hence if A and
B are hyperbolic and satisfy [A,BAB−1] = I, then A and BAB−1 have the same
fixed points, whence one infers that A and B have the same fixed points.

Now let (ρk ) be a sequence of faithful and discrete representations of Γ in
SL(2,R) convergent to ρ. As before, let (γi )i=1, ...,2g be a standard generating
family for Γ. We first show that ρ is faithful. Suppose we have an element γ , 1
of Γ such that ρ(γ) = I. Then of course ρ(γiγγ−1

i ) = I for all i = 1, . . . ,2g,
whence by Lemma VII.3.3 for sufficiently large k we must have that ρk (γ) and
ρk (γiγγ−1

i ) commute, and therefore in turn (see above) that ρk (γ) and ρk (γi )
commute. However this means that ρk (γ) is central in ρk (Γ), which is absurd.

Finally we show that ρ is discrete. Let Ω be the set of those A ∈ SL(2,R)
for which | |A − I | | < 2 −

√
3, and Ω′ ⊂ Ω an open neighborhood of the identity

such that ρk (γi )Ω′ρk (γi )−1 ⊂ Ω for all k and i. If ρ were not discrete we should
have for sufficiently large k that there existed an element δ , 1 of Γ such that
ρk (δ) belonged to Ω′. This would then entail, as before, that ρk (δ) and ρk (γi )
commute, once again yielding a contradiction. �

Thus by Propositions VII.3.1 and VII.3.2, we have that R f d
R (g) is a union

of connected components of the manifold R∗R(g) of irreducible representations.
Let G be a covering of PSL(2,R). The connected components of the space
Hom(Γ,G)/G have been described by Goldman in [GolW1988]. First, for
G = PSL(2,R), they coincide with the fibres of the Euler class3

eu : Hom(Γ,PSL(2,R))/PSL(2,R) → Z.

The faithful and discrete representations constitute the two connected components
associated with the maximal value |eu| = 2g − 2 — each homeomorphic to a
ball. Next, the projection of SL(2,R) onto PSL(2,R) determines a covering of
degree 22g by Hom(Γ,SL(2,R))/SL(2,R) of the components of even Euler class
of Hom(Γ,PSL(2,R))/PSL(2,R). Hence R f d

R (g) has at most 22g+1 components.
However for [ρ] ∈ R f d

R (g), the signs of the trρ(γi ), i = 1, . . . ,2g (for a stan-
dard generating family) and that of eu(ρ) are continuous and may be changed

3Here is the definition of eu(ρ). For each i one chooses a lift Iρ(γi ) of ρ(γi ) in the univer-
sal cover P̃SL(2,R) → PSL(2,R), whose kernel, canonically isomorphic to Z, is the centre of
P̃SL(2,R). One then has eu(ρ) =

∏g
i=1[ Iρ(γi ), Kρ(γi+g )], which is independent of both the choice

of lifts and the standard generators γi , provided the homology classes [γi ] ∈ H1(S,Z) form a
symplectic basis, that is, satisfy [γi ] · [γ j+g ] = δi j , [γi ] · [γ j ] = [γi+g ] · [γ j+g ] = 0, 1 ≤ i, j ≤ g.
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arbitrarily by replacing ρ(γi ) by −ρ(γi ) for any of the i, or by inverting the re-
lation

∏g
i=1[ρ(γi ), ρ(γi+g )] = I (which changes the Euler class into its opposite,

and comes down to changing the orientation of the surface S). Hence the mani-
fold R f d

R (g) has exactly 22g+1 connected components.

VII.3.3. The map determined by the “fundamental invariants” is proper

Consider fundamental invariants as defined by the formula (VII.2) of §VII.2.2.
Since they are conjugation-invariant, they induce (via restriction to the faith-
ful and discrete representations) a map t from R f d

R (g) to Rm . We denote by
R

f d,+
R (g) ⊂ R f d

R (g) the submanifold of the representations of positive Euler class
(in fact necessarily equal to 2g − 2).

Proposition VII.3.4. — The map t : R f d,+
R (g) → Rm is injective and proper.

Proof. — Let [ρ], [ρ′] ∈ R f d
R (g) be such that t([ρ]) = t([ρ′]). Since the

fundamental invariants determine the character, we have χρ = χ′ρ (Proposi-
tion VII.2.9). Hence there exists A ∈ SL(2,C) conjugating ρ to ρ′ (Proposi-
tion VII.2.6), or, in other words, a nonzero complex solution X = A of the system
of linear equations with real coefficients X ρ(γ) = ρ′(γ)X , γ ∈ Γ, whose solution
space is then the line C A. This immediately gives the existence of a non-zero
real solution, necessarily invertible since ρ and ρ′ are irreducible. Hence we may
choose A ∈ GL(2,R), detA = ±1, and in fact detA = 1 provided eu(ρ) and eu(ρ′)
have the same sign. Thus we have [ρ] = [ρ′].

We now verify that t is proper. Let (γi )1≤i≤2g be a standard generating family
of the fundamental group Γ of the surface S such that the intersection of γ1 and γ2
in the homology H1(S,Z) is ±1. For ρ ∈ Rep f d

R (g), the 1-dimensional homology
classes of the surface ρ(Γ)\H are represented by closed geodesics, projections
of the axes of the hyperbolic elements ρ(γ) (γ ∈ Γ). We therefore see that the
axes of ρ(γ1) and ρ(γ2) meet4. Let (ρk )k ∈N be a sequence of representations
with t(ρk ) bounded. For every γ ∈ Γ the sequence trρk (γ) is then bounded (see
Proposition VII.2.9). For each k, to within a conjugation we may assume that
ρk (γ1) and ρk (γ2) are of the form

Ak = ρk (γ1) =

(
uk 0
0 1/uk

)
and Bk = ρk (γ2) =

(
ak bk
ck dk

)
.

Furthermore we can conjugate again by a diagonal matrix (which does not
change Ak ) in order to arrange that |bk | = |ck |. The condition that the axes of Ak

4One may also easily construct an example of such a representation ρ in each connected com-
ponent of Rep f d

R
(g); see the conclusion of §VII.3.2.
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and Bk intersect translates into the condition bkck > 0. From the equality

tr2Bk − 4 = (ak − dk )2 + 4bkck ,

we infer that the ak − dk and bkck are bounded, and then that Bk is bounded. An
elementary calculation yields

tr[Ak ,Bk ] − 2 = −bkck (tr2 Ak − 4), (VII.4)

whence tr[Ak ,Bk ] < −2 (since bkck > 0), that is, bkck (tr2 Ak−4) > 4. Since bkck
and trAk are bounded, it follows that infk (bkck ) and infk (tr2 Ak − 4) are positive.

Now consider any γ ∈ Γ and denote by a′
k
, b′

k
, c′

k
, d ′

k
the entries of

B′
k

= ρk (γ). Equation (VII.4), with B′
k

in place of Bk , implies that the b′
k
c′
k

are
bounded; therefore, since a′

k
+ d ′

k
= trB′

k
and a′

k
d ′
k

= b′
k
c′
k

+ 1 are bounded, so
are the diagonal entries a′

k
and d ′

k
. Similarly, by considering ρk (γ2γ), we see that

the aka′
k

+ bkc′
k

and dkd ′
k

+ ckb′
k

are bounded, and then, since infk |bk | = infk |ck |
is positive, that the b′

k
and c′

k
are bounded. Thus all of the generators ρk (γi )

are bounded, for i = 1, . . . ,2g, and we can find a sub-sequence of the ρk
that converges, necessarily to a faithful and discrete representation (Proposi-
tion VII.3.2). �

Note that the analogous result holds for the submanifold R f d,−
R (g) of classes

of discrete and faithful representations with negative Euler class.

VII.4. Proof of uniformization

VII.4.1. The set of uniformizable surfaces is open

Consider the map Φ : X → Tg defined in §VII.1.2. Recall that X is an arbitrary
connected component of the manifold R f d

R (g).

Proposition VII.4.1. — The map Φ : X → Tg is injective and open.

Proof. — For the injectivity, it is useful to first re-examine the definition ofΦ. This
is based on a natural fibration E into hyperbolic surfaces above the component X
of Rep f d

R (g) corresponding to X. The metrics mρ on the fibres Sρ = ρ(Γ)\H
(ρ ∈ X) are pulled back to a reference fibre S = Sρ0 by trivializing the fibra-
tion E above paths. Thus for ρ,σ ∈ X , we defined Φ([ρ]) = [ f ∗1 mρ] and so also
Φ([σ]) = [g∗1mσ], with f1 and g1 obtained via trivialization (see §VII.1.2 for the
details). Now suppose there exists ϕ ∈ diff0(S) such that ϕ∗( f ∗1 mρ ) is conformal
with g∗1mσ . We know that f1 and g1 lift equivariantly to universal covers (see the
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equality (VII.1)). This holds also for ϕ, which is isotopic to the identity. Hence
the diffeomorphism ψ = f1◦ϕ◦g

−1
1 admits a lifting that conjugates the representa-

tion σ to ρ. However ψ is directly conformal from Sσ to Sρ . Hence by Schwarz’s
lemma (or rather its corollary Aut+(D) = PSL2(R)), such a diffeomorphism lifts
to a Möbius transformation of the half-plane. Thus [ρ] = [σ].

The space R f d
R (g) is a manifold of dimension 6g − 6 (Theorem VII.2.3). Al-

lowing — as was made precise in the introduction §VII.1.1 — that Tg is also a
manifold of dimension 6g − 6, one concludes that Φ is open by the (admittedly
much later) theorem of Brouwer on the invariance of the domain. �

VII.4.2. The set of uniformizable surfaces is closed

Proposition VII.4.2. — The map Φ : X → Tg is proper.

Let [ρk ] be a sequence of points of R f d
R (g) such thatΦ([ρk ]) converges in Tg .

Taking, as always, Klein’s point of view (see §III.1), we note that this conver-
gence means that there exist Riemannian metrics ds2

k
on S, k = 1, . . . ,∞, such

that ds2
k

converges to ds2
∞, each metric ds2

k
(k ∈ N) being conformally equivalent

to the hyperbolic metric on S associated with‘ρk (well-defined to within an iso-
topy — see §VII.1.2). We need to show that, up to extracting a subsequence, the
sequence ([ρk ]) converges to a limit [ρ∞]. If this is the case, then the representa-
tion ρ∞ will be faithful and discrete (Proposition VII.3.2) and the metric ds2

∞ (or
the associated complex structure) will be uniformized by ρ∞(Γ).

We know (see §VII.2.2) that there exists a finite family (α j )1≤ j≤m of non-
trivial free homotopy classes of simple closed curves on S such that each [ρk ] is
determined by the lengths (`ρk (α j ))1≤ j≤m of the classes α j relative to the hy-
perbolic metric associated with ρk — lengths corresponding to Poincaré’s funda-
mental invariants5. By virtue of the fact that the “fundamental invariants” map is
proper (Proposition VII.3.4), the existence of a convergent subsequence of ([ρk ])
is a consequence of the following proposition.

Proposition VII.4.3. — Let α be a free homotopy class of simple closed curves
on S. There exists a constant Cα < +∞ such that `ρk (α) ≤ Cα for all k ∈ N.

Proof. — The proof rests on a simple argument around “extremal length”6. Con-
sider first a Riemannian metric ds2 on S. For every positive function ϕ on S, we
set

Lϕ (α,ds2) = infc∈α

∫
c

ϕds and Aϕ (S,ds2) =

∫
S

ϕ2dA,

5The traces are certainly determined by the lengths since their signs are fixed in the compo-
nent X.

6In the spirit of the work of Ahlfors and Beurling [Ahl1973].
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where dA is the measure of area in the metric ds2; these quantities are respectively
the length of α and the area S with respect to the metric ϕ2ds2. The extremal
length of α is then defined to be

Eds2 (α) = supϕ>0

L2
ϕ (α,ds2)

Aϕ (S,ds2)
.

This quantity is a conformal invariant associated with the class of ds2 in Tg (for a
fixed α). Furthermore if ds2 is uniformized by a representation ρ of Γ in SL(2,R),
one has, by definition, `2

ρ (α) ≤ 4π(g−1)Eds2 (α). The following lemma on semi-
continuity then gives us the desired conclusion. �

Lemma VII.4.4. — Let α be a free homotopy class of simple closed curves on S
and (ds2

k
) a sequence of Riemannian metrics on S converging to ds2

∞ as k tends
to infinity. We then have the inequality

limkEds2
k

(α) ≤ Eds2
∞

(α).

Proof. — In the above definition of the extremal length we may confine ourselves
to functions satisfying ϕ ≤ 1 since S is compact and ϕ continuous. Under this
condition the sequence ϕ2ds2

k
converges to ϕ2ds2

∞ uniformly with respect to ϕ.
Let L be strictly greater than the length of the class α in the metric ds2

∞ and let
ε > 0. For every curve c ∈ α of length Length(c,ds2

∞) less than L, there exists
a k0 independent of ϕ ≤ 1 and c such that

L2
ϕ (α,ds2

k
)

Aϕ (S,ds2
k
)
≤

Length2(c, ϕ2ds2
k
)

Aϕ (S,ds2
k
)

≤
Length2(c, ϕ2ds2

∞)
Aϕ (S,ds2

∞)
+ ε (k ≥ k0).

By taking the infimum over the curves c and then the supremum over the func-
tions ϕ, we infer that Eds2

k
(α) ≤ Eds2

∞
(α) + ε for k ≥ k0, whence the desired

conclusion. �

Proof of Theorem VII.1.2. — This is now an immediate consequence of Propo-
sitions VII.4.1 and VII.4.2, and the fact that, as a quotient of MetS , Tg is con-
nected. �





Chapter VIII

Differential equations and
uniformization

The aim of this chapter is to examine the route to the uniformization theorem taken
by Poincaré, who was interested above all in the solution of linear differential
equations. Uniformization was not his initial goal, and only emerged incidentally
as a byproduct of his results.

It seemed to us useful to precede the main part of this chapter with a prelim-
inary section summarizing the various features of algebraic differential equations
that were undoubtedly present to Poincaré’s mind when he began his investiga-
tions.

VIII.1. Preliminaries: certain aspects of first-order algebraic differential
equations

The Riccati differential equation. — This is any equation of the form

dy
dx

= a(x)y2 + b(x)y + c(x),

where a,b,c are rational functions of a complex variable x (which may also vary
over a more general algebraic curve).

It was this family of equations that led Poincaré to uniformization. Here we
recall their basic properties, long ago become classical.

These equations are well known as “disguised” linear differential equations.
Starting from a first-order linear differential equation in two unknowns

d
dx

(
u1
u2

)
= A(x)

(
u1
u2

)
, (VIII.1)
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where A(x) is a 2 × 2 matrix depending rationally on x, one infers that the quo-
tient y = u1/u2 satisfies a Riccati equation, and conversely every Riccati equation
derives from a linear equation of this form.

In fact the Riccati equation can be transformed into a scalar linear equation,
but of the second order. More precisely, the change of variable given by the
formula y(x) = −

w′(x)
a(x)w (x) yields the second-order linear equation

d2w

dx
+ p(x)

dw
dx

+ q(x)w(x) = 0,

for w, where p = −a′/a − b and q = ac. And conversely, if w is a solution of this
second-order linear equation, then the function y = −w′/w satisfies the Riccati
equation

dy
dx

= y(x)2 − p(x)y(x) + q(x).

We recall also that a second-order linear equation in a single unknown w reduces
to a first-order linear equation in the two unknowns (w,w′).

An important (elementary) property of linear differential equations consists in
the fact that the domain of definition of the solutions is the same as that of the
equation. Considering for example the above equation in two unknowns associ-
ated with a matrix A(x), one may continue a local solution in the neighborhood
of a point along any path whatever avoiding the poles of A. Of course, in doing
this one may encounter the phenomenon of monodromy lying at the heart of this
chapter, but the solutions of the associated Riccati equation present only poles as
singularities — apart from the poles of the coefficients a,b,c. What is perhaps of
greatest interest here is the fact that this property characterizes them. Here is a
result in this direction.

Proposition VIII.1.1 — Let Ω be a simply connected open set of C and
F : Ω × C→ C a holomorphic function. Consider the first-order differential
equation dy

dx = F (x, y). The following two statements are equivalent:

(a) For every initial condition (x0, y0) ∈ Ω × C, there exists a meromorphic
solution y defined on Ω and satisfying y(x0) = y0;

(b) There exist holomorphic functions a,b and c defined on Ω such that
F (x, y) = a(x)y2 + b(x)y + c(x).

Proof — We first show that (b) implies (a). The above change of variable shows
that the solutions of the Riccati differential equation can be expressed as quotients
of two solutions of a linear equation, which are therefore defined (and holomor-
phic on Ω). The solutions of the Riccati equation are thus meromorphic on Ω.
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Here is another proof. The graphs of the solutions of our differential equation
are integral curves of the vector field ∂

∂x + F (x, y) ∂
∂y defined on Ω × C. For each

fixed x, the component F (x, y) ∂
∂y of this vector field is (assuming (b)) quadratic

in y and therefore extends to a well-defined holomorphic vector field on CP1. In
fact, if we set Y = 1/y, our equation becomes

dY
dx

= −
1
y2

dy
dx

= Y 2 dy
dx

= −Y 2
[
a(x)

1
Y 2 +

b(x)
Y

+ c(x)
]

= −c(x)Y 2 − b(x)Y − a(x).

We can thus compactify our equation and, provided we admit meromorphic so-
lutions, seek graphs of solutions in the form of integral curves of a well-defined
vector field on Ω×CP1. Since the fibre CP1 is compact, this means that the mero-
morphic solutions of our equation are defined along every differentiable curve c
contained in Ω, whence, in particular, such solutions are meromorphic on Ω.

We now prove that (a) implies (b). The graphs of the solutions of our differ-
ential equation are curves transverse to the fibres CP1 of the product Ω × CP1.
Since these solutions are assumed single-valued and defined on Ω, the projection
on the factor Ω determines a diffeomorphism from the graph of each solution to
its domain of definition Ω.

Consider the graph of the solution y taking the value y0 ∈ CP
1 at the point

x0 ∈ Ω. This graph meets the fibre above x ∈ Ω in a point y ∈ CP1. The map
sending an initial point y0 to the point y is a biholomorphism between two fibres,
each isomorphic to CP1. It must therefore be a Möbius transformation, so that

y(x) =
α(x)y0 + β(x)
γ(x)y0 + δ(x)

.

We recover the vector field F (x, y) by taking the derivative at x0 of y(x), that is,
−γ′(x0)y2

0 + (α′(x0) − δ′(x0))y + β′(x0), which is in fact quadratic in y. (This
ultimately derives from the fact that the Lie algebra of PSL(2,C) is identifiable
with the polynomials of degree two.) �

We also need to describe briefly the work of Fuchs on linear differential
equations, which, although it directly inspired Poincaré’s work in that direction,
is not considered elsewhere in the present book. Fortunately, the existence of
Hille’s book [Hil1976] somewhat excuses our brevity. We note also the excellent
works [Forsy1902, Gra1986, Inc1944, IKSY1991, Val1945].

Thus consider once again a linear equation of type (VIII.1). Fuchs seeks con-
ditions on the matrix A (rationally dependent on x) guaranteeing that local so-
lutions in a neighborhood of the poles of A can be expressed as power series
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in (x − xi )λ and log(x − xi ) for certain λ. He shows that this is the case if and
only if A has only simple poles. He also shows how to calculate the exponents λ
simply as roots of an equation called “radicial”, easily made explicit.

Fuchs’s theory is essentially local, and he was therefore led to study linear
equations of a similar type — called Fuchsian equations — where now A is an
algebraic function of x, or, in other words, a meromorphic function on a certain
compact Riemann surface extended over the x-plane. We will revisit some of
Fuchs’s work in detail in §IX.1.
Revisiting differential equations and elliptic functions. — We turn once again to
elliptic functions, only touched on in Chapter I. The point of departure for that
theory was the investigation of integrals of the form

x =

∫
dy√

(y − α)(y − β)(y − γ)

with α, β,γ distinct complex numbers.
We first need to justify the idea of Gauss, Abel, and Jacobi to the effect that y

is a single-valued (and periodic) function of x.
The differential form

ω =
dy√

(y − α)(y − β)(y − γ)

is well-defined and nonsingular on the double cover of the projective line CP1,
ramified over the points α, β,γ,∞. In other words, the smooth projective cubic C
with affine equation z2 = (y − α)(y − β)(y − γ) inherits a nonsingular holomor-
phic volume form. In fact the local coordinate v of the cubic C in a neighborhood
of y = α is such that y − α = v2, whence dy = 2vdv and ω ' 2dv. A similar
calculation in a neighborhood of infinity (where the local variable v satisfies the
equation 1/y = v2) shows that ω is also holomorphic and nonsingular at infinity.

Dually, C inherits a nonsingular holomorphic vector field X , defined by
ω(X ) = 1. Since C is compact, the (complex) flow determined by X is complete
and its (transitive) action parametrizes C as the quotient of C by the stabilizer Λ
of a point. The smooth cubic is thus uniformized by C. The equation ω(X ) = 1
shows that the parametrization of a given orbit of X (the uniformizing map) is the
inverse of the corresponding integral x. This inverse its therefore a Λ-periodic
elliptic function satisfying, by construction, the differential equation(

dy
dx

)2

= (y − α)(y − β)(y − γ),

the solutions of which are the Weierstrass ℘-function and its translates y = ℘(x +

const).
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One may instead base the development of the theory of elliptic functions on
the following differential equation:
Theorem VIII.1.2. — The nontrivial solutions of the equation(

dy
dx

)2

= (y − α)(y − β)(y − γ)

are elliptic functions which uniformize the smooth projective curve C with affine
equation z2 = (y − α)(y − β)(y − γ).
Proof. — The proof uses a geometric method invented by Lie (see [PaSe2004]).
Denote the quantity dy

dx by z; then dy = zdx. We seek solutions in the form of
maps f : C→ C2, f (x) = (y(x), z(x)), with graphs tangent to the contact field
dy − zdx = 0 and contained in C × C. The intersection of the tangent space to
C × C with the contact field allows us to define a nonsingular line field. In fact if
we set F (y) = (y − α)(y − β)(y − γ), this intersection coincides with the kernel
of the holomorphic differential 2-form

(dy − zdx) ∧ (2zdz − F ′(y)dy) = zΩ,

where Ω is a non-vanishing holomorphic 2-form. The kernel of Ω is a line field
(defined even at z = 0) and one may verify that it extends to a line field F defined
also at the point at infinity of C (and therefore on the whole of C × C). Further-
more, F is transverse, that is, its projection on the coordinate x is an isomorphism.

The solutions of our differential equation are curves tangential to F . Let
c : [0,1] → C be a differentiable curve and (y0, z0) a point on C above c(0).
There then exists a unique differentiable curve c̃ : [0,1] → C × C that is a lift
of c and satisfies c̃(0) = (0, y0, z0). In view of the compactness of the fibre C, the
curve c̃ is well-defined on the whole interval [0,1].

This shows that corresponding to every initial condition and every curve c
in C, there exists a meromorphic solution defined along that curve. Hence the
nontrivial solutions of our equation are defined on C.

Denote by Λ the group of periods of a nontrivial solution y. Since y is com-
pletely determined by its initial value, one also has

Λ = {λ ∈ C|y(λ) = y(0)}.

Now since the zeros of an analytic function are isolated, Λ is a discrete subgroup
of C, so that we have an injective map f : C/Λ → C. One readily verifies that f
sends the canonical 1-form dx to the form ω = dy/z on C: one has, indeed,

f ∗(ω) = f ∗
(

dy
z

)
=

y′(x)dx
y′(x)

= dx.
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In particular, f sends the real volume form dx ∧ dx to vol ∧ vol.
Suppose by way of obtaining a contradiction that Λ is not a lattice in C.

Then f maps the manifold of infinite volume C/Λ injectively to the finite-volume
cubic C, an absurdity. Since the image of C/Λ is both open and closed (being
compact) it must coincide with C. �

Non-linear differential equations. — In the remarkable article [Poin1885b], which
nevertheless went unnoticed at the time, Poincaré succeeded in delineating Riccati
or elliptic differential equations within the jungle of algebraic differential equa-
tions: they are just those without “mobile singularities”.

The definition is as follows. Poincaré says of a differential equation

R
(
x, y,

dy
dx

)
= 0,

that it has no mobile singularities if one can find a finite number of points
x1, . . . , xn (singular for the given differential equation) such that for every
x0 , x1, . . . , xn , every y0 ∈ C ∪ {∞}, and every path γ : [0,1]→ C \ {x1, . . . , xn }
starting at x0, there exists a meromorphic solution y of the equation along γ such
that y(x0) = y0. Thus the solutions may be many-valued, but apart from the “fixed
singularities” x1, . . . , xn they can only have poles as singularities.

Here are some examples of equations admitting mobile singularities.
The rational equation dy

dx + 1
2 y

3 = 0, with general solution y(x) = 1/
√

x − c
has mobile singularities of algebraic type. Observe that the singularity x = c
does indeed depend on the initial condition.

The equation (not rational this time) dy
dx + exp(y) = 0 affords another example

since the solutions y(x) = − log(x − c) admit mobile singularities of logarithmic
type.

A further example is the equation dy
dx + y log2 y = 0 whose solutions of the

form y(x) = exp(1/(x − c)) present essential mobile singularities.

Theorem VIII.1.3. — Let R
(
x, y, dydx

)
= 0 be a differential equation without

mobile singularities, where R is polynomial in y,
dy
dx and analytic in x. There

are then three possibilities: the equation “derives” from a Riccati equation, or
its general solution is expressible in terms of elliptic functions, or the general
solution is an algebraic function of the coefficients of y and dy

dx in R.

Proof. — Again we seek graphs of solutions of the differential equation
R

(
x, y, dydx

)
= 0 in the form of curves situated naturally on the surface with

equation R(x, y, z) = 0 (or more precisely on the projective compactification
with respect to the variables (y, z)) and tangential to the plane field defined by
dy − zdx = 0. This surface is generated by the family of curves obtained by as-
signing x some fixed value. In view of the assumption that there are no mobile
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singularities, we can, for every path γ : [0,1]→ C \ {x1, . . . , xn } and every initial
condition x0, y0 (with x0 = γ(0)), find a solution along γ. The end-point γ(1)
of this solution allows us to identify holomorphically the curves R(γ(0), y, z) = 0
and R(γ(1), y, z) = 0 (of course it must be shown that such identifications extend
to the associated compact surfaces). In other words, all surfaces R(x, y, z) = 0
with x given a fixed value (other than x1, . . . , xn) are birationally equivalent.

Thus every path γ avoiding the xi defines a “monodromy” isomorphism. We
distinguish three cases.

If the genus of these curves is 0, that is, if they are copies of the Riemann
sphere, the monodromies are projective transformations and the monodromy
group is a subgroup of PSL(2,C). As we saw in the proof of Proposition VIII.1.1,
this characterizes equations of Riccati type or linear.

If the genus is 1 then, as we have seen in connection with Theorem VIII.1.2,
the theory of elliptic curves allows us to identify these curves with the quotient
of C by a lattice, and the solutions can be parametrized by means of the corre-
sponding elliptic functions.

Finally, if the genus is greater than or equal to 2, then a theorem due to Klein
affirms that the group of holomorphic automorphisms of such a curve is finite. It
follows that the monodromy group is finite or the general solutions take on only
finitely many values for each value of x (different from the xi). From this it is
not difficult to conclude that the general solution is algebraic. (For many further
details concerning this proof, the reader may consult [PaSe2004].) �

Later developments. — Thus the preceding theorem of Poincaré shows that
the quest for new transcendentals via first-order algebraic differential equations
should be concentrated on Riccati differential equations, or, equivalently, second-
order linear differential equations. Here we have the principal motivation behind
the articles of Poincaré of interest to us here.

Of course one might also attempt an investigation of nonlinear higher-order
algebraic differential equations, which lie outside the scope of the theorem of
Poincaré we have just expounded. It was Painlevé who, following the work of
Poincaré we are concerned with here, made major contributions to the topic. There
is perhaps some point in mentioning two of them. The first shows that for first-
order algebraic equations the mobile singularities are of a limited sort.

Theorem VIII.1.4. — An equation of the form dy
dx = F (x, y) where F is a rational

function in y with coefficients algebraic functions of the variable x, can only have
mobile singularities of algebraic type.

Proof. — The graphs of solutions of such an equation must be contained in the
surface given by the equation R(x, y, z) = z − F (x, y) = 0 and be tangent to the
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plane field given by dy − zdx = 0. The trace of this plane field on the surface
R(x, y, z) = 0 defines a holomorphic singular line field F (with isolated points as
singularities). Moreover this line field compactifies into a well-defined singular
line field on the compactification of the curve R(x, y, z) = 0 in CP1 × CP2. Note
that F may become vertical (contained in dx = 0) at infinity.

The singular points x1, . . . , xn of the equation will then be the projections of
the singular points of the foliation on the projective line CP1, the domain of the
variable x.

Consider a differentiable curve c contained in the plane of the variable x.
We have the following two possibilities: If the curve c lifts to a curve c̃ tangential
to F (along which the foliation F is not vertical), then there exists a meromorphic
solution of the equation, differentiable along the curve c.

If the tangent to a lift c̃ of c becomes vertical above a point c(t0), then the
analytic continuation of a local solution along c will not be meromorphic, but
have an algebraic singularity at c(t0). In order to see that that singularity is indeed
algebraic, one reverses the roles of the variables x and y and observes that at the
point in question x is then a holomorphic function of y with derivative zero since
dx
dy = F (x, y) = 0. If that derivative vanishes to the order k ∈ N∗, then y represents

an algebraic mobile singularity given by a series in (x − c(t0))
1
k . �

The other major contribution of Painlevé is his systematic investigation of
second-order nonlinear equations without mobile singularities with the aim of dis-
covering the “Painlevé transcendentals”. He succeeded in classifying equations
of the form y′′ = F (x, y, y′) without mobile singularities, where F is an analytic
function in x and rational in y, y′. He shows that only six classes of such equations
(the simplest being of the form y′′ = 6y2 + x) effectively yield new transcenden-
tals, that is, functions not expressible in terms of algebraic functions and known
transcendental functions.

VIII.2. Poincaré’s approach

We now return to Poincaré, sustained as he is by elliptic functions and convinced
by his theorem that linear equations provide a suitable framework for research on
new transcendentals. He considers a Riccati equation on which he imposes the
conditions that it be Fuchsian and that the λ arising in connection with the poles
be reciprocals of integers. The equations he obtains, which he calls “normal”,
have all the properties necessary for the inverses of their solutions, à la Jacobi,
to be locally single-valued (the local exponents becoming integers). But are the
inverses of these solutions globally single-valued? Will the elliptic miracle oc-
cur again? Nothing of the kind, but nonetheless Poincaré makes a remarkable
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discovery. Among all the normal differential equations defined on a single Rie-
mann surface S, there exists a unique one1 the inverses of whose solutions are
single-valued in a disc D. This yields a parametrization of S by D. Just as an
elliptic curve is the quotient of C by a lattice acting as group via translations, the
Riemann surface S is the quotient of the disc by a discrete group of holomorphic
automorphisms. The Fuchsian functions were born.

Poincaré then shows that Fuchsian functions allow the solution not only of
this privileged Fuchsian equation but of all normal equations on S. Thus did he
discover new transcendentals, single-valued on a disc, and show that they allow
the solution of all normal equations. Mission accomplished!2

As it were incidentally — this was not Poincaré’s research goal — he had uni-
formized all surfaces of genus at least 2. These are all isomorphic to the quotient
of a disc by the holomorphic action of a discrete group. However, this major result
— which so surprised Klein — was only of secondary importance to Poincaré.

It is perhaps best to quote relevant excerpts from Poincaré’s announcement
[Poin1921].

I was thus led to examine linear equations with rational and algebraic coef-
ficients.

[. . . ]

This close study of the nature of integral functions cannot be achieved with-
out the introduction of new transcendentals, about which I shall now say a
few words. These transcendentals have great analogies with elliptic func-
tions, and one should not be astonished at this, since if I conceived these
new functions, it was in order to do for linear differential equations what
had been done by means of the elliptic and Abelian ϑ-series for the inte-
grals of algebraic differentials.

1Poincaré calls this equation Fuchsian. We prefer the terminology uniformizing equation.
2We quote the testimony of Lecornu, classmate at l’École Polytechnique and l’École des Mines,

as reported by Appell in [App1925]:

I remember that, invited by me to dine with my parents on December 31, 1879, he
spent the evening walking up and down, not hearing what we said to him or else
replying in monosyllables, and forgetting the time to such an extent that just after
midnight I took it upon myself to remind him gently that we were now in 1880. He
seemed at that moment to return to earth, and decided to take leave of us. Some days
afterwards, when I met him on the quay of the port of Caen, he told me carelessly:
I know how to integrate all differential equations. Fuchsian functions have just been
born. And I guessed then what he had been thinking about in going from 1879 to
1880.

This quote, mentioned in [MiPo1999] does not fully gibe with the chronology of the discovery
of Fuchsian functions as reported by Poincaré himself in [HaPo1993]; but at least it shows clearly
what motivated him.
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It is thus the analogy with elliptic functions that has served me as guide in
all my investigations. The elliptic functions are single-valued functions that
remain unchanged when one increases the variable by certain periods. This
idea is so useful in Mathematical Analysis, that all geometers must long ago
have thought how convenient it would be to generalize it by seeking single-
valued functions of a single variable x which remain unchanged when one
applies certain transformations to that variable; however such transforma-
tions cannot be chosen in any way whatever.

[. . . ]

It is easy to see what particular kind of discrete groups it is appropriate
to introduce. Recall how the elliptic functions arise: one considers certain
integrals said to be of the first kind, and then, by means of a process known
under the name of inversion, one regards the variable x as a function of the
integral; the function so defined is single-valued and doubly periodic.

In the same way, we take a second-order linear equation and, by means
of a sort of inversion, we regard the variable as a function, no longer of
the integral, but of the ratio z of two integrals of our equation. In certain
cases, the function so defined will be single-valued, and then it will remain
unaltered by an infinity of linear substitutions, changing z into αz+β

γz+δ
.

[. . . ]

The results so obtained as yet give only a very incomplete solution to the
problem I set myself, that is, the integration of linear differential equa-
tions. The equations I have called Fuchsian, and which can be integrated
by means of a simple inversion, are just very special cases of second-order
linear equations. One should not be surprised at this if one reflects a little
on the analogy with elliptic functions. The inversion process only allows
the calculation of integrals of the first kind. For integrals of the second and
third kinds, it is necessary to proceed otherwise.

Consider for example the integral of the second kind

u =

∫ x

0

x2dx√
(1 − x2)(1 − k2x2)

.

To evaluate it we consider as auxiliary equation that giving the integral of
the first kind

z =

∫ x

0

dx√
(1 − x2)(1 − k2x2)

where by inversion x = sn z. Replacing x by sn z, we find that u is equal to
a single-valued function of z, Z (z), which increases by a constant amount
when z increases by a period. We are thus led to use an analogous proce-
dure: given a linear differential equation E of any order, with coefficients
algebraic in x, we use an auxiliary second-order equation E ′, and this auxil-
iary equation must be chosen in such a way that x is a Fuchsian function of
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the ratio z of two integrals of E ′ and that the integrals of E are single-valued
functions of z.

Is it always possible to make this choice so as to satisfy all these conditions?
Such is the question that naturally arises. This comes down moreover to
wondering if, among linear equations satisfying certain conditions that it is
pointless to state here, there is always a Fuchsian equation. I have managed
to prove that one can answer this question affirmatively. I cannot explain
here in what consists the method we, M. Klein and I, have employed in
studying diverse particular examples; how M. Klein has sought to apply the
method in the general case; nor how I filled in the gaps which persisted in
the proof of the German geometer in introducing a theory having the most
profound analogies with that of the reduction of quadratic forms.

[. . . ]

Thus is it possible to express the integrals of linear equations with alge-
braic coefficients in terms of new transcendentals, in the same way as one
expresses, in terms of Abelian functions, the integrals of algebraic differ-
entials. Furthermore the latter integrals are themselves susceptible of being
obtained by means of Fuchsian functions, and one then arrives at a new ex-
pression, entirely different from that involving ϑ-series in several variables.

VIII.3. Second-order linear differential equations, normal equations and
uniformizing equations

The idea of using second-order linear differential equations to uniformize Rie-
mann surfaces arose essentially from the following two observations. On the one
hand, if S is a Riemann surface uniformizable by the half-plane and w : S̃ → H
is a biholomorphism, then in a neighborhood of every point w can be expressed
as the quotient of two independent solutions of a certain second-order linear dif-
ferential equation on an open set of S. On the other hand, if E is a second-order
linear differential equation on an open set U of S, then the quotient w of two in-
dependent solutions of E is always a local biholomorphism from Ũ to CP1. The
aim of this section is to justify these two assertions and introduce the definitions
needed to formulate the uniformization question “à la Poincaré”, that is, as the
problem of the existence of a “uniformizing” differential equation.
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VIII.3.1. Second-order linear differential equations

Let U be a connected open set of a Riemann surface S and x : U → C a coor-
dinatizing holomorphism defined on this open set3. For us, a second-order linear
differential equation on U in the coordinate x will be a differential equation of the
form

d2v

dx2 + f
dv
dx

+ gv = 0 (E)

where f ,g : U → C are given holomorphic functions (we stress the fact that the
functions f and g are not permitted to have poles in U) and v : U → C is the
unknown function4.

A second-order linear differential equation on U in the coordinate x will be
said to be reduced if it has no order-one term, that is, if it has the form

d2v

dx2 + hv = 0 (E ′)

where h is a holomorphic function on U .
The notion of a second-order linear differential equation is certainly stable

under coordinate changes: if we rewrite the equation E above in terms of a coor-
dinate y, the differential equation obtained will still be second-order linear. This
is why one may speak of a second-order linear differential equation without spec-
ifying the coordinate. On the other hand the concept of a reduced equation is not
invariant under coordinate changes: if the equation E ′ is rewritten in terms of a
new coordinate y, one obtains in general an equation that is no longer reduced.

If E is a second-order linear differential equation on an open set U , then its
solutions are holomorphic functions v : U → C that are, in general, many-valued.
In other words, it is more appropriate to view such solutions as (genuine) functions
defined on the universal cover π : Ũ → U , that is, as solutions of the differential
equation on Ũ induced from E:

d2ṽ

dx̃2 + ( f ◦ π)
dṽ
dx̃

+ (g ◦ π)ṽ = 0,

where x̃ = x ◦ π. In practice it is convenient to hold both points of view: we
will understand the solutions of E to be functions on Ũ , but it will sometimes be
practical to use the language of many-valued functions.

3By this we mean that x is a local biholomorphism from U onto an open set C. Typically we
shall be considering a ramified covering x : S → CP1 and U will be the surface S with x−1(∞) and
the ramification points of x removed.

4Here dv
dx denotes the “ratio” of dv and dx as sections of the cotangent bundle.



VIII Differential equations and uniformization 211

VIII.3.2. Quotients of solutions and projective equivalence

Let U be a connected open set of a Riemann surface S and Ũ its universal cover.
We are interested in functions arising as quotients of two solutions of a second-
order linear differential equation on U. We begin with a few elementary remarks
concerning such functions.
Proposition VIII.3.1. — Consider a second-order linear differential equation E
on U and two independent solutions v1,v2 of that equation. Write w for the quo-
tient v1/v2. Then w is a local biholomorphism5 from Ũ to CP1 and for each auto-
morphism γ of the universal cover Ũ there exists a Möbius transformation ρ(γ)
such that w ◦ γ = ρ(γ) ◦ w.6 Furthermore, a function is expressible as the quo-
tient of two independent solutions of E if and only if it is the composite of w with
a Möbius transformation.
Proof. — The solutions v1,v2 are holomorphic many-valued functions on U ,
which is to say that they are holomorphic functions on Ũ . Their quotient w is
meromorphic on Ũ and its derivative is given (to within a non-vanishing factor)
by the Wronskian dv1

dx v2 − v1
dv2
dx , which is non-vanishing in view of the indepen-

dence of the solutions v1 and v2. This shows that w : Ũ → CP1 is étale.
Now let γ be an automorphism of the universal cover Ũ and v a solution (that

is, a solution of the equation on Ũ induced from E — see §VIII.3.1). Since the
coordinate of Ũ (induced from that on U) is invariant under γ, it follows that v ◦ γ
is also a solution. Thus the pair (v1 ◦ γ,v2 ◦ γ) of solutions is obtained from the
pair (v1,v2) of independent solutions by means of an element of GL2(C). Hence
there exists a Möbius transformation ρ(γ) such that w ◦ γ = ρ(γ) ◦ w.

The final assertion of the theorem follows from the argument involving com-
parison of bases of a vector space. �

We now introduce an equivalence relation on the set of second-order linear
differential equations taking into account the fact that our interest lies not so much
with the equations’ solutions in themselves as with quotients of pairs of indepen-
dent solutions.

Proposition VIII.3.2. — Given two second-order linear differential equations E
and E ′ on an open set U, the following three conditions are equivalent:

(i) the set of functions expressible as the quotient of two solutions of E coin-
cides with the set of functions expressible as the quotient of two solutions
of E ′;

5One also says that w is étale.
6In other words, w is a many-valued meromorphic function on U, each of whose local determi-

nations (branches) is étale from U to CP1, with passage from one determination to another achieved
by composing with a Möbius transformation.
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(ii) the quotient of any two independent solutions whatever of E ′ can be ob-
tained by composing the quotient of any two solutions of E with some
Möbius transformation;

(iii) there exists a non-vanishing holomorphic many-valued function k such that
the solutions of E ′ are obtained by multiplying those of E by k.

Proof. — The equivalence (i)⇔ (ii) follows immediately from the final assertion
of Proposition VIII.3.1. The implication (iii)⇒ (i) is obvious. Thus it remains to
prove the implication (i)⇒ (iii).

Suppose (i) holds and consider two independent solutions v′1,v
′
2 of E ′. By as-

sumption there exist two independent solutions v1,v2 of E such that v1/v2 = v′1/v
′
2.

Writing k = v′1/v1, we have v′1 = kv1 and v′2 = kv2. Since (v′1,v
′
2) is a basis for

the solutions of E ′, it follows that every solution of E ′ is obtained by multiply-
ing some solution of E by k. The function k is meromorphic a priori; but it is
easy to see that in fact it has neither zeros nor poles. For example, if k vanished
at a point x0 of U , then the solutions v′1 and v′2 would have to vanish simulta-
neously, which is impossible since they are assumed independent. One shows
similarly that k has no poles by reversing the roles of the solutions. Hence k is a
non-vanishing holomorphic function and (iii) holds. �

Definition VIII.3.3. — Under the conditions of the above proposition the equa-
tions E and E ′ will be called projectively equivalent.

Proposition VIII.3.4 below allows us to replace the abstract space of
projective-equivalence classes of second-order linear differential equations on U
by a more concrete space: that of second-order linear differential equations that
are reduced relative to a fixed coordinate.

Proposition VIII.3.4. — Let x : U → C be a holomorphic local coordinate.
Every second-order linear differential equation on U is projectively equivalent to
a unique equation reduced in the coordinate x.

Proof. — Consider a second-order linear differential equation E on U in the vari-
able x:

d2v

dx2 + f
dv
dx

+ gv = 0. (E)

By condition (iii) of Proposition VIII.3.2, an equation E ′ is projectively equivalent
to E if and only if it can be obtained from E by means of a change of unknown of
the form v = k (x)v′. Applying such a change to E, we obtain the equation

d2v′

dx2 +

(
f +

2
k

dk
dx

)
dv′

dx
+

(
g +

f
k

dk
dx

+
1
k

d2k
dx2

)
v′ = 0.
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For this equation to be reduced, k must satisfy dk
dx = −1

2 f k, in which case the
latter equation becomes

d2v′

dx2 +

(
g −

1
2

df
dx
−

1
4

f 2
)
v′ = 0. (E ′)

This proves the proposition. Observe that although the function k may a priori be
many-valued, the functions appearing in the final equation E ′ are single-valued.
Its form implies the uniqueness of the reduced equation in the coordinate x. �

We turn now to the following problem: what (many-valued) functions appear
as quotients of two independent solutions of a second-order linear differential
equation?

By the preceding discussion such a function w must be étale and its branches
interchanged by Möbius transformations. We shall now show, by means of the
Schwarzian derivative (see Box IV.1), that these two conditions suffice to charac-
terize the functions in question. This elementary but fundamental fact highlights
the connection between uniformization and differential equations (see Corol-
lary VIII.3.7).

Proposition VIII.3.5. — Let w : U → CP1 be a many-valued meromorphic
function that is étale and whose branches are interchanged by Möbius transfor-
mations. Let x : U → C be a coordinate on U. Then w is the quotient of two
independent solutions of the following second-order linear equation:

d2v

dx2 +
1
2
{w, x}v = 0. (E ′)

Proof. — Since w is étale, its derivative with respect to x is non-vanishing and
{w, x} is holomorphic. Furthermore, in view of the projective invariance (of the
Schwarzian derivative of w), the Schwarzian {w, x} is single-valued on U. Hence
the equation E ′ is a second-order linear differential equation in our restricted
sense. Set

v1 = w/

√
dw
dx

and v2 = 1/

√
dw
dx

.

Then obviously w = v1/v2. We also have

{w, x} = −2

√
dw
dx

d2

dx2

(√
dwdx

)−1
,

and by using the above equation E ′ with k (x) =
(√

dwdx
)−1

(k as in Proposi-
tions VIII.3.2 and VIII.3.4) we obtain an equation of which 1 and w are obvious
solutions. The functions v1 and v2 are therefore solutions of the equation E ′. �
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Corollary VIII.3.6. — Let w be the quotient of two independent solutions of a
second-order linear differential equation E on U. Then the equation E ′ above is
the unique reduced equation projectively equivalent to E.

Proof. — This is immediate from Proposition VIII.3.2. �

Corollary VIII.3.7. — Let S be a Riemann surface uniformizable by the half-
plane H, π : S̃ → S the universal cover of S, and ϕ : S̃ → H a biholomorphism.
Then for every open set U of S furnished with a coordinate x, the restriction w

of ϕ to π−1(U) is the quotient of two independent solutions of the differential
equation E ′ on U.

Proof. — The conjugates by ϕ of the automorphisms of the universal cover S̃ are
biholomorphisms of the half-plane H, that is, Möbius transformations with real
coefficients. It follows that the function w, considered as a many-valued function
on U (being actually defined on a covering of U), satisfies the assumptions of
Proposition VIII.3.5. �

We now need to consider the problem of changing coordinates in second-order
linear equations. Suppose we are given a second-order linear equation on U, re-
duced in a coordinate x. If we rewrite this equation in terms of another coordi-
nate y, we will in general obtain a non-reduced equation. According to Proposi-
tion VIII.3.4, however, the equation in terms of y admits a unique reduced projec-
tively equivalent equation. The precise result is as follows:

Proposition VIII.3.8. — Let x and y be two coordinates on U, and consider a
second-order linear differential equation reduced in the coordinate x:

d2v

dx2 + hv = 0. (Ex )

Then the unique equation projectively equivalent to Ex and reduced in the coor-
dinate y has the form

d2v

dy2 + Hv = 0, with h =

(
dy
dx

)2

H +
1
2
{y, x}. (Ey )

Proof. — The set of quotients of independent solutions is common to all equa-
tions projectively equivalent to Ex . Let w be such a quotient and E equivalent
to Ex . We know that the unique reduced equation equivalent to E is defined
by the Schwarzian derivative of w in the coordinate of E (Corollary VIII.3.6).
Hence the equation we seek is just the formula (IV.6) for the transformation of the
Schwarzian derivative under a change of coordinate (see Box IV.1). �
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VIII.3.3. Globalizable equations

Let S be a Riemann surface. So far we have been considering only differential
equations defined on an open set U of S. Except in very exceptional circum-
stances, the open set U cannot be taken equal to the whole of the surface S since
in general there does not exist a holomorphic coordinate x defined on the whole
of S. Recall, however, that our aim is to use differential equations to solve a global
problem: the uniformization of S. Hence we need to consider second-order lin-
ear differential equations with the property that the quotient of two independent
solutions extends to a many-valued function defined globally on the surface S (in
other words a function defined on S̃). This is equivalent to considering second-
order linear differential equations which “extend to the whole surface S to within
projective equivalence”. Or, more formally:

Definition VIII.3.9. — Let U0 be an open set of a Riemann surface S and E0 a
second-order linear differential equation on U0. We shall say that the equation E0
is globalizable if there exist

— open sets U1, . . . ,Un of S such that S = U0 ∪ · · · ∪Un ,

— second-order linear differential equations E1, . . . ,En on the open sets
U1, . . . , Un , such that, for every pair (i, j) ∈ {1, . . . ,n}2, the equations Ei

and E j are projectively equivalent when restricted to Ui ∩Uj .

Alert geometers among our readers will certainly have perceived that the no-
tion of a globalizable second-order linear differential equation is closely allied to
the more classical idea (for us today) of a complex projective structure. Recall
that a projective structure — here assumed compatible with the complex struc-
ture — on a Riemann surface S is given by a holomorphic atlas whose charts take
their values in CP1 and with coordinate changes on overlaps locally projective
(restrictions of Möbius transformations). With each projective structure on S one
associates a local biholomorphism w : S̃ → CP1, termed structure developing,
obtained by analytic continuation of a germ of a fixed chart. This map clearly
depends on the initial chart: two developments differ by a Möbius transformation
(acting on the codomain). Two projective structures whose developments differ
by a Möbius transformation are said to be equivalent.

Now let U0 be an open set of S, furnished with a coordinate. Then every glob-
alizable second-order linear differential equation on U0 defines a projective struc-
ture on S and conversely. One passes from the equation to the projective structure
by considering quotients of solutions on small open sets (see Proposition VIII.3.2)
and from the projective structure to the equation by means of a development (see
Proposition VIII.3.5). Furthermore, two second-order linear differential equations
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on U0 are projectively equivalent if and only if they correspond to equivalent pro-
jective structures.

Proposition VIII.3.10. — Let S be a Riemann surface with universal cover
π : S̃ → S. Let E0 be a second-order linear differential equation on a connected
open set U0 of S and w0 : Ũ0 → CP

1 the quotient of two independent solutions
of E0. Then the equation E0 is globalizable if and only if both of the following
conditions hold:

(i) w0 extends7 to a local biholomorphism w : S̃ → CP1;

(ii) for every γ ∈ π1(S) (viewed as an automorphism of the covering S̃) there
exists ρ(γ) ∈ PSL(2,C) such that w ◦ γ = ρ(γ) ◦ w.

Proof. — If E0 is globalizable, then one constructs w by gluing step by step
on S̃ quotients wi of solutions of the equations Ei ; the compatibility of the equa-
tions Ei ensures that one can find wis which can be glued in this way. Conversely,
if w0 satisfies (i) and (ii), then one can cover S by finitely many open sets Ui

furnished with coordinates xi , and the equations Ei globalizing E0 are then ob-
tained via the Schwarzian derivative {w, xi } of w on the open sets Ui (see Propo-
sition VIII.3.5). �

Remark VIII.3.11. — Since condition (ii) is automatically satisfied for all
γ ∈ π1(U0), it becomes superfluous in the case that π1(U0) maps naturally onto
π1(S). This occurs when S rU0 is finite — for example if E0 is meromorphic on
S and U0 is the complement of the set of poles of E0.

The property of a differential equation of being globalizable is clearly invari-
ant under projective equivalence. Thus Proposition VIII.3.4 allows us to restrict
attention to equations that are reduced in a given coordinate.

Proposition VIII.3.12. — Let U0 be a connected open set of a Riemann surface S,
x0 a coordinate on U0, and h0 : U0 → C a holomorphic map. Then the reduced
second-order linear differential equation

d2v

dx2
0

+ h0v = 0

is globalizable if and only if the following conditions hold:

— there exist open sets U1, . . . ,Un of S such that S = U0 ∪ · · · ∪Un ,

7The use of the verb “extends” here is not quite accurate. In fact Ũ0 does not in general embed
in S̃. In order to be able to “extend” w0 to a function defined on S̃, a prior condition would be that
w0 pass via the appropriate quotient to a function defined on π−1(U0) ⊂ S̃.



VIII Differential equations and uniformization 217

— there exist holomorphic coordinates x1, . . . , xn and holomorphic functions
h1, . . . ,hn on the open sets U1, . . . ,Un , such that on each Ui ∩Uj ((i, j) ∈
{1, . . . ,n}2) one has

hi =

(
dx j

dxi

)2

h j +
1
2
{x j , xi }.

Proof. — It suffices to express the equations Ei of Definition VIII.3.9 in the form
d2v
dx2

i

+ hiv = 0 and apply Proposition VIII.3.8. �

VIII.3.4. Normal equations on algebraic curves

In his article [Poin1884b] Poincaré never considers abstract Riemann surfaces; he
confines himself rather to Riemann surfaces defined explicitly as algebraic curves
in CP2 and from now on we will follow suit. Note that he is perfectly well aware
that as far as uniformization is concerned only the structure of the Riemann sur-
face in the abstract counts. It is simply that he needs to have the surfaces defined
by a polynomial equation in order to “calculate” certain objects on them. Today
we can of course re-derive the whole theory intrinsically — by regarding second-
order linear differential equations as connections and the quotients of solutions of
these equations as sections of a certain vector bundle; showing the existence of
globalizable equations then reduces to establishing the triviality of a certain Čech
cohomology group, this being equivalent to the condition of Proposition VIII.3.12
(see for example [Gun1967, p. 75]). However the aim of the present chapter is to
resuscitate Poincaré’s point of view, which, although more concrete than the mod-
ern approach, contains the seed from which it developed.

Recall that, from the point of view of abstract structures of Riemann surfaces,
confining oneself to algebraic curves in CP2 is equivalent to restricting one’s at-
tention to compact Riemann surfaces since in fact every compact Riemann surface
can be immersed in CP2 with image an algebraic curve (see Theorem II.1.3).

The projective plane CP2 is obtained from the affine plane C2 with coordinates
(x, y) by adjoining a line at infinity. Thus we shall consider projective algebraic
curves X , assumed reduced and irreducible (but possibly singular), given in the
form

X := {(x, y) ∈ C2 | F (x, y) = 0}

where F (x, y) is a polynomial in the variables x and y, the closure being taken
in CP2. The Riemann surface associated with X will be denoted by S.
Definition VIII.3.13. — Let X ⊂ CP2 be an irreducible algebraic curve and Ux

the open set of X on which the first projection x : X → CP1 is a holomorphic
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coordinate8. A normal equation on X is a second-order linear differential equation
on an open set U ⊂ Ux , reduced in the coordinate x and globalizable.
Notation VIII.3.14. — We denote by E (X ) the space of normal equations on
an algebraic curve X ⊂ CP2 endowed with the following topology: equations
d2v
dx2 + h1v = 0 and d2v

dx2 + h2v = 0 are close if the rational maps h1 and h2 are close.

VIII.3.5. Uniformizing equations

The following result provides the main motivation for studying normal equations
in connection with uniformization of surfaces.
Proposition VIII.3.15. — Suppose that the Riemann surface S associated with X
is uniformizable by the half-plane. Then every global biholomorphism w : S̃ → H
is the quotient of two solutions of a normal equation on X.
Proof. — By Corollary VIII.3.7, the restriction of w to Ux is the quotient of
two solutions of a second-order linear differential equation on Ux reduced in the
coordinate x. Proposition VIII.3.10 then shows that this equation is globalizable.
It is therefore normal. �

We are thus led naturally to the following definition:
Definition VIII.3.16. — A normal equation on X will be called uniformizing9 if
there exist two solutions v1,v2 of E such that the quotient w := v1/v2 extends to a
global biholomorphism between S̃ and H.

Note that a uniformizing equation is automatically globalizable. Poincaré lent
great importance to the following fact:
Proposition VIII.3.17. — There exists at most a single normal uniformizing
equation on S.
Proof. — Let E and E ′ be two uniformizing normal equations. There then ex-
ist two solutions v1,v2 of E and v′1,v

′
2 of E ′ such that the quotients w := v1/v2

and w′ := v′1/v
′
2 extend to global biholomorphisms from S̃ to H. It follows that

w′ = h ◦ w where h is an automorphism of H and therefore a Möbius transforma-
tion. The equations E and E ′ are thus projectively equivalent and the uniqueness
condition of Proposition VIII.3.4 then implies that E = E ′. �

We are now in a position to formulate the uniformization problem for the
surface S, à la Poincaré, in terms of linear differential equations:

To show that, among all normal equations on X, there is one that is uniformiz-
ing. If possible, to find this equation.

8In other words, Ux is the surface X with x−1(∞) and the ramification points of the covering
x : X → CP1 removed.

9These are in fact just the equations Poincaré calls Fuchsian equations.



VIII Differential equations and uniformization 219

VIII.4. The set of normal equations on a fixed curve

VIII.4.1. The existence of such an equation on a given curve

Our aim in this section is to understand the structure of the set of normal equations
on a given plane algebraic curve of genus g ≥ 2.

Surprisingly (for us) Poincaré seems to consider as self-evident that every
algebraic curve should support at least one normal equation. The “modern” proof
of this fact consists in seeing that the obstruction given by Proposition VIII.3.12
actually has its being in a cohomology group which can be shown to vanish by
means of Serre duality (see [Gun1967, p. 75]). Here we present a proof which
could have been given by Poincaré — even though the reader will perhaps perceive
the cohomology groups lurking between the lines!

Thus let X be a reduced, irreducible, plane algebraic curve, with affine equa-
tion F (x, y) = 0. We seek a normal equation on X of the form

d2v

dx2 + h(x, y)v = 0. (E0)

We may always assume that to within a birational transformation of the projective
plane X is a nodal curve (that is, that its only singularities are ordinary double
points), that 1/x furnishes a local coordinate at every point at infinity (so that, in
particular, X is transverse to the line at infinity), and that the singularities of the
projection on the x-axis are quadratic.

Proposition VIII.3.12 gives a necessary and sufficient condition for the equa-
tion to be normal. The surface S (associated with X) inherits a covering by
open sets U0,U1,U2 each equipped with a holomorphic coordinate (in the sense
of VIII.3.10), namely x, 1/x and y respectively. Denote by R the divisor of S
determined by the critical points of the projection on the x-axis. We need to find
holomorphic functions hi on the Ui such that

hi =

(
dx j

dxi

)2

h j +
1
2
{x j , xi },

where xi is equal to x, 1/x or y as the case may be.
The compatibility condition on coordinates between U0 and U1 implies that

h0dx2 extends to a holomorphic quadratic differential in a neighborhood of the
points of X at infinity. The compatibility condition between the coordinates of U0
and U2 is expressed by

h0dx2 = h2dy2 +
1
2
{y, x}dx2,
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which implies that at each point of R the differential h0dx2 is meromorphic in
the local coordinate y and that its polar part coincides with that of 1

2 {y, x}dx2, of
order 2 in y. Conversely, if a meromorphic quadratic differential on S fulfills these
conditions, then its local expression h1d(1/x)2 on U1 also satisfies the appropriate
gluing condition on U1 ∩U2 in view of the formula (IV.6) for the transformation
of the Schwarzian derivative under coordinate changes (see Box IV.1).

To summarize: a normal equation is determined by a meromorphic quadratic
differential with poles and polar parts — of order 2 — prescribed (by initial choice
of projective model).

Let K be the canonical divisor of S and m a natural number. The dimension
l (2K +mR) of the space L(2K +mR) of meromorphic quadratic differentials with
poles on R and of order at most m is given by the Riemann–Roch theorem (see
Box II.5):

l (2K + mR) = l (K − 2K − mR) + deg(2K + mR) + 1 − g

= 3g − 3 + m deg(R)

where we have set l (−K − mR) = 0 (in view of the fact that deg(K + mR) > 0).
Hence in particular the dimension l (2K ) of the space of holomorphic quadratic
differentials on S is 3(g−1). One has, moreover, l (2K + 2R)− l (2K ) = 2 deg(R),
whence it follows that the polar parts of an element of L(2K + 2R) may be im-
posed arbitrarily. This completes the proof of the existence of a normal equation
on every algebraic curve.

Proposition VIII.3.12 shows that the normal equations naturally form an
affine space associated with the vector space (of dimension 3g − 3) of holomor-
phic quadratic differentials on the surface. For an algebraic curve this fact can be
expressed in the following concrete form:

Proposition VIII.4.1. — Let X be a reduced and irreducible nodal curve in CP2,
of degree d and with affine equation F (x, y) = 0. Suppose further that X is
transverse to the line at infinity and that the branches of its double points are
transverse to the fibres of the coordinate x.

If E0 is a normal equation on X:

d2v

dx2 + h0v = 0, (E0)

then the normal equations on X are exactly those of the form

d2v

dx2 + *
,
h0 +

P
F′2y

+
-
v = 0,
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where P(x, y) is a polynomial of degree less than 2d − 6 which, together with its
first partial derivatives, vanishes at the double points of X (along with F ′y = ∂F

∂y ).
Note furthermore that the polynomials P need be considered only modulo F.

Proof. — We need to show that every holomorphic quadratic differential on X can
be expressed in terms of the coordinate x in the form

Q =
P

F′2y
dx2, (VIII.2)

where P is a polynomial satisfying the assumptions of the proposition. (The reader
may also like to examine the proof of Proposition II.2.8, where the argument is
similar.)

Let Q be a meromorphic quadratic differential on X . We may write
it in the form (VIII.2) with P a rational function. Observe that the form
ω =

(
∂F
∂y

)−1
dx = −

(
∂F
∂x

)−1
dy is holomorphic at the ramification points of x

since these are smooth. In order for Q to be holomorphic on the affine part Y
of X , it is necessary and sufficient that P be regular on Y (that is, that it be a poly-
nomial) and vanish to the appropriate order at the double points of X . At those
points the function

(
∂F
∂y

)2
vanishes to the order 2; the desired condition is thus

that P, together with first derivatives, should vanish at the double points of X .
Finally, since the form ω vanishes to the order d−3 on the line at infinity and X is
transverse to that line, the form Q is holomorphic at infinity (given that we know
it is holomorphic on Y ) if and only if the degree of P is less than 2d − 6. �

VIII.4.2. The space of normal equations on curves

Let g ≥ 0 and d ≥ 1 be integers. Setting N = d(d + 3)/2, we consider the set
Sg,d ⊂ CP

N of reduced and irreducible nodal curves of degree d and genus g. In
fact Sg,d is a smooth manifold of dimension 3d + g − 1 = N − δ, where δ is the
number of double points of a curve of Sg,d , given by g + δ = (d − 1)(d − 2)/2
(see Box VIII.1 below). In what follows we shall consider only curves of genus
g ≥ 2.

We shall say that a curve X ∈ Sg,d is in general position with respect to an
affine coordinate system (x, y) if X is transverse to the line at infinity and the
singularities of the coordinate x are of quadratic type, distinct from the double
points. These conditions clearly define an open set of the manifold Sg,d . The
corresponding space of polynomials in (x, y) will be denoted by Pg,d . Every
curve X ∈ Sg,d admits such a system of affine coordinates. Hence as far as local
questions on Sg,d are concerned, one may confine attention to curves XF defined
by polynomials F ∈ Pg,d .
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Recall (Theorem II.1.3) that every compact Riemann surface S admits a holo-
morphic immersion in the projective plane with image a nodal curve, which more-
over one may choose to be in general position relative to an appropriate affine
coordinate system; in other words, S always admits an algebraic model of the
form XF with F ∈ Pg,d . In line with the spirit of the present chapter we tackle
the uniformization of compact Riemann surfaces via algebraic curves, or, more
particularly, in the framework — dear to Poincaré — of differential equations on
those curves.
Notation VIII.4.2. — For a given two integers g ≥ 2 and d ≥ 4, we denote
by Eg,d the space of pairs (X,E) with X ∈ Sg,d and E ∈ E (X ) (see Nota-
tion VIII.3.14).

One then has, of course, the natural projection from Eg,d onto Sg,d . By
Proposition VIII.4.1, the fibres of this projection are complex affine spaces of
dimension 3g − 3. In fact one has the following proposition:

Proposition VIII.4.3. — Take any g ≥ 2 and d ≥ 4. Then the space Eg,d is a
fibration of affine spaces over Sg,d . In particular Eg,d is a smooth manifold.
Proof. — Consider the curves XF with F ∈ Pg,d . The ramification divisor RF

of the coordinate x is the (transverse) intersection of XF with F ′y = ∂F
∂y = 0, of

degree d(d − 1). The meromorphic quadratic differentials on XF with poles of
order at most 2 at the points of RF are of the form

Q =
P

F′4y
dx2,

where P belongs to the space PF of polynomials of degree at most 4d−8 vanishing
to the fourth order at the double points of XF (here it is enough to adapt the
proof of Proposition VIII.4.1). The polynomials P need to be considered only
modulo F. Choose (locally) a complement QF of C[x, y]F ∩ PF in PF ; we
know that this space has dimension 3g − 3 + 2d(d − 1) independently of F (see
Proposition VIII.4.1). We therefore have a holomorphic vector bundle over Pg,d .

The restrictions on the polar parts at the points of RF characterizing the nor-
mal equations are affine. They depend holomorphically on F (considering {y, x}
explicitly as a rational function of the partial derivatives of F) and determine an
affine subspace of QF of dimension 3g − 3 independently of F (see Proposi-
tion VIII.4.1). This establishes the proposition. �

Box VIII.1: The manifold of nodal curves

Let d ≥ 1 be an integer and CPN the projectification of the space of
homogeneous polynomials of degree d (so that N = d(d + 3)/2). Each curve
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of degree d in the projective plane CP2 can be identified with a point of CPN

(the equation of the curve in the usual homogeneous coordinates). Furthermore
the projective coordinate changes of CP2 correspond to projective transforma-
tions of CPN .

Proposition VIII.4.4 (Severi). — Let g ≥ 0 and d ≥ 1 be integers and
Sg,d ⊂ CP

N be the set of reduced and irreducible nodal curves of de-
gree d and genus g, assumed non-empty (which is equivalent to requiring that
(d − 1)(d − 2) ≤ 2g — see for example [Loe1988, Cor. 2.2]). Then Sg,d is a
smooth manifold (a “Severi manifold”) of dimension

3d + g − 1 = N − δ,

where δ is the number of double points of a curve from Sg,d (given by Cleb-
sch’s formula g + δ = (d − 1)(d − 2)/2).

Proof (see [HaMo1998, p. 30]). — Set

Σ = {(X,p) |X ∈ Sg,d ,p ∈ Xsing} ⊂ CP
N × CP2,

where Xsing denotes the singular locus of X . We shall show that Σ is smooth
at (X0,p0) provided p0 is an ordinary double point of X0. Choose affine co-
ordinates (x, y) so that p0 = (0,0), and let F0(x, y) = 0 be an affine equation
for X0. The condition for a point p = (a,b) to belong to the singular locus of
a curve X of degree d with affine equation F (x, y) = 0 is

Φ(F,a,b) := (F (a,b),F ′x (a,b),F ′y (a,b)) = 0 ∈ C3.

Now the Jacobian matrix ofΦ at the point (F0,0,0) with respect to the variables
(F (0,0),a,b) is (

1 0
0 HF0(0,0)

)
,

where HF0 is the Hessian matrix of F, invertible at (0,0) since p0 is an or-
dinary double point of X0, whence we infer that Σ is a smooth submanifold
of codimension 3 in a neighborhood of (X0,p0). Moreover at this point the
projection CPN ×CP2 → CPN induces a local immersion from Σ to a germ of
the smooth hypersurfaceH (p0) whose tangent hyperplane corresponds to the
space of polynomials vanishing at p0.

Returning to the set Sg,d , we see that for δ = 0 the proposition is obvi-
ous since the smooth curves form an open set in CPN . Suppose now that δ ≥ 1.
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Consider X ∈ Sg,d and let p1, . . . ,pδ be the double points of X . By the above,
every curve in Sg,d sufficiently close to X belongs to the intersection of the
H (pk ) (k = 1, . . . , δ). Conversely, every curve X ′ ∈

⋂δ
k=1H (pk ) sufficiently

close to X must belong to Sg,d (in particular the only singularities of X ′ are
its δ double points close to the pk ). Hence in a neighborhood of X the set
Sg,d coincides with the intersection of the hypersurfacesH (pk ). To complete
the proof it remains to show that these are in general position, that is, that the
space of polynomials vanishing at the points p1, . . . ,pδ has codimension δ.

Let X ∈ Sg,d be as before and (x, y) an affine coordinate system in general
position with respect to X . Write Pm for the space of polynomials of degree
≤ m in (x, y). It follows from Clebsch’s formula g + δ = (d − 1)(d − 2)/2
(inferred, for instance, from the Riemann–Hurwitz formula in the case of a
generic projection on CP1) and the characterization of holomorphic differen-
tials on X in terms of polynomials of degree ≤ d − 3 (see the proof of Propo-
sition II.2.8), that the conditions P(pk ) = 0 (k = 1, . . . , δ) are independent on
Pd−3. In other words, setting ϕm (P) = (P(p1), . . . ,P(pδ )) ∈ Cδ for P ∈ Pm ,
we have that the map ϕd−3 is surjective. Hence ϕm is surjective for every
m ≥ d − 3 — so in particular for m = d — since its restriction to Pd−3 is
already surjective. This completes the proof. �

VIII.5. Monodromy of normal equations and uniformization of algebraic
curves

In this section we explain why the set of algebraic curves supporting a uniformiz-
ing normal equation is open (from which it follows that the set of uniformizable
algebraic curves is open).

VIII.5.1. The monodromy representation

Our main tool for detecting uniformizing equations will be the concept of mon-
odromy. With each normal equation E on an algebraic curve X ∈ Sg,d , we shall
relate a conjugacy class of representations in PSL(2,C) of the fundamental group
of the associated Riemann surface S.

For any Riemann surface S, we denote by RC(S) the space of conjugacy
classes of representations of the fundamental group π1(S) in PSL(2,C) 10. We

10N. B. We use the same notation as was used in Chapter VII in connection with representations
in SL(2,C) although now they are in PSL(2,C).
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denote by RR(S) the subset of RC(S) consisting of the conjugacy classes of
representations containing a representation in PSL(2,R). We saw earlier (The-
orem VII.2.3) that RC(S) is a complex analytic manifold of complex dimension
6g−6; similar arguments show that RR(S) is a real analytic submanifold of RC(S),
of real dimension 6g − 6 (see Corollary VII.2.4).

Let X be an algebraic curve in CP2, S the associated Riemann surface, and E
a normal equation on X . To begin with consider two independent solutions of E
and denote by w the ratio of these solutions. Since the equation E is globalizable,
the function w (defined a priori on the universal cover of an open set of S) can be
analytically continued to a function defined on the universal cover of S (Proposi-
tion VIII.3.10). By Proposition VIII.3.1, for every γ ∈ π1(S) there then exists a
Möbius transformation ρ(γ) ∈ PSL(2,C) such that w(γ.z) = ρ(γ) ◦ w(z). This
defines a representation

ρ : π1(S) → PSL(2,C),

the monodromy representation. Consider now two other independent solutions
of E, and denote by w′ their quotient and by ρ′ the monodromy represen-
tation of w′. By Proposition VIII.3.1, there exists a Möbius transformation
m ∈ PSL(2,C) such that w′ = m ◦ w. We have therefore ρ′ = m ◦ ρ ◦ m−1 ; thus
in particular the monodromy representations of w and w′ are conjugate. This jus-
tifies the following definition: we call the single conjugacy class of monodromy
representations of quotients of pairs of independent solutions of the equation E
the monodromy of the equation E, denoted by

MonX (E) ∈ RC(S).

Remark VIII.5.1 (fundamental). — If an equation E uniformizes S by means
of the half-plane H, then its monodromy is real. Indeed, under this assumption
there exist two solutions of E whose quotient defines a global biholomorphism
from S̃ toH. Thus the associated monodromy representation takes its values in the
automorphism group of H, that is, in PSL(2,R), and the monodromy MonX (E)
belongs to the submanifold RR(S).

Note that the converse is “almost true”: if X is close to a uniformizable curve
and if there exists a normal equation E on X with monodromy MonX (E) belong-
ing to the submanifold RR(S), then E is uniformizing for X ; in particular, X is
uniformizable11.

Thus for each algebraic curve X ∈ Sg,d we now have a monodromy map
defined on the space of normal equations on X . But this is not enough! We

11However there are normal equations with monodromy in RR(S) (and even with Fuchsian mon-
odromy) that are not uniformizing; see [GolW1987].
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need a monodromy map defined on the fibration Eg,d of normal equations over
all algebraic curves, or at least defined in a neighborhood of a given fibre.

Fix on integers g ≥ 2 and d ≥ 4. Recall that Pg,d denotes the set of polynomi-
als F ∈ C[x, y] of degree d such that the projective curve XF defined by F is nodal
and in general position with respect to the coordinates (x, y) (see §VIII.4.2). For
any F0 ∈ Pg,d , we have by the Tubular Neighborhood Theorem (for immersed
submanifolds) that there exists a neighborhood U0 of F0 in Pg,d and a smooth
map Φ : U0 × XF0 → CP

2 such that for every F ∈ U0, the map Φ(F, .) is a
diffeomorphism from XF0 to XF . Although the map Φ is not itself unique, the
homotopy class of maps Φ(F, .) is well-defined and for F sufficiently close to F0
affords an identification of the fundamental group of the associated surface SF
with that of the surface SF0 .

For F ∈ U0 and E ∈ E (XF ) (see Notation VIII.4.2), one may therefore con-
sider the monodromy MonXF (E) as an element of the manifold RC(SF0 ). Writing
EU0 := {(F,E) | F ∈ U0,E ∈ E (XF )},we therefore have a map

Mon : EU0 −→ RC(SF0 ) (VIII.3)

(F,E) 7−→ MonXF (E).

Recall that EU0 is a fibre bundle of affine spaces over the open set U0 (Proposi-
tion VIII.4.3).

Proposition VIII.5.2. — The map Mon: EU0 −→ RC(SF0 ) is holomorphic.

Proof. — This follows from the theorem concerning the holomorphic dependence
of the solutions of a linear differential equation on the coefficients of that equa-
tion. �

VIII.5.2. The set of uniformizable Riemann surfaces is open

The aim of the long memoir [Poin1884b], which Poincaré published in 1884, is to
show, by means of the method of continuity that he had conceived simultaneously
with Klein, that algebraic curves are all uniformizable.

Theorem VIII.5.3. — Every compact Riemann surface of genus g greater than
or equal to 2 is uniformized by the upper half-plane.

Recall that for each fixed integer g ≥ 2 the symbol Mg denotes the moduli
space of compact Riemann surfaces of genus g (see Proposition II.3.1). Recall
also that the method of continuity consists in the following:

— observing that Mg is connected and that there exists at least one point of
Mg corresponding to a uniformizable Riemann surface;
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— showing that the set of points ofMg corresponding to uniformizable Rie-
mann surfaces is both open and closed inMg .

This clearly suffices to establish that every compact Riemann surface of
genus g is uniformizable.

Poincaré seems to consider it evident that the moduli space Mg is arcwise
connected; on this point the reader may consult Chapter II, in particular Proposi-
tion II.3.1. The existence of at least one uniformizable Riemann surface of genus g
follows easily from Poincaré’s work on Fuchsian groups, expounded in §VI.2.3.

We shall not enter here into the arguments Poincaré uses to establish closure,
except to remark that he fully appreciated the difficulties involved in this, and that
in some sense one may regard the proof given in Chapter VII as a “putting in
order” of his attempt at a proof. The particular case of the sphere with four points
removed is instructive: here he produced a perfectly rigorous proof — apparently
as the result of concentrated effort. (We give the details in the next chapter.)
However that may be, we would say that the creation of the tools necessary for a
correct proof of closure in general lay far in the future of the researchers of that
era, even such a one as Poincaré.

Thus here we rest content with a treatment of the openness (within the frame-
work of algebraic curves) closely following Poincaré’s method, which requires
modifications only of minor points to make it fully rigorous.

Proposition VIII.5.4. — Let Sg,d be the manifold of curves of genus g ≥ 2
and degree d ≥ 4. Then the set of curves X ∈ Sg,d uniformizable by the upper
half-plane is open in Sg,d .

Proof. — Let F0 ∈ Pg,d be such that the Riemann surface SF0 is uniformizable
by the upper half-plane. We need to find a neighborhood U of F0 in Pg,d such
that the Riemann surface SF is uniformizable for every F ∈ U . In §VIII.5.1 we
defined a certain neighborhoodU0 of F0 in Pg,d for which the space

EU0 = {(F,E) | F ∈ U0 , E ∈ E (XF )}

is a fibre bundle of affine spaces over the open setU0, and the “monodromy” map
(see (VIII.3)) from EU0 to RC(SF0 ) is holomorphic.

Writing E0 for the uniformizing equation of the surface SF0 , we choose two
solutions of E0 whose quotient w0 defines a biholomorphism from S̃F0 to H, and
denote by ρ0 : π1(SF0 ) → PSL(2,R) the monodromy representation of w0. We
then have MonXF0

(E0) = [ρ0] ∈ RR(SF0 ) (see Remark VIII.5.1).
Recall that RC(SF0 ) is a smooth complex manifold of complex dimension

6g − 6 (or real dimension 12g − 12) in a neighborhood of ρ0, and that RR(SF0 )
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is a smooth real submanifold of real dimension 6g − 6. The following point is
crucial12.

Lemma VIII.5.5. — The map MonXF0
: E (XF0 ) → RC(SF0 ) is transverse at E0

to the subvariety RR(SF0 ).

We shall assume this result for the moment and use it to complete the proof of
Proposition VIII.5.4. Thus by this lemma, the inverse image of RR(SF0 ) under the
map Mon defines a germ of a real smooth manifold Σ passing through E0 and of
(real) codimension 6g−6. This submanifold is transverse to the fibre E (XF0 ) since
its codimension is equal to the dimension of E (XF0 ). Hence for F sufficiently
close to F0 there exists a normal equation EF (depending smoothly on F) on the
curve XF with monodromy in RR(SF0 ). We now show that EF is uniformizing.

Let ξF be a germ of a projective chart with values in CP1 and defined on
an open set of XF by a quotient of solutions of EF (see §VIII.3.3). We may
choose ξF0 to correspond to w0 and assume that ξF depends smoothly on F
(in view of the dependence of solutions on the parameters of the equation). In
what follows we shall suppose the polynomial F to be as close to F0 as need
be. The many-valued analytic continuation of ξF will then be C0-close to ξF0

on compact sets. The single-valued version of this affirms that ξF defines a local
biholomorphism wF : S̃F → CP1, and we can find a compact fundamental re-
gion DF of the universal cover S̃F → SF such that wF (DF ) is Hausdorff close
to w0(DF0 ). Since w0(DF0 ) is a compact set contained in the half-plane H, we
also have wF (DF ) contained in H. In view of the equivariance of wF (Propo-
sition VIII.3.1) and the fact that the monodromy of EF is real, this entails that
wF (S̃F ) is contained in H.

Now let h denote the usual hyperbolic metric on the half-plane H. Since wF

takes its values in H, we can pull h back to a metric g̃ = w∗Fh on S̃F , which
by construction then induces a (hyperbolic) metric g on SF . Recall that if M
and N are Riemannian manifolds, with N complete, then a local isometry from
M to N is a covering map if and only if M is also complete. Here the metric g

is complete since SF is compact, whence we infer that g̃ is also complete, so
that wF is a covering map. Hence wF is a biholomorphism from S̃F to H and EF

is uniformizing. �

In order to complete the proof of Proposition VIII.5.4, it remains to prove the
transversality lemma.

12In connection with this lemma we should mention Klein’s and Poincaré’s claim, made without
proof, that a certain “functional determinant” is non-zero, signifying transversality.



VIII Differential equations and uniformization 229

Commentary. — A crucial point in the following proof concerns the equality
of the (real) codimension of RR(g) in RC(g) and the dimension of the space of
quadratic differentials. It is of course not surprising that the dimension of RC(g) is
twice that of RR(g) since the first space is just the complexification of the second.
Thus it is a question of understanding why the space of quadratic differentials and
the space RR(g) have the same dimension. The first of these dimensions is cal-
culated using the Riemann–Roch theorem and the second by counting generators
and relations — two independent calculations yielding 6g − 6 real dimensions but
leaving it a mystery as to the reason. (To put it in other terms, the moduli space of
curves of genus g has the same dimension as the space of quadratic differentials
on a given curve.) Poincaré seems not to have been surprised by this coincidence.
A modern way of making it “clear” is as follows: A holomorphic quadratic differ-
ential is a section of the double of the canonical divisor K . According to a general
principle, an infinitesimal deformation of the complex structure on a curve S is
parametrized by an element of the first cohomology group of S with values in the
sheaf of holomorphic vector fields, which is to say −K . These two spaces are then
dual by Serre duality.

VIII.5.3. Proof of the transversality Lemma VIII.5.5

Poincaré does not prove this lemma (and in any case the concept of tranversality
had of course as of then not yet settled out)! On the other hand he proves in detail
the above lemma according to which a given algebraic curve possesses at most one
uniformizing equation, whence, in particular, it follows that in a neighborhood of
the uniformizing equation E0 the image of the map MonXF0

: E (XF0 ) → RC(SF0 )
meets the submanifold RR(SF0 ) in a single point. Of course this does not immedi-
ately entail transversality at this point of intersection, yet Poincaré seems to make
the leap without hesitation13. We now propose giving a proof of transversality by
means of methods that Poincaré might have used (as it seems to us).

We begin with a preliminary calculation. Let w be a biholomorphism between
two open sets of the upper half-plane and 2ϕ the logarithm of the Jacobian of w
in the hyperbolic metric. We first establish the equation

∆H(ϕ) = exp(2ϕ) − 1, (VIII.4)

where ∆H denotes the hyperbolic Laplacian in H.
Writing s and t for the real and imaginary parts of a point z of H, we have

that the Laplacian for the hyperbolic metric (ds2 + dt2)/t2 is given by ∆H = t2∆,

13“Is it because the functional determinant of the coordinates of µ with respect to those of δ
vanish? But this can never happen since the lemma of Section VII shows that to every point µ there
can correspond only a single point δ” [Poin1884b, p. 370].
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where ∆ is the Euclidean Laplacian. Setting v = Im(w), we have the Jacobian of w
in the hyperbolic metric in the form |w′(z) |2t2/v2. Its logarithm 2ϕ is therefore
given by

ϕ = log |w′(z) | + log t − log v.

Here the first term is harmonic (as the real part of a holomorphic function). Fur-
thermore

∆(log v) =
1
v
∆(v) −

1
v2 |gradv |2 = −

1
v2 |gradv |2 =

1
v2 |w

′(z) |2

since v is also harmonic. Finally, we obtain the desired equation (VIII.4):
∆H(ϕ) = t2(|w′(z) |2/v2 − 1/t2) = exp(2ϕ) − 1.

Remark VIII.5.6. — In order to motivate what follows, we make a few remarks
on matters Riemannian. The equation (VIII.4) is a special case of the formula
linking the curvatures K1 and K2 of two conformal metrics g1 and g2 on a surface,
namely, if g2 = exp(2ϕ)g1, then

K2 = exp(−2ϕ)(K1 − ∆g1 (ϕ)),

where ∆g1 is the Laplacian of the metric g1. Then in order to obtain (VIII.4),
one takes the usual hyperbolic metric and its inverse image under w, both of cur-
vature −1. Even if this line of thought was not actually present to the mind of
Poincaré, we shall see in Chapter X that he was very familiar with such formulae,
at least in the case where g1 and g2 are of constant curvature.

The question of the uniqueness of the uniformizing equation on an algebraic
curve X can be reformulated in terms of Riemannian metrics on the surface S
associated with X . Thus two uniformizing equations furnish biholomorphisms wi

from S̃ toH and hyperbolic metrics gi on S, i = 1,2 (stemming, as above, from the
hyperbolic metric of H). The metrics g1 and g2 determine the complex structure
of S, so belong to the same conformal class. The projective equivalence of the
uniformizing equations translates14 as g1 = g2. From the point of view of metrics
on S, the uniqueness is thus equivalent to the fact that there exists at most one
metric of curvature −1 in a given conformal class, that is, that there is no non-
zero function ϕ on a compact surface that solves the preceding equation. This last
point can be argued directly as follows: Such a function ϕ must change sign since
the integral of a Laplacian is zero; at a point where ϕ attained its maximum, the
Laplacian is zero or negative while the second term is positive, an absurdity.

We are now in a position to conclude the proof of the transversality lemma.

14Via the identity Isom+(H) = PSL(2,R), inferred from PSL(2,R) = Aut(H), which clearly
already settles the question of uniqueness!
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Thus consider the uniformizing normal equation for the curve XF0 :

d2v

dx2 + h0v = 0, (E0)

and a vector tangent to E (XF0 ) at the point E0, which is to say tangent at ε = 0 to
a certain curve in the space of normal differential equations of the form

d2v

dx2 +
(
h0 + εq

)
v = 0, (Eε )

where q(x, y)dx2 defines a holomorphic quadratic differential on SF0 . Via the
monodromy map one obtains a curve in RC(SF0 ) parametrized by ε. We wish to
show that, if this curve is tangent to the real submanifold RR(SF0 ) at ε = 0, then q
is identically zero.

Since E0 is uniformizing, we have an identification between S̃ and the upper
half-plane H and between the fundamental group of S and a discrete group Γ

of isometries of H. Let z be the usual coordinate on C, that is, for which H is
defined by Im(z) > 0. As always, the quotient of two solutions of the differential
equation Eε furnishes a local biholomorphism wε from S̃ = H to CP1, well-
defined up to a projective transformation of the codomain. We may assume that w0
is the identity map.

The quadratic differential {wε , z}dz2 is equal to εqdx2. To see this, observe
first that by Proposition VIII.3.5 the Schwarzian derivative of w with respect to the
coordinate x is equal to h0+εq. But then, by the same proposition, the Schwarzian
derivative {z, x} is equal to h0 since the identity function w0(z) = z is the quotient
of two solutions of the equation E0. The equality {wε , z}dz2 = εqdx2 now follows
from the formula (IV.6). Thus in order to show that q vanishes identically, it
suffices to prove that the derivative of {wε , z} with respect to the parameter ε is
zero at ε = 0.

By definition of the monodromy representation, for each element γ ∈ Γ, the
fundamental group of S, there is a Möbius transformation depending on ε such
that:

wε (γ(z)) =
a(γ,ε)wε (z) + b(γ,ε)
c(γ,ε)wε (z) + d(γ,ε)

.

For ε = 0 the numbers a(γ,ε),b(γ,ε),c(γ,ε),d(γ,ε) are real. By assumption we
may choose the wε in such a way that the derivatives of these numbers at ε = 0
are also real. To see this it suffices to recall that wε is defined only up to a Möbius
transformation acting on the codomain, and that the monodromy representation is
defined only up to conjugation.
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Of course wε does not necessarily preserve H; however, for every compact
subset K of the half-plane the compact subset wε (K ) is contained in H for ε
sufficiently small. We may therefore consider the functions 2ϕε — logarithms
of the hyperbolic Jacobians of wε — these being defined in a neighborhood of a
given point for sufficiently small ε. By the equation (VIII.4) we have ∆H(ϕε ) =

exp(2ϕε ) − 1. Setting ψ = d
dε |ε=0ϕε : H → R, and differentiating the preceding

equation, we obtain
∆H(ψ) = 2ψ.

We claim that ψ is invariant under the action of Γ. To see this, note first that
since the numbers a(γ,ε),b(γ,ε),c(γ,ε),d(γ,ε) are real to the first order, the
hyperbolic Jacobian of the corresponding Möbius transformation is equal to 1 to
the first order. It follows that

ϕε (γ(z)) = ϕε (z) + O(ε2)

for every γ, moreover uniformly on every compact subset of H. Differentiating
with respect to ε at 0, we obtain the desired Γ-invariance of ψ. Hence ψ induces a
function, which we also denote by ψ, on the compact surface S, and then as earlier
(see the conclusion of Remark VIII.5.6), by examining the sign of the Laplacian
at the extrema of ψ, one sees that ψ must vanish identically. In other words, we
have established that wε preserves the hyperbolic metric up to the order O(ε2),
uniformly on every compact subset.

It remains to show that the Schwarzian derivative of wε is also of order O(ε2)
uniformly on every compact subset. To this end it is convenient to go over to
the unit disc model of the hyperbolic plane: D = {|z | < 1}. Consider any point
z0 ∈ H, and choose a compact neighborhood K of z0 such that wε (K ) ⊂ H
(with ε sufficiently small), and Möbius transformations f ,gε : D → H such that
f (0) = z0, gε (0) = wε (z0) with gε a smooth function of ε. We take K = f (D1/2)
where D1/2 = {|z | ≤ 1/2}. We now replace wε by the function g−1

ε ◦ wε ◦ f ,
while continuing to denote it by wε . This (new) function wε fixes 0, and the
quadratic differential {wε , x}dx2 is left unchanged (since the functions f and gε
represent projective coordinate changes). Furthermore, f and gε are isometries for
the hyperbolic metrics on H and D, so that wε preserves the hyperbolic metric up
to the order O(ε2), uniformly on compact subsets, so in particular on the discD1/2.

We now claim that this entails that, always within the disc D1/2, the distance
between wε and a certain rotation about 0 as centre (depending on ε) is of or-
der O(ε2). To see this, observe first that the image under wε of a radius joining
the origin to a point of the circle C1/2 = ∂D1/2 has hyperbolic length different
from its Euclidean length only by an amount O(ε2). It follows that the image
wε (D1/2) is contained in a disc of radius 1/2 + O(ε2). By noting that for small ε
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the restriction of wε to D1/2 is a diffeomorphism onto its image, and applying the
same reasoning as before to the inverse of wε , we infer that wε (D1/2) is contained
in the annulus between two discs of radii 1/2−O(ε2) and 1/2+O(ε2). Schwarz’s
classical lemma then implies that w′ε (0) has modulus 1 + O(ε2).

Now consider the restriction of wε to the circle C1/2. Its image is a curve
contained in an annulus of width O(ε2) around C1/2. Hence the radial projection
on the circle C1/2 furnishes, for sufficiently small ε, a diffeomorphism of the circle
with derivative majorized by 1 + O(ε2). This diffeomorphism therefore differs
from a rotation by O(ε2). We have thus shown that wε differs from a rotation
by an amount O(ε2) on the boundary of the disc D1/2, whence this holds also
throughout the disc by the maximum principle. Cauchy’s formula then shows that
the second and third derivatives of wε at the origin are of order O(ε2), so that the
Schwarzian derivative {wε , z} at the origin is of order O(ε3).

Returning to the upper half-plane, we see that the derivative with respect to ε,
at ε = 0, of the Schwarzian derivative {wε , z} is zero at every point z0 of the
half-plane. As we have seen, this is equivalent to the fact that the holomorphic
quadratic differential q vanishes identically, which we wished to prove. �





Chapter IX

Examples and further developments

We begin the chapter with a detailed exposition of Schwarz’s work [Schw1873] on
the hypergeometric equation — work which led him to the famous list of values of
the parameters for which the solutions are algebraic. This precursory work con-
tains the seeds of many of the ideas later developed by Klein and Poincaré. Then
we examine in detail normal equations on certain particular algebraic curves; this
leads us to revisit certain classical families of differential equations. These de-
pend on certain “accessory parameters” of which the values yielding uniformiz-
ing equations are known only in certain exceptional cases. As Schwarz himself
realized in light of the subsequent work of Klein and Poincaré, it follows inci-
dentally that the general solution of the hypergeometric equation allows one to
uniformize many algebraic curves. Next, following Poincaré’s lead, we apply the
method of continuity in a direct and elementary manner to the case of the sphere
with four points removed. The chapter concludes by evoking some of the conse-
quences of the method of continuity. For more on this theme the reader may like
to consult [Gra1986].

IX.1. Fuchs’s local theory

As we have noted on several occasions, if one is interested only in uniformizing
smooth compact curves, one is obliged, if only for computational reasons, to con-
sider differential equations with poles, corresponding to singular projective struc-
tures. This is the case, for instance, when one seeks to express the uniformizing
equation of a curve with equation F (x, y) = 0 in terms of the variable x. Other-
wise one has to resort to the following result of Fuchs, which inpressed Poincaré
sufficiently for him to feel the terms “Fuchsian functions” and “Fuchsian groups”
justified. (The result in question was reproved slightly later by Schwarz.)
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A linear differential equation

d2v

dx2 + f
dv
dx

+ gv = 0 (E)

with meromorphic coefficients is called Fuchsian at a point x = x0 if at that point
f and g have at worst only poles of orders 1 and 2 respectively. This is equivalent
to requiring that the associated reduced equation

d2v

dx2 + hv = 0, (E ′),

where h = g− 1
2
df
dx−

1
4 f 2, has at worst a double pole at x0. We then say that the pro-

jective structure induced in a punctured neighborhood of x0 possesses a Fuchsian
singularity at x0. Note that (E) and (E ′) are projectively equivalent, as defined
in §VIII.3.2, only on such a punctured neighborhood, since neither (E) nor (E ′)
has a solution at x0. According to a well-known result of Fuchs, equations with
Fuchsian singularities are characterized among meromorphic second-order equa-
tions by the fact that their solutions have moderate growth in a neighborhood of
their singular points (on sectors). However, it is a different result of Fuchs that
interests us here.

We wish to describe the type of singularities presented by the charts w of the
projective structure induced around x0, as well as their monodromies around x0.
Recall that by Proposition VIII.3.5 such a chart is determined by the quotient
w = v1/v2 of two independent solutions of (E) around x0, or, equivalently, as
a solution of the Schwarzian equation {w, x} = 2h, where h is the coefficient of
the associated reduced equation (E ′). Thus the problem we are faced with is that
of solving the Schwarzian equation {w, x} = 2h in a neighborhood of a double
pole x0 of h.

If y(x) is another coordinate, sending the point x0 to the point y0 = y(x0), then
the new Schwarzian equation {w, y} = 2H , as given by the change-of-coordinate
formula (see Box IV.1), will still present a double pole at y0. Furthermore the
dominant coefficient λ, defined by

{w, x} =
λ

(x − x0)2 +
µ

x − x0
+ O(1),

remains unchanged:

{w, y} =
λ

(y − y0)2 +
µ̃

y − y0
+ O(1).

This is the residue of the projective structure at the singular point. It is calculated
in terms of the differential equation

d2v

dx2 +

(
λ1

x − x0
+ O(1)

)
dv
dx

+
1
2

(
λ2

(x − x0)2 +
µ

x − x0
+ O(1)

)
v = 0 (E)



IX Examples and further developments 237

using the formula

λ = λ2 +
1 − (λ1 − 1)2

2
.

One then defines the index θ up to sign by

λ =
1 − θ2

2
.

We remark in passing that when the coefficient g in the equation (E) has only a
simple pole, the index θ = λ1 − 1 is given directly as the usual residue of f . The
Fuchs–Schwarz result is then:

Theorem IX.1.1. — The Schwarzian equation

{w, x} =
1 − θ2

2(x − x0)2 +
µ

x − x0
+ O(1)

has as a particular solution around x0

— either w(x) = yθ ,

— or w(x) = 1
yn + log y, in which case θ = ±n (n ∈ N),

where y(x) is a local coordinate at x0, y(x0) = 0.

When θ is not an integer we are in the first case and every other solution of the
Schwarzian equation is then clearly of the form w(x) =

ayθ+b

cyθ+d
, ad − bc , 0 (see

Box IV.1). In particular, w(x) = y−θ is also a solution, which is consistent with
the fact that θ is determined by the equation only up to sign. The monodromy
around x0 is given by multiplication by e2iπθ . A basis for the solutions of the
reduced equation (E ′) is afforded by v(x) = y

1±θ
2 .

On the other hand, when θ is an integer, say θ = n ∈ N, then there exists a
local coordinate y(x) at x0 in terms of which the projective structure is defined

— either by the chart w = yn (or w = 1
yn ), in which case the monodromy is

trivial,

— or by the chart w(x) = 1
yn + log y, in which case the monodromy is a non-

trivial translation of the form w(e2iπ y) = w(y) + 2iπ.
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The first, exceptional, case is characterized as in the following proposition:

Proposition IX.1.2. — Under the assumptions of Theorem IX.1.1 and with θ = n
(an integer), the following statements are equivalent:

— there exists a local coordinate y for which w = yn is a solution of the
Schwarzian equation;

— every solution w(x) of the Schwarzian equation is single-valued on a punc-
tured neighborhood of x0 — in other words the monodromy is trivial;

— there exists a local coordinate y for which the equation (E) is projectively
equivalent to

d2v

dy2 +
1 − n2

4y2 v = 0;

— there exists a local coordinate y in terms of which(
dy
dx

)2 1 − n2

2y2 + {y, x} = {w, x},

— there exists a local coordinate y in terms of which(
dy
dx

)2 1 − n2

2y2 + {y, x} = {w, x} + O(xn−1).

We shall say that the singularity is apparent in the last case, otherwise loga-
rithmic.

A direct formal calculation using the above characterization yields the follow-
ing list of possibilities up to n = 4 for the singularity of the Schwarzian equation

{w, x} =
1 − n2

2(x − x0)2 +
µ

x − x0
+ µ0 + µ1(x − x0) + µ2(x − x0)2 + O((x − x0)3) :

— n = 0, in which case it is always logarithmic;

— n = 1, in which case it is apparent if and only if µ = 0 (that is, if and only
if it is holomorphic since then λ = 0);

— n = 2, in which case it is apparent if and only if µ2 + 2µ0 = 0;

— n = 3, in which case it is apparent if and only if µ3 + 8µµ0 + 16µ1 = 0;

— n = 4, in which case it is apparent if and only if µ4 + 20µ2µ0 + 36µ2
0 +

96µµ1 + 288µ2 = 0.



IX Examples and further developments 239

The proofs of Theorem IX.1.1 and Proposition IX.1.2 consist in first finding
a formal coordinate change y(x) yielding one of the solutions mentioned in the
statement of the theorem and then establishing its convergence by means of dom-
inant series. (Alternatively, one might simply cite the earlier theorem of Briot–
Bouquet, proved by similar means.) We propose here to simplify our task by
using without proof the fact of the moderate growth of the solutions of (E) (also
established by Fuchs), today considered classical (see for example [Hil1976]).
Idea of the proof. — Since the equation (E) is Fuchsian, its (many-valued) solu-
tions v near x0 have moderate growth at x0, that is, satisfy

|v(x − x0) | ≤ C |x − x0 |
M

for constants C,M > 0 provided certain restrictions are observed — such as, for
instance, confining attention to a sector {−α < arg(x−x0) < α}. The situation will
be similar for every projective chart w = v1/v2: its monodromy around x0 will be
given by a Möbius transformation. To within a change to another projective chart,
we may assume the monodromy to have the form

w(e2iπ x) = aw(x) or w(x) + b

(where we suppose x0 = 0 for the sake of simplicity).
First case: w(e2iπ x) = aw(x). The differential form dw

w is also of moderate
growth at 0, and is well-defined (single-valued) so extends meromorphically to 0.
In fact it must have a simple pole there since otherwise w would have exponential
growth at 0. We may therefore write

dw
w

= θ
dx
x

+ df ,

where θ is the residue of dw
w and f (x) is holomorphic at 0. Integrating, we obtain

w = xθ exp f = yθ with y = x exp f
θ . Hence, finally, {w, y} = 1−θ2

2y2 . (The case
θ = 0 needs to be considered separately.)

Second case: w(e2iπ x) = w(x) + b. Here the differential form dw is mero-
morphic at 0 and we may write

dw = f
dx

xn+1

with f holomorphic at 0. There is here an important point to consider: a logarithm
will appear on integrating if and only if the coefficient of order n of f is non-zero;
this yields non-trivial monodromy. A simple calculation shows that this condition
is determined by the first n coefficients of {w, x}. One then has w = u

xn + β log(x),
with u holomorphic and non-zero, which can be rewritten as w̃ = w

β = 1
yn +

log y, and then by setting y = xv(x), one arrives at the non-zero holomorphic
function v(x) via the Implicit Function Theorem. �
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IX.2. Gauss’s hypergeometric equation and Schwarz’s list

The hypergeometric equation of Gauss, namely

x(x − 1)
d2v

dx2 + ((α + β + 1)x − γ)
dv
dx

+ αβv = 0, (IX.1)

is a family of Fuchsian equations on CP1 in the three parameters α, β, γ (real or
complex) with poles at 0, 1 and∞. By “Fuchsian at infinity” one understands that
with respect to the variable x̃ = 1

x it extends meromorphically to x̃ = 0 with the
singularity Fuchsian. The indices ±θi at the points i = 0,1,∞ are given by

θ0 = γ − 1, θ1 = α + β − γ and θ∞ = α − β. (IX.2)

Every Fuchsian equation onCP1 with poles at 0, 1 and∞ is projectively equivalent
to an equation of this family. To see this, one verifies that the associated reduced
equation must have the form

d2v

dx2 +

(
λ0

x2 +
λ1

(x − 1)2 +
λ∞ − λ0 − λ1

x(x − 1)

)
v = 0 (IX.3)

where λi =
1−θ2

i

4 is the residue1 at the point i = 0,1,∞. In other words, a Fuchsian
projective structure on CP1 with three singularities is completely determined by
its singular points and their residues (or indices).

In [Schw1873], Schwarz revisits his earlier work [Schw1869] on confor-
mal representation (see §IV.1.2) in order to answer the following question of
Gauss: for which values of the parameters (α, β,γ) is the hypergeometric series2
F (α, β,γ, x) an algebraic function of its argument?

In [Schw1873] Schwarz gives a complete answer to this question, determin-
ing the triples (α, β,γ) for which equation (IX.1) admits at least one algebraic
integral. His exhaustive solution involves many technical details, but the most
interesting part of Schwarz’s work, at least from a geometrical point of view, is

1It should be noted that here we are considering the residues of the coefficient of the reduced
equation, which differs by a factor 2 from the second term of the associated Schwarzian equation
considered earlier in §IX.1.

2For γ < Z−, the hypergeometric equation (IX.1) has as a particular solution the hypergeometric
series introduced by Gauss:

F (α, β,γ, x) =

+∞∑
n=0

(α)n (β)n
n!(γ)n

xn ,

with the convention (x)0 = 1 and (x)n := x(x + 1) . . . (x + n − 1). When either α or β is zero or a
negative integer, F (α, β,γ, x) is a polynomial in x. Otherwise the series defining F (α, β,γ, x) has
radius of convergence 1.
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his answer to the simpler question as to when all the solutions of the hypergeo-
metric equation are algebraic functions of their argument. By taking a fair degree
of liberty with Schwarz’s article, which is, to put it mildly, rather elliptical, we
will explain just how he arrived at his famous list. In the course of doing this, he
described the projective monodromy of the hypergeometric equation for all real
triples (α, β,γ) of parameters.

IX.2.1. The algebraicity of solutions and the monodromy of the equation

We first note, as does Schwarz, that the algebraicity of solutions of the hypergeo-
metric equation is directly linked to the finitude of the monodromy group.

Proposition IX.2.1. — Consider a Fuchsian equation

d2v

dx2 + f
dv
dx

+ gv = 0 (E)

such that g(x) has only simple poles. Then the following statements are equiva-
lent:

1. all solutions of (E) are algebraic;

2. the quotient w = v1/v2 of some two independent solutions of (E) is alge-
braic;

3. the projective monodromy of (E) takes its values in a finite subgroup of
PSL(2,C).

In this case all singular points of the equation have rational indices θ, and are
non-logarithmic for integer indices.

This proposition applies directly to the hypergeometric equation (IX.1). Note
that the indices are rational if and only if the parameters α, β and γ are rational.
We shall see in the next section that when one of the indices is an integer the
corresponding singularity of the equation (IX.1) is of logarithmic type and the
monodromy is then infinite.

Proof. — Let v1 and v2 be two linearly independent solutions of equation (IX.1).
If v1 and v2 are algebraic then of course w =

v1
v2

is also. It is then immediate
that w has only a finite number of determinations under analytic continuation, so
that, since the projective monodromy of the equation is just the monodromy of w,
that also is finite.

For the converse, suppose the equation (E) has finite projective monodromy.
Then, in particular, the local projective monodromy around each singularity of the
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equation is finite, which by §IX.1 is equivalent to the rationality of the index θ of
each singularity, with those singularities with integral θ not being of logarithmic
type. Furthermore, the quotient w = v1/v2 of two solutions will have a finite
number of determinations and admit an algebroid continuation (that is, of the form
w = ϕθ , θ ∈ Q) at each singular point (see §IX.1). Hence in view of Riemann’s
work w(x) is an algebraic function of x.

Finally, if w is algebraic, then this will also be the case for

dw
dx

=
v2

dv1
dx − v1

dv2
dx

v2
2

.

Now the Wronskian of two solutions v1 and v2 is given by:

v2
dv1

dx
− v1

dv2

dx
= Ce−

∫
f dx ,

whence it follows that

v2
2 = C

(
dw
dx

)−1

e−
∫

f dx .

Since the equation (E) is Fuchsian (even at infinity), f must have the form

f (x) =
∑
i

λi
x − xi

.

Moreover since g has only simple poles, the residue of f at every singularity xi is
the rational number λi = 1 + θi (see §IX.1). Hence e−

∫
f dx is algebraic, whence

in turn also v2
2 , and thence also v2 and v1 = wv2. �

IX.2.2. Revisiting the article [Schw1873]

In terms of the preparatory work of Schwarz on conformal representation (see
§IV.1), we may paraphrase Theorem IV.1.5 as follows:

Theorem IX.2.2. — If 0 ≤ θ0, θ1, θ∞ ≤ 2 are such that there exists a triangle with
sides arcs of circles and angles πθi , then the quotient w = v1/v2 of two particular
solutions of the associated hypergeometric equation (IX.1) maps the half-plane H
conformally onto the triangle (sending 0, 1 and∞ to its vertices).

In this situation, the projective monodromy of the hypergeometric equa-
tion (IX.1) coincides with the monodromy of the projective coordinate w. Recall
(from §IV.1) that the group thus generated is the subgroup of index 2 of the group
of (anti-)conformal transformations generated by the reflections in the sides of the
triangle.
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Recall that Theorem IX.2.2 is established by means of a direct approach when
0 ≤ θi < 1 and indirectly as a consequence of the Riemann Mapping Theorem
for 0 ≤ θi ≤ 2. In order to reduce the general case of real parameters θi to that of
the statement of the theorem, we employ a group of symmetries become classical
in view of later work of Schlesinger.

IX.2.3. Symmetries

We note once and for all that several hypergeometric equations may yield one and
the same reduced equation, and therefore define the same projective structure. To
be precise, the coefficients α, β and γ of the hypergeometric equation are, via the
formulae (IX.2), mutually uniquely determined by the indices θi , but the latter are
defined only up to sign by the projective structure. For example, the equation with
parameters

(α′, β′, γ′) = (1 + α − γ,1 + β − γ,2 − γ)

is projectively equivalent to the one given by (α, β,γ); it is arrived at via (IX.2)
by means of the change of indices given by

(θ ′0, θ
′
1, θ
′
∞) = (−θ0, θ1, θ∞).

Thus it will be advantageous in the sequel to work in terms of the indices θi as pa-
rameters rather than the classical (α, β,γ). In this connection note also the natural
action of the group Z/2Z×Z/2Z×Z/2Z on the space of triples (θ0, θ1, θ∞) ∈ C3 of
parameters — which is to say on the space of hypergeometric equations — with
quotient the space of projective structures.

The permutation group S3 also acts, via the coordinate changes given by

x ′ = 1 − x and x ′ =
1
x
,

on CP1, inducing the parameter changes

(θ ′0, θ
′
1, θ
′
∞) = (θ1, θ0, θ∞) and (θ∞, θ1, θ0)

respectively. Combining these actions, we obtain a linear action of a group of
order 48 on C3.

Lastly, recall that on setting dy = dv
v one obtains a Riccati equation (see

the beginning of Chapter VIII), with monodromy the same as the projective
monodromy of equation (IX.1). Then on applying the birational transformation
y′ = −

αβ
x (x−1)y , one obtains a new Riccati equation with the same monodromy
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since the change of unknown is regular away from the three poles of the equa-
tion. Next, direct calculation shows that on setting dy′ = dv′

v′ we retrieve the
hypergeometric equation, though now in terms of the parameters

(α′, β′, γ′) = (−α,−β,1 − γ),

whose projective monodromy must be the same as for the parameters (α, β,γ).
This corresponds to the transformation

(θ ′0, θ
′
1, θ
′
∞) = (−θ0 − 1,−θ1 − 1,−θ∞).

(It is important to note, however, that the projective structure has changed.) By
combining this transformation with the earlier ones, one easily sees that the group
generated is an infinite group Γ of affine transformations of the space of parame-
ters, with a normal subgroup of index 6 given by

Γ
′ = {(±θ0 + n0,±θ1 + n1,±θ∞ + n∞) | (n0,n1,n∞) ∈ Z3, n0 + n1 + n∞ ∈ 2Z}.

The quotient Γ/Γ′ is the symmetric group S3 of degree 3.

Proposition IX.2.3. — Two hypergeometric equations have the same projective
monodromy representation if and only if one can be obtained from the other by
the action of the symmetry group Γ′.

Proof. — It suffices to verify that two hypergeometric equations having the same
projective monodromy are sent one to the other by an element of Γ′. The pro-
jective monodromy of equation (IX.1) is given, in terms of the standard sys-
tem of generators of the automorphism group of CP1 \ {0,1,∞}, by a triple
(ϕ0, ϕ1, ϕ∞) ∈ PSL(2,C) satisfying ϕ0ϕ1ϕ∞ = id. The transformation ϕi rep-
resents the local monodromy of the projective structure around the respective
pole i = 0,1,∞ and is conjugate in PSL(2,C) to an affine transformation of
the form w 7→ e2iπθiw + b, b ∈ C. Each transformation ϕi has two preimages
±Mi ∈ SL(2,C); we choose Mi so that trMi = 2 cos(πθi ). We claim that then the
relation ϕ0ϕ1ϕ∞ = Id lifts to M0M1M∞ = −I.

To see this, note first that we must have M0M1M∞ = ±I and the sign of the
right-hand side depends continuously on the parameters θi of the equation; it must
therefore be constant on the space C3 of parameters, so that it suffices to determine
it in a particular case. By applying Theorem IX.2.2 to w = z, for example, the
conformal representation of H viewed as a triangle with all its angles equal to π,
one finds that θi = 1 and Mi = −I for i = 0,1,∞.

If another hypergeometric equation, with parameters θ ′i , has the same pro-
jective monodromy, then up to conjugation we shall have M ′i = ±Mi with
M ′0 M ′1 M ′∞ = −I. Hence in particular tr(M ′i ) = ±tr(Mi ), which is equivalent to
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cos(πθ ′i ) = ± cos(πθi ), in turn equivalent to θ ′i = ±θi + ni , ni ∈ Z; the condition
M ′0 M ′1 M ′∞ = −I now follows since n0 + n1 + n∞ is even. �

By Proposition IX.1.2, when θ0 is an integer, say θ0 = n ∈ N, in order to
determine if the singularity is logarithmic, we need to consider the first n terms of
the Laurent series of the coefficient in the reduced equation (IX.3). A remarkable
consequence of the use of the symmetry group is that there are no such non-
logarithmic singularities:
Proposition IX.2.4. — If for any of the singular points i = 0,1,∞ of the hy-
pergeometric equation the index θi ∈ Z is an integer, then the singularity is of
logarithmic type.
Proof. — By Proposition IX.1.2, the nature of the singularity can be read off the
monodromy; it is therefore invariant under the action of the group Γ, and we may,
in particular, assume i = 0 and θ0 = 0. However in this case the reduced equa-
tion (IX.3) has a double pole at 0 (λ0 = 1

4 ), so that the singularity is logarithmic,
again by Proposition IX.1.2. �

IX.2.4. Triangles and geometries

In order to understand the structure of the group generated by the reflections in
the sides of a triangle, Schwarz was naturally led to consider — though without
putting it in these terms — three geometries. Recall that the Riemann sphere CP1

may be identified with the unit sphere S2 ⊂ R3 via the stereographic projection.
One then defines a circle on CP1 as the image of a plane intersecting S2, as long
as this intersection is neither empty nor consists of just a single point; these cor-
respond to the circles and straight lines of C in the Euclidean metric. The group
PSL(2,C) acts transitively on the circles of CP1.

Spherical geometry. The Euclidean metric R3 induces a metric of constant
curvature +1 on the sphere S2, with isometry group generated by the antipodal
involution σ(z) = − 1

z̄ together with the rotation group

PSU(2,C) = {ϕ ∈ PSL(2,C) | ϕ ◦ σ = σ ◦ ϕ}.

The geodesics are the great circles (the intersections of S2 with planes Π ⊂ R3

passing through the origin). These are just the circles intersecting the equator RP1,
for instance, in a pair of antipodal points.

Euclidean geometry. The Euclidean metric of C ⊂ CP1 has as its geodesics
the straight lines on C, that is, the circles of CP1 passing through the point at
infinity.

Hyperbolic geometry. The Poincaré metric of constant curvature −1 on H has
as geodesics arcs of circles of CP1 orthogonal to the equator.



246 IX Examples and further developments

In what follows, by “triangle” we shall understand a simply connected region
of CP1 with boundary made up of three circular arcs forming a Jordan curve with
distinct vertices. We shall denote the vertices by w0, w1 and w∞, by Ai the circular
arc opposite the vertex wi , and by Ci the complete circle of which Ai is an arc.
Schwarz observes the following trichotomy:
Proposition IX.2.5. — Let C0, C1 and C∞ be three circles on the Riemann
sphere CP1 intersecting pairwise in one or two points. We have the following
three possibilities:

— C∞ intersects C0 ∩ C1, or

— C∞ separates C0∩C1 (that is, C0∩C1 intersects both components ofCP1\C∞
but not C∞), or

— C∞ isolates C0 ∩ C1 (that is, C0 ∩ C1 is wholly contained in one of the
connected components of CP1 \ C∞).

— In each case there exists an element of PSL(2,C) mapping the three cir-
cles Ci simultaneously onto Euclidean, spherical, or hyperbolic geodesics
respectively.

Proof. — In the first case it suffices to send any point of C0∩C1∩C∞ to the point∞.
(Here we do not exclude the possibility that the circles become combined.) In the
second case, we first map the two points of C0 ∩ C1 to 0 and ∞, and then, by
means of appropriate homotheties ϕ(z) = az, send C∞ onto a great circle. In
the third case, assuming that two of the circles, say C0 and C1, intersect in two
distinct points, then once again we map these points to 0 and ∞ and then juggle
homotheties ϕ(z) = az to map the third circle C∞ to one also orthogonal to the
equator; thus all three will have been sent to geodesics relative to the hyperbolic
metric on the unit disc. Finally, if the three circles are pairwise tangential to each
other, then the circle C through the three points of tangency will be orthogonal
to them, and on mapping C to RP1, the circles Ci will become geodesics in the
hyperbolic metric on H. �

In the sequel we shall call:

— a spherical triangle any triangle on the Riemann sphere CP1 bounded by
geodesics relative to the spherical metric;

— a Euclidean triangle any triangle3 on C bounded by straight lines, geodesics
for the Euclidean metric;

3We include here the possibility that one of the vertices is at infinity, with the restriction that
then the two adjacent sides should be parallel. In other words, unbounded Euclidean triangles are
allowed, with angles (0, πθ, π(1 − θ)), 0 ≤ θ ≤ 1, with the case (0,0, π) degenerating to a strip.
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— a hyperbolic triangle any triangle in the half-plane H bounded by geodesics
relative to the hyperbolic metric.

Even though Proposition IX.2.5 tells us that every triangle is equivalent mod-
ulo the action of the group PSL(2,C) to a triangle with geodesic sides relative to
one of the three geometries, one should be careful to note that that triangle itself
may not be any of the three preceding types. To take the hyperbolic case, for in-
stance, it may happen that several triangles are bounded by arcs of the same circles
C0, C1 and C∞, only one of which is contained in H. The same sort of possibility
occurs in the Euclidean case. However, the transformation group generated by
the symmetries in the three circles depends only on those circles and not on the
triangle chosen. Schwarz actually shows that the triangle minimizing the angle
sum θ0 + θ1 + θ∞ is indeed hyperbolic, Euclidean or spherical. Note that he does
not even ask for which 0 ≤ θi ≤ 2 there exists a triangle with angles πθi . We
shall circumvent Schwarz’s arguments and the associated technical difficulties by
appealing to the group of symmetries, as in the following proposition.
Proposition IX.2.6. — Let 0 ≤ θ0 ≤ θ1 ≤ θ∞ ≤ 2. There exists a triangle (with
sides arcs of circles) with angles πθi if and only if:

2θ∞ − 1 < θ0 + θ1 + θ∞ < 2θ0 + 3, (IX.4)

and in this case the triangle is unique modulo the action of PSL(2,C). Further-
more, when θ0 + θ1 + θ∞ < 2θ0 + 1, these conditions are satisfied and the triangle
is equivalent modulo the action of PSL(2,C) to one of the following:

— a hyperbolic triangle if θ0 + θ1 + θ∞ < 1;

— a Euclidean triangle if θ0 + θ1 + θ∞ = 1; and

— a spherical triangle if θ0 + θ1 + θ∞ > 1.

Proof. — Consider a triangle with angles πθi where

0 ≤ θ0, θ1, θ∞ ≤ 2. (IX.5)

Modulo the action of PSL(2,C) we may suppose the vertices are 0, 1 and ∞.
Denote by Ai j the circular arc forming the side of the triangle joining the vertices
i and j. We choose an orientation so that the oriented side A01 goes from 0 to 1
with the interior of the triangle to the left. (Note that A01 is a circular arc —
which in the degenerate case coincides with the interval [0,1] — while the two
other sides A1∞ and A∞0 are straight lines, that is, circles passing through the
point at infinity).
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We now introduce the parameters

−1 < δ0, δ1, δ∞ < 1 (IX.6)

defined as follows: for (i, j, k) = (0,1,∞), (1,∞,0), (∞,0,1), we take πδi to be
the angle at the point j made by the arc Ajk with the real interval I jk ; the sign
is chosen here so that δi > 0 if the arc Ajk lies in the interior of H. We have
excluded the possibility δi = 1 since in this case the arc Ajk would be incident
with the vertex i, and the boundary of the triangle would no longer be a Jordan
curve. Hence the angles of the triangle are given by




θ0 = 1 − δ1 − δ∞

θ1 = 1 − δ∞ − δ0

θ∞ = 1 − δ0 − δ1.

(IX.7)

Since 0 ≤ πθi ≤ 2π, the parameters δi are subject to the constraints

−1 ≤ δ0 + δ1, δ1 + δ∞, δ0 + δ∞ ≤ 1. (IX.8)

Conversely, every triple (δ0, δ1, δ∞) of real numbers satisfying the conditions
(IX.6) and (IX.8) corresponds to a triangle with angles given by (IX.7).
Inverting the system (IX.7), we obtain




δ0 = 1 + θ0 − θ1 − θ∞/2
δ1 = 1 + θ1 − θ0 − θ∞/2
δ∞ = 1 + θ∞ − θ0 − θ1/2

(IX.9)

so that the triangle is determined, modulo the action of PSL(2,C), by its angles.
It remains to express the constraints (IX.6) in terms of the angles of the triangle:

2θ0 − 1,2θ1 − 1,2θ∞ − 1 ≤ θ0 + θ1 + θ∞ ≤ 2θ0 + 3,2θ1 + 3,2θ∞ + 3. (IX.10)

When θ0 ≤ θ1 ≤ θ∞, these constraints reduce to those of (IX.4).
We now turn to the second part of the theorem. The set of triples (θ0, θ1, θ∞)

of parameters defined by the inequalities (IX.5) and (IX.10) is a convex region T
of R3, regarded as the space of all triangles. By Proposition IX.2.5 we can par-
tition T in accordance with the configuration of the three circles bounding each
triangle. The set E of Euclidean configurations, characterized by the property that
these three circles have a common point of intersection, is closed and separates the



IX Examples and further developments 249

(open) components made up of the hyperbolic and spherical types. We now give
the equations for E. If the common point of all three circles lies on the boundary
of the triangle, then it must be a vertex, and this occurs precisely when one of
the δi vanishes, that is, when

θ0 + θ1 + θ∞ = 2θ0 + 1, 2θ1 + 1 or 2θ∞ + 1.

If this is not the case then of course the common point of the three circles is
either in the interior or exterior of the triangle. In the second case we have a
Euclidean triangle with θ0 + θ1 + θ∞ = 1, and in the first case the complement
of the triangle (with angles 2π − πθi ) is Euclidean whence θ0 + θ1 + θ∞ = 5.
It is classical and straightforward (so we omit the details) that the condition
θ0 + θ1 + θ∞ = 1 characterizes Euclidean triangles. On the other hand the open
component θ0 + θ1 + θ∞ < 1 corresponds to hyperbolic triangles. Indeed, if a tri-
angle is hyperbolic, then its hyperbolic area is given by π(1 − θ0 − θ1 − θ∞) > 0;
by continuity, therefore, every other triangle satisfying this inequality is hyper-
bolic. If one now confines oneself to the parametric region T+ determined by
the inequalities θ0 ≤ θ1 ≤ θ∞, then the other component bordering on the plane
θ0 + θ1 + θ∞ = 1 is defined by

1 < θ0 + θ1 + θ∞ < 2θ0 + 1,

in which case the triangles are spherical. �

IX.2.5. Monodromy

The following crucial lemma allows us to bring every hypergeometric equation
into the form of an equation uniformizing a hyperbolic, Euclidean, or spherical
triangle.

Lemma IX.2.7. — Let (θ0, θ1, θ∞) ∈ R3 be a triple of reals. Its orbit under the
symmetry group Γ contains a unique positive ordered triple (θ ′0, θ

′
1, θ
′
∞):

0 ≤ θ ′0 ≤ θ
′
1 ≤ θ

′
∞

minimizing the sum
θ ′0 + θ ′1 + θ ′∞,

which we call a reduced triple. It also satisfies

θ ′0 + θ ′1 + θ ′∞ ≤ 1 + 2θ ′0

with equality only if θ ′0 = 0.
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Proof. — By applying first of all appropriate changes of signs and “even” trans-
lations (n0,n1,n∞) ∈ (2Z)3, one obtains a unique triple (θ0, θ1, θ∞) for which
0 ≤ θi < 1. Then by further applying transformations of the forms

(1 − θ0,1 − θ1, θ∞), (1 − θ0, θ1,1 − θ∞) and (θ0,1 − θ1,1 − θ∞),

one can minimize the sum θ0 + θ1 + θ∞. Note that if one of these triples, the first,
say, has the same sum as (θ0, θ1, θ∞), then θ0 + θ1 = 1, so that these two triples
are permutations of one another. Finally, by applying the symmetric group S3
appropriately one can order the θi so that 0 ≤ θ0 ≤ θ1 ≤ θ∞; the triple thus
obtained is then unique. Now if we had

θ0 + θ1 + θ∞ ≥ 1 + 2θ0,

then the triple (θ ′0, θ
′
1, θ
′
∞) = (θ0,1 − θ1,1 − θ∞) would satisfy

θ ′0 + θ ′1 + θ ′∞ ≤ 1

whence, by the minimality of the sum, the above two inequalities become equali-
ties and θ0 = 0. �

Corollary IX.2.8. — The projective monodromy of a hypergeometric equation
with real coefficients is given by the group generated by the reflections in the sides
of a hyperbolic, parabolic, or elliptic triangle.

More precisely, if G denotes the transformation group generated by the three
reflections, then the image of the projective monodromy representation is the sub-
group of index 2 consisting of the orientation-preserving transformations in G.

Proof. — Consider the hypergeometric equation (IX.1) with the coefficients α,
β and γ assumed real, so that the indices θi defined by (IX.2) are also real. By
Proposition IX.2.3, every other hypergeometric equation obtained via the action
of the group Γ′ has the same monodromy. By the above proposition, we can, for
example, arrange for the indices to satisfy 0 ≤ θ0 ≤ θ1 ≤ θ∞ ≤ 1 + θ0 − θ1.
In particular, Theorem IX.2.2 tells us that the monodromy is generated by the
reflections in the sides of a triangle with angles πθi and Proposition IX.2.6 that
that triangle is hyperbolic, Euclidean, or spherical. �

IX.2.6. The hyperbolic case

When the indices of the hypergeometric equation (IX.1) satisfy

θ0 + θ1 + θ∞ < 1,
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the monodromy is generated, modulo conjugation in PSL(2,C), by the reflections
in the sides of a hyperbolic triangle. In this case the monodromy group is infinite.
This occurs, for example, when there are vertices of the triangle located on the
boundary of H, since on composing the reflections in the two sides incident with
such a vertex, one obtains a parabolic element (of infinite order) of PSL(2,C) (see
§VI.1.6). On the other hand, when the triangle is compact in H, the images of
the triangle obtained by reflecting in the sides can approach arbitrarily closely to
the boundary of H, without ever reaching it. After a finite number of successive
reflections the vertices of the image triangles will always be at non-zero distance
from the boundary of H and the procedure of repeated application of symmetries
can be carried on indefinitely. The projective coordinate w is a transcendental
function, since it is an infinitely multi-valued function of x.

The diagram reproduced below as Figure IX.1, appears in [Schw1873] as an
illustration of the case (θ0, θ1, θ∞) =

(
1
5 ,

1
4 ,

1
2

)
, yielding a tiling of the disc by

triangles.

Figure IX.1: A tiling by the triangles ( π5 ,
π
4 ,

π
2 )

Returning to the example of §VI.2.1, we see that the hypergeometric equation
(IX.1) with parameters (as defined in (IX.2)) of the form

θi =
1
ki
, ki ∈ N∗,

1
k0

+
1
k1

+
1

k∞
< 1,
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must be the uniformizing equation for the sphere with three conical points of an-
gles 2π

ki
. In this case the variable x is a single-valued function of w. Schwarz notes

that this is the only case where this circumstance arises, but without providing any
proof. Recall (see §VI.2.1) that this represents a particular case of Poincaré’s The-
orem VI.1.10. This later prompted the following remark of Poincaré in a letter to
Mittag-Leffler:

In his memoir M. Schwarz has thus stated a result of the greatest importance,
namely the one I quoted. He gives no proof. In the proof of this result there
is a very delicate point, a difficulty of a special kind; I don’t know how M.
Schwarz overcame it.

Unfortunately, however, Schwarz dwells no further on the hyperbolic case.
He does revisit it later on, after the relevant works of Klein and those of Poincaré
on Fuchsian functions appeared. In the second volume of Schwarz’s complete
works, there is an addendum to [Schw1873] in which he reformulates the dif-
ferent cases investigated earlier in terms of hyperbolic, Euclidean, and spherical
geometry, and then evokes, by means of several examples, the major fact that had
eluded him in [Schw1873], namely the property of the “transcendental” functions
w(x) associated with the parameters θi = 1

ki
of uniformizing a great number of

algebraic curves (see §IX.3). We mention by the way that the hypergeometric
equation

x(x − 1)
d2v

dx2 + (2x − 1)
dv
dx

+
v

4
= 0 (IX.11)

uniformizes CP1 \ {0,1,∞}.

IX.2.7. The Euclidean case

When the indices of the hypergeometric equation (IX.1) satisfy

θ0 + θ1 + θ∞ = 1,

the monodromy is generated, modulo conjugation in PSL(2,C), by the reflections
in the sides of a Euclidean triangle, including the case θ∞ = 0 where the corre-
sponding vertex is at the point at infinity and the two adjacent sides are parallel
half-lines. Like Schwarz, we shall not linger over this case. The monodromy is
again infinite for reasons similar to those in the hyperbolic case. Note that once
again the function x(w) is single-valued if and only if the triangle tiles the plane,
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which is the case precisely for the triples of indices(
1
3
,
1
3
,
1
3

)
,

(
1
2
,
1
4
,
1
4

)
,

(
1
2
,
1
3
,
1
6

)
and

(
1
2
,
1
2
,0

)
.

IX.2.8. The spherical case

When the indices of the hypergeometric equation (IX.1) satisfy

0 < θ0 ≤ θ1 ≤ θ∞ ≤ 1

with
1 < θ0 + θ1 + θ∞ < 2θ0 + 1,

the monodromy is generated, modulo conjugation in PSL(2,C), by the reflections
in the sides of a spherical triangle with angles πθi . In this case the projective
monodromy group of the equation is a subgroup of SO(3), the rotation group of
the sphere S2 ⊂ R3. Its finite subgroups are well known to be as follows:

The finite cyclic groups. — For each n ∈ N∗ the rotation w 7→ e
2iπ
n w generates a

cyclic subgroup of order n with quotient x(w) = wn , viewed as a metric space, a
sphere with two conical points both of angle 2π

n .
The dihedral groups. — The group Dn (n ∈ N,n ≥ 2) generated by the involution
w 7→ 1

w and the rotation w 7→ e
2iπ
n w, has order 2n, and is isomorphic as abstract

group to the semi-direct product Z/nZ o Z/2Z. It is a subgroup of index 2 of
the group generated by the reflections in the sides of the spherical triangle with
angles

(
π
2 ,

π
2 ,

π
n

)
. The quotient, given by x(w) =

(1−wn )2

4wn , is a sphere with 3

conical points of angles
(
π,π, 2π

n

)
. The inverse function w(x) is the quotient of

two solutions of the hypergeometric equation with indices
(

1
2 ,

1
2 ,

1
n

)
.

The tetrahedral group. — When one tiles the sphere with 4 triangles with all their
angles equal to 2π

3 , one obtains a spherical tetrahedron. The group of rotations
preserving this tiling has order 12, and is isomorphic as abstract group to the al-
ternating group A4. If one adds the reflections, one obtains a group of order 24
with fundamental region the triangle with angles

(
π
2 ,

π
3 ,

π
3

)
, which defines a sub-

tiling of the above tiling. The group A4 may thus be viewed as a subgroup of
index 2 of the group generated by the reflections in the sides of the latter triangle.
Passage to the quotient by A4 is given, for example4, by

x(w) = −12i
√

3
w2(w4 − 1)2

(w4 − 2i
√

3w2 + 1)3
.

4The formulae given by Klein for the quotient by this group and the following two correspond
to x̃ = 1 − x(w).



254 IX Examples and further developments

The inverse function w(x) is the quotient of two solutions of the hypergeometric
equation with indices (

1
2
,
1
3
,
1
3

)
.

The octahedral group. — This is the group of rotations of order 24, isomorphic
to the symmetric group S4, leaving invariant the octahedral tiling of the sphere
by 8 triangles with all their angles equal to π

2 . One may also view it as the group
fixing the cubic tiling by 6 quadrilaterals of angles 2π

3 . It has index 2 in the group
generated by the reflections in the sides of the triangle with angles

(
π
2 ,

π
3 ,

π
4

)
. The

tiling determined by the latter triangle contains as subtilings both the octahedral
and cubic ones, situated dually with respect to each other5. The passage to the
quotient is given by

x(w) = −
1

108
(w12 − 33w8 − 33w4 + 1)2

w4(w4 − 1)4 .

The inverse function w(x) is the quotient of two solutions of the hypergeometric
equation with indices (

1
2
,
1
3
,
1
4

)
.

The icosahedral group. — This is the group of rotations of order 60, isomorphic
to the alternating group A5, and leaving invariant the icosahedral tiling of the
sphere by 20 triangles with all their angles equal to 2π

5 . It is also the group fixing
the dodecahedral tiling of the sphere by 12 regular pentagons of angle 2π

3 . It has
index 2 in the group generated by the reflections in the sides of the triangle with
angles

(
π
2 ,

π
3 ,

π
5

)
. The passage to the quotient is given by

x(w) =
1

1728
(w30 + 522w25 − 10005w20 − 10005w10 − 522w5 + 1)2

w5(w10 + 11w5 − 1)5 .

The inverse function w(x) is the quotient by two solutions of the hypergeometric
equation with indices (

1
2
,
1
3
,
1
5

)
.

5That is, with a vertex of the first at the center of each face of the second and vice versa.
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IX.2.9. Schwarz’s list

The main result obtained by Schwarz in [Schw1873] is the following:
Theorem IX.2.9. — A hypergeometric equation has all its solutions algebraic if
and only if its parameters are equivalent, via the symmetry group Γ, to one of the
triples in the following table:

Group Reduced triples (θ0, θ1, θ∞)

Dn dihedral
(

1
2 ,

1
2 ,

k
n

)
, with k = 1, . . . ,n − 1

A4 tetrahedral
(

1
2 ,

1
3 ,

1
3

)
or

(
2
3 ,

1
3 ,

1
3

)
S4 octahedral

(
1
2 ,

1
3 ,

1
4

)
or

(
2
3 ,

1
4 ,

1
4

)
A5 icosahedral

(
1
2 ,

1
3 ,

1
5

)
,
(

2
5 ,

1
3 ,

1
3

)
,(

2
3 ,

1
5 ,

1
5

)
,
(

1
2 ,

2
5 ,

1
5

)
,(

3
5 ,

1
3 ,

1
5

)
,
(

2
5 ,

2
5 ,

2
5

)
,(

2
3 ,

1
3 ,

1
5

)
,
(

4
5 ,

1
5 ,

1
5

)
,(

1
2 ,

2
5 ,

1
3

)
or

(
3
5 ,

2
5 ,

1
3

)
.

Idea of the proof. — The method Schwarz proposes (without giving the details)
is as follows. Suppose that the monodromy of a hypergeometric equation is finite
and that its defining triple (θ0, θ1, θ∞) of indices is reduced (see Lemma IX.2.7).
The monodromy group G of the equation is then of index 2 in the group G±

generated by the reflections in the sides of the spherical triangle with angles πθi
(since, as we have seen, the triangle cannot be hyperbolic or Euclidean). Hence the
group G may be identified with one of the finite rotation groups of the sphere S2

described in the preceding subsection.
We take the case of the tetrahedral group A4 by way of illustration, and denote

by A±4 the reflection group of the triangle T0 with angles
(
π
2 ,

π
3 ,

π
3

)
. Thus here

G± = A±4 . In fact G± is always generated by G together with the reflection σ in
any of the sides of the triangle T with angles πθi . Since in the present case G = A4
is a normal subgroup, σ defines, via passage to the quotient, an anti-holomorphic
transformation σ̄ on CP1/A4; furthermore, since σ is an isometry, σ̄ will preserve
the metric structure of the quotient and hence fix the 3 conical points. It follows
that σ̄ is the reflection in the circle passing through those 3 points — the generator
of the action of A±4 on the quotient CP1/A4.

Here we are exploiting the fact that the quotients have 3 conical points, which
is the case for all the finite groups except the cyclic ones, which need to be elimi-
nated by means of a different argument.



256 IX Examples and further developments

Thus the sides of the triangle T furnishing the generators of G± must be con-
tained among the geodesics of the tiling determined by A±4 , so that T is tiled by a
finite number of copies of T0. The angles of T are of the form π

2 , π3 , and 2π
3 (they

are < π and are formed from the angles of T0 by successive reflections). These
constraints give us 3 reduced triples, namely(

1
3
,
1
3
,
2
3

)
,

(
1
2
,
1
3
,
1
3

)
and

(
1
3
,
1
3
,
1
3

)
.

The last is Euclidean but the first two, of areas π
3 and π

6 respectively, conform: the
first is made up of two copies of T0 and the second is T0 itself.

In the case of A5, one finds 15 reduced triples of the indices 1
2 , 1

3 , 2
3 , 1

5 , 2
5 , 3

5
or 4

5 corresponding to spherical triangles. The triple
(

1
2 ,

1
3 ,

1
5

)
corresponds to the

triangle of minimal area π
30 : it is a fundamental region for the action of A±5 . After

a tedious case-by-case analysis, one discovers that of the 15 possibilities, only 10
triangles are tiled by means of the fundamental triangle for A±5 . For example, in
order to eliminate the triple

(
2
5 ,

2
5 ,

3
5

)
, which corresponds to the triangle of max-

imal area 12π
30 , it suffices to note that the corresponding hypergeometric equation

can be obtained by lifting, via the branched covering map x 7→ (2x − 1)2, the
hypergeometric equation corresponding to the reduced triple

(
1
2 ,

2
5 ,

3
15

)
. The mon-

odromy group of the former has at most index 2 in that of the latter, which cannot
be finite since it contains an element of order 15. �

In [Kle1884], Klein reconsiders Schwarz’s work, bringing to it the clarifica-
tion lent by Galois theory. He also re-derives Schwarz’s list by means of a different
approach to finite monodromy via Fuchsian equations:
Theorem IX.2.10. — Consider a Fuchsian equation

d2v

dx2 + f
dv
dx

+ gv = 0 (E)

on CP1, and suppose its projective monodromy group is finite non-Abelian.
Then (E) is projectively equivalent to the lift via a rational map φ(x) of a hy-
pergeometric equation with indices(

1
2
,
1
2
,
1
n

)
,

(
1
2
,
1
3
,
1
3

)
,

(
1
2
,
1
3
,
1
4

)
or

(
1
2
,
1
3
,
1
5

)
.

The proof is remarkable for its simplicity.
Proof. — Consider the quotient w = v1/v2 of two independent solutions of the
equation (E): this is a many-valued local biholomorphism

CP1 \ Sing(E) → CP1
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whose monodromy coincides with one of the finite groups Dn , A4, S4 or A5 de-
scribed above. (Here Sing(E) denotes the singular locus of the equation (E).)
Composing the map w with the map CP1 → CP1/G determined by passage to the
quotient by the corresponding group G, we obtain a single-valued local biholo-
morphism

φ : CP1 \ Sing(E) → CP1/G,

which, by the local investigation of singularities undertaken in §IX.1, extends
continuously to Sing(E); we thus obtain a rational map φ : CP1 → CP1/G ' CP1.
The projective structure induced on CP1 \ Sing(E) by the equation (E) is the lift
via w(x) of the standard projective structure on CP1 and consequently the lift
via φ(x) of the orbifold projective structure on the quotient CP1/G; for each of
the finite groups listed above, the quotient structure has precisely 3 conical points
and is defined by a hypergeometric equation with indices as given in §IX.2.8. �

This statement obviously remains valid (with the same proof) when (E) is a
globalizable Fuchsian equation on any curve. Moreover it allows us to give a very
different proof of Schwarz’s theorem using the techniques of branched coverings.

IX.3. Examples of families of normal equations

In the following subsections we give other examples of normal equations, no-
tably in the smooth (non-orbifold) case. On each occasion where the curve’s
symmetries allow the accessory parameters to be determined, we observe that the
equation in fact reduces to hypergeometric form.

IX.3.1. Heun’s equation and the sphere with 4 points removed

As in the case of the hypergeometric equation, one readily verifies by passing to
the reduced form that every Fuchsian equation on CP1 with poles at 0, 1, λ, and∞
is projectively equivalent to Heun’s equation

d2v

dx2 +

(
α

x
+

β

x − 1
+

γ

x − λ

)
dv
dx

+
δx + c

x(x − 1)(x − λ)
v = 0,

which has indices at its singular points respectively

α − 1, β − 1, γ − 1 and
√

(α + β + γ − 1)2 − 4δ.
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The normal equation associated with the uniformization of CP1 \ {0,1, λ,∞} is
thus projectively equivalent to an equation of the form

d2v

dx2 +

(
1
x

+
1

x − 1
+

1
x − λ

)
dv
dx

+
x + c

x(x − 1)(x − λ)
v = 0.

Here c is what is called an “accessory parameter” of the equation. The uniformiz-
ing function w(x) is given as the quotient w = v1/v2 of two independent solutions
of the equation for a single value of c. In fact, since in the smooth case (see
Proposition VIII.3.17) two uniformizations x : H→ CP1 \ {0,1, λ,∞} will induce
the same projective structure on CP1 \ {0,1, λ,∞} and therefore yield the same
reduced equation

d2v

dx2 +

{
1

4x2 +
1

4(x − 1)2 +
1

4(x − λ)2 +
2c + λ + 1 − x

2x(x − 1)(x − λ)

}
v = 0, (IX.12)

it follows that two distinct values of c yield two distinct reduced equations. It
is not known which c yield a uniformizing equation except in special cases. For
example, when λ = −1, the Möbius transformation ϕ(x) = −x permutes the 4
singular points, and since the uniformizing equation must be left invariant, we
infer that c = 0; thus the equation

d2v

dx2 +

{
1

4x2 +
1

4(x − 1)2 +
1

4(x + 1)2 +
x

2x(x − 1)(x + 1)

}
v = 0

uniformizes CP1 \ {−1,0,1,∞}. Sure enough, this equation corresponds to the
hypergeometric equation (IX.11) via the (unbranched) double cover

x ∈ CP1 \ {−1,0,1,∞} 7→ x2 ∈ CP1 \ {0,1,∞}.

Similarly, when an affine transformation ϕ of order 3 permutes the 3 singular
points 0, 1 and λ, then λ2 − λ + 1 = 0 and c = − λ+1

3 . Once again the uniformiz-
ing equation passes to the quotient under the action of ϕ(x) = 1 − x

λ and one
retrieves the hypergeometric equation uniformizing the orbifold sphere with in-
dices

(
1
3 ,0,0

)
. These are the only two cases where one can determine c by means

of symmetries. For example, although the Möbius transformation ϕ(x) = λ
x also

permutes the 4 singular points — whatever the value of λ — one observes that
every equation (IX.12) is left invariant by ϕ, so that c cannot be determined.
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IX.3.2. The sphere with r + 1 points removed

We now choose r + 1 distinct points of CP1. We assume one of these points
is the point at infinity and denote the others by a1, . . . ,ar . A calculation analo-
gous to that of the preceding example shows that the uniformizing equation for
CP1 \ {a1, . . . ,ar ,∞} has the form

d2v

dx2 +




1
4

r∑
j=1

1
(x − a j )2 −

Q(x)∏r
j=1(x − a j )



v = 0, (IX.13)

where Q is a polynomial of degree r − 2 with leading term r−1
4 xr−2. All the other

coefficients of Q are “accessory parameters”.
When the points a1, . . . ,ar are permuted by an affine rotation ϕ of order r , say

ϕ(x) = µx and ai = µi with µ a primitive r th root of unity, then the invariance
of the uniformizing equation under ϕ yields Q(x) =

(r−1)xr−2

4 . The equation can
also be obtained by lifting the hypergeometric equation with indices

(
1
r ,0,0

)
via

the branched covering map x 7→ xr .

IX.3.3. Lamé’s equation and the torus with a point removed

In the case of a curve X of genus 1, given say in Legendre’s form by

y2 = x(x − 1)(x − λ), λ ∈ C \ {0,1}, (IX.14)

the uniformizing equation of a projective structure with a single orbifold singular-
ity at the point x = ∞ is projectively equivalent to Lamé’s equation

d2v

dx2 +
1
2

(
1
x

+
1

x − 1
+

1
x − λ

)
dv
dx

+
c − n(n+1)

4 x
x(x − 1)(x − λ)

v = 0.

The index of the equation at the singular point (on the curve X) is 2n + 1. This
is a special case of Heun’s equation, except that we are not considering it on CP1,
but rather on its elliptic double cover X . In other words, every projective structure
on X with a Fuchsian singularity of index 2n + 1 at the point at infinity, derives,
via the double cover

X → CP1 ; (x, y) 7→ x,

from a projective structure on CP1 singular at 0, 1, λ and ∞, with respective
indices

1
2
,

1
2
,

1
2

and n +
1
2
.
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The equation becomes non-singular at infinity precisely when n = 0 (or n = −1,
by the symmetry of the equation under n 7→ −n − 1). For n = −1

2 , we obtain
the uniformizing equation for the affine curve X \ {∞} (that is, for the projective
curve X with the point at infinity removed). We are able to determine the ac-
cessory parameter c in the same two cases as were described in §IX.3.1 for CP1

with 4 points removed.
When λ = −1, the Möbius transformation ϕ(x) = −x affords a symmetry of

the curve and thence a uniformizing equation: one finds that c = 0. The map
(x, y) 7→ x2 induces a branched covering X → CP1 of degree 4 and we see that
our Lamé equation is just the lift of the hypergeometric equation with indices(

1
4 ,

1
2 ,0

)
.

Similarly, when λ2−λ+1 = 0, the transformation ϕ(x, y) =
(
1 − x

λ , y
)

defines
an automorphism of the curve X of order 3, which allows one to determine that
c = λ+1

48 . Passing to the quotient by the group of order 6 generated by ϕ and the
elliptic involution, one obtains the hypergeometric equation with indices

(
1
3 ,

1
2 ,0

)
.

IX.3.4. Hyperelliptic curves

A normal equation without singular points on the hyperelliptic curve of genus g

y2 = P(x), P(x) =

2g+1∏
j=1

(x − a j )

is projectively equivalent to a unique equation of the form

d2v

dx2 +
1
2

P′(x)
P(x)

dv
dx

+
A(x)y + B(x)

P(x)
v = 0 (IX.15)

where A and B are polynomials of degrees satisfying deg(A) ≤ g − 3 and
deg(B) = 2g − 1, with B having leading term g(g−1)

4 x2g−1. The absence of a term
of the form y

(x−a j )2 in the coefficient of v is a necessary and sufficient condition
for there to be no logarithmic singularity on the curve at the branch points. One
also verifies that the set of normal equations has dimension 3g − 3 (and that for
g ≤ 2 they depend only on the variable x).

For the highly symmetric pair of curves

y2 = x2g+1 − x and y2 = x2g+1 − 1,

the uniformizing equation is given by

A = 0 and B(x) =
g − 1

8(2g + 1)
d2

dx2
*.
,

2g+1∑
j=1

(x − a j )
+/
-
.
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Once more we have here an avatar of the hypergeometric equation.
In the case

y2 = x2g+1 − 1,

the projection p : x 7→ x2g+1 induces a branched covering (of degree 4g + 2) by
the hyperelliptic curve of genus g of the sphere with three conical points at 0, 1
and∞, of angles 2π

2g+1 , π and π
2g+1 respectively. Figure IX.2 below represents the

case of genus 2. The only uniformizing equation of type (IX.15) on the curve

y2 = x2g+1 − 1

is obtained by lifting the corresponding hypergeometric equation.

Figure IX.2: A branched covering of degree 10

In the case
y2 = x2g+1 − x,

the projection p : x 7→ x2g induces a branched covering (of degree 4g) by the hy-
perelliptic curve of genus g of the sphere with three conical points at 0, 1 and∞ of
angles π

2g , πg and π
2g respectively. The only uniformizing equation of type (IX.15)

on the curve
y2 = x2g+1 − x

is obtained by lifting the corresponding hypergeometric equation.
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IX.3.5. Curves of arbitrary genus

As we mentioned earlier, in the second volume of the complete works of Schwarz,
there is an addendum to [Schw1873], in which he revisits several points in that
article. These were added after the works of Klein and those of Poincaré on Fuch-
sian functions had appeared. Schwarz begins by reformulating the different cases
he had investigated earlier in terms of hyperbolic and spherical geometry. Then
he evokes by means of several examples the major fact that had escaped him when
he wrote the paper [Schw1873], namely the property of hypergeometric equations
with parameters θi = 1

ki
of allowing many algebraic curves to be uniformized.

In fact, provided a curve X admits a covering π : X → CP1 branched precisely
over 0, 1 and ∞ whose fibres are totally ramified of order k0, k1 and k∞ respec-
tively, then the uniformizing equation of the curve X is obtained by lifting the
corresponding hypergeometric equation via π. By way of example Schwarz gives
the following family of curves, of which the above examples are all special cases,
namely the family of curves X with equation

ym = xn (1 − xp )q (IX.16)

where m,n,p,q ∈ N∗. Such a curve X is irreducible if and only if (m,n,q) = 1
(that is, m, n and q are relatively prime).

To see this, note that the projection (x, y) 7→ x induces a branched cover-
ing6 π : X → CP1 of degree m; the monodromy around x = 0 and x = 1, given
respectively by y 7→ e2iπ n

m and y 7→ e2iπ q
m , acts transitively on the fibre pro-

vided (n,q) is relatively prime to m. The smooth part of the curve X is thus
connected, whence X is irreducible.

Composing π with π′ : x 7→ xp , we obtain a branched covering Π : X → CP1

of degree mp ramified precisely over the points 0, 1 and ∞. Above x = 0, the
curve X has exactly (m,n) branches with a local parametrization given by

t 7→
(
t

m
(m,n) , t

n
(m,n) u(t)

)
where u(0) is a (m,n)th root of unity (which depends on the branch chosen).
On each branch Π is given by Π : t 7→ t

mp
(m,n) . Thus the fibre of Π above 0 is

totally ramified to the order mp
(m,n) . Above x = 1 the curve has (m,q) branches

parametrized by t 7→ (1 + t
m

(m,q) , t
q

(m,q) u(t)) on which Π(t) = (1 + t
m

(m,q) )p is
ramified to the order m

(m,q) . The calculation is similar when x ranges over the other
pth roots of unity, and the fibre of Π above 1 is totally ramified to the order m

(m,q) .
An analogous calculation shows that the fibre of Π above ∞ is totally ramified to

6Abusing notation, we understand X as denoting the disjoint union of the Riemann surfaces
associated with the irreducible components of the singular curve.



IX Examples and further developments 263

the order mp
(m,n+pq) and the uniformizing equation of the curve X is the lift via Π

of the hypergeometric equation with indices

(θ0, θ1, θ∞) =

(
(m,n)

pm
,

(m,q)
m

,
(m,n + pq)

pm

)
.

The Riemann–Hurwitz formula gives us the genus of the curve X :

g(X ) = 1 +
pm − (m,n) − p(m,q) − (m,n + pq)

2
,

and when m = 2k + 1 and n = p = q = 1, this gives g(X ) = k. In this way one
obtains explicit uniformizations of curves of any genus.

IX.3.6. Revisiting Klein’s quartic

We now return to Klein’s quartic (see Chapter V), given by the equation

X3Y + Y 3 Z + Z3X = 0

in CP2. The projection

(X : Y : Z ) 7→ (X3Y : Y 3 Z : Z3X )

induces a cyclic covering of order 7 by the curve over

CP1 = {(a : b : c) ∈ CP2 | a + b + c = 0}.

We have (Y/Z )7 = ab2/c3 so that a point (X : Y : Z ) is completely determined by
the point (a : b : c) and the choice of a 7th root Y/Z of ab2/c3. Setting y = Y/Z
and x = −b/c = −Y 3/Z2X , we see that Klein’s quartic is birationally equivalent
to the curve with equation

F (x, y) = y7 − x2(x − 1) = 0,

a particular case of the family of curves considered in the preceding subsection.
The uniformizing equation of this curve is projectively equivalent to the equation

d2v

dx2 +
12
49

x2 − x + 1
x2(x − 1)2 v = 0.

Despite a century of effort most of the known cases of explicit uniformization
generally speaking reduce to the hypergeometric equation. A notable exception
will be considered at the end of the present chapter. The difficulty of the problem
is doubtless to be found in the real analytic nature of the uniformizing section
S 7→ E0(S) (see §IX.5.1).
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IX.4. Uniformization of spheres with 4 points removed

Klein’s quartic was the first example of a Riemann surface of genus at least 2
demonstrating the uniformization theorem. In Chapter VI we explained how
Fuchsian groups allow one to uniformize a whole open set of the moduli space
of curves (with orbifold singularities) of a given genus g. The first example of
a moduli space for which one could prove that all its curves are uniformizable
was that of spheres with 4 points removed. In this case Poincaré was able to put
the method of continuity to work in completely rigorous fashion. In the present
section we shall follow Poincaré in proving a particular case of the uniformization
theorem while staying at a relatively elementary level.

IX.4.1. A space of polygons

We return to the polygon considered in Example VI.2.2 in the case n = 3: here
there are the 4 cycles

{0}, {1}, {∞} and {x, y, z}

(see Figure IX.3 below). The generators of the group Γ are given by

ϕ0(w) =
w

1 + rw
, ϕ1(w) =

(1 + s)w − s
sw + (1 − s)

and ϕ∞(w) = w − t,

where

r =
1
x
−

1
z
, s =

1
z − 1

−
1

y − 1
and t = x − y.

Thus in this case the group Γ is determined by the polygon. The isotropic sub-
group of a point x is generated by ϕ0 ◦ ϕ1 ◦ ϕ∞; this transformation is parabolic if
and only if

x(1 − z) = z(1 − y). (IX.17)

The parameters x, y and z are real and subject to the conditions

x < 0 < z < 1 < y.
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ϕ0

ϕ1

ϕ∞

x yz0 1

Figure IX.3: A fundamental polygon

To see this, note that for every point (x, y) belonging to the parameter space

T := {(x, y) | x < 0 and 1 < y},

the point z = x
1+x−y (defined by the condition (IX.17)) is immediately seen to

satisfy 0 < z < 1: thus the region T of the plane is precisely the space of polygons
of the above form (with 0, 1 and∞ fixed).

The quotient of H by the group Γ is the Riemann sphere with 4 points re-
moved, namely the images of the above cycles, say 0, 1, ∞ and λ.

0 1

∞

λ

Figure IX.4: The quotient (with cuts)

The space of parameters for the quotient is therefore

CP1 \ {0,1,∞} 3 λ.

Following in Poincaré’s footsteps, we shall prove the following theorem by
elementary means.
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Theorem IX.4.1 (Uniformization of spheres with 4 points removed)

The map

Π : T → CP1 \ {0,1,∞} ; (x, y) 7→ λ

is surjective.

We know already that the map Π is continuous (see §VI.3.3). Thus it suffices
to prove that it is both open and closed.

IX.4.2. Openness

We have already proved the openness in §VIII.5.2 in the case of a smooth and
complete curve of genus g > 1. But rather than adapting that proof to the non-
compact case of interest to us here, we use Poincaré’s argument.

The price we have to pay for this is the use of the theorem on the invariance of
the domain, which, although proved by Brouwer7 only a considerable time after
the appearance of the works of Poincaré we are considering here, seems to have
been regarded by Poincaré himself as something obvious: If Π is a continuous
map between two manifolds of the same dimension that is locally injective, then it
is also locally surjective and therefore open.

Now local injectivity can be proved using the same argument as was used in
the proof of Proposition VIII.3.17. If two points (x1, y1) and (x2, y2) of T have the
same image λ, then the corresponding polygons P1 and P2 are the fundamental
regions of two Fuchsian uniformizations

π1, π2 : H→ CP1 \ {0,1, λ,∞}.

Hence π2 = π1 ◦ ϕ for some automorphism ϕ of H and the two groups are conju-
gate. In other words, P1 and P2 are, to within a conjugation (by ϕ), fundamental
regions for the same Fuchsian group. Hence if P1 and P2 are close, then ϕ will be
close to the identity, whence in fact P1 = P2.

7We quote in this connection words of Freudenthal published in the book marking Poincaré’s
centenary:

The principle of continuity and the concept of a topological manifold attracted the
attention of Brouwer, who was then able to create by these means his proof of the
invariance of the domain the indispensable and fundamental methods that Topology
has used from that time till this.
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IX.4.3. Closure

For the proof of Theorem IX.4.1 it remains to show that the map Π is closed.
To this end we consider a sequence of points λn in the image converging to
λ∞ ∈ CP

1 \ {0,1,∞}, with the aim of showing that the latter point is also in the
image of the map. By assumption, there exists a sequence of polygons Pn ∈ T
such that Π(Pn ) = λn . If the sequence Pn has a cluster point P∞ in the interior
of T , then it follows immediately, by the continuity of Π, that there is a subse-
quence of the sequence λn converging to Π(P∞); thus in this case λ∞ = Π(P∞)
is in the image. We therefore need only consider the case where the sequence Pn

approaches the boundary of T .
Suppose for instance that the corresponding coordinate x tends to 0; then z

will also tend to 0 or else y will tend to 1 (these two cases not being exclusive). We
consider in detail the first case. Suppose for the moment that y has a closure point
satisfying 1 < ŷ < ∞. Then the polygon P will approach a simpler polygon P̂
having only the vertices 0, 1, ŷ and ∞. The transformations ϕ1 and ϕ∞ will tend
to the transformations

ϕ̂1(w) =
(1 + ŝ)w − ŝ
ŝw + (1 − ŝ)

and ϕ̂∞(w) = w − t̂

with

ŝ =
ŷ

ŷ − 1
and t = −ŷ

respectively. On the other hand r =
y
x − 1 will diverge and also ϕ0, so we may

ignore this.

Now in order for the group Γ̂ generated by ϕ̂1 and ϕ̂∞ to be Fuchsian, it is
necessary and sufficient that

ϕ̂1 ◦ ϕ̂∞(w) =
w

( ŷ − 1)2 − ŷw

be parabolic, that is, that ŷ = 2, or else

x
z
→ −1.

In this case we can argue as follows.
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x yz0 1

0 1 y′

ϕ1

ϕ∞

Figure IX.5: The limit polygon

As the polygon P approaches the polygon P̂, the tiling determined by P will,
on a disc D(z0,N ) of ever-increasing size, coincide with the tiling determined by
the subgroup Γ̂ generated by ϕ̂1 and ϕ̂∞. Hence for a fixed rational function f the
difference between the corresponding Poincaré series

θ(z) =
∑
ϕ∈Γ

f ◦ ϕ(z) · (ϕ′(z))ν and θ̂(z) =
∑
ϕ∈Γ̂

f ◦ ϕ(z) · (ϕ′(z))ν

will by Lemma VI.4.2 become negligible since each approaches the series θ̂(z)
corresponding to the limit group Γ̂ generated by ϕ̂1 and ϕ̂∞. One then infers the
continuity of the curve and the Fuchsian equation from the continuity of Fuchsian
functions: as P tends to P̂, the invariant λ = Π(P) tends to 0, giving a contradic-
tion.
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In the general case, we can avoid having the sequence of polygons Pn converg-
ing to the point (x, y) = (0,2) of the boundary of T as x tends to 0, by exploiting
the non-uniqueness of the sequence Pn . One may indeed easily construct a se-
quence of polygons by means of successive modifications of a given polygon P0,
with the property that it converges artificially to the boundary of T while the im-
age under Π remains constant. In order to avoid this sort of situation, Poincaré
proposes choosing the sequence Pn (preimages of the λn) as follows. One sets up
an exhaustion function on T , such as, for instance,

F (x, y) = −
x(y − 1)

(1 − x)y(y − 1 − x)
.

It is easy to check that F is positive on T , tends to 0 as one approaches the bound-
ary of T , and has (x, y) = (−1,2) as its only maximum point, where it takes
the value 1

8 . Now for each λn one chooses a point Pn ∈ Π−1(λn ) maximiz-
ing F while remaining as far as possible from the boundary. We shall now verify
that if nonetheless the sequence Pn should approach the boundary of T as x ap-
proaches 0, then the coordinate y must approach 2, yielding a contradiction.

x

y

z
0

1

∞

x̃

ỹ

z̃
0

1

∞

P

ϕ∞
P̃

Figure IX.6: Modification of the polygon

We first consider how one can modify a polygon P without changing its im-
age λ. Thus if we cut the polygon P along the geodesic joining z to ∞ and then
translate the left-hand portion by means of ϕ∞, we obtain a new polygon with
vertices z, 1, y, y − x, y − x + z and∞. We then apply the Möbius transformation
w 7→

w−y+x
w−1 to bring the new cycles {y − x}, {∞} and {1} to {0}, {1} and {∞},
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respectively. We thus obtain a new polygon P̃ and denote by Φ the transformation
induced on T by the modification P 7→ P̃:

Φ : T → T ; (x, y) 7→
(

x
y − 1

,
z − y + x

z − 1
,

z
y − x + z − 1

)
.

In fact Π is not Φ-invariant but rather Φ2-invariant: we have permuted the
cycles and if Π(P) = λ, then Π(Φ(P)) = λ

λ−1 . However, this does not constitute
a difficulty in connection with our present preoccupation since if we know how to
uniformize the curve for λ, then we can also do it for λ

λ−1 .

Proposition IX.4.2 — The above-defined transformationΦ is of infinite order and
without a periodic orbit. A fundamental region for it is given by

D = {x + 2 ≤ y ≤ −x + 2}.

On each orbit F is maximal precisely on D.

Proof. — Consider the function G(x, y) =
2−y
x giving, up to sign, the slope of the

straight line determined by (x, y) ∈ T and the point (0,2) of the boundary. Then
the difference

G ◦ Φ − G = −
x2 + y2 − 2xy + 2x − 4y + 4

x

is positive and bounded below by 2, this bound being attained precisely on the
straight line G(x, y) = −1. It follows immediately that Φ has no fixed points and
traverses the region D defined by −1 ≤ G(x, y) ≤ 1 exactly once (except for the
boundary points). A straightforward though tedious calculation now shows that
F ◦ Φ − F has the same sign on T as x + 2 − y, so that indeed the fundamental
region D maximizes F on each of the orbits of Φ. �

Thus if a sequence Pn , a lift of λn maximizing F, is such that the coordinate x
approaches 0, then the sequence necessarily tends to the point (x, y) = (0,2) of
the boundary of T , whence one obtains a contradiction as before. More generally,
if the sequence Pn approaches the boundary of T , then at least two of the vertices
approach each other arbitrarily closely and after permuting the vertices suitably,
one obtains a contradiction as before.
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IX.4.4. The action of the modular group

At the end of his text Poincaré returns to this example in order to fill in the details,
in particular to give a complete description of the covering T , and we shall now
follow suit. For the sake of precision we introduce two further modifications,
namely Schwarz’s reflection in the geodesic joining z to ∞ on the one hand, and
on the other the reflection in the geodesic joining y to 0.

From this we obtain the following two involutions acting on the space of poly-
gons:

σ1 : T → T ; (x, y, z) 7→ (1 − y,1 − x,1 − z)

and

σ2 : T → T ; (x, y, z) 7→
(

z
z − 1

,
y

y − 1
,

x
x − 1

)
.

The locus of fixed points of σ1 is the half-line x + y = 1. The Schwarz reflec-
tion conjugating P to σ(P) commutes with the corresponding Fuchsian groups
and induces a conjugation of the quotients. Since it fixes∞ and permutes 0 and 1,
this will be the reflection

σ̃1 : CP1 \ {0,1,∞} → CP1 \ {0,1,∞} ; λ 7→ 1 − λ

in the line
{
Re(λ) = 1

2

}
. In other words, the map Π “semi-conjugates” σ1 to σ̃1.

In particular, the fixed points σ1 are sent to the fixed points of σ̃1.
Similarly, the involution σ2 fixes the half-line y = 2 pointwise and is semi-

conjugated, via Π, to the reflection

σ̃2 : CP1 \ {0,1,∞} → CP1 \ {0,1,∞} ; λ 7→
λ

λ − 1

in the circle {|λ − 1| = 1}. The map Π also sends the half-line y = 2 into this
circle. Finally, the map

σ3 := σ2 ◦ Φ : T → T ; (x, y, z) 7→
(

z
1 + x − y

,
x − y + z
1 + x − y

,
x

1 + x − y

)
is also an involution, one fixing the segment y = x + 2 pointwise, and semi-
conjugate to the reflection in the real axis

σ̃3 : CP1 \ {0,1,∞} → CP1 \ {0,1,∞} ; λ 7→ λ.
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T

Π

x = −1

y = 2

(x, y) = (0,1)

σ1

σ2

σ3

σ̃1

σ̃2

σ̃3
0 1

λ

Figure IX.7: The action of the modular group

The action on T of the group H := 〈σ1,σ2,σ3〉 generated by these involutions
is in fact conjugate by means of a homeomorphism to the action on H of the re-
flection group of the hyperbolic triangle with angles 0, π2 and π

3 . The map Π semi-
conjugates this action to that of the reflection group H̃ := 〈σ̃1, σ̃2, σ̃3〉 of order 12
on CP1\{0,1,∞}. The orientation-preserving subgroup H ′ = 〈σ1σ2,σ2σ3,σ1σ3〉

of index 2 in H is conjugate to PSL(2,Z); it satisfies (σ1σ2)2 = (σ1σ3)3 = Id
andΦ = σ2σ3. The subgroup G of index 12 in H leaving Π (or λ) invariant corre-
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sponds to the action on T of the modular group of the sphere with 4 distinguished
points (0, 1, ∞ and λ). It is generated by Φ2 and Ψ2, where Ψ = (σ1σ2)(σ1σ3),
and is conjugate to the subgroup Γ(2) ⊂ PSL(2,Z) of index 6 consisting of the
matrices congruent to I modulo 2. Figure IX.7 shows a fundamental region for G
as well as the subtiling induced by H .

The vertices of the tiling belong to polygons possessing symmetries; they
are sent to the symmetric locations of λ. One thus infers the following explicit
uniformizations (each of which reduces to triangle groups via finite coverings):

T :



(
−1,2, 1

2

)
7→

1+i
√

3
2(

− 1
2 ,

3
2 ,

1
2

)
7→ 1

2 .

In fact the upper shaded tile in Figure IX.7, which has these two points as
vertices, is sent to the lower shaded tile. To see this note first that the fixed points
of σi are sent to those of σ̃i , i = 1,2,3; it therefore suffices to verify that as
one approaches the third vertex (0,2,0) ∈ ∂T of the upper tile, the image under Π
approaches 1 in the lower diagram. This is precisely the argument we used earlier,
and we infer from it that the map Π : T → CP1 \ {0,1,∞} is a Galois covering of
the group G.

IX.5. Posterity

IX.5.1. Uniformization of complex algebraic varieties

By reviewing Poincaré’s version of the uniformization theorem but considering
this time analytic families of algebraic curves and their associated families of
normal equations, Griffiths [Gri1971] was able to prove the following beautiful
theorem, a little-known8 generalization of a weak version of the uniformization
theorem to complex algebraic varieties of any dimension.

Theorem IX.5.1. — Let V be a complex, quasi-projective, smooth and irreducible
algebraic variety of dimension n. For any given point x ∈ V, there exists a neigh-
borhood U of x open in the Zariski topology, such that the universal cover Ũ of U
is homeomorphic to a ball and biholomorphic to a bounded region of Cn .

8We thank J.-B. Bost for bringing this reference to our attention.
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We quote Griffiths:

. . . all known complete proofs [of the uniformization theorem] seem to be
potential-theoretic and offer very little insight into just how to explicitly
locate the Fuchsian D.E.

and he goes on to propose considering an analytic family π : U → B of algebraic
curves (that is, such that each preimage π−1(b) is an algebraic curve Cb). We can
then define an affine holomorphic fibration with base B

E→ B

with fibre Eb the space E(Cb ) of normal equations on the curve Cb . The Fuchsian
equation then determines a section

f : B → E

of the fibration. This section is defined locally as the preimage under the holomor-
phic map MonS : E → RC(S) of the real analytic submanifold RR(S) of the com-
plex manifold RC(S), the space of conjugacy classes of representations of the fun-
damental group π1(S) of the underlying topological surface of Cb (see §VIII.5). It
follows that the map f is real analytic and Griffiths suggests the problem of char-
acterizing f as a solution of an explicit differential equation. Hitchin [Hit1987]
has found an apparently satisfying solution to this problem.

For similar reasons Poincaré’s take on uniformization stimulated wider inter-
est in abstract algebraic geometry, especially from the 1970s and the appearance
of the early work of Ihara [Iha1974] on p-adic uniformization up till the recent
work of Mochizuki [Moc1999]. In conclusion, we return to Poincaré’s treatment
but now over an arbitrary field.

IX.5.2. Algebraic uniformization

Let k be a field of characteristic zero and X an irreducible algebraic curve over k.
Write k (X ) for the function field of X and let x be any particular non-constant
function in k (X ). Denote by R = k (X )[d/dx] the ring of differential operators
on X ; we shall use the notation D = d/dx and v′ = dv/dx. A differential equation
on X is defined to be an equation of the form Lv = 0 with L ∈ R; we shall in what
follows denote such an equation simply by L.

An equivalent formulation consists in regarding a differential equation as a left
R-module M generated by an element v: one sets M = R/RL and v = 1+RL ∈ M .
One can then form the tensor product (M ⊗k (X ) N,v ⊗ w) of two differential
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equations (M,v) and (N,w). The action of D = d/dx on (M ⊗k (X ) N,v ⊗ w) is
given by D(p ⊗ q) = (Dp) ⊗ q + p ⊗ (Dq).

By means of these definitions one can reformulate Poincaré’s treat-
ment of uniformization over the ground field k. A differential equation
Dn + f1Dn−1 + · · · + fn is called Fuchsian if it satisfies the following two condi-
tions:

1. At every point p ∈ X that is neither a pole nor a critical point of x, the
function f i has at worst a pole of order i;

2. When x is replaced by another function, the same holds for those p at which
that new function has neither pole nor critical point.

(Thus the definition does not depend on the choice of x.)
It follows from the proof of Fuchs’s theorem that the class of Fuchsian equa-

tions is closed under tensor products. Finally, two differential equations (M,v)
and (N,w) are called projectively equivalent if there exists a first-order differen-
tial equation (A,a) such that

(M,v) � (N,w) ⊗ (A,a).

Let L = D2 + f D + g be a second-order differential equation. For every
a ∈ k (X ), there exists a unique differential equation of the form D2 + aD + b
projectively equivalent to L. For a = 0, one obtains D2 + (g − f ′/2 − f 2/4) (see
Proposition VIII.3.4). The uniformization theorem may now be formulated as
follows:
Theorem IX.5.2. — For every curve X over C, there exists a unique function
h ∈ C(X ) such that the quotient of two solutions of the differential equation

v′′ + hv = 0 (IX.18)

is the developing map of a hyperbolic structure on X. The equation IX.18) is
Fuchsian.

We then call the equation (IX.18) the uniformizing equation of the curve X .
The following natural question still seems to be open.
Question: Which curves X defined over Q have uniformizing equation also de-
fined over Q?

The answer to this question is known for a particular class of algebraic curves
already uniformized, namely arithmetic surfaces. We recall briefly the construc-
tion of those among such surfaces called rational, introduced by Poincaré for the
first time in [Poin1887], and whose associated Fuchsian groups are historically
the first such groups to have been constructed.
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Let A be a quaternion algebra over Q and suppose that A ⊗ R = M2(R), the
algebra of 2×2 real matrices. Let O be an order in A and O1 the set of its elements
of (reduced) norm 1. Then O1 is a Fuchsian group in SL(2,R) and every rational
arithmetic Fuchsian group in SL(2,R) is commensurable in the wide sense to such
a group. (We recall that two subgroups of a group are called commensurable if
their intersection has finite index in both and commensurable in the wide sense if
one is commensurable to a conjugate of the other.) Two rational arithmetic lattices
in SL(2,R) associated with quaternion algebras A1 and A2 are commensurable in
the wide sense if and only if A1 and A2 are isomorphic [MaRe2003].

The following theorem is a corollary of a theorem of Ihara [Iha1974, Theo-
rem A].

Theorem IX.5.3. — Let Γ ⊂ SL(2,R) be a rational arithmetic Fuchsian group.
Then the curve X = Γ\H and its uniformizing equation are both defined over Q.

Proof. — Let O ⊂ M2(R) be a maximal order in the quaternion algebra A asso-
ciated with the group Γ. By a result of Shimura [Shi1959], O1\H is the moduli
space of Abelian surfaces with multiplication by O; in particular it is defined
over Q. Hence the curve X is defined over Q. It remains to investigate the uni-
formizing equation.

Let g be a rational element of norm 1 in A. The groups Γ and gΓg−1 are
commensurable, and we write X0 = (gΓg−1 ∩ Γ)\H, X1 = X , X2 = gΓg−1\H, and
consider the following diagram of finite Galois coverings:

X0

p1 ↙ ↘ p2 (IX.19)

X1 X2

Let Li (i = 0,1,2) be the uniformizing equation of Xi . The equation L0 is obtained
by lifting the equation Li via pi (i = 1,2).

Since the rational elements of A are dense in A and the only Lie subgroup
of SL(2,R) containing Γ is SL(2,R) itself, we may so choose g that the group
generated by Γ together with g is dense in SL(2,R). We may then characterize
the uniformizing equation L0 as the only Fuchsian equation on X0 invariant under
the groups of the coverings p1 and p2 to within projective equivalence. Indeed,
a Fuchsian equation on X0 invariant under the groups of the coverings p1 and p2
will differ from the uniformizing equation by a holomorphic quadratic differential
q(z)dz2 invariant under a dense subgroup of SL(2,R), which immediately forces
q ≡ 0.
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The coverings p1 and p2 obviously being defined overQ, we infer immediately
that the uniformizing equation of X0 (and therefore that of X) is defined over Q. �

All examples where one has been able to explicitly determine the uniformizing
equation of a curve appertain to the case of the hypergeometric equation and there-
fore to a Fuchsian group commensurable with a triangle group. In the following
subsection we discuss briefly a different example. In connection with both this and
the above question we mention the following conjecture of Krammer [Kram1996],
which if settled would furnish an answer to that question.
Conjecture IX.5.4. — Let X = Γ\H be a curve and L its uniformizing equa-
tion. Then X and L can both be defined over Q if and only if Γ is arithmetic or
commensurable with a triangle group.

IX.5.3. A final example

We conclude the chapter by considering Krammer’s use [Kram1996] of the idea
of the proof of Theorem IX.5.3 in order to calculate explicitly the uniformizing
equation of a particular arithmetic curve. We present here several points of his
remarkable construction by way of comparison with the approaches of Poincaré
and Ihara.

Krammer considers a rational arithmetic cocompact Fuchsian group Γ ⊂

SL(2,R) for which the curve X = Γ\H is isomorphic to CP1 with 4 conical points
of orders 2, 2, 2 and 6. Note that the double cover branched over these 4 points is
an elliptic orbifold curve with a single conical point of order 3.

Thus we start with CP1 with three conical points 0, 1 and a ∈ C \ {0,1} of or-
der 2 and the conical point∞ of order e. The uniformizing equation is projectively
equivalent to the Lamé equation (with P(x) = x(x − 1)(x − a)):

P(x)v′′ +
1
2

P′(x)v′ +
(
C −

n(n + 1)
4

x
)
v = 0, (IX.20)

where n = 1
e −

1
2 and C is an accessory parameter to be determined. In our case

e = 6, we need to determine the point a from the group (or find the algebraic equa-
tion of X) and determine the value of C for which the equation is the uniformizing
equation.

In the spirit of the proof of Theorem IX.5.3, Krammer considers a rational
element g of norm 1 in A, and the corresponding diagram (IX.19). He manages to
choose g so that:

1. the maps p1 and p2 are of degree 3;

2. the curve X0 (like X1 = X or X2) has genus 0;
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3. the element g acts on X0 as an involution; and

4. there exist points x1, . . . , x8 ∈ X0, y1, . . . , y4 ∈ X1 such that p1 ramifies only
above the points yi , and g permutes the xi other than x2 and x4 according
to the following table, where ni denotes the ramification index of p1 at xi .

i 1 2 3 4 5 6 7 8

g(xi ) x8 ? x5 ? x3 x7 x6 x1

ni 1 2 1 2 1 1 1 3

p1(xi ) y1 y1 y2 y2 y3 y3 y3 y4

The combinatorics of this table suffice for the algebraic equations of the maps
p1 : X0 → X1 and g : X0 → X0 to be determined. We may take X0 = X1 = CP1

and assume that x2 = y1 = 0, x4 = y2 = 1 and x8 = y4 = ∞. We begin by
checking that this completely determines p1. Since p1 has degree 3 and fixes the
point 0 with ramification of degree 2 and ∞ with degree-3 ramification, we have
p1(x) = ax2 + bx3. Then since p1(1) = 1 and p′1(1) = 0, we obtain the values of
a and b, whence

p1(x) = 3x2 − 2x3.

We therefore have x1 = 3/2, x3 = −1/2 and g interchanges 3/2 and ∞, −1/2
and x5, and x6 and x7. After translating through 3/2, we obtain an involution
of CP1 interchanging 0 and∞, −2 and x5 − 3/2, and x6 − 3/2 and x7 − 3/2. This
involution must then be of the form x 7→ p/x, whence

−2
(
x5 −

3
2

)
=

(
x6 −

3
2

) (
x7 −

3
2

)
. (IX.21)

Furthermore, since p1(x5) = p1(x6) = p1(x7), the numbers x6 and x7 are solu-
tions in t, different from x5, of the equation p1(t) = p1(x5), that is,

3t2 − 2t3 = 3x2
5 − 2x3

5 ⇔ (t − x5)(3(t + x5) − 2(t2 + t x5 + x2
5)) = 0

⇔ t2 + (t + x5)
(
x5 −

3
2

)
= 0.

Hence

(t − x6)(t − x7) = t2 + (t + x5)
(
x5 −

3
2

)
for all t. Setting t = 3/2 we have in view of (IX.21) that

−2
(
x5 −

3
2

)
=

(
3
2
− x6

) (
3
2
− x7

)
=

(
3
2

)2

+

(
x5 +

3
2

) (
x5 −

3
2

)
= x2

5
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whence
x2

5 + 2x5 − 3 = 0.

Then since x5 , x4 = 1, we have x5 = −3, y3 = p1(−3) = 81, p = −2(x5 − 3/2)
and x6, x7 are roots of 2t2−9t+27 = 0. We assemble these results in the following
table.

i 1 2 3 4 5 6,7 8

xi 3
2 0 − 1

2 1 −3 3
4 (3 ±

√
15) ∞

p1(xi ) 0 0 1 1 81 81 ∞

We now return to equation (IX.20). We have e = 6 and a = 81, and it re-
mains to determine C. It is at this juncture that the additional symmetry given
by g becomes crucial. One demands that the equations obtained by lifting equa-
tion (IX.20) via the maps p1 and p2 = g ◦ p1 are projectively equivalent. With the
help of a computer Krammer verifies that this forces C = −1/2.

Thus Krammer obtains the following theorem, the first example, as far as we
know, not an avatar of the hypergeometric equation. Ihara’s method has been
applied by Elkies in a systematic way to other examples of a similar type (ratio-
nal Shimura curves with 4 conical points) in [Elk1998]. These are, we believe,
the only examples where one knows how to determine the uniformizing equation
explicitly.

Theorem IX.5.5. — The Fuchsian differential equation

P(x)v′′ +
1
2

P′(x)v′ +
x − 9

18
v = 0,

where P(x) = x(x−1)(x−81), is the uniformizing equation of the orbifold elliptic
curve y2 = P(x) with a single conical point of order 3 (at infinity). Its group is
not commensurable with any triangle group.

Proof. — It remains to show only that the group of the equation we have obtained
is not commensurable with any triangle group. This follows from the classification
of the arithmetic triangle groups by Takeuchi [Tak1977], according to which their
quaternion algebras are all different from that considered by Krammer. �
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Chapter X

Uniformization of surfaces
and the equation ∆gu = 2eu − ϕ

Before proceeding to the general uniformization theorem, we wish to present an
alternative approach to the uniformization of algebraic Riemann surfaces, proba-
bly originating with Schwarz. It would seem, indeed, to have been at Schwarz’s
initiative that the Göttingen Royal Society of Sciences decided to draw mathe-
maticians’ attention to the connections between uniformization of surfaces and the
solution of the equation ∆u = keu . Here is an approximate translation of the topic
of the competition proposed by this learned society in 1890 [Got1890, Page IX]:

The problem of representing a region of the plane (that is, a region of the
complex plane or of a Riemann surface extended over the plane) confor-
mally on a portion of a curved surface of constant curvature k is related to
the problem of integrating the partial differential equation

∆u =
∂2u
∂x2 +

∂2u
∂y2 = −2k eu

with prescribed singularities and boundary values.

For this problem one must in the first place be concerned with the boundary
values and the singularities as specified by Riemann in his theory of Abelian
functions.

The Royal Society wishes for a complete answer to the following question:
is it possible to integrate the above differential equation on a given region,
with prescribed boundary values and singularities of a certain type, under
the assumption that the constant k has a negative value [?]

In particular, the Royal Society would like to see the above question an-
swered in the case where the region of the plane under consideration is a
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closed Riemann surface of several sheets, and where the function u admits
only logarithmic singularities1.

Let us explain this a little. Given a biholomorphism f from a region S of
the complex plane to a region of the unit disc D, one can lift the Poincaré metric
of the disc to S, obtaining thereby a metric on S conformally equivalent to the
Euclidean metric, that is, of the form g = eudzdz̄. Furthermore, g is of con-
stant curvature −1, which is equivalent to the function u satisfying the equation
∆u = 2eu . This generalizes to the case where S is a Riemann surface extended
over the plane and f is no longer a global biholomorphism, but the multivalued
inverse of a Fuchsian function. The only difference is that the function u will
then have singularities at the branch points of S. To summarize: if a Riemann
surface S extended over the plane is uniformized by the disc, then this surface
supports a solution of the equation ∆u = 2eu with singularities of a certain type
at the branch points of S. The converse of this statement is equally valid, so that
one can appreciate the interest for the uniformization of surfaces in solving the
equation ∆u = 2eu .

The problem set by the Göttingen Royal Society was very quickly solved: Pi-
card published a solution in 1890 [Pic1890]. However, in this memoir he only
shows the existence of solutions of the equation ∆u = keu (with singularities of
a certain type) in the case of a bounded region of C.2 Moreover he later felt
the need to return several times to his proof in order to clarify certain points: in
1893 [Pic1893c, Pic1893b, Pic1893a], in 1898 [Pic1898], and in 1905 [Pic1900].

1Die Aufgabe der conformen Abbildung eines ebenen Bereiches auf ein Stück einer krummen
Fläche, deren Krümmungmass überall den constanten Werth k besitz, hängt zusammen mit der
Aufgabe, die partielle Differentialgleichung

∆u =
∂2u
∂x2 +

∂2u
∂y2 = −2k eu

vorgeschriebenen Grenz- und Unstetigkeitsbedingungen gemäss zu integriren.
Für diese Aufgabe kommen zunächst die von Riemann in seiner Theorie der Abelschen Functio-

nen angegebenen Grenz- und Unstetigkeitsbedingungen in Betracht.
Die Königliche Gesellschaft wünscht die Frage, ob es möglich ist, die angebene partielle Differ-

entialgleichung für einen gegebenen Bereich unter vorgeschriebenen Grenz- und Unstetigkeitsbe-
dingungen der angegebenen Art zu integriren, vorausgesetzt, dass der Konstanten k negative Werthe
beigelegt werden, vollständig beanwortet zu sehen.

Insbesondere wünscht die Königliche Gesellschaft den Fall der angeführten Aufgabe behandelt
zu sehen, in welchen der betrachtete eben Bereich, eine geschlossene mehrfach zusammenhängende
Riemannsche Fläche ist, während die Function u keine anderen als logarithmische Unstetigkeiten
annehmen soll.

2Picard asserts that the case of a closed Riemann surface presents no additional difficulties, but
— as he himself later recognizes — this is a very significant underestimation of those difficulties.
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It seems to us that the last of these articles does indeed contain a complete and rig-
orous proof of the existence and uniqueness of solutions of the equation ∆u = keu ,
with prescribed singularities, on any closed Riemann surface. For a complete and
very clear exposition of this proof, see [Pic1931, Chapter 4].

In 1898, Poincaré in turn published a memoir in response to the question posed
by the Göttingen Royal Society [Poin1898]3. That memoir is entitled Fuchsian
functions and the equation ∆u = eu ; however, contrary to what this title might
lead one to expect, the memoir does not actually deal with the equation ∆u = eu

— and this is in fact one of the main reasons for its being of interest! For the
equation ∆u = keu only makes sense on a region of C, or on a Riemann surface S
extended over C. In order to link this equation with the problem of the existence
of a uniformizing parameter for a surface S, one therefore needs to choose a mero-
morphic coordinate on S (thus allowing S to be viewed as extended over C), and
look for solutions of the equation with singularities at the branch points and on
the fibre at infinity. In his memoir, Poincaré replaces this equation by another
one which has the effect of limiting the situation to objects defined in an intrinsic
manner on S, namely the equation ∆gu = 2eu − ϕ.

In the present chapter, we shall follow Poincaré’s memoir step by step. Thus,
in particular, we shall have yet another opportunity of coming face to face with
his genius. Earlier we admired Poincaré’s creative power, capable of building ex
nihilo a new mathematical universe populated with Fuchsian groups, automorphic
functions, and projective structures, as well as his almost incredible ability to ma-
nipulate concepts of the most extreme abstraction. But what delights the reader
of the 1898 memoir is, on the contrary, Poincaré’s ability to solve a difficult ana-
lytic problem using only perfectly elementary arguments. In the way he looks for
solutions in the form of series, bounds their terms, employs normal convergence,
etc., one sometimes has the impression one is reading the solution to a problem
from the entrance examination to a large engineering school! Yet by the end of
his memoir, Poincaré has obtained a result — the existence of solutions of the
equation ∆gu = θeu − ϕ and the existence of metrics of prescribed curvature on
compact surfaces — that remains nontrivial a century later! However, if the tech-
niques Poincaré uses are highly classical, on the other hand the fact that he deals
with the intrinsic equation ∆gu = 2eu − ϕ rather than the equation ∆u = 2eu is in
contrast very modern.
Remark X.0.6. — Although it may seem like a historical slight, we have chosen
not to expound the work of Picard, preferring to concentrate on that of Poincaré.
There are several reasons for this. First of all, as we have already mentioned,
Picard expounded his method of solution of the equation ∆u = keu very well in

3In this memoir Poincaré states clearly that the question has already been answered by Picard in
1890 — but then proceeds as if Picard’s solution did not exist.
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his book [Pic1931, Chapter 4]; it would be pointless to reproduce here that classic
work. Secondly, Picard’s proof depends on a judicious use of Schwarz’s alternat-
ing procedure, and this technique plays a major role in Chapters IV and XI; we
have therefore opted to “diversify pleasures” by giving Poincaré’s proof, which
employs somewhat different arguments. Finally, it seemed to us that Poincaré’s
article is more innovative than Picard’s. For, on the one hand Poincaré goes over
to an intrinsic variant of the equation ∆u = keu while Picard continues working
“in terms of a meromorphic coordinate”, and on the other hand Poincaré’s proof
is, unlike that of Picard, purely global in nature4.

X.1. Uniformization of surfaces and the equation ∆gu = 2eu − ϕ

We begin by describing in detail the various ways in which the equation ∆gu =

2eu − ϕ is related to the uniformization of surfaces.

X.1.1. From the existence of a uniformizing parameter to the existence of a
solution of the equation ∆gu = 2eu − ϕg

Let S be a Riemann surface, and assume S is uniformized by the disc; in other
words, assume there exists a biholomorphism F : D→ S̃ (where S̃ is the universal
cover of S). Denote by f : D→ S the map induced by F.

The automorphisms of the covering f : D → S are biholomorphisms of the
disc D, that is, elements of PSL(2,R). Now the elements of PSL(2,R) are not
just automorphisms of the holomorphic structure of D, but also isometries with
respect to the standard hyperbolic metric on D. Hence f defines a Riemannian
metric5 on the surface S, induced from the standard hyperbolic metric on D.

In terms of a single coordinate. — Consider a holomorphic local coordinate
z : Uz → C defined on an open set of S. (Note that the coordinate z need not
be injective on Uz , but simply a holomorphic immersion; typically one chooses a

4In this connection, we quote from Poincaré’s commentary on his own work made at the request
of Mittag-Leffler [Poin1921]:

M. Picard was the first to integrate it [Poincaré is talking here of the equation ∆u = keu ]. The
method I have proposed is entirely different [. . . ]. What characterizes my method and distinguishes
it from M. Picard’s, is that it immediately embraces the whole of the Riemann surface, whereas
M. Picard first considers a restricted region, and then extends his results more and more widely
until they are established for the whole surface.

5In fact, this Riemannian metric, viewed as an intrinsic object on S, does not appear explicitly in
Poincaré’s article. Instead, Poincaré chooses holomorphic local coordinates on S with domains of
definition covering S, and considers in terms of each of these coordinates the formula for the metric
induced from the hyperbolic metric via f .
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meromorphic function z : S → C∪ {∞}, and restricts to an open set Uz where z is
finite-valued with non-vanishing derivative.) On this chart, the pull-back by f −1

of the hyperbolic metric of D can be written as

ghyp = 4

����
df −1

dz

����
2

(1 − | f −1 |2)2 dzdz.

(The inverse f −1 of f is of course multivalued, but the above expression is in-
dependent of the particular choice of preimage.) We see that, in particular, the
metric ghyp is conformally equivalent to the metric dzdz. We denote by euz the
factor of conformality linking these two metrics. In other words, we consider the
function uz : Uz → R defined by

euz = 4

����
df −1

dz

����
2

(
1 − | f −1 |2

)2 .

We then have

uz = log 4 + log
df −1

dz
+ log

d f −1

dz
− 2 log

(
1 − f −1 f −1

)
,

whence, taking into account the fact that f −1 is holomorphic and f −1 anti-
holomorphic, we obtain

∂2uz

∂z∂z
=

2 df −1

dz
d f −1

dz(
1 − f −1 f −1

)2 =
1
2

euz .

Thus the function uz : Uz → R is a solution of the equation

∆zu = 2eu , (X.1)

where ∆z = 4 ∂2

∂z∂z is the Laplace operator associated with the coordinate z.
The intrinsic point of view. — The most important contribution of Poincaré’s
memoir when compared with Picard’s articles is the introduction of an intrin-
sic point of view. To achieve this, he endows the surface S with a Riemannian
metric g compatible with the complex structure6 (see §III.1.1). Thus we shall

6Poincaré calls this an “isotropic metric”. Note that at that time the existence of such metrics
was far from obvious (the notion of a partition of unity not having yet been invented!); Poincaré
says that this follows from work of Schwarz and Klein, and that “the proof is fairly long”. He
also believes he may use anisotropic metrics, but makes a significant mistake at that juncture. (His
expression for the Laplace–Beltrami operator in terms of a local coordinate is valid only for a metric
compatible with the complex structure.)
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be comparing two objects defined globally on S, namely, the Riemannian met-
rics ghyp (induced from the hyperbolic metric on the disc via f ) and g.

For every holomorphic local coordinate z defined on an open set Uz of S, we
consider the function σz : Uz → R satisfying

dzdz = eσzg.

(Thus eσz is the conformality factor linking the metrics dzdz and g).

If z1 and z2 are two holomorphic local charts, then on their region of overlap
we have

∆z2 =
�����
dz1

dz2

�����

2

∆z1 , (X.2)

whence

eσz1∆z1 = eσz2∆z2 .

Hence there exists an operator ∆g : C2(S,R) → C0(S,R) such that, on the domain
of every holomorphic local chart z of S, we have

∆g = eσz∆z .

The operator ∆g is, of course, the Laplace–Beltrami operator associated with the
Riemannian metric g.

We also have that the Riemannian metrics ghyp and g are conformally equiva-
lent. In other words, there exists a function ug : S → R satisfying

ghyp = eugg.

Thus for every holomorphic local coordinate z, we have the two equations ghyp =

euz dzdz = eugg and dzdz = eσzg, whence

ug = uz + σz

on the domain of definition of the coordinate z.
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Hence for every holomorphic local coordinate z, we have:

∆gug = ∆guz + ∆gσz

= eσz∆zuz + ∆gσz

= 2eσz euz + ∆gσz

= 2eug + ∆gσz .

This calculation shows that the quantity ∆gσz is independent of the choice
of holomorphic local coordinate z. In other words, there exists a function
ϕg : S → R such that, on the domain of every holomorphic local chart z, we have:

ϕg = −
1
2
∆gσz = −

1
2

eσz∆zσz .

(The reason for the factor 1
2 will be apparent later on.) Most significantly, the

above calculation shows that the function ug : S → R is a solution of the equation

∆gu = 2eu − 2ϕg . (X.3)

To summarize, Poincaré has to this point established the following
Proposition X.1.1. — Let S be a Riemann surface endowed with a Rieman-
nian metric g compatible with its complex structure, and consider the func-
tion ϕg : S → R such that for every holomorphic local coordinate z, one has
dzdz = eσzg and ϕg = − 1

2∆gσz on the domain of definition of z. Then if the
surface S is uniformized by the disc, equation (X.3) admits a solution u : S → R.

X.1.2. How to obtain a uniformizing parameter from a solution of the
equation ∆gu = 2eu − 2ϕg

Consider again a Riemann surface S endowed with a Riemannian metric g com-
patible with its complex structure. Supposing now that this surface is uniformized
by the disc, let f : D → S be a uniformization. (Recall that f is unique modulo
composition with an element of PSL(2,R).) We also assume that the equation
∆gu = 2eu − 2ϕg has a unique solution u0 : S → R. The aim of this section is to
explain — à la Poincaré — how one can retrieve the uniformizing parametriza-
tion f from u0 and g.

Choose a meromorphic function z0 : S → C ∪ {∞}, and denote by Uz0 the
region of S where z0 is finite and a local diffeomorphism. Write σz0 : Uz0 → R

for the function defined by dz0dz0 = eσz0g. We know (from Corollary VIII.3.7)
that the (multivalued) inverse of the function f is expressible as a quotient

f −1 =
v2

v1
.
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Here v1 and v2 are two multivalued functions from S to C forming a basis for the
solutions of a Fuchsian equation, which, in terms of the coordinate z0, has the
form

d2v

dz2
0

= σv, (X.4)

where the function σ : S → C∪ {∞} is determined uniquely. (It is the Schwarzian
derivative of f — but this will not be of particular import here.) To within com-
position with an element of PSL(2,R), the function f is independent of the choice
of the basis (v1,v2) of solutions. Thus finding f reduces to finding the function σ.

In terms of each holomorphic local coordinate z defined on an open set Uz

of S, we consider functions uz , σz and ug defined as in §X.1.1. We showed above
that the function ug is a solution of the equation (X.3). Since by assumption u0 is
the unique solution of that equation, we have u0 = ug . Hence

eu0−σz0 = 4

����
df −1

dz0

����
2

(
1 − | f −1 |2

)2 .

In view of the equality f −1 = v2/v1, it then follows that

e−
1
2 (u0−σz0 ) =

1
2

�����
df −1

dz0

�����

−1 (
1 − | f −1 |2

)
=

1
2

�������

dv2
dz0

v1 −
dv1
dz0

v2

v2
1

�������

−1

*
,
1 −

�����
v2

v1

�����

2
+
-

=
(|v1 |

2 − |v2 |
2)

2
(
dv2
dz0

v1 −
dv1
dz0

v2
) .

The denominator of the last expression is twice the Wronskian of the basis (v1,v2)
of solutions. This Wronskian is constant (since the equation (X.4) has no term
in dv

dz0
) and, since the basis (v1,v2) for the solutions can be chosen arbitrarily, we

may suppose it equal to 1
2 . This assumed, we have

e−
1
2 (u0−σz0 ) = |v1 |

2 − |v2 |
2 = v1v1 − v2v2.

Since v1 and v2 are anti-holomorphic, it follows that

d2e−
1
2 (u0−σz0 )

dz2
0

=
d2v1

dz2
0

v1 −
d2v2

dz2
0

v2,
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and then equation (X.4) yields

d2e−
1
2 (u0−σz0 )

dz2
0

= σe−
1
2 (u0−σz0 ),

whence

σ = −
1
2

d2(u0 − σz0 )

dz2
0

+
1
4

(
d(u0 − σz0 )

dz0

)2

.

Thus if we know the unique solution u0 of equation (X.3) and the conformal
factor σz0 distinguishing the metric g from the metric dz0dz0, we can find the
Fuchsian equation giving the uniformizing map f .

In conclusion, if one knows how to solve the equation (X.3) on the surface S,
then one can find the unique function admissible as a candidate for a uniformizing
map for S — but we do not at this stage know how to prove that this unique
candidate function does actually uniformize S.

Of course, the precise meaning of the phrase “find the unique function ad-
missible as a candidate for a uniformizing map for S” depends on the sense one
gives the phrase “solve the equation (X.3)”. Note however, that calculation by
any means whatever of a numerical approximation to the unique solution of the
equation (X.3) would allow us to infer, via the above formulae, a corresponding
approximation to the uniformizing map.

X.1.3. Why the existence of a solution of the equation ∆gu = 2eu − 2ϕg
implies the uniformization theorem

We shall now explain why, for a given compact Riemann surface S, the existence
of a solution of equation (X.3) for an appropriate metric g on S entails the uni-
formizability of S by the disc. There is no explicit mention of this aspect of the
problem in the announcement of the competition by the Göttingen Royal Soci-
ety of Sciences, nor in Picard’s memoirs7. On the other hand, although Poincaré
seems to be fully conscious of the need to establish this connection8, he never-
theless does not trouble himself to do so. It may be that in fact he is less in-
terested in such a general abstract result as the existence of uniformizing maps,
than in the possibility of constructing them explicitly. One should not forget that
Poincaré considers that he and Klein had proved fifteen years before, by means

7Picard simply asserts repeatedly that the solution of ∆u = eu is of capital importance for the
theory of Fuchsian functions.

8In the introduction to his memoir, he writes:
The integration of this equation would indeed lead directly to a solution of the problem of interest

to us [that of establishing that there always exists a Fuchsian equation, and therefore a uniformizing
map].
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of the method of continuity, that algebraic Riemann surfaces are uniformizable9;
however, he emphasizes that the method of continuity is “extremely complicated
and of an indirect character”, never leading to the construction of an explicit uni-
formizing map for a particular given surface.

We begin by interpreting equation (X.3) in terms of curvature. As before, let S
be a Riemann surface, g a Riemannian metric on S compatible with its complex
structure, and ϕg : S → R the function defined at the end of §X.1.1.

Note first that, if D is an open region of C and u : D → R a function of
class C2, then the Gaussian curvature of the Riemannian metric eudzdz on D is
given by

−
1
2

e−u∆zu.

(This follows by means of direct calculation; see for example [Jos2002].) It fol-
lows that, if z is a holomorphic local coordinate defined on an open set Uz of S,
and uz : Uz → R a function of class C2, then the function uz is a solution of the
equation

∆zu = 2eu

if and only if the Gaussian curvature relative to the metric euz dzdz has the con-
stant value −1. On the open set Uz we may write g = e−σz dzdz, whence we have
−ϕg = 1

2 eσz∆zσz (see §X.1.1). This formula shows that −ϕg is none other than
the Gaussian curvature with respect to the metric g.

Now let u : S → R be a function of class C2. For every holomorphic local
coordinate z defined on an open set Uz of S, we denote by uz : Uz → R the
function defined by uz = u − σz . By repeating the calculations in §X.1.1, one
easily verifies that u is a solution of the equation (X.3) if and only if, for every
holomorphic local chart z, the function uz is a solution of the equation (X.1).
Furthermore, for every holomorphic local chart z, we have, on the domain of that
chart, eug = euz dzdz.

This argument establishes the following
Proposition X.1.2 — A function u : S → R of class C2 is a solution of the
equation (X.3) if and only if the Gaussian curvature with respect to the metric eug
has the constant value −1.

This interpretation in terms of curvature allows us to show that the uniformiza-
tion theorem for algebraic Riemann surfaces follows from the existence of solu-
tions of equation (X.3):

9Excerpt from the introduction to [Poin1898]:
The first proof that was given was based on what is called the method of continuity. M. Klein and

I arrived at this method independently. In my Memoir on groups of linear equations [. . . ] I gave
a complete exposition of the method; I have nothing further to add to it. I feel I have brought that
method to perfectly rigorous form.
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Proposition X.1.3. — Let S be a compact Riemann surface of negative Euler
characteristic, endowed with a Riemannian metric g compatible with its complex
structure. Then if the equation

∆gu = 2eu − ϕ

has a solution for every function ϕ : S → R with positive integral, the universal
covering space of S is biholomorphic to the disc.

Proof. — Let ϕg : S → R denote the negative of the Gaussian curvature with
respect to the metric g. By the Gauss–Bonnet theorem, since S is assumed to have
negative Euler characteristic, the integral of ϕg will be positive. The equation
∆gu = 2eu − 2ϕg therefore has a solution u : S → R. By Proposition X.1.2,
the Gaussian curvature with respect to the metric eug will then have constant
value −1. By the Hopf–Rinow theorem, this metric is complete. The universal
cover of S endowed with the lift of the Riemannian metric eug is thus a simply
connected surface equipped with a Riemannian metric of constant curvature −1.
However, to within an isometry there is only one such surface: the disc D with
the standard hyperbolic metric. Thus the universal cover of S endowed with the
lift of the metric eug is isometric to the disc with the hyperbolic metric, and we
conclude that the universal cover of S is biholomorphic to the disc D (since the
metric eug is compatible with the complex structure of S). �

X.2. How Poincaré solved the equation ∆gu = θeu − ϕ

In what follows, we consider a compact algebraic Riemann surface10 S. Given a
Riemannian metric g on S compatible with its complex structure, we wish to solve
the equation

∆gu = θeu − ϕ, (X.5)

where θ : S → R is a given positive function (for example, we may take θ to be
of constant value 2 if our goal is just to uniformize the surface S) and ϕ : S → R
is a given function with positive integral.

Poincaré’s strategy for solving the equation (X.5) may be summarized as fol-
lows. One begins with an equation that one can integrate explicitly. Then one wins
territory by attempting to integrate “neighboring” equations by successive devel-
opments in series, always approaching little by little the equation (X.5). Here in
greater detail is how he proceeds:

10Recall that every compact Riemann surface is algebraic. The algebraicity of S allows one to
construct explicitly meromorphic 1-forms with prescribed poles on S, and Poincaré makes use of
this in his proof.
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1. First of all one considers the equation ∆gu = −ϕ.

(a) The surface S being assumed algebraic, one knows how to find (ex-
plicitly) meromorphic functions with prescribed poles on S. The real
parts of such functions then furnish harmonic functions with pre-
scribed singularities on S.

(b) One next shows that one can solve the Poisson equation ∆gu = −ϕ for
every function ϕ with integral zero. In order to do this one constructs
a Green’s function using the harmonic functions found earlier; the
solutions of the equation ∆gu = −ϕ are then given in the form of an
integral involving ϕ and that Green’s function.

2. Next one considers the equation ∆gu = ηu − ϕ.

(a) Here one shows first that the equation ∆gu = ληu − ϕ can be inte-
grated for all given functions η and ϕ provided the real number λ is
sufficiently small. This is done by constructing a putative solution of
the equation formally as a series u0 + λu1 + λ2u2 + · · · , then showing
that the ui are solutions of Poisson equations (which one knows how
to solve from Step 1), and, finally, proving the series converges for λ
sufficiently small.

(b) Next one shows (via a series development again) that if one can inte-
grate the equation ∆gu = λ0ηu − ϕ for some λ0, then one can also
integrate the equation ∆gu = (λ0 + λ)ηu − ϕ provided λ < λ0.

(c) From the two preceding steps , one easily infers that one can integrate
the equation ∆gu = ληu− ϕ for all λ > 0. Thus, in particular, one can
integrate the equation ∆gu = ηu − ϕ.

3. Finally, one considers the equation ∆gu = θeu − ϕ.

(a) One first observes that the equation ∆gu = θeu − ϕ has an obvious
solution (namely, a constant function) if ϕ is proportional to θ.

(b) Then by means of yet another series development one shows that if
the equation ∆gu = θeu − ϕ0 can be integrated for some function ϕ0,
then the equation ∆gu = θeu − (ϕ0 + λψ) can be integrated for every
function ψ provided only that λ is sufficiently small.

(c) From the preceding two steps, one infers that one can integrate the
equation ∆gu = θeu − ϕ provided the function ϕ is everywhere posi-
tive.
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(d) It now remains only to resort to an elementary trick to pass from the
case where the function ϕ is everywhere positive, to that where it is
positive only on average.

That may all appear rather laborious, but one should not forget that Poincaré
did not have available to him the beautiful modern apparatus of distributions,
Sobolev injections, weak compactness, elliptic regularity, etc. In fact, for each
equation he examines, Poincaré exhibits a solution, be it in the form of a convo-
lution product with a Green’s function or a convergent series each of whose terms
is a solution of a “simpler” equation — that is, one that he already knows how to
integrate. Poincaré’s article having been forgotten, it took till 1971 before finally a
proof was published, by M. S. Berger, of the existence of a solution of the equation
∆gu = θeu − ϕ, in which a large amount modern machinery was brought to bear,
namely the aforementioned distributions, Sobolev injections, weak compactness,
and elliptic regularity! (See the Box at the end of this chapter.)

Remark X.2.1. — It is perhaps of some interest to note the similarity between the
strategy Poincaré adopts here, and that he employed 15 years earlier in his 1884
article on the uniformization of algebraic surfaces using the method of continu-
ity (see Chapter VIII). Here, in order to integrate the equation ∆gu = θeu − ϕ,
Poincaré starts from a partial differential equation for which he has an explicit
solution and, deforming it, proceeds via equations that he can integrate until he at
last reaches the equation ∆gu = θeu −ϕ. Similarly, in his article using the method
of continuity, starting from an algebraic surface that he can uniformize explicitly,
he traces a path through the appropriate moduli space of algebraic surfaces, pro-
ceeding via surfaces that he successively discovers how to uniformize, until he
finally arrives at the algebraic surface of primary interest.

We shall now trace the sequence of steps whereby Poincaré constructs the
unique solution of the equation ∆gu = θeu − ϕ.

X.2.1. The solution of the equation ∆gu = −ϕ

The first step in Poincaré’s construction consists in the integration of the Poisson
equation

∆gu = −ϕ, (X.6)

where ϕ : S → R is a given function of class C1 and u : S → R is the unknown
function. Poincaré begins with the remark that, since the surface S is closed,
Stokes’ theorem implies that the integral of ∆gu over S is zero for every function
u : S → R (of class C2); hence for the equation (X.6) to have a solution, it is
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necessary that the integral of the function ϕ be zero. His next step is to show that
this necessary condition is also sufficient.

Proposition X.2.2. — For every function ϕ : S → R of class C1 and vanishing
integral over S, one can construct a solution of class C2 of the equation

∆gu = −ϕ.

To construct such a solution Poincaré’s tactic is to “introduce a function that
will play the same role as a Green’s function in potential theory”. In other words,
by analogy with the situation in Euclidean space, one seeks a Green’s function
G : S × S → R such that, for every function ϕ : S → R of class C1 and zero
integral, the function u : S → R given by the formula

u(p) =

∫
S

G(p,q)ϕ(q) dvg (q)

is a solution of the equation (X.6).
In 2-dimensional Euclidean space, the solutions of the Poisson equation are

given by this formula with G(p,q) = log(‖p − q‖). On the surface S the most
natural approach would therefore seem to be to use a function G with the property
that for all q ∈ S, the map p 7→ G(p,q) is harmonic on S \ {q} with a logarithmic
singularity at q. Unfortunately, it has long been known — at least since Riemann
— that a compact surface does not support a harmonic function with a single
logarithmic singularity. One is therefore compelled to work with a function G
whose partial function p 7→ G(p,q) has two logarithmic singularities: one at the
point q and the other at a different (fixed) point q0.

Proof of Proposition X.2.2. — We assume we have a fixed function ϕ : S → R of
class C1 and vanishing integral.

Let p0 be a particular point of S. We will construct a function up0 : S → R
representing a solution of the Poisson equation (X.6) vanishing at the point p0.
One should keep in mind that all other solutions of equation (X.6) are obtained
from u0 by adding an arbitrary constant, since the difference between any two
(putative) solutions of (X.6) is a harmonic function on S, and the only harmonic
functions defined on a closed surface are constant functions.

Let q0 be a point of S distinct from p0. For every point q ∈ S \ {q0}, consider
the unique meromorphic 1-form ωq0,q on S satisfying the following conditions
(see Proposition II.2.8):

— firstly, ωq0,q should have two simple poles at the points q0 et q, of residues
−1 and +1 respectively, and no other poles;
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— secondly, the real part of every period of ωq0,q should vanish, or, in other
words, the real part of the integral of ωq0,q along any closed curve on S
should vanish.

We then consider the function Gp0,q0 defined on the set of pairs (p,q) ∈ (S\{q0})2

with p , q, by the formula

Gp0,q0 (p,q) =
1

2π
Re *

,

∫
γp0,p

ωq0,q
+
-
,

where γp0,p is any path from the point p0 to the point p avoiding the points q0
and q. Note that the quantity Gp0,q0 (p,q) is independent of the choice of the path
γp0,p in view of the condition that the real parts of the periods of ωq0,q are zero,
and the fact that the integral of a 1-form around a small closed curve encircling a
simple pole with real residue is purely imaginary. Proposition II.2.9 implies that
this quantity has the following properties:

— the function (p,q) 7→ Gp0,q0 (p,q) is analytic in both variables and har-
monic in the variable p on the set {(p,q) | p , q0 , p , q};

— for every open set U of S\{q0} with compact closure and every holomorphic
local coordinate z on U , one can express Gp0,q0 (p,q) at each (p,q) ∈ U2,
p , q, in terms of the coordinate z, in the form

Gp0,q0 (p,q) = H (p,q) +
1

2π
log |p − q |, (X.7)

where H is a function defined on U ×U (including the diagonal), analytic
in both variables and harmonic in the variable p.

We can now define a function up0 : S \ {q0} → R, a candidate for a solution of the
equation (X.6), by

up0 (p) :=
∫
S

Gp0,q0 (p,q)ϕ(q) dvg (q). (X.8)

That this integral converges is immediate in view of the following facts: the sur-
face S is compact, the function q 7→ ϕ(q) is of class C1 on S, the function
q 7→ Gp0,q0 (p,q) is continuous on S \ {p}, and the singularity of this function
at p is logarithmic.

The integral in (X.8) above makes no sense when p = q0; however, we shall
show later on that the function up0 defined in (X.8) extends to q0. Moreover the
extension is independent of the choice of the point q0.
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We now need to show that the function up0 so defined satisfies equation (X.6).
To this end, we consider an open set U of S \ {q0} with compact closure and
sufficiently small for there to exist a holomorphic local coordinate z on it. Then
for each p ∈ U, we decompose up0 (p) as a sum of three terms:

up0 (p) =

∫
S\U

Gp0,q0 (p,q)ϕ(q) dvg (q) +

∫
U

H (p,q)ϕ(q) dvg (q)

+
1

2π

∫
U

log |p − q |ϕ(q) dvg (q),

where H is as in equation (X.7). The first term here is an analytic and har-
monic function of the variable p; this follows from the fact that the function
(p,q) 7→ Gp0,q0 (p,q) is analytic in both variables and harmonic in the variable
p on U × (S \U). Hence the function p 7→

∫
S\U

Gp0,q0 (p,q)ϕ(q) dvg (q) is ana-
lytic on U, and for every p ∈ U, we have

∆g

(∫
S\U

Gp0,q0 (p,q)ϕ(q) dvg (q)
)

=

∫
S\U

∆gGp0,q0 (p,q)ϕ(q) dvg (q) = 0.

Similarly, the second term in the above decomposition of u0(p) is an analytic and
harmonic function of the variable p (since the map (p,q) 7→ H (p,q) is analytic in
both variables and harmonic in the variable p on U × U). It remains to examine
the third term of the decomposition of u0(p). A standard calculation in R2 shows
that, for ϕ of class C1, the function p 7→

∫
U

log |p − q |ϕ(q) dvg (q) is of class C2

and satisfies

∆z

(
1

2π

∫
U

log |p − q |ϕ(q) dzdz(q)
)

= −ϕ(p)

for all p ∈ U , where ∆z = ∂2

∂z∂z =
dvg
dzdz∆g . It follows that for all p ∈ D, we have

∆g

(
1

2π

∫
U

log |p − q |ϕ(q) dvg (q)
)

= −ϕ(p).

We have thus shown that up0 is of class C2 on U and satisfies the equation

∆gup0 (p) = −ϕ(p) (X.9)

for all p ∈ U. In view of the condition that U have compact closure in S \ {q0}

and be sufficiently small, we infer that up0 is of class C2 on S \ {q0} and satisfies
equation (X.9) for all p ∈ S \ {q0}.

It remains to show that the function up0 defined by (X.8) extends continuously
to q0, and that the resulting extended function has class C2 (in which case it will
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automatically satisfy equation (X.6) also at q0). For this, it suffices to repeat the
construction of the function up0 but now with the point q0 replaced by a differ-
ent point q̂0 (still distinct from p0). The key observation here is the following
one: for every point q ∈ S \ {q0, q̂0}, the uniqueness of the 1-form ωq̂0,q (see
Proposition II.2.8) implies that

ωq̂0,q = ωq0,q + ωq̂0,q0 .

Hence for every pair of distinct points p,q ∈ S \ {q0, q̂0}, we shall have

Gp0, q̂0 (p,q) = Gp0,q0 (p,q) + Gp0, q̂0 (p,q0),

and then, finally, for all p ∈ S \ {q0, q̂0}, we obtain∫
S\{p }

Gp0, q̂0 (p,q)ϕ(q) dvg (q)

=

∫
S\{p }

Gp0,q0 (p,q)ϕ(q) dvg (q) + Gp0, q̂0 (p,q0)
∫
S\{p }

ϕ(q) dvg (q)

=

∫
S\{p }

Gp0,q0 (p,q)ϕ(q) dvg (q),

where in the last equality we have used the fact that ϕ has vanishing integral. We
thus see that if we replace the point q0 by any other point q̂0 in the definition
of up0 , we again obtain a function defined and of class C2 on S \ {q̂0} coinciding
with up0 on S \ {q0, q̂0}. Hence the function up0 defined by (X.8) extends by
continuity to q0, is of class C2, and satisfies equation (X.6). �

Remark X.2.3. — If the function ϕ is of class Ck (with k ≥ 1), then every solu-
tion of equation (X.6) will be of class Ck+1. To see this, it suffices to imitate the
proof of Proposition X.2.2 above, having noted beforehand that, if ϕ has class Ck ,
then the function p 7→

∫
U

log |p − q |ϕ(q) dvg (q) will have class Ck+1.
It is also useful to note that if the function ϕ is merely bounded, then the func-

tion up0 : p 7→
∫
S

Gp0,q0 (p,q)ϕ(q) dvg (q) will be well-defined and of class C1.

From the integral formula (X.8) for the solution of equation (X.6) vanishing
at p0, we can infer an upper bound on the norm of that solution in terms of the
norm of the function ϕ:

Addendum X.2.4. — Let p0 ∈ S be any particular point. There exists a constant
β > 0 such that, for every function ϕ : S → R of class C1 and vanishing integral,
one has

‖up0,ϕ ‖∞ ≤ β‖ϕ‖∞ and ‖~∇gup0,ϕ ‖∞ ≤ β‖ϕ‖∞,

where up0,ϕ is the unique solution of equation (X.6) vanishing at p0.
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Proof. — Choose a point q0 ∈ S different from p0, and a neighborhood U0 of q0.
By the proof of Proposition X.2.2, whatever the function ϕ, for all p , q0 one has

up0,ϕ (p) :=
∫
S

Gp0,q0 (p,q)ϕ(q) dvg (q).

Hence for all p , q0 one has

|up0,ϕ (p) | ≤
(∫

S

���Gp0,q0 (p,q)��� dvg (q)
)
‖ϕ‖∞.

The integral
∫
S

���Gp0,q0 (p,q)��� dvg (q) is finite for every p ∈ S \ {q0} and depends
continuously on p. Hence the quantity

β0 := sup
p∈S\U0

∫
S

���Gp0,q0 (p,q)��� dvg (q)

is finite, and moreover one has, for all p ∈ S \U0,

|up0,ϕ (p) | ≤ β0‖ϕ‖∞.

Recall from the proof of Proposition X.2.2 that the function up0 is independent
of the choice of the point q0. Thus if one considers a point q̂0 ∈ S different
from q0 and p0, and a corresponding neighborhood Û0 of q̂0, one will have, for all
p ∈ S \ Û0,

|up0,ϕ (p) | ≤ β̂0‖ϕ‖∞

where
β̂0 := sup

p∈S\Û0

∫
S

���Gp0, q̂0 (p,q)��� dvg (q).

It now remains only to choose the neighborhoods U0 and Û0 sufficiently small for
(S \U0) ∪ (S \ Û0) = S to hold. It will then follow that

‖up0,ϕ ‖∞ = sup
p∈(S\U0)∪(S\Û0)

|up0,ϕ (p) | ≤ β‖ϕ‖∞,

with β := max(β0, β̂0). The upper bound for ‖~∇gup0,ϕ ‖∞ is then obtained by
replacing the function Gp0,q0 (resp. Gp0, q̂0) by its gradient with respect to the
variable p in the foregoing argument. �

Remark X.2.5. — If we denote by C1
0 (S) the set of functions ϕ : S → R of

class C1 and vanishing integral, then we can interpret Proposition X.2.2 as show-
ing that the linear operator ∆g : C2(S) → C1

0 (S) is surjective and providing a for-
mula for the inverse of this operator. Addendum X.2.4 then shows that the inverse
of the linear operator ∆g : C2(S) → C1

0 (S) is continuous with respect to the
C1-norm on the space C2(S).
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X.2.2. The solution of the equation ∆gu = ηu − ϕ

The second major stage in Poincaré’s strategy consists in integrating the equation

∆gu = ηu − ϕ, (X.10)

where η : S → R is a given positive class-C1 function and ϕ : S → R a given
class-C1 function. Starting from the fact that now he can integrate the Poisson
equation ∆gu = ϕ, Poincaré deduces to begin with that he can also integrate any
equation of the form ∆gu = ληu−ϕ with λ > 0 sufficiently small. Then he shows
that if one can integrate the equation ∆gu = λ0ηu−ϕ for a particular λ0 > 0, then
one can integrate any equation of the form ∆gu = (λ0 +λ)ηu−ϕ with λ satisfying
0 < λ < λ0. From these two results he infers immediately that one can integrate
any equation of the form ∆gu = ληu − ϕ with λ > 0. Taking λ = 1 in particular,
it follows that one can integrate equation (X.10).
Uniqueness of solutions. — Rather early on in his article, Poincaré asserts that
the “fundamental property of the expression ∆gu” is the following one:
Fact X.2.6. — If u : S → R is a twice differentiable function, then at a point
where u has a maximum, ∆gu is non-positive, and at a point where u has a mini-
mum, ∆gu is non-negative.

Proof. — It is enough to recall that ∆g is proportional toă ∆z = ∂2

∂z∂z for every
holomorphic local coordinate z. �

Poincaré gives a very convincing physical interpretation of this fact: a point
where the temperature has a maximum can yield heat to neighboring points, but
not receive heat from them. He immediately infers a “maximum principle” for the
equation of present interest:
Proposition X.2.7. — For any given positive λ, any positive function η : S → R,
and any function ϕ : S → R, the partial differential equation

∆gu = ληu − ϕ

has at most one solution u : S → R.
Proof. — Suppose we have two solutions u,v : S → R of the equation ∆gu =

ληu−ϕ. Since S is compact, there will be points p−,p+ ∈ S such that the function
u − v attains its least value at p− and its greatest value at p+. By Fact X.2.6, we
shall then have

∆g (u − v)(p−) ≥ 0 and ∆g (u − v)(p+) ≤ 0.

Furthermore, the function u − v is a solution of ∆g (u − v) = λη(u − v), and since
the function λη is positive by assumption, it follows that

(u − v)(p−) ≥ 0 and (u − v)(p+) ≤ 0.
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However, since the function u−v is greatest at p+ and least at p−, these inequalities
imply that it must in fact be identically zero. �

Bounding the solutions above a priori. — By exploiting Fact X.2.6 again, Poincaré
establishes an a priori upper bound for the norm of a putative solution of an equa-
tion of type ∆gu = ληu − ϕ:
Proposition X.2.8. — Let λ be any positive real number, η : S → R a positive
function, and ϕ : S → R any function. If u : S → R is a solution of the equation
∆gu = ληu − ϕ, then the following inequality holds:

‖u‖∞ ≤
1
λ


ϕ

η

∞
.

Proof. — Let p−,p+ ∈ S be points where the function u attains its least and
greatest values respectively on S. We then have the inequalities ∆gu(p−) ≥ 0 and
∆gu(p+) ≤ 0. From the equation ∆gu = ληu−ϕ and the positivity of η, we obtain
in turn the inequalities

ϕ(p−)
λη(p−)

≤ u(p−) and u(p+) ≤
ϕ(p+)
λη(p+)

.

Since u is least at p− and greatest at p+, these imply that

ϕ(p−)
λη(p−)

≤ u(p) ≤
ϕ(p+)
λη(p+)

for all p ∈ S, from which the desired bound for ‖u‖∞ is immediate. �

The solution of the equation ∆gu = ληu − ϕ for λ sufficiently small. — Poincaré
seeks a solution of the equation ∆gu = ληu− ϕ in the form of a power series in λ,
whose convergence he establishes for sufficiently small λ:
Proposition X.2.9. — Let β be the constant given by Addendum X.2.4. One can
find a solution of class C2 of the equation

∆gu = ληu − ϕ (X.11)

for every positive class-C1 function η : S → R, every C1-function ϕ : S → R, and
every real number λ > 0 satisfying 2λ β‖η‖∞ < 1.
Proof of Proposition X.2.9. — Fix on a positive class-C1 function η : S → R and
a class-C1 function ϕ : S → R. Choose also a particular point p0 ∈ S.
First step: looking for a series solution.
We write ϕ in the form ϕ = ϕ0 + λϕ1 where ϕ0 and ϕ1 are functions of class C1,
the first with vanishing integral. (One could, for example, choose ϕ1 constant.)
We look for a solution u of equation (X.11) in the form of a series

u = (u0 + c0) + λ(u1 + c1) + λ2(u2 + c2) + · · · ,
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the ui being functions vanishing at p0, and the ci constants. If one substitutes this
series for u in equation (X.11), and groups the terms in like powers of λ (working
purely formally), one obtains the following sequence of equalities:

∆gu0 = −ϕ0

∆gu1 = η(u0 + c0) − ϕ1

∆gu2 = η(u1 + c1)

∆gu3 = η(u2 + c2)

· · · · · · · · ·

We see at once that these yield

0 =

∫
η(u0 + c0) − ϕ1 =

∫
η(u1 + c1) =

∫
η(u2 + c2) = · · · .

The equation ∆gu0 = −ϕ0 is a Poisson equation in the unknown u0. Since ϕ0 is of
class C1 and vanishing integral, this equation has a unique solution u0 of class C2

vanishing at p0 (for which Proposition X.2.2 affords us an integral expression).
Once we have u0, we can choose the constant c0 so that the function η(u0+c0)−ϕ1
has vanishing integral. Then, knowing the function u0 and the constant c0, the
equation ∆gu1 = η(u0 + c0) − ϕ1 may be viewed as a Poisson equation in the
unknown function u1. Since η(u0 + c0) − ϕ1 has class C1 and vanishing integral,
this equation has a unique solution u1 of class C2 (see Remark X.2.3) vanishing
at p0. We may therefore choose the constant c1 so that the function η(u1 + c1) has
vanishing integral. Then, η(u1 + c1) being known and of class C1, the equation
∆gu2 = η(u1+c1) has a unique solution u2 of class C2 vanishing at p0. Continuing
in this way (inductively), we find functions ui and constants ci satisfying the above
sequence of equalities. Moreover, the functions ui and the constants ci are unique,
and the functions ui are of class C2.

Second step: the convergence of the series (u0 +c0)+λ(u1 +c1)+λ2(u2 +c2)+ · · · .
Our aim now is to determine the values of the parameter λ for which the series
(u0 + c0) + λ(u1 + c1) + λ2(u2 + c2) + · · · converges. To this end, we avail
ourselves of Addendum X.2.4, which furnishes us estimates of the functions ui
and the constants ci . Note first that, the function η(ui + ci ) having zero integral,
we have, for all i ≥ 1,

|ci | ≤ ‖ui ‖∞.

Next one observes that from the equation ∆gui+1 = η(ui + ci ) together with Ad-
dendum X.2.4, it follows that, for i ≥ 1,

‖ui+1‖∞ ≤ β‖η‖∞ (‖ui ‖∞ + ci ) ≤ 2β‖η‖∞‖ui ‖∞.
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From this we infer the existence of a constant K with the property that, for all
i ≥ 2, we have the upper bound

‖ui + ci ‖∞ ≤ 2‖ui ‖∞ ≤ 2K (2β‖η‖∞)i−1 .

From this it is immediate that the series of functions

(u0 + c0) + λ(u1 + c1) + λ2(u2 + c2) + · · ·

converges normally to a function u for values of the parameter λ satisfying

2β‖η‖∞λ < 1.

It is appropriate to observe in this connection that for these values of λ, the func-
tion u is automatically of class C1. Indeed, for i ≥ 1, Addendum X.2.4 and the
equation ∆gui+1 = η(ui + ci ) together imply that

~∇ui+1
∞ ≤ β‖η‖∞

~∇ui
∞ .

Thus we conclude that the series ~∇u0+λ~∇u1+λ2~∇u2+· · · of derivatives converges
normally provided β‖η‖∞λ < 1, and therefore that the function u is certainly of
class C1 for every λ satisfying 2β‖η‖∞λ < 1.

Third step: verifying that the function u is indeed a solution of equation (X.11).
It remains to show that the function u = (u0+c0)+λ(u1+c1)+λ2(u2+c2)+· · ·

is a solution of the equation (X.11). To this end, we consider a function v : S → R
of class C2 satisfying

∆gv = ληu − ϕ.

The existence of such a function is a consequence of Proposition X.2.2. To see
this, note that the function ληu − ϕ is of class C1 (this being the case for each of
u, η and ϕ), and has vanishing integral since

λ

∫
ηu =

∑
i≥0

λi+1
∫

η(ui + ci ) = λ

∫
η(u0 + c0) = λ

∫
ϕ1 =

∫
ϕ.

We now consider, for each n ≥ 0, functions Rn and Sn defined as follows:

Rn := u −
(
(u0 + c0) + λ(u1 + c1) + · · · + λn (un + cn )

)
,

Sn := v −
(
(u0 + c0) + λ(u1 + c1) + · · · + λn+1(un+1 + cn+1)

)
.

For each n ≥ 0 we then have

u − v = Rn − Sn − λn+1(un+1 + cn+1).
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The terms λn+1(un+1 + cn+1) and Rn tend uniformly to 0 as n → ∞ (since the
series (u0 + c0) + λ(u1 + c1) + λ2(u2 + c2) + · · · converges uniformly to u).
Furthermore, from the equations satisfied by v and the ui , we see that, for all
n ≥ 0,

∆gSn = ληRn .

These equations, together with Addendum X.2.4, imply that, for all n ≥ 0, one
has

‖Sn ‖∞ ≤ λ β‖η‖∞‖Rn ‖∞,

whence it follows that Sn also tends uniformly to 0 as n → ∞. Hence by letting n
tend to infinity in the equality u − v = Rn − Sn − λn+1(un+1 + cn+1), we obtain
the desired equality u = v. From this we conclude that the function u is also of
class C2, and then, since v satisfies the equation ∆gv = ληu−ϕ, that the function u
satisfies equation (X.11). Finally, by Proposition X.2.7, equation (X.11) has no
other solution. �

From the equation ∆gu = λ0ηu − ϕ to the equation ∆gu = (λ0 + λ)ηu − ϕ. —
Having shown that one can integrate the equation ∆gu = λ0ηu − ϕ for certain
values of λ0, Poincaré goes on to perturb this equation in order to widen the field
of equations he knows how to solve:
Proposition X.2.10. — Let η : S → R be a positive function of class C1, and λ0
any positive real number. If one can find a class-C2 solution of the equation

∆gu = λ0ηu − ϕ (X.12)

for every class-C1 function ϕ : S → R, then one can find a class-C2 solution of
the equation

∆gu = (λ0 + λ)ηu − ϕ (X.13)

for every class-C1 function ϕ : S → R and every positive real λ such that λ < λ0.

Observe that the functions η and ϕ enjoy different status in the above state-
ment: the function η is fixed once and for all, while, by contrast, the assumptions
of the theorem concern crucially all functions ϕ of class C1. Thus in order to
integrate the equation ∆gu = (λ0 + λ)ηu− ϕ0 for a certain function ϕ0, one needs
to be able to integrate the equation ∆gu = λ0ηu − ϕ for an infinity of appropriate
functions ϕ.
Proof of Proposition X.2.10. — The argument is very similar to that establishing
Proposition X.2.9.
First step: looking for a series solution.
We seek a solution u : S → R of equation (X.13) in the form

u = u0 + λu1 + λ2u2 + · · ·
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Substituting this in equation (X.13) and grouping terms in the same powers of λ,
we obtain the following sequence of equations:

∆gu0 = λ0ηu0 − ϕ

∆gu1 = λ0ηu1 + ηu0

∆gu2 = λ0ηu2 + ηu1

· · · · · · · · ·

Here the first equation is of type (X.12), and by assumption this can be integrated.
Once we have the unique solution u0 of the first equation, the second becomes an
equation of type (X.12) in the unknown function u1 (with ϕ = −ηu0), and once
again we can, by hypothesis, integrate it. Once we have the unique solution u1 of
that second equation, the third equation becomes an equation of type (X.12) in the
unknown function u2, which again, by hypothesis, we can integrate. Continuing in
this way (inductively), we find successively the solutions u0,u1,u2, . . . (of class C2

and unique) of all of the equations of the above sequence.
Second step: the convergence of the series u0 + λu1 + λ2u2 + · · · .
By virtue of the a priori upper bound obtained in Proposition X.2.8, we have, for
all i ≥ 0,

‖ui+1‖∞ ≤

ηui
λ0η

∞
≤

1
λ0
‖ui ‖∞.

Hence there exists a constant K such that ‖ui ‖ ≤ Kλ−i0 for all i ≥ 0, so that
the series u0 + λu1 + λ2u2 + · · · of functions converges normally to a function u
(a priori only continuous) for all λ < λ0.

Third step: showing that the function u is a solution of equation (X.13).
Thus we need to show that u has class C2 and satisfies (X.13).

To this end, Poincaré considers the function (p,q) 7→ Gp0,q0 (p,q) introduced
in the proof of Proposition X.2.2, in terms of which he defines a sequence of
functions v0,v1,v2, . . . : S → R by setting, for all p ∈ S \ {q0},

v0(p) :=
∫
S

Gp0,q0 (p,q)(λ0ηu0 − ϕ)(q)dvg (q)

v1(p) :=
∫
S

Gp0,q0 (p,q)(λ0ηu1 + ηu0)(q)dvg (q)

v2(p) :=
∫
S

Gp0,q0 (p,q)(λ0ηu2 + ηu1)(q)dvg (q)

· · · · · · · · ·
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As in the proof of Proposition X.2.2 one shows that the functions
v0,v1,v2, . . . extend to q0 and are of class C2. Since the function series
u0 + λu1 + λ2u2 + · · · converges normally to the function u, the function se-
ries (λ0ηu0 − ϕ) + λ(λ0ηu1 + ηu0) + λ2(λ0ηu2 + ηu1) + · · · converges normally
to the continuous function (λ0 + λ)ηu − ϕ. From this fact it follows that the
function series v0 + λv1 + λ2v2 + · · · converges normally to the function

v =
∫
S

Gp0,q0 (p,q) ((λ0ηu0 − ϕ) + λ(λ0ηu1 + ηu0) + · · · ) (q) dvg (q)

=
∫
S

Gp0,q0 (p,q) ((λ0 + λ)ηu − ϕ) (q) dvg (q).

Hence by Remark X.2.3 the function v is of class C1.
Since the functions ϕ, u0,u1, . . . are of class C1, it follows from the equations

defining the functions v0,v1, . . . that

∆gv0 = λ0ηu0 − ϕ = ∆gu0

∆gv1 = λ0ηu1 + ηu0 = ∆gu1

∆gv2 = λ0ηu2 + ηu1 = ∆gu2

· · · · · · · · ·

Hence for each i ≥ 0, the functions ui and vi differ by an additive constant:
there exist ci ∈ R such that vi = ui + ci . Since the series u0 + λu1 + λ2u2 + · · ·

and v0 + λv1 + λ2v2 + · · · converge normally, the series c0 + λc1 + λ2c2 + · · ·

converges absolutely. Hence the functions u and v differ by a constant: we have
v = u + c where c = c0 + λc1 + λ2c2 + · · · .

Since v is of class C1, and v differs from u by a constant, the function u is of
course also of class C1, and then this holds also for the function ηu− ϕ. It follows
that the function

v =

∫
S

Gp0,q0 (p,q)((λ0 + λ)ηu − ϕ)(q) dvg (q)

is actually of class C2 (see Remark X.2.3), and satisfies

∆gv = (λ0 + λ)ηu − ϕ.

Then once again in view of the fact that u and v differ by a constant, we conclude
that the function u is also of class C2, and

∆gu = ∆gv.
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From the preceding two equations we infer, finally, that u satisfies the equation
∆gu = (λ0 + λ)ηu − ϕ. �

Solution of the equation ∆gu = ηu − ϕ. — It now only remains to harvest the
fruits of the above labors:

Proposition X.2.11. — For all positive class-C1 functions η : S → R and ar-
bitrary class-C1 functions ϕ : S → R, one can find a solution of class C2 of the
equation

∆gu = ηu − ϕ.

Proof of Proposition X.2.11. — Let η : S → R be any fixed positive class-C1

function. By Proposition X.2.9, we can find a solution of class C2 of the equation

∆gu = ληu − ϕ (X.14)

for every function ϕ : S → R of class C1 and every real positive number
λ < (2β‖η‖∞)−1. From Proposition X.2.10 we then infer that we can find a so-
lution of class C2 of the equation (X.14) for every class-C1 function ϕ and every
λ < 2(2β‖η‖∞)−1. Then by means of a second application of Proposition X.2.10,
we infer in turn that we can find a class-C2 solution of equation (X.14) for every
class-C1 function ϕ and every λ < 3(2β‖η‖∞)−1. By induction we conclude that
we can find a class-C2 solution of equation (X.14) for every class-C1 function ϕ
and all λ > 0. To get the desired conclusion we now take λ = 1. �

X.2.3. The solution of the equation ∆gu = θeu − ϕ

The third major stage in Poincaré’s strategy is concerned with the equation

∆gu = θeu − ϕ, (X.15)

where θ : S → R is a given positive function of class C1 and ϕ : S → R is a
given function of class C1 and positive integral. Poincaré notes first of all that this
equation has an obvious solution when the functions ϕ and θ are proportional.
He then goes on to show — using the technique of series developments that the
reader must by now be accustomed to — that if one can integrate the equation
∆gu = θeu − ϕ0 for some function ϕ0, then one can also integrate the equation
∆gu = 2eu − (ϕ0 + λψ) provided λ is sufficiently small.

The uniqueness of the solution. — The same sort of reasoning as in the proof of
Proposition X.2.7 shows that equation (X.15) has at most one solution:
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Proposition X.2.12. — Given a positive function θ : S → R and any function
ϕ : S → R, the equation

∆gu = θeu − ϕ

has at most one solution u : S → R.
Proof. — Let u,v : S → R be two solutions of ∆gu = θeu − ϕ. It then follows that

∆g (u − v) = θev (e(u−v) − 1).

Since S is compact, there are points p−,p+ ∈ S where the function u− v attains its
least and greatest values respectively. By Fact X.2.6, we then have

∆g (u − v)(p−) ≥ 0 and ∆g (u − v)(p+) ≤ 0.

The equation u and v satisfy and the positivity of the function θ, then together
yield the inequalities

e(u−v) (p−) ≥ 1 and e(u−v) (p+) ≤ 1,

which in turn imply that the function u − v is identically zero. �

The case where the functions ϕ and θ are proportional. — The following propo-
sition, though trivial, is fundamental to Poincaré’s strategy:
Proposition X.2.13. — For every positive function θ : S → R and positive real
number α, the equation

∆gu = θeu − αθ

has a constant solution.
Proof. — The constant function u = log α is a solution of the equation, and, by
Proposition X.2.12, it is the only solution. �

Passing from the equation ∆gu = θeu−ϕ0 to the equation ∆gu = θeu− (ϕ0 +λψ).
— Poincaré establishes a final result of the type “if one can integrate such and such
an equation then one can also integrate . . . ”.
Proposition X.2.14. — Let θ : S → R and ϕ0 : S → R be positive class-C1

functions and ψ : S → R any class-C1 function. If one can find a solution of
class C2 of the equation

∆gu = θeu − ϕ0, (X.16)

then one can also find a solution of class C2 ofă

∆gu = θeu − (ϕ0 + λψ) (X.17)

for all positive real λ satisfying

λ

ψ

θ

∞

θ

ϕ0

∞
< 2 log 2 − 1.
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Proof. — The argument is similar to that of Propositions X.2.9 and X.2.10; any
differences are due simply to certain technical complications arising from the non-
linear nature of equation (X.17).
First step: the search for a series solution.
We look for a possible solution u of equation (X.17) in the form of a series

u = u0 + λu1 + λ2u2 + · · · .

Assuming u of that form, it follows that the function eu has the form

eu = eu0 (1 + λu1 + λ2(u2 + w2) + λ3(u3 + w3) + λ4(u4 + w4) + · · · ),

where w2 =
u2

1
2 , w3 =

u3
1

6 + u1u2, w4 =
u4

1
24 + u1u3 +

u2
2

2 +
u2

1u2

2 , and, more generally,

wi = Pi (u1,u2, . . . ,ui−1),

where Pi is a polynomial in i − 1 variables and with positive coefficients. Sub-
stituting these series for u and eu in equation (X.17) and grouping terms in like
powers of λ, we obtain the following sequence of equations:

∆gu0 = θeu0 − ϕ0

∆gu1 = θeu0u1 − ψ

∆gu2 = θeu0 (u2 + w2)

∆gu3 = θeu0 (u3 + w3)

· · · · · · · · ·

By assumption we can integrate the first equation in this list; thus we may sup-
pose we have a function u0 : S → R satisfying that equation. Then, u0 being
known, the second equation becomes one of type (X.10) (in the unknown func-
tion u1). By Proposition X.2.11, we can integrate this equation, obtaining thereby
the function u1, and thence w2 = P2(u1). Then, u0 and w2 being known, the third
equation becomes one of type (X.10) (in the unknown function u2), and, again by
Proposition X.2.11 we can integrate that equation to obtain u2. The functions u1
and u2 being known, we can then calculate w3 = P3(u1,u2). Continuing in this
way (inductively) we can integrate all equations in the above list, finding one after
the other the functions u0,u1,u2, . . . .
Second step: the convergence of the series u0 + λu1 + λ2u2 + · · · .
We now need to determine values (if any) of the parameter λ for which the series
u0 + λu1 + λ2u2 + · · · converges.

We begin by finding an upper bound for the uniform norm of u1. The equation
∆gu1 = θeu0u1 − ψ is an equation (in the unknown u1) of type (X.10); hence by
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Proposition X.2.8 we have

‖u1‖∞ ≤

ψ

θeu0

∞
≤


ψ

θ

∞


1
eu0

∞
.

Our problem is thus reduced to finding an upper bound for the uniform norm of
the function 1/eu0 . Let p be a point of S where u0 attains its least value. Then the
function 1/eu0 attains its greatest value at p. We also have ∆gu0(p) ≥ 0, whence
(θeu0 − ϕ)(p) ≥ 0. Hence


1

eu0

∞
≤

1
eu0 (p) ≤

ϕ(p)
θ(p)

≤

ϕ0

θ

∞
.

From this and the earlier inequality we obtain the following upper bound for the
norm of u1:

‖u1‖∞ ≤

ψ

θ

∞

ϕ0

θ

∞
. (X.18)

We now seek to bound the uniform norm of ui , for i ≥ 2. The equation
∆gui = θeu0 (ui + wi ) is of type (X.10), so that, by Proposition X.2.8, we have,
for all i ≥ 2,

‖ui ‖∞ ≤

θeu0 .wi

θeu0

∞
= ‖wi ‖∞ = ‖Pi (u1, . . . ,ui−1)‖∞.

From this and the fact that the coefficients of the polynomial Pi are all positive,
we obtain, for all i ≥ 2,

‖ui ‖∞ ≤ Pi (‖u1‖∞, . . . , ‖ui−1‖∞) . (X.19)

Consider now the sequence of positive real numbers (ai )i≥1 defined induc-
tively as follows:




a1 := 
ψ
θ

∞

ϕ0
θ

∞
ai+1 := Pi (a1, . . . ,ai ) for all i ≥ 1.

From the inequalities (X.18) and (X.19) above it is immediate that ‖ui ‖∞ ≤ ai

for all i ≥ 1. Hence in order to find values of λ for which the function series
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u0 + λu1 + λ2u2 + · · · converges normally, it suffices to examine the convergence
of the series with real positive coefficients given by λa1 + λ2a2 + λ3a3 + · · · .

Thus our task is now to determine values (if any) of the parameter λ for which
the series λa1 + λ2a2 + λ3a3 + · · · converges. Supposing it converges, let a be its
sum. We shall then have

ea = 1 + λa1 + λ2(a2 + P2(a1)) + λ3(a3 + P3(a1,a2)) + · · ·

= 1 + λa1 + 2(λ2a2 + λ3a3 + · · · )

= 2a + 1 − λa1.

Hence, in particular, the equation ex = 2x + 1 − λa1 will have a solution. By
examining the function x 7→ ex = 2x + 1 − λa1, one sees that for this to be
possible, it is necessary that λa1 ≤ 2 log 2. Conversely, if 0 < λa1 ≤ 2 log 2 then
the equation ex = 2x + 1 − λa1 has two solutions (both positive); let a be the
smaller of these. For N ≥ 1, write

AN := λa1 + λ2a2 + · · · + λN aN ,

and consider the function f : x 7→ ex − x − 1 + λa1. By developing eAN as a
series in powers of λ, we see that, for all N ≥ 1,

f (AN ) = AN+1 + λN+2PN+2(a1, . . . ,aN ,0) + · · ·

≥ AN+1.

We also have, since f is increasing on [0,+∞), that f (x) < a for all x ∈ (0,a).
It follows that for all N ≥ 1, AN is bounded above by a, so that the series
λa1 + λ2a2 + λ3a3 + · · · converges. To summarize, we have shown that the func-
tion series u0 + λu1 + λ2u2 + · · · converges normally to a function u (a priori only
continuous) provided that λa1 ≤ 2 log 2, that is, provided that

λ

ψ

θ

∞

ϕ0

θ

∞
< 2 log 2 − 1.

Third step: showing that the function u is a solution of equation (X.17).

As in the proof of Proposition X.2.10, one defines functions v0,v1,v2, · · · : S → R
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by setting, for all p ∈ S \ {q0}:

v0(p) :=
∫
S

Gp0,q0 (p,q)(θeu0 − ϕ)(q)dvg (q)

v1(p) :=
∫
S

Gp0,q0 (p,q)(θeu0 .u1 − ψ)(q)dvg (q)

v2(p) :=
∫
S

Gp0,q0 (p,q)(θeu0 (u2 + w2))(q)dvg (q)

v3(p) :=
∫
S

Gp0,q0 (p,q)(θeu0 (u3 + w3))(q)dvg (q)

· · · · · · · · ·

where (p,q) 7→ Gp0,q0 (p,q) is the function used in the proof of Proposition X.2.2.
By means of the same arguments as were employed in the proof of Proposi-
tion X.2.10, one infers that the functions v0,v1,v2 . . . then extend to q0, are of
class C2, and that the function series v0 + λv1 + λ2v2 + · · · converges normally to

v =

∫
S

Gp0,q0 (p,q)(θeu0 (1 + λu1 + · · · ) − ϕ0 − λψ)(q)dvg (q)

=

∫
S

Gp0,q0 (p,q)(θeu − ϕ0 − λψ)(q)dvg (q).

By Remark X.2.3, the function v is of class C1, and one then shows as in the proof
of Proposition X.2.10 that the functions u and v differ by an additive constant c, so
that u also is of class C1, whence in turn the function v is of class C2 and satisfies

∆gv = θeu − ϕ0 − λψ.

Thence, finally, it follows that u is of class C2, and satisfies ∆gu = ∆gv, whence u
satisfies equation (X.17). �

The case where ϕ is positive. — By means of Propositions X.2.13 and X.2.14 we
can now show how to integrate the equation ∆gu = θeu − ϕ in the case where the
function ϕ is everywhere positive.
Proposition X.2.15. — For all positive class-C1 functions θ : S → R and ϕ :
S → R, one can find a solution of class C2 of the equation

∆gu = θeu − ϕ.



314 X Uniformization of surfaces

Proof. — We seek to reduce the situation to that where Propositions X.2.13 and
X.2.14 apply. To that end, we write the function ϕ in the form ϕ = αθ+ψ where α
is a positive real number and ψ : S → R is a positive function. (One could, for
example, take α < min (ϕ/θ).) We shall show that one can integrate the equation

∆gu = θeu − (αθ + λψ) (X.20)

for all λ > 0. Set

λ0 = (2 log 2 − 1)α

ψ

θ


−1

∞
.

By Proposition X.2.13, since the constant α is positive, one can find a solu-
tion of class C2 of equation (X.20) for λ = 0. Then from Proposition X.2.14
(with ϕ0 = αθ), we infer that one can find a solution of class C2 of equation
(X.20) for 0 < λ < λ0. Applying yet again Proposition X.2.14 (this time with
ϕ0 = αθ + λ0ψ), we infer in turn that one can find a solution of class C2 of equa-
tion (X.20) for 0 < λ < 2λ0. By iterating this argument, we conclude that one can
find a solution of class C2 of equation (X.20) for 0 < λ < nλ0 for every n ∈ N. To
conclude, it only remains to observe that equation (X.20) reduces to the equation
∆gu = θeu − ϕ when λ = 1. �

The solution of the equation ∆gu = 2eu − ϕ. — We finally arrive at the desired
result:

Theorem X.2.16. — For every positive class-C1 function θ : S → R and class-
C1 function ϕ : S → R with positive integral over S, one can find a solution of
class C2 of the equation

∆gu = θeu − ϕ.

Proof. — Let ϕ : S → R be a function of class C1 and positive integral. Denote
that integral by c and write ϕ0 = ϕ − c. Since ϕ0 is a function of class C1 and
vanishing integral, by Proposition X.2.2 we can find a unique function v : S → R
of class C2 satisfying

∆gv = −ϕ0.

Since the function θev is then of class C1 and positive, and also c is positive, by
Proposition X.2.15 one can find a function w : S → R of class C2 satisfying

∆gw = θevew − c.

We now have immediately that the function u = v + w satisfies the equation
∆gu = θeu − ϕ. �
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X.3. Conclusion: uniformization of algebraic Riemann surfaces,
prescription of the curvature, and the calculus of variations

Putting Theorem X.2.16 and Proposition X.1.3 together, we obtain the following
uniformization theorem:

Theorem X.3.1. — The universal cover of every compact algebraic Riemann
surface of negative Euler characteristic is biholomorphic to the disc.

This was Poincaré’s second proof of this theorem — and, since the first was far
from satisfactory by the criteria of rigor even of that time, we can hardly reproach
him for reproving it.

And all the more since, while in the above proof the uniformization of surfaces
depends on the existence of a solution of the equation ∆gu = 2eu − ϕ, Poincaré
actually establishes the existence and uniqueness of a solution of the somewhat
more general equation ∆gu = θeu − ϕ, where θ is any positive function. This
equation can be interpreted naturally in terms of the existence of metrics of pre-
scribed curvature. To see this, consider a compact surface S of negative Euler
characteristic, endowed with a Riemannian metric g. The metric g induces the
structure of a Riemann surface on S and this Riemann surface is automatically
algebraic in view of its compactness. Write −ϕg for the curvature with respect
to g. The formula given in §X.1.3 then generalizes as follows: for every function
u : S → R (of class C2), the curvature of the metric g′ = eug is equal to −ϕg′
where ∆gu = 2ϕg′eu − 2ϕg . Theorem X.2.16 shows that the equation

∆gu = θeu − ϕg (X.21)

has a solution for every positive function θ : S → R (of class C2). Thus Poincaré’s
work implies the following result11:

Theorem X.3.2. — Let S be a compact surface of negative Euler characteristic,
g a Riemannian metric on S, and θ : S → R a positive function of class C1. Then
there exists a Riemannian metric in the conformal class of g relative to which the
Gaussian curvature is equal to −θ.

In the box below we sketch a “modern” proof of Theorem X.2.16 — and thus
also of Theorem X.3.2 — using the concepts of sub-solution and super-solution.
This proof, suggested to us by H. Brezis, is perfectly elementary, and seems to us
very close in spirit to Poincaré’s.

11Note however, that the interpretation of equation (X.21) in terms of curvature is absent from
Poincaré’s memoir.
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Box X.1: The method of sub-and super-solutions.

Let S, g, θ and ϕ be as in the statement of Theorem X.2.16. Consider a
partial differential equation of the form

∆gu = F (x,u), (X.22)

where F : S × R→ R is a continuously differentiable functiona.
A sub-solution of equation (X.22) is a function u− : S → R of class C2, such
that

∆gu− ≤ F (x,u−),

and a super-solution is a function u+ : S → R of class C2, such that

∆gu+ ≥ F (x,u+).

The following result demonstrates the significance of these concepts:

Theorem X.3.3. — If equation (X.22) possesses a sub-solution u− and a super-
solution u+ with u− ≤ u+, then equation (X.22) has a solution u satisfying
u− ≤ u ≤ u+.

Theorem X.2.16 follows easily from this result: the equation

∆gu = θeu − ϕ

certainly has the form of (X.22), and for sufficiently large C the constant func-
tions u− = −C and u+ = C will be respectively a sub-solution and super-
solution of that equation.

The proof of Theorem X.3.3 is based on the construction of a sequence of
functions very similar to those introduced by Poincaré in his memoir. One be-
gins by choosing a constant ρ sufficiently large for the function F (x, s) + ρ.s to
be increasing with respect to s for s in the interval [minx∈S u−(x),max u+(x)]
(and for any x); such a constant ρ must exist in view of the continuous differ-
entiability of F and the compactness of the surface S. Now equation (X.22) is
certainly equivalent to the following one:

∆gu + ρu = F (x,u) + ρu. (X.23)

aWhat follows remains valid with ∆g replaced by a linear elliptic differential operator of
order two with arbitrary continuous coefficients.
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In order to solve the latter, one constructs inductively a sequence (uk )k≥0 of
functions as follows: One first sets u0 = u−, then, assuming uk known, defines
uk+1 as the unique solution of the Poisson equation

∆guk+1 + ρuk+1 = F (x,uk ) + ρuk . (X.24)

From the fact that the function s 7→ F (x, s)+ ρs is increasing, together with the
maximum principle, one easily infers that the sequence (uk )k≥0 is increasing
and bounded above by u+. The fact that the uk are bounded above by u+ allows
one to find, via equation (X.24), an upper bound for the second derivative
of uk+1 independent of k. Hence the sequence (uk )k≥0 converges uniformly
to a function u of class C2, and one then verifies easily that u is a solution
of equation (X.23). (For more details on this theme we refer the reader to
[Ku1959].)

Another proof of Theorem X.3.2, more involved than the one presented in
Box X.1, was given by M. S. Berger in [Berg1971]. The idea behind that proof
was apparent already in Poincaré’s work. Indeed, in the middle of his memoir,
Poincaré makes a pause:

However, before proving by rigorous means the integrability of this equation
[the equation ∆gu = θ.eu − ϕ], I would first like to present it in terms of an
insight based on the calculus of variations which is sometimes employed in
mathematical physics.

Poincaré then constructs a functional whose critical points of class C2 are solu-
tions of the equation ∆gu = θ.eu − ϕ. He goes on to show that, provided θ is
positive and the integral of ϕ is positive, the functional so constructed is bounded
below. The above quote shows that he understood perfectly well that this does
not a priori imply the existence of a smooth function u at which the functional
attains its minimum. It is, roughly speaking, the existence of this minimum that
M. Berger12 establishes in [Berg1971]. We sketch Berger’s proof in the following
box.

Box X.2: Variational solution of the equation ∆gu = θeu − ϕg

Let S, g, θ be as in the statement of Theorem X.3.2, and ϕg : S → R the
negative of the Gaussian curvature with respect to g.

12In fact the functional considered by Berger is slightly different from that considered by
Poincaré.
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Consider the functional

F : u 7→
∫
S

(
1
2
|du|2 − ϕgu

)
dvg

on the submanifold V of the Sobolev space H1(S), defined by the Gauss–
Bonnet constraint:

V =

{
u ∈ H1(S) |

∫
S

θeu dvg = −2π χ(S)
}
.

Since S is compact, we have in dimension 2 the Sobolev inclusions H1(S) ↪→
Lp (S) for all p < ∞ (but not at p = ∞). These inclusions are moreover
compact. A further ingredient in the proof is the following inequality, a conse-
quence of the Trudinger inequalities:∫

S

e |u | dvg ≤ C exp
(
C‖u‖2

H1

)
.

This implies that the functional F is of class C1 on H1(S), and that V is indeed
a submanifold of H1(S). Inequalities of the same type are then used to show
that u 7→ eu defines a continuous map from H1(S) endowed with the weak
topology, to L1, so that V is closed in the weak topology in H1(S).

An easy calculation shows that the critical points of the functional F on S
are solutions of the equation in question, that is, of ∆gu = θeu − ϕg .

Since the functional F is convex and continuous (with respect to the strong
topology), it is lower semi-continuous in the weak topology (Hahn-Banach).
Furthermore, it is bounded below on V , which fact follows by means of (among
other things) Poincaré’s inequality on S:∫

S

|u0 |
2 dvg ≤ C

∫
S

|du0 |
2 dvg , if u0 ∈ H1(S) and

∫
S

u0 dvg = 0,

together with the assumption θ > 0.
From this point the strategy is the standard one of the calculus of vari-

ations: one considers a minimizing sequence (un ) in V , that is, such that
F (un ) → infV F. It follows that (un ) is bounded in H1(S), whence, mod-
ulo choosing a subsequence, that it converges weakly in H1(S), to a limit u∞.
Since V is closed, this limit belongs to V and F (u∞) = infV F by weak semi-
continuity. Classical arguments concerning elliptic regularity then show that
this is a smooth solution of the problem.
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Berger’s article was followed by a series of papers on the existence of metrics
of prescribed curvature on non-compact surfaces (see especially [KaWa1974] and,
for a more complete bibliography, the survey paper [HuTr1992]), and then on the
existence of metrics of constant scalar curvature on manifolds of dimension at
least 3 (the so-called Yamabe problem; see for example [Aub1998]). Note that in
his memoir, Poincaré also deals with the case of compact surfaces with a finite
number of points removed. Alas, we have not succeeded in the present context in
interpreting Poincaré’s results in terms of the existence of metrics of prescribed
curvature and with prescribed behavior near the removed points. . . but we cannot
exclude the possibility that a closer reading of his memoir would yield further
beautiful surprises!





Part C

Towards the general
uniformization theorem
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The last part of this book is devoted to describing the path that, from 1882
to 1907, led from the uniformization of algebraic Riemann surfaces by the
method of continuity to the general uniformization theorem as we know it to-
day. Gray has written a very detailed study [Gra1994] devoted to the Riemann
Mapping Theorem [Gra1994] to which we may refer the reader. We recom-
mend also earlier entries in the Encyklopädie der mathematischen Wissenschaften:
[OsgW1901, Bie1921].

In 1882, Klein and Poincaré became convinced that every algebraic Riemann
surface could be uniformized by the sphere, the plane, or the unit disc. Although
some of the details of the proof of this marvellous result remained to be filled
in, Poincaré, never lacking in mathematical audacity, was already launched on
the conquest of much wider territory, attempting to uniformize Riemann surfaces
associated with arbitrary, so not necessarily algebraic, germs of analytic functions.

The memoir [Poin1883b] Poincaré published in 1883 begins with a statement
of the theorem of uniformization of functions that he proposes to prove:

Let y be any analytic function of x, not single-valued. One can always find
a variable z such that x and y are single-valued functions of z.

What is the missing link between this statement and what we call today the uni-
formization theorem for Riemann surfaces? In his memoir, Poincaré recalls how
to construct from a “non-single-valued analytic function y of the variable x” an
abstract Riemann surface extended over the plane of the variable x, on which y

is naturally defined as a single-valued analytic function. In modern terminology,
given a germ of an analytic function y of a variable x, one constructs the maximal
Riemann surface on which one can extend the germ y to a (single-valued) analytic
function (see Box II.1): this is the Riemann surface associated with the germ y.
Finding a variable z such that x and y are single-valued functions of z comes
down to uniformizing the Riemann surface associated with the germ y, that is, to
parametrizing this surface with a single complex variable z. In 1883, Poincaré
did not succeed in obtaining a parametrization that is a local biholomorphism at
every point, and was forced to allow for branch points. His precise result was as
follows:

Theorem. — Let S a Riemann surface admitting a non-constant meromorphic
function. Then there exists a branched covering map π : U → S, where U is a
bounded open subset of C.

The uniformization theorem for functions announced by Poincaré follows im-
mediately from this result: if S is the Riemann surface associated with a germ of
an analytic function y of a complex variable x, and if U is the open set in C given
by the above theorem, then x and y may be viewed as single-valued functions on
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the surface S, and therefore as single-valued functions of the coordinate z of the
complex plane containing U .

The concept of the universal cover of a Riemann surface plays an important
role in Poincaré’s memoir. As far as we know, it is in this memoir that there ap-
pears for the very first time a definition of the universal cover of the Riemann
surface associated with a germ of a function (or with a finite family of germs of
functions; see Box XI.2 below). In 1898, Osgood reckoned this definition a cru-
cial feature (and perhaps the most important contribution) of Poincaré’s memoir
( [OsgW1898]). To establish the above theorem, Poincaré shows the existence of
a Riemann surface Σ that is a branched covering space of S and is such that its
universal covering space Σ̃ is biholomorphic to a bounded open subset of C. To
achieve this, it suffices — as Riemann had observed — to find a Riemann sur-
face Σ that is a branched covering of S such that Σ̃ admits a positive harmonic
function with a logarithmic pole.

The basic tool in Poincaré’s proof is the following result, which he attributes
to Schwarz, and which does indeed follow immediately from techniques invented
by the latter in [Schw1870a] (even if it would seem that Schwarz himself was
unaware in 1870 of having effectively established such a general result):

Theorem. — Let Ω be a region of compact closure, with analytic or polygonal
boundary, of a Riemann surface. Then Ω admits a Green’s function13. It follows
that if Ω is simply connected, then it is biholomorphic to the unit disc in C.

Poincaré considers an exhaustion of a simply connected Riemann surface Σ̃
by means of simply connected regions with compact closure (however without
justifying its existence); he applies Schwarz’s theorem to each of these regions,
obtaining thereby a sequence of Green’s functions; if this sequence converges,
then the limit will automatically be a positive harmonic function defined on Σ̃
with a logarithmic pole, and Σ̃ will therefore be biholomorphic to an open subset
of the unit disc. However, in general one does not obtain a convergent sequence of
Green’s functions, and this is why, instead of considering the universal cover S̃ of
the Riemann surface S of interest, Poincaré has to resort to the universal cover Σ̃
of a branched covering space Σ of S.

The result Poincaré obtained in 1883 represents an exceptional advance from
the point of view of analytic functions, but is much less satisfactory if one is
interested in Riemann surfaces for their own sake, and not merely as a simple tool
to be used to investigate analytic functions.

Recall that Klein and Poincaré had shown (or at least believed they had shown)
that the universal cover S̃ of an algebraic Riemann surface S is always biholo-

13Recall that a Green’s function on Ω is a positive, harmonic function with a logarithmic pole,
that tends to zero in the neighborhood of the boundary of Ω.
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morphic to the sphere, complex plane, or unit disc, and that therefore S can be
identified with the quotient of one of these surfaces by the action of a group of
automorphisms. In the case where S is not algebraic, Poincaré managed “only” to
prove in 1883 that S has a branched covering space Σ̃ biholomorphic to a bounded
simply connected region U of C. The primary drawback in this result consists
in the fact that one has no control over the region U, which a priori depends on
the surface S. (Note that at that time the Riemann Mapping Theorem had been
proved rigorously only in special cases.) And even if one knew how to identify the
region U , the presence of branch points makes for a considerably weaker result:
indeed, for a fixed Riemann surface S and region U of C, there exist in general
infinitely many branched coverings π : U → S not obtained from one another
by composing with biholomorphisms of U . And lastly, one is hard put to content
oneself with Poincaré’s result when one reflects that it yields a “uniformization”
of the complex plane by means of an open subset of the unit disc!14

In his address to the International Congress of Mathematicians in 1900
[Hil1900b], Hilbert praises Poincaré’s work on algebraic Riemann surfaces and
also his uniformization theorem for analytic functions, but also emphasizes the
imperfections of the latter result. In view of the importance of the question, he
reckons it essential to try to obtain a result for general Riemann surfaces as satisfy-
ing as that obtained by Klein and Poincaré for algebraic surfaces. This constitutes
his 22nd problem.

An initial advance was made on the problem in 1900 by W. Osgood, in proving
the following result:
Theorem. — Every simply connected region of the complex plane that admits a
positive harmonic function with a logarithmic pole (for example, every bounded
simply connected region) is biholomorphic to the unit disc.

Thus at this stage it was known that every Riemann surface has a branched
covering biholomorphic to the unit disc in C. It took another seven years before
the uniformization theorem as we know it today was proved . . .

Over the first several years of the 20th century there were various unsuccessful
attempts to solve Hilbert’s 22nd problem. We mention, in particular, Johansson
( [Joh1906a, Joh1906b]). Then at the meeting of May 11, 1907 of the Göttingen
Scientific Society, Klein presented a note by P. Koebe [Koe1907b] announcing
that he had proved the general uniformization theorem:
Theorem. — Every simply connected Riemann surface (supporting a non-
constant meromorphic function15) is biholomorphic to the Riemann sphere, the
complex plane, or the unit disc.

14It is interesting to read Osgood’s presentation of Poincaré’s result and its inadequacies in a
series of talks given in Cambridge in 1898 [OsgW1898].

15At that time Riemann surfaces were always conceived as extended over the plane. However,
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The case of compact simply connected Riemann surfaces (homeomorphic to
the sphere S2) had been dealt with already in papers by Schwarz and Neumann:
they are all biholomorphic to the Riemann sphere. Thus there remained only the
case of non-compact simply connected Riemann surfaces. Given such a Riemann
surface S, Koebe considers an exhaustion of it by means of an increasing sequence
(Dn )n≥0 of simply connected regions with compact closure and with polygonal
boundaries, and chooses a fixed point p0 ∈ D0. Schwarz had shown the existence,
for each n, of a biholomorphism ϕn from Dn onto the unit disc of C, sending
the prescribed point p0 to the origin. If the sequence of moduli of the derivatives
of the ϕn at p0 could be shown to be bounded, then from work of Harnack and
Osgood it would follow that the surface S is uniformized by the unit disc. Thus the
whole of Koebe’s paper is devoted to showing that, if the sequence of derivatives
of the ϕn at p0 should diverge, one can nonetheless construct from the sequence
(ϕn )n≥0 a different sequence (ψn )n≥0 of biholomorphisms that converges to a
biholomorphism between S and the complex plane. The key argument involved
in constructing the sequence (ψn )n≥0 is very subtle, and contains in embryo a
version of the so-called Koebe’s Quarter Lemma. But even if it is difficult to
grasp16, Koebe’s proof is nevertheless perfectly rigorous.

Six months later, an article by Poincaré [Poin1907] appeared in Acta Mathe-
matica in which he also proposed a proof of the general uniformization theorem,
one very different from Koebe’s17. For a given non-compact, simply connected
Riemann surface S, Poincaré considers the region A obtained by removing a small
disc. He notes that the surface S will be biholomorphic to the complex plane or
the unit disc provided A admits a Green’s majorant, that is, a positive harmonic
function with at least one logarithmic pole. It then remains to construct such a
function. To this end, Poincaré again generalizes the alternating procedure in-
vented by Schwarz, and gives a physical interpretation of the procedure he de-
fines, which he calls the “sweeping method”.18 Suppose one wishes to construct
on a surface A a function u with a logarithmic pole at a point p0, harmonic on
A \ {p0}, and tending to zero at infinity. Such a function may be thought of as
given by the electric potential associated with a negative point charge situated at

Koebe’s proof works for abstract Riemann surfaces.
16It is appropriate to mention that the article [Koe1907a] was in the form of a communication

to the Göttingen Scientific Society, and that the details suppressed in such communications were
often intended for publication in a “real” mathematics journal. In fact Koebe continued for the
rest of his life to reprise different proofs of the theorem in order to make it more accessible and
more general, and improve its presentation. See, for instance, [Koe1907a, Koe1907b, Koe1908a,
Koe1909a, Koe1909b, Koe1909c, Koe1909d, Koe1910b, Koe1911].

17Poincaré did not know of Koebe’s proof when he was preparing his article, submitted in March
1907.

18Usually translated into English as the “scanning method”. Trans
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the point p0. To construct it, Poincaré imagines the following:

— starting with an arbitrary function u0 : A→ R with a logarithmic pole at p0
and tending to zero at infinity, visualized as the potential associated with a
distribution of charge ρ0 := ∆u0;

— letting each small region of the surface gradually become more and more
“conducting” in order to be able to “sweep” the charges (except for that at
p0, which is to be maintained artificially in place) towards the boundary of
each of these regions. One hopes that at the end of this process, all charges
(save that at p0) will have been “swept to infinity”; the associated potential
will then give the desired function. In mathematical terms, one covers A
by holomorphic discs, and constructs a sequence (un )n≥0 of continuous
functions, with the property that un+1 is the same as un everywhere except
on one of the discs, on which it is harmonic.

Of course, the bulk of the work is involved in showing that the sequence (un )n≥0
converges. As so often, Poincaré’s proof, although not a model of rigor, contains
luminous intuitions. In particular, he uses a physical argument (the conservation
of the total electric charge when a disc in the Riemann surface is “made conduct-
ing”) difficult to justify mathematically without using the theory of distributions.

Poincaré’s memoir appeared at the beginning of November 1907. At the end
of that same month, Koebe, who had read Poincaré’s memoir avidly, submitted a
new note to the Göttingen Scientific Society [Koe1907b], containing a proof of
the general uniformization theorem largely inspired by Poincaré’s proof. In fact
Koebe reprises the global strategy of Poincaré’s proof, but with the “sweeping
method” replaced by a much more direct construction based on an exhaustion
of A by regions of compact closure, thus gaining in simplicity (and rigor) what
had been lost in physical intuition.

In the introduction to Part B, we explained how in 1881 Klein was an es-
tablished professor who soon found himself outmatched by the young Poincaré.
In 1907 it was Poincaré who was the established one and who must have felt a
little hustled by the young Koebe, only 25 years old. The following anecdote
shows clearly the difference in status between the two rivals: at the International
Congress in Rome in 1908, both Koebe and Poincaré gave addresses. Koebe’s
was entitled “On the uniformization problem. . . ”, while Poincaré’s was “On the
future of mathematics”!

In sum, in 1883 Poincaré shows that every Riemann surface (on which a mero-
morphic function can be defined) admits a branched covering space biholomor-
phic to a bounded simply connected open subset of the plane. His proof depends
on ideas of Schwarz allowing the uniformization of every relatively compact, sim-
ply connected region with polygonal boundary of a Riemann surface, and uses an
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exhaustion of his arbitrary non-compact simply connected Riemann surface by
means of such regions, that is, by a sequence of relatively compact, simply con-
nected regions with polygonal boundaries. The existence of such an exhaustion
— which Poincaré does not prove — is not difficult to establish in the case of a
Riemann surface extended over the plane19 (see §XI.2). Then in 1900, Osgood
shows that every bounded simply connected open subset of the plane is biholo-
morphic to the disc. Thus then it becomes known that every Riemann surface
has a branched covering space biholomorphic to the disc. In his address to the
International Congress of Mathematicians of that year, Hilbert emphasizes the
inadequacy of this result, and urges mathematicians to try to prove a “true” uni-
formization theorem for non-algebraic Riemann surfaces. In May 1907, Koebe
publishes the first proof of the general uniformization theorem, also based on work
of Schwarz and on the existence of exhaustions by means of relatively compact,
simply connected regions with polygonal boundary. (This proof seems to us to be
perfectly correct and rigorous.) Just prior to the publication of Koebe’s memoir,
Poincaré also completes and prepares for publication a proof of the general uni-
formization theorem, which appears in early November 1907. (This proof, based
on physical intuition, seems a very natural one to us; however, it cannot be made
rigorous without recourse to the theory of distributions.) At the end of Novem-
ber 1907, Koebe publishes a “simplified” version of Poincaré’s proof, with the
“sweeping method” replaced by an appeal to work of Schwarz and the use of an
exhaustion of a simply connected Riemann surface with a small disc removed, by
means of relatively compact annuli. This “cleaned up” version of Poincaré’s proof
is, although certainly less intuitive than its original, especially brief, and seems to
us rigorous as it stands.

Thus by the close of the year 1907, the uniformization theorem was firmly
established. Of course, the process of assimilation of the result was far from com-
plete, and it would take another fifteen years before the proofs began to appear
that one finds in today’s books (in this connection, see our annotated bibliogra-
phy). Early on, mathematicians switched predominantly to the search for results
beyond the uniformization theorem: Koebe was already beginning to think about
uniformizing non-simply-connected Riemann surfaces [Koe1910b], and Hilbert
was already inviting mathematicians to investigate the uniformizability of com-
plex manifolds of higher dimensions. . . but our book stops in 1907.

Chapter XI is devoted to Schwarz’s theorem on the uniformization of sim-
ply connected regions with compact closure, Poincaré’s results of 1883 on the
uniformization of functions, and Osgood’s theorem. Then, in Chapter XII, we
expound the first of Koebe’s proofs of the general uniformization theorem from

19Prior to the work of Weyl in the 1910s, a Riemann surface was by definition extended over the
plane.
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his note [Koe1907a]. Finally, Chapter XIII is devoted to Poincaré’s proof of the
same theorem in [Poin1907], and also to the simplification of that proof proposed
by Koebe in [Koe1907b].

Box: The classification of surfaces

In a completely natural way the theory of Riemann surfaces — the veri-
table topic of this book — evolved in parallel with the topological theory of
surfaces, that is, of 2-dimensional manifolds not endowed a priori with a com-
plex structure. While the history of these developments would furnish enough
material for another book, we thought it nonetheless apropos to indicate here
some of the most important milestones. In their progress towards the general
uniformization theorem, Poincaré and Koebe used, proved, or quite simply
anticipated the main results of the topology of surfaces. Often the borrow-
ings from topology are completely implicit. Yet again do we find the situation
somewhat confused.

The topological classification of compact surfaces took place gradually,
progressively gaining in rigour and generality. The very concept of surface
was some time in maturing, from the idea of a surface as embedded in 3-
dimensional space to the conception of an abstract surface. Moreover two
surfaces embedded in 3-space could be homeomorphic without there existing
any homeomorphism of the ambient space sending one to the other: thus, for
instance, a torus might be knotted in 3-space. And then it became necessary to
distinguish degrees of regularity of surfaces under investigation, which might
be smooth or merely topological. Fractal sets, arising at the same time as
Kleinian groups, furnish many examples of curves that are not differentiable
and whose local properties are such as to make one despair of any topological
classification.

The main theorem, become classical, may be stated as follows:

Theorem. — Every compact connected orientable surface is homeomorphic
to a sphere or to a connected sum of tori.

This theorem was “known” — and used — by B. Riemann, with no at-
tempt made to justify it. For its history one may consult [Pont1974]: the
most important names in this connection are F. A. Möbius [Möb1863], C. Jor-
dan [Jor1866] and W. von Dyck [Dyc1888]. The first proofs meeting (almost)
today’s standards of rigour date from the 1860s and use two different kinds of
ideas. They assume implicitly that the surfaces are smooth.

First Möbius produced a remarkable proof in the case of compact surfaces
embedded in space (which is a posteriori equivalent to orientability).
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His proof involves choosing a real-valued function on the surface and investi-
gating the nature of its level curves. By means of successive modifications of
the function he simplifies it so as to step by step eliminate critical points and
reduce it to “standard” form. (One sees here the germ of what will much later
be called Morse theory.) He also proves that the surface may be cut into two
planar surfaces, that these are characterized to within a homeomorphism in
terms of the number n of components of their boundary, and that this number
is the only invariant of the initial closed surface. He observes also that n − 1 is
the greatest number of disjoint closed curves on the surface that do not discon-
nect it, thus recovering Riemann’s definition of genus. These ideas were then
elaborated on and consolidated by, among others, J.C. Maxwell [Max1870]
and C. Jordan [Jor1872].

Jordan takes a different approach, in some sense reprising Riemann’s
method, which consists in cutting the surface along disjoint simple closed
curves. His surfaces are compact, smooth, and without boundary, but not nec-
essarily embedded in 3-space: curves of self-intersection are allowed, so that
in fact he allows his surfaces to be immersed in 3-space.

The classification of nonorientable surfaces was also carried out progres-
sively. In 1861, J.B. Listing (to whom, incidentally, we owe the word “topol-
ogy” [Lis1847]) appears to have been the first to describe the nonorientable
surface with boundary that today we call the Möbius strip [Lis1861], and in
1882 Klein described the “bottle” bearing his name in an article discussed
earlier [Kle1882c]. In 1886, Möbius clearly defines the concept of orientabil-
ity [Möb1886], and then Dyck obtains the classification of arbitrary compact,
smooth surfaces, possibly with boundary, possibly nonorientable [Dyc1888].
Volume 6 of Poincaré’s collected works includes a glossary allowing one to
pass from the topological terminology of 1950 back to that of Poincaré. For
example, opposite “Möbius strip” one finds Poincaré’s term “the one-sided
surface that everyone knows”.

This was all made precise in an article by Dehn and Heegaard in 1907
[DeHe1907]. Here the surfaces are triangulated, and are allowed to be nonori-
entable and have non-empty boundary. The classification is combinatorial in
nature, and the arguments are convincing. Klein comments on this article that
it is “written in a rather abstract style. . . . It begins by formulating the concepts
and facts fundamental to topology. Then the rest is deduced in a purely logical
manner. This contrasts completely with the inductive presentation that I have
always recommended. To be understood plainly, [let me say that] this article
presupposes of the reader that he has already pondered the topic deeply in the
inductive manner” [Kle1925].
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The characterization of topological surfaces to within a homeomorphism
will take more time, as we shall now see.

The Jordan Curve Theorem and the Osgood–Schoenflies Theorem

Theorem. — The complement of a simple closed curve in the plane has exactly
two connected components.

This theorem was stated by Jordan in 1887 [Jor1887]. The “proof” he
proposed did not seem convincing to those who commented on it [Veb1905,
Ale1920, Schoe1906, DoTi1978], and it should be noted that it assumed the
statement to be obvious in the case of a polygonal (or smooth) curve . . .
A proof for a polygonal curve was in fact first given by Schoenflies in 1896
[Schoe1896]. The first complete proof of the full theorem seems to be that
given by Veblen in 1905 [Veb1905].

Consider these dates in relation to the period of relevant activity of the
protagonists of this part of our book — Poincaré and Koebe — from 1883
to 1907. Since their interest lay with Riemann surfaces, which are necessarily
smooth, all the theorems on the classification of surfaces were at their disposal,
and indeed they exploited them to the full, though sometimes without mention.

The following theorem, especially delicate in the case of non-smooth
curves, progressively makes its appearance during the same period.

Theorem. — Every simple closed curve in the plane can be mapped onto a
circle by means of a global homeomorphism of the plane.

Here are some comments on the history of this result, traditionally called
“Schoenflies’ Theorem”, drawn largely from a recent publication of Sieben-
mann [Sieb2005].

Even though the arguments Jordan used in his attempt to prove the Jordan
Curve Theorem [Jor1887] were not convincing, they still showed essentially
that the bounded component of the complement of a curve is homeomorphic
to an open disc. This fact was explicitly established using conformal methods
in 1900 by Osgood in an article we will be discussing later on [OsgW1900].

It was in 1902 that Osgood stated Schoenflies’ Theorem [OsgW1902];
however it would take another ten years or so before the first complete proofs
appeared, again using conformal methods [Car1913a, Car1913b, Car1913c,
Koe1913a, Koe1913b, Koe1915, OsTa1913, Stu1913]. Schoenflies stated “his”
theorem clearly enough in 1906 [Schoe1906]. His proof, fully correct in the
case of a polygonal or smooth curve, was, however, lacking in the general case.
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The first correct proof, using only topological arguments (and not confor-
mal ones) seems to be due to Tietze in 1914 [Tie1913, Tie1914] or to Antoine
in 1921 [Ant1921]. The name “Schoenflies’ Theorem” was given to the result
by Wilder in 1949 [Wil1949].

The topological classification of surfaces

We emphasize once again that since the interest of Poincaré and Koebe was
concentrated on Riemann surfaces, and these are automatically smooth, the
question of the structure of topological surfaces was of no direct interest to
them at that time. It seemed to us nonetheless useful to give a quick description
of the later developments concerning topological surfaces.

Schoenflies’ theorem would be the key allowing Radó to prove in 1925 that
every topological surface countable at infinity is triangulable, and thence to
obtain a classification in the compact case [Rad1925].

The outstanding case of noncompact surfaces was dealt with thanks to the
introduction of the idea of end compactification by Freudenthal, Kerékjártó
and Schoenflies. The complete classification in the noncompact case was ob-
tained by Kerékjártó in 1923 [Ker1923], and fully rigorized by Richards in
1963 and Goldman in 1971 [Ric1963, GolM1971].

We mention in conclusion a particular case that will be needed in the proof
of Lemma XI.2.1: a noncompact, simply connected surface is homeomorphic
to the plane.



Chapter XI

Uniformization of functions

As mentioned in the introduction to this, the last part of the book, in the 19th
century the uniformization problem for Riemann surfaces was above all a prob-
lem in function theory: given an non-single-valued analytic function y of a vari-
able x, to find a variable z such that y and x are single-valued functions of z. This
comes down to parametrizing the Riemann surface defined by the many-valued
function y by means of a variable z ranging over an open subset of C. In his 1883
memoir, Poincaré achieves a double tour de force: on the one hand, he uniformizes
all (analytic) functions, with the caveat that the parametrization z 7→ (x(z), y(z))
may have branch points, and on the other hand, he shows that the variable z can be
constrained to range over a bounded simply connected open subset of the plane.
One has just reflect for a moment on the diversity and complexity of many-valued
functions — solutions of algebraic differential equations provide good examples
and surely formed one of Poincaré’s main motivations — to be convinced of the
revolutionary character of this assertion.

It took till 1900 and the work of Osgood before a parametrization by the disc
was obtained. In fact, it follows from Osgood’s main result [OsgW1900] that
every (non-empty) bounded simply connected open subset of C is biholomorphic
to the unit disc. For the material of the present chapter, one may also consult
[Cho2007, Gra1994].

XI.1. Uniformization of relatively compact regions with boundary

We begin by returning for a moment to the important stage represented by
Schwarz’s work at the turn of the 1870s. We have seen in Chapter IV how Schwarz
obtained, in [Schw1869], “explicit” formulae for biholomorphisms from the disc
onto polygonal regions of the plane. The logical path he took in achieving this is
as follows: he assumed a priori the existence of a biholomorphism between the
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region in question and the unit disc, and then determined a formula for it. Thus,
in order to complete the argument, it remained for him to show that every sim-
ply connected polygonal region is indeed biholomorphic to the unit disc — for
example, by proving rigorously that such regions admit Green’s functions (see
below). It was to this task that he addressed himself in [Schw1870a], introduc-
ing a very elegant method now known as the alternating method. This method
was taken up and generalized by his contemporaries — for example, by C. Neu-
mann in the last chapter of [Neum1884] — and it is still used today to obtain
solutions of certain partial differential equations. Poincaré elaborated on it in his
1890 article [Poin1890] under the name of the “sweeping method” and also used
it crucially in his 1907 proof of the general uniformization theorem. Schwarz’s
techniques are also of use in going well beyond the case of planar polygonal re-
gions to that of relatively compact regions of an arbitrary Riemann surface, with
boundary analytic or polygonal. (We shall give precise meaning below to the word
“polygonal” as applied to a region of a Riemann surface.)

We first of all clarify the connection between uniformization and the construc-
tion of Green’s functions. We have already defined (in §II.2.2) what a Green’s
function is for an open subset of the plane. We now generalize that definition to
an arbitrary Riemann surface:

Definition XI.1.1. — (Of a simple logarithmic singularity): Let S be a Riemann
surface. We shall say that a function u : S → R presents a simple logarithmic
singularity at a point p0 of S if, given a local holomorphic coordinate z in a neigh-
borhood of p0 on S, the function

p 7→ u(p) + log |z(p) − z(p0) |

is bounded in a neighborhood of p0.

Definition XI.1.2. — (Of a Green’s function): Let S be a (connected) noncompact
Riemann surface. A function u : S → R is called a Green’s function on S if there
exists a point p0 of S such that:

(i) u is harmonic on S \ {p0};

(ii) u presents a simple logarithmic singularity at p0;

(iii) u(p) tends to 0 as p leaves every compact subset of S.

Remark XI.1.3. — It follows from the maximum principle that a Green’s func-
tion must be positive and that a given surface S can have at most one Green’s
function with the logarithmic singularity at a prescribed point.
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The relevance of Green’s functions to the uniformization of Riemann surfaces
is made clear by the following theorem.
Theorem XI.1.4. — If a simply connected Riemann surface S admits a Green’s
function, then it is biholomorphic to the unit disc D.
Proof. — The proof is very similar to that in §II.2.2 dealing with the case where S
is a simply connected open subset of the plane.

Let u be a Green’s function on S with its logarithmic singularity at a point p0
of S. Let α be the 1-form defined on S \ {p0} by

α(ξ) = −du(iξ).

The harmonicity of u ensures that the form α is closed. Let γ be a small loop turn-
ing once around p0. A calculation within a chart containing the given singularity
yields ∫

γ
α = −2π.

Write u∗ for a primitive function of α; this will be a many-valued function (since
the integral of α around γ is nonzero) but the function F := e−(u+iu∗) is nonethe-
less well-defined (that is, single-valued): for, the surface S being simply con-
nected, every loop is homologous to an integer multiple of γ and therefore the
integral of α along any loop will be an integer multiple of 2π. Since u > 0, the
values taken by F will lie in the unit disc D. As p leaves every compact subset, we
have u(p) → 0 (by definition of a Green’s function), whence |F (p) | → 1. Thus
the map F is proper, so that its image is closed. This image is also open since this
is always the case for a non-constant holomorphic map. Hence F is surjective. It
remains to verify that F is injective. Since F : S → D is proper and holomorphic,
the fibre F−1(w) over a point w of D is of finite cardinality, and this cardinality
is locally constant provided we count multiplicities. Since F−1(0) = {p0} and
F ′(p0) , 0, it follows that each fibre is a singleton, so the map F is injective. �

We now state the result yielded by the techniques developed by Schwarz in
[Schw1870a].
Theorem XI.1.5. — Let S be a Riemann surface and Ω a region with compact
closure, and with boundary analytic or polygonal. Then for every continuous
function u : ∂Ω→ R we have:

1. there exists a unique continuous extension ũ : Ω → R, harmonic in the
interior of Ω;

2. if p0 is a point in the interior of Ω, then there exists a unique continuous
extension u : Ω \ {p0} → R, harmonic on Ω \ {p0} and presenting a simple
logarithmic singularity at p0.
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Hence, in particular, we have:

Corollary XI.1.6. — Let S be a Riemann surface and Ω a simply connected
region of S with compact closure and with boundary analytic or polygonal. Then
for every point p0 of Ω, there exists a Green’s function on Ω with its logarithmic
singularity situated at p0. It follows that Ω is biholomorphic to the unit disc.

As already mentioned, this corollary together with Theorem IV.1.6, allow one
to show that every compact, simply connected Riemann surface is biholomorphic
to the Riemann sphere (see Chapter IV).

We now give the precise definition of the phrase region with analytic bound-
ary appearing in the statements of Theorem XI.1.5 and Corollary XI.1.6: this
is an open subset with boundary a non-empty real analytic submanifold of di-
mension one1. And by region with polygonal boundary we mean an open subset
with boundary a one-dimensional topological submanifold with the further prop-
erty that there exist a holomorphic atlas of the Riemann surface such that, on each
chart meeting the boundary of the region, the intersection appears as a straight-line
segment or as a “corner” (two segments issuing from a single point). We should
point out that Theorem XI.1.5 is not exactly as Schwarz stated it in [Schw1870a],
although his contemporaries did explicitly attribute it to him in this form. Thus
the techniques that he used were capable of being adapted by sometimes “reading
between the lines” so as to obtain the degree of generality exhibited in the above
statement of Theorem XI.1.5.

Proof of Corollary XI.1.6. — In view of the second conclusion of Theorem XI.1.5,
applied to the zero function on the boundary ∂Ω, the open set Ω admits a Green’s
function. The corollary now follows by applying Theorem XI.1.4 to that open
set. �

Proof of Theorem XI.1.5. — We begin by determining, for each point p of Ω, a
“privileged” neighborhood Dp of p in Ω. If p is an interior point of Ω, we take
as the neighborhood Dp a small Euclidean disc in a local holomorphic coordinate
such that Dp is contained in Ω. If p belongs to the smooth part of the boundary
of Ω, then there exists, by the assumption concerning ∂Ω, a holomorphic chart
zp : Up → C with Up a neighborhood of p in S, such that zp (Up ∩ ∂Ω) is a line-
segment. In this case we consider a Euclidean triangle T contained in zp (Up∩Ω),
such that one of its sides is contained in zp (Up ∩ ∂Ω) and zp (p) is not a vertex
of T , and we take Dp = z−1

p (Int(T )). Finally, if ∂Ω is polygonal and p is a “vertex”
of ∂Ω, then we choose a holomorphic chart zp : Up → C with the property that
in a neighborhood of p, the chart zp maps ∂Ω onto the boundary of a Euclidean
sector with vertex zp (p). We then complete this sector to a triangle and, as in the

1Thus, in particular, a compact Riemann surface and a compact Riemann surface with a point
removed are not considered regions with analytic boundary.
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preceding case, define the desired neighborhood Dp to be the pre-image of the
interior of this triangle under zp .2

For each p in Ω, the neighborhood Dp so constructed has the important prop-
erty that there exists a biholomorphism z : Dp → D from Dp onto the unit disc D
that extends to a homeomorphism from Dp to D. This is clear in the case when p
is an interior point of Ω, and when p is on the boundary of Ω it follows from
Schwarz’s work in [Schw1869]. (See §IV.1.3: for every Euclidean triangle T ,
there in fact exists a function of the form

z 7→ A +

∫ z

0

B
(w − a)1−α (w − b)1−β dw

sending the upper half-plane biholomorphically onto T and extending to a home-
omorphism on the boundary.) In what follows we will consider a finite cover R
of Ω by the neighborhoods just defined.

If D is a region in R, then for a continuous (or possibly just piecewise con-
tinuous) function u : ∂D → R we define the harmonic extension of u to D as
follows: By identifying D with the unit disc D by means of a biholomorphism,
we may regard u as a function defined on the boundary of D. There exists a har-
monic function ũ : D → R such that ũ(p) tends to u(ζ ) as an arbitrary point p of
the disc tends to a point ζ of the circle ∂D where u is continuous; this function ũ
is unique and is given by Poisson’s formula:

ũ(z) =

∫ 1

0

1 − |z |2

|1 − e−2iπθ z |2
u(e2iπθ )dθ.

We now regard ũ as being defined on D: this is then the harmonic extension of u
to D.

If D is as before a region of R and u : Ω → R is a function for which u |∂D
is piecewise continuous, we can make it harmonic on D by forming the function
B(u,D) that coincides with u on Ω \ D and with the harmonic extension of u |∂D
on D. Note that if one begins with a function u continuous on Ω, then B(u,D)
will remain continuous.
1. The existence of a harmonic extension. — Consider any continuous function
u : ∂Ω→ R. We start by extending u to a function u0 : Ω→ R coinciding with u
on ∂Ω and taking the value m = inf∂Ω u on Ω. We shall progressively render u0
harmonic on an infinite sequence (Dn ) of discs of the open cover R. We begin by
choosing D1 ∈ R such that D1∩∂Ω has non-empty interior in ∂Ω. Next we choose
a finite sequence D1, . . . ,Dr of members of R so that ∂D j+1∩D j is non-empty for

2Note that if p is on the boundary of Ω, then we shall not have p ∈ Dp , although we will have
p ∈ Dp .
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each j = 1, . . . ,r −1, and every D of R is equal to some D j (possibly several); the
sequence (Dn ) is then defined to be D1, . . . Dr ,D1, . . . Dr , . . ., in terms of which
we define a sequence of functions u0,u1, . . . by the formula un+1 = B(un ,Dn+1).

The reader will be able to check that this sequence is well-defined and that the
functions un are continuous in the interior of Ω. Although they need not all be
continuous on Ω, we do have un continuous on Ω for n > r . To see this, let p be a
point on the boundary of Ω. There exists a smallest index k < r such that p is in
the interior of Dk∩∂Ω. The function uk−1 restricted to a neighborhood of p in ∂Dk

is continuous, and its harmonic extension to Dk defined by the Poisson formula
is also continuous at p. One then proves by induction that all of the functions un

with n ≥ k are continuous at p. For, suppose this is not the case for some such un .
Then if ∂Dn+1 does not contain p, we shall have un+1 = un in a neighborhood of p
in Ω, which implies that un+1 is continuous at p. For otherwise the point p would
have to be in ∂Dn+1, and since the restriction of un to ∂Dn+1 is continuous at p, its
harmonic extension to the interior of Dn+1 must also be continuous at p. Hence
un+1 is indeed continuous at p and it follows inductively that un is continuous at p
for all n > r .

We next show that the sequence (un ) is increasing. To this end, consider a
function w : Ω → R with the property that for all D ∈ R one has B(w,D) ≥ w.
This is the case for u0, for instance, by the maximum principle. Let D′ be
a disc in R and write w′ = B(w,D′). We claim that then w′ again satisfies
B(w′,D) ≥ w′ for every disc D of R. To see this, note first that B(w′,D) = w′

outside D. Also, w′ ≥ w by the assumption on w. In D \ D′ we have w′ = w,
whence the desired inequality since B(w′,D) ≥ B(w,D) ≥ w. It remains to ver-
ify the inequality in D∩D′. Now the function B(w′,D)−w′ vanishes on ∂D and,
on ∂D′, we have

B(w′,D) − w ≥ B(w,D) − w ≥ 0.

Hence by the maximum principle we have B(w′,D) ≥ w′ on D ∩ D′. Applying
this result first with w = u0, then with w = u1, and so on, we infer that the
sequence (un ) is indeed increasing.

For each positive integer n, we define vn := un+2r − un+r , whence
vn+1 = B(vn ,Dn+1). We shall need the following lemma.

Lemma XI.1.7. — Let v0 be a continuous function onΩ, vanishing on the bound-
ary of Ω, and (vn ) the sequence defined inductively by vn+1 = B(vn ,Dn+1). Then
there exists a constant q, 0 ≤ q < 1, such that, for every positive integer k,

‖v(k+1)r ‖∞ ≤ q‖vkr ‖∞. (XI.1)
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Proof. — Consider the sequence of functions f0, f1, . . . , fr on Ω defined as fol-
lows: The function f0 is defined to be zero ∂Ω and identically equal to 1 in the in-
terior of Ω. One then defines inductively fk+1 = B( fk ,Dk+1) for k = 0, . . . ,r − 1,
and sets q := sup

Ω
fr . Since vkr ≤ f0‖vkr ‖∞, it follows that

vkr+1 = B(vkr ,D1) ≤ B( f0‖vkr ‖∞,D1) = f1‖vkr ‖∞.

Hence we have inductively that

v(k+1)r ≤ fr ‖vkr ‖∞ ≤ q‖vkr ‖∞.

To establish the lemma it remains to show that q < 1. It follows as proved above
for the functions un , n ≥ r , that the function fr is continuous on Ω. Hence the
function fr attains its greatest value at a point p0 of Ω. Since — as the reader
can easily check — fr is not identically zero, the point p0 must lie in the interior
of Ω, and therefore in the interior of some disc D j . Note now that if a piecewise
continuous function lies between 0 and 1 on the boundary of a region D ∈ R
and is less than 1 on a non-empty open subset of that boundary, then its harmonic
extension, obtained using the Poisson formula, is less than 1 in the interior of that
region. Hence the function f1 is less than 1 in the interior of D1 and therefore
on a non-empty open subset of ∂D2. Iterating the argument, we infer that f2
is less than 1 in the interior of D2, and therefore on a non-empty open subset
of ∂D3. It follows by induction that all f j are less than 1 in the interior of D j .
Since the sequence ( fk ) is decreasing (this follows by an argument similar to that
used above to establish that the sequence (un ) was increasing), it follows that
q = fr (p0) ≤ f j (p0) < 1. This completes the proof of the lemma. �

This lemma now gives, for all i = 1, . . . ,r and every positive integer k, that

‖vkr+i ‖∞ ≤ ‖ f i ‖∞‖vkr ‖∞ ≤ ‖vkr ‖∞ ≤ qk ‖v0‖∞.

Hence the series

ui+r + (ui+2r − ui+r ) + (ui+3r − ui+2r ) + · · ·

converges uniformly on Ω to a continuous function Ui : Ω→ R equal to u on ∂Ω
and harmonic on Di (to see which, one observes that each term of the above series
is harmonic on Di , whence by the dominated convergence theorem Ui has the
mean-value property). To conclude the proof, observe first that Ui ≤ Ui+1 since
Ui = lim

k→∞
ui+kr , Ui+1 = lim

k→∞
ui+1+kr and ui+kr ≤ ui+1+kr . Then since Ui+r = Ui ,

it follows that Ui+1 = Ui for all i. The function Ui is therefore harmonic in the
interior ofΩ, continuous onΩ, and coincides with u on ∂Ω. The Dirichlet problem
is solved.
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2. The existence of a harmonic extension with a simple logarithmic singularity.
— Choose a point p0 in the interior of Ω. We may assume, up to modifying the
open cover R, that, on the one hand, no disc in R has p0 on its boundary, and,
on the other hand, p0 belongs to just the one disc Di0 of the sequence D1, . . . ,Dr

and has coordinate zi0 (p0) = 0. We now modify the definition of the sequence
(un ) in the following way: the first term of the sequence is to be ui0 , defined by

ui0 (p) = log
(

1
|zi0 (p) |

)
in the interior of Di0 and by ui0 = 0 outside Di0 . Then

we define un+1 inductively in terms of un by un+1 = B(un ,Dn+1) if n + 1 is not
congruent to i0 modulo r , and by un+1 = ui0 + B(un − ui0 ,Dn+1) if n + 1 is
congruent to i0 modulo r . It should now be clear that for n ≥ i0 each function
un : Ω \ {p0} → R is continuous. One shows as before that un ≤ un+1.

For each positive integer n ≥ i0, we set vn = un+r − un . We then have
vn+1 = B(vn ,Dn+1) and the restrictions of the vn to the boundary of Ω are iden-
tically zero. Furthermore v0 is continuous, so Lemma XI.1.7 applies, and the
inequality (XI.1) holds. Hence if ũ denotes the harmonic extension of u to Ω (ob-
tained as in Part 1 of the present proof) then an argument similar to that of Part 1
shows that for i = i0, . . . , i0 + r − 1, the series

Ui = ũ + ui+r + (ui+2r − ui+r ) + · · ·

converge uniformly to one and the same limit function, which is then the harmonic
extension of u to Ω with a simple logarithmic singularity at p0. �

XI.2. Exhaustion by means of relatively compact, simply connected regions

Suppose we wish to uniformize a relatively compact, simply connected Riemann
surface S. In view of Corollary XI.1.6, a natural strategy would be to choose
an exhaustion D0 ⊂ D1 ⊂ . . . of the surface by simply connected regions Dk

with compact closure, each admitting a Green’s function gk with a logarithmic
singularity at a point p0 of D0, and then attempt to understand the behaviour of the
sequence (gk ). This, very briefly, represents the starting point of the approach to
the problem taken by Poincaré in 1883, and then by Koebe in 1907. We will return
to this later on. First, however, we need to show that an exhaustion D0 ⊂ D1 ⊂ · · ·

such as just described does indeed exist.
Lemma XI.2.1. — Every noncompact, simply connected Riemann surface S ad-
mits an exhaustion by simply connected regions with compact closures and polyg-
onal boundaries.

Proof. — We first observe that, leaving aside the question of boundaries, it is easy
to prove the existence of an exhaustion by a family of simply connected regions
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with compact closures if one knows that S is homeomorphic to the plane — and
this could have been inferred immediately from the classification of surfaces were
it not for the very pertinent fact that the classification of non-compact surfaces
was not achieved till 1923, so Poincaré and Koebe could not avail themselves of
it! That did nothing to prevent them, however, from considering the existence of
such an exhaustion obvious: for example, Koebe writes in [Koe1907a]: “Die Kon-
struktion einer allen angeführten Bedingungen genügenden Folge von Bereichen
bietet keine prinzipiellen Schwierigkeiten dar.”3 But in fact in higher dimensions
the situation is more complicated; for example, Whitehead constructed examples
of contractible 3-dimensional manifolds not homeomorphic to Euclidean space
that do not admit an exhaustion by means of topological balls.

However, by appealing to the classification of smooth surfaces with boundary,
which had been established by the time of interest here, it is not difficult to prove
the existence of an exhaustion D̃0 ⊂ D̃1 ⊂ · · · by means of topological discs
with piecewise smooth boundaries. To do this, one first covers S by countably
many small closed discs (see Box XI.1 below). It may always be assumed that the
boundaries of these discs intersect transversely in pairs, so that the union of a finite
number of the discs is a compact surface Σ embedded in S with boundary made up
of a finite number of (arcs of) pairwise disjoint topological circles embedded in S.
One then observes that the proof of the Jordan Curve Theorem generalizes readily
to a curve on S (since in that proof only the simple-connectedness is used), so that
each component of the boundary of Σ separates S into two components, one of
which is relatively compact. One of these relatively compact components Σ̂ will
contain all the others, so that Σ is contained in Σ̂, a surface with just one boundary
component; thus in going from Σ to Σ̂ we have effectively “plugged the holes”.
The surface Σ̂ is necessarily of genus zero for “homological” reasons, since in
the contrary case one could find two curves in Σ̂ (and therefore on S) intersecting
transversely in a single point — an impossibility on S since it would contradict
the Jordan Curve Theorem. Thus we have constructed a closed disc containing an
arbitrary finite union of closed discs, from which the existence of an exhaustion
of S by a sequence (D̃k ) of closed topological discs follows.

We now look to the boundaries of these discs. We begin by showing that one
may arrange for the members of the exhaustion to have polygonal boundaries if
there exists a non-constant meromorphic function f on our surface S (which is,
we remind the reader, assumed by Koebe and Poincaré since they do not have
the concept of an abstract Riemann surface at their disposal). Now, modulo mod-
ifying the D̃k slightly, we may suppose that their boundaries ∂D̃k do not pass
through any branch points of f , nor through any of its poles. Then for every

3“The construction of a sequence of regions satisfying all the conditions itemized presents no
fundamental difficulty.”
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positive integer k, there exists a neighborhood Uk of ∂D̃k on which f is a local
biholomorphism. Hence γk = f (∂D̃k ) is a closed smooth curve in C (possibly
with multiple points). By choosing Uk small enough, we can approximate γk ar-
bitrarily closely in terms of the Hausdorff metric by means of a closed Euclidean
polygonal curve νk that lifts via f to a simple closed curve ν̃k in Uk . Write Dk

for the connected component of compact closure of S \ ν̃k . The region Dk is then
simply connected, of compact closure in S and with polygonal boundary by con-
struction. If, for each k, we choose ν̃k sufficiently close to ∂D̃k , then we shall
have Dk ⊂ Dk+1 and (Dk ) will be the desired exhaustion of S.

If one should wish to avoid the assumption that there exists a non-constant
meromorphic function on S, it becomes necessary to resort to much more sophis-
ticated arguments which the reader might prefer to omit on a first reading. Note,
for example, that it is not clear that on an abstract Riemann surface one can al-
ways join two given points by means of a real analytic curve. (To prove this one
needs to resort to methods and results established much later than those available
at the turn of the 19th century — such as, for example, the fact that an open Rie-
mann surface is a Stein surface, which then entails the existence of a non-constant
holomorphic function.)

But here is an argument that would doubtless have convinced Poincaré. We
begin by investigating two germs of real analytic curves in the plane, meeting
transversely at a point p at an angle α, and try to see if it is possible to find a germ
of a diffeomorphism, holomorphic in a neighborhood of p, transforming the two
curves into straight lines. To this end, we observe that a germ of a real analytic
curve is the locus of fixed points of a unique anti-holomorphic involution: the
Schwarz symmetry associated with the curve. Thus on composing the two anti-
holomorphic involutions associated with the two germs of curves in question, we
obtain a germ of a holomorphic diffeomorphism ϕ fixing the point p and therefore
with derivative e2iα at p. Transforming the two curves by means of a germ h of
a diffeomorphism amounts to conjugating φ by h. Thus the problem of rectifying
the two curves by means of a germ of a diffeomorphism is equivalent to that of
conjugating the germ φ to its linear part. The problem of linearization of germs of
holomorphic functions in a neighborhood of a chosen point constitutes a chapter,
become classical, of holomorphic dynamics. Poincaré showed that this lineariza-
tion is possible if the derivative at the chosen point does not have modulus 1.
However, in our present situation the derivative at the origin is of modulus 1, and
even apart from that circumstance the situation is rather delicate. One had to wait
till 1942 before Siegel proved that linearization is possible in our situation if α is
irrational and satisfies a certain diophantine condition [Sieg1942]. What is signif-
icant here is that the set of these diophantine numbers is in fact dense in R. (For
the history of this problem of holomorphic “rectification” of germs of pairs of real
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analytic curves, one may consult [Kas1913, Pfe1917].)
Thus one starts as before with an exhaustion D̃0 ⊂ D̃1 ⊂ . . . by means of

topological discs with smooth boundaries. For each k, one can choose a topolog-
ical disc Dk ⊂ D̃k with boundary piecewise analytic and such that ∂Dk and ∂D̃k

are arbitrarily close in terms of the Hausdorff metric. Thus we now have a new ex-
haustion (Dk ). To ensure that each Dk admits a Green’s function one now needs
to have Part 2 of the proof of Theorem XI.1.5 go through for the regions Dk .
This will be possible if the boundaries of the Dk are polygonal and not just piece-
wise analytic. In view of the above-mentioned denseness of the “diophantine
irrationals” one can in fact choose the open sets Dk in such a way that the angles
at the vertices of the ∂Dk are “diophantine”, so that by the argument sketched
above all their corners are rectifiable and the lemma goes through. �

We have the following consequence:

Corollary XI.2.2. — Every non-compact, simply connected Riemann surface S
admits an exhaustion by means of simply connected regions with compact closure
and analytic boundaries.

Proof. — By the preceding lemma, there exists an exhaustion of S by means of
simply connected regions D̃k of compact closure and with polygonal boundaries.
By Corollary XI.1.6, for each positive integer k there exists a biholomorphism
Fk : D̃k → D. Choose a sequence (nk ) of positive integers tending to infinity, and
write γk for the complete inverse image under Fk of the circle centred at 0 and of
radius 1 − 1

nk
. Then if Dk is the connected component of D̃k \ γk whose closure

in D̃k is compact, then, provided (nk ) tends sufficiently quickly to infinity, the
sequence D0 ⊂ D1 ⊂ . . . will be an exhaustion of S by means of simply connected
regions with compact closures and analytic boundaries. �

Box XI.1: Remarks concerning countability

Every germ of a holomorphic function of a variable continues analytically
to a maximal many-valued function, or, equivalently, defines a Riemann sur-
face S furnished with a holomorphic function. In his 1883 article, Poincaré
assumes (implicitly) that such a many-valued function takes at most countably
many values at each point, or, in other words, that S has a countable base of
open sets. In an 1888 note, Vivanti remarks that this limits a priori the domain
of applicability of Poincaré’s theorem:“Dunque la dimonstrazione di Poincaré
vale solo per le funzioni aventi la 1 a potenza” [Viv1888a]. It is not surprising
that Poincaré responded immediately that this note “interests me greatly and
has prompted [in me] diverse reflections”.
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These “diverse reflections” went into an article appearing in the same vol-
ume as Vivanti’s note [Poin1888], in which he proved in effect that such a
many-valued function always takes on at most countably many values at each
point. This volume also contains a second article by Vivanti [Viv1888b] giv-
ing a proof — unfortunately false — of the same result. . . . Another proof
(correct and more detailed than Poincaré’s) was published independently and
almost simultaneously by Volterra [Vol1888] of what we know today as the
“Poincaré–Volterra theorem”.

The history of this theorem and later developments is described in a very
interesting article by Ullrich [Ull2000]. One learns from it, in particular, that
Cantor and Weierstrass had proved this result a little earlier. Today the proof
does not seem very complicated: one can, for example, consider analytic con-
tinuations of f x : (C, x) → C along piecewise polygonal paths with rational
vertices, and then simply observe that the set of such paths is countable and
every analytic continuation can be inferred from one along such a path. Subse-
quently, the Poincaré–Volterra theorem took on a purely topological character:
a connected space extended over a separable space with a countable base of
open sets itself has a countable open base.

It is appropriate to mention also that in 1925 Radó proved that all (con-
nected) Riemann surfaces have a countable open base, independently of any a
priori assumption about the existence of a holomorphic function [Rad1925].
For a modern proof, see [Forst1977].

XI.3. Parametrization by a simply connected open subset of the disc

In this section, we prove the following result of Poincaré from [Poin1882c]:

Theorem XI.3.1. — The Riemann surface S(y) of a germ of a meromorphic
function x ∈ U ⊂ CP1 7−→ y(x) ∈ CP1 can be fully parametrized4 by a simply
connected open subset of the unit disc.

Proof. — We take a non-constant Fuchsian function F : D → CP1 obtained by
considering a cocompact lattice Γ of Aut(D) and defining F (z) as the quotient of
two Fuchsian series of the form∑

γ∈Γ

R(γ(z))γ′(z)2,

4That is, with critical points allowed.
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where R is a rational function with no poles on the unit circle. Recall that F is
invariant under Γ and can therefore be obtained as the composite of the covering
map D → Γ\D with a non-constant meromorphic function on Γ\D; this follows
from the surjectivity of F and the fact that it has the path-lifting property: for
every continuous path γ : [0,1] → CP1 with initial point γ(0) = x0 on the
Riemann sphere and every point z0 ∈ F−1(γ(0)), there exists a continuous path
β : [0,1]→ D such that β(0) = z0 and F ◦ β = γ.5

For the rest of the proof we shall not in fact need to assume that S(y) is the
Riemann surface of a function, but simply that it admits a non-constant meromor-
phic function; in the situation of the surface S(y), the function x will do, and,
moreover, it is not branched. Thus in order to simplify notation, we may instead
consider a Riemann surface S that we wish to show can be parametrized by a sim-
ply connected open subset of the disc, and a non-constant function x : S → CP1

which we may assume to be without critical points6.
Poincaré’s idea is to use the function F to construct a Riemann surface that

will be at once “above” both S and D. More precisely, he constructs a Riemann
surface Σ and holomorphic maps f : Σ → S and h : Σ → D such that x◦ f = F◦h.
To do this he considers the product S×D and a nonempty connected component Σ
of the holomorphic curve defined by the equation x ◦ prS = F ◦ prD, where prS
and prD are the projections of S × D on S and D respectively. Note that then Σ is
non-singular since x has no branch points. We set f = prS |Σ and h = prD |Σ.

Note next that f : Σ → S is surjective. To see this, choose a point (p0, z0) ∈ Σ
and write x0 = x(p0) = F (z0). Let p be an arbitrary point of S and α : [0,1]→ S
a continuous path joining p0 = α(0) to p = α(1). We then write γ := x ◦ α and
consider a path β : [0,1] → D for which β(0) = z0 and F ◦ β = γ. By the
connectivity of Σ, the point (α(t), β(t)) of S × D belongs to Σ for all 0 ≤ t ≤ 1.
In particular, p = prS (p, β(1)) = f (α(1), β(1)) is in the image of f , so that f is
indeed surjective.

To conclude the proof of the theorem, it only remains to show that the uni-
versal covering space Σ̃ of Σ is biholomorphic to a simply connected open subset
of the unit disc. Poincaré has first to construct this universal covering space, or,
in other words, to demonstrate the existence of a simply connected Riemann sur-
face Σ̃ that covers Σ. He does this in less than a page, and in a very natural way;
we give his construction in Box XI.2 below. Then in order to show that Σ̃ is bi-
holomorphic to a simply connected open subset of the unit disc, he uses the map
h : Σ → D, a non-constant holomorphic mapping. He is able to view it as a func-
tion defined on Σ̃, modulo composing it on the right with the covering map Σ̃ → Σ.

5Note however that the uniqueness property may not hold here since F may have branch points.
6Critical points would appear if, instead of the Riemann surface of the function, we added to it

points corresponding to “algebraic” singularities. The proof goes through in this case also, but we
prefer to indulge ourselves this small simplification.
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We may suppose, by composing it with an automorphism of the unit disc if neces-
sary, that it vanishes precisely to the order 1 at some point p0 of Σ̃. We now intro-
duce the function t = − log |h| defined on Σ̃. This function has a singularity at p0,
as well as other singularities {pi }i≥1 forming a discrete subset of Σ̃. These singu-
larities are all of “logarithmic type”: if z is a holomorphic coordinate in a some
neighborhood of pi , there exists an integer ni such that t(p) + ni log |z(p) − z(pi ) |
is bounded. It is important to observe that n0 = 1, that is, that the point p0 is a sim-
ple logarithmic singularity (see Definition XI.1.1). Away from these singularities
the function t is harmonic and positive.

By Lemma XI.2.1, there exists an exhaustion of Σ̃ by means of simply con-
nected, compact regions D0 ⊂ D1 ⊂ · · · with polygonal boundaries. We may
also choose the Dk so that the ∂Dk contain no poles of t and p0 ∈ D0. By
Corollary XI.1.6, for all positive integers k the interior of Dk supports a Green’s
function gk with its logarithmic singularity at p0.

Note next that the function sequence (gk ) is increasing, that is, gk+1 is greater
than gk on Dk . This is immediate from the fact that the difference gk+1 − gk is
harmonic in the interior of Dk and positive on its boundary.

Furthermore, each of the functions gk is bounded above by t. To see this, note
that each difference t − gk is positive on the boundary of Dk , harmonic in the
interior of Dk except for a finite number of points at which it has a logarithmic
singularity, so that, by the minimum principle, t − gk attains its minimum on the
boundary of Dk .

Thus the sequence (gk (p)) has an upper bound independent of k provide p is
not a pole of t. However, if p is a pole of t other than p0, we still have such a
bound, since gk (p) is bounded above independently of k by the maximum value
of t on a small circle around p. Hence (gk ) converges simply to a function g on
Σ̃ \ {p0} that is locally bounded. The theorem of dominated convergence, used
in the Poisson formula expressing the values of gk on a small disc as a function
of those on the boundary, implies that g is harmonic on Σ̃ \ {p0} and that (gk )
converges uniformly to g relative to the C∞ topology on the compact subsets of
Σ̃ \ {p0}. Since gk −g0 is harmonic on a small neighborhood V of p0 with compact
closure, we have that |gk − g0 | is bounded above on V by sup∂V |gk − g0 |. The
latter quantity is in turn bounded above independently of k since on compact sets
of Σ̃ \ {p0} convergence is uniform. Hence g − g0 is bounded in a neighborhood
of p0, and g has a simple logarithmic singularity at p0.

Choose a point p1 ∈ D0 \ {p0}, and for each positive integer k consider the
harmonic conjugate g∗

k
of gk on Dk \ {p0}, defined by

g∗k (p) =

∫ p

p1

∗dgk .
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Although this is a many-valued function, as we saw in the proof of Theo-
rem XI.1.4, the function Gk = e−(gk+ig∗

k
) is a single-valued holomorphic function

on Dk \ {p0} which extends holomorphically to p0 and induces a biholomorphism
from Dk to the unit disc. Since, relative to the C1 topology, (gk ) converges to g

uniformly on compact sets, the sequence (Gk ) converges uniformly on compact
sets to the holomorphic function G = e−(g+ig∗). This function is not constant in
view of the fact that g has a simple logarithmic singularity at p0. Hurwitz’s theo-
rem implies that, the Gk being injective, G also is injective. We have thus proved
that G is a biholomorphism from Σ̃ to a simply connected open subset of the unit
disc. �

It is at this point that Poincaré calls a halt to his 1883 memoir. He does not
know a priori what simply connected open subset of the disc it is that parametrizes
the Riemann surface of the function x 7→ y(x) and furthermore he is careful not
to say that it is biholomorphic to the unit disc. This is the case, however, although
he had to wait till 1900 and Osgood’s article [OsgW1900] for a proof.

Box XI.2: The universal covering space of a Riemann surface

The concept of the universal covering space is, at least implicitly, at the
heart of the work of Klein and Poincaré on the uniformization of algebraic
curves. However, as far as we know, Poincaré’s memoir on the uniformization
of functions contains the first explicit definition of the universal cover of a
Riemann surface. Thus, for given germs of analytic functions y1, . . . , ym of a
variable x, Poincaré constructs the universal cover S̃ of the Riemann surface
associated with the germs y1, . . . , ym . He begins by asserting that S̃ is to be
a Riemann surface extended over the x-plane, and that S̃ will be completely
defined if one knows, for every loop C in the x-plane, under what condition
the two ends of a lift of C will lie on the same sheet of S̃. (Here it is implicit that
this condition should depend only on C, and not on the chosen lift.) Poincaré
goes on to distinguish two sorts of loops C:

1. those with the property that the continuation of at least one of the germs
y1, . . . , ym does not return to its initial value when the variable x tra-
verses the loop C;

2. those for which the continuation of every germ y1, . . . , ym returns to its
initial value when the variable x traverses C.
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He subdivides the loops of the second sort into two types:

1. loops of the first type are those that one can deform continuously to a
point in such a way that throughout the deformation the loop remains
one of the second sort;

2. the other loops of the second sort are then of the second type.

It only remains to note that the initial and final points of a lift of a loop C will
lie on the same sheet of S̃ if and only if C is of the second sort and the first
type. This completely defines the surface S̃.

R. Chorlay’s thesis contains an interesting analysis of this construction;
see [Cho2007, pp. 187–190].

XI.4. Osgood’s theorem

The function t used in the proof of Theorem XI.3.1 resembles a Green’s function
on Σ̃ although it does not tend to 0 at infinity and potentially admits an infinitude
of poles (rather than just one). We owe it to Osgood to have noticed that the
existence of such a function implies the existence of a “genuine” Green’s function,
and therefore, for a simply connected surface, of a biholomorphism to the unit disc
([OsgW1900]).

Definition XI.4.1. — Let S be a Riemann surface. A Green’s majorant is a
positive function f : S → R with a discrete set of singularities, harmonic outside
those singularities, tending to +∞ in a neighborhood of each singularity, and such
that at least one of its singularities, p0 say, is of simple logarithmic type (that is,
in terms of a holomorphic coordinate z in a neighborhood of p0, the expression
f (p) + log |z(p) − z(p0) | is bounded).

Example XI.4.2. — A nonempty open set U contained in the unit disc possesses
a Green’s majorant. To see this, simply observe that, modulo composition with an
automorphism of the disc, one may assume that U contains the point 0 and then
z 7→ log 1

|z | is a Green’s majorant on U .

Example XI.4.3. — If a Riemann surface admits a Green’s majorant, then its
universal covering space does also: it suffices to compose with the covering map.
Hence, in view of the preceding example, the universal cover of a nonempty open
set contained in the unit disc admits a Green’s majorant.
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Note that in general a Riemann surface may admit Green’s majorants without
admitting a genuine Green’s function.
Example XI.4.4. — Let p be a point of the unit disc and consider the surface
S = D\{p}. If there were a Green’s function on S with logarithmic singularity at 0,
then it would extend to a Green’s function on D vanishing at p, contradicting the
maximum principle; hence S does not admit a Green’s function. In compensation,
however, the restriction to S of the function z 7→ log 1

|z | is a Green’s majorant
on S.

We are now ready to state Osgood’s theorem:
Theorem XI.4.5. — Let S be a Riemann surface. If S admits a Green’s majorant
then its universal cover is biholomorphic to the unit disc.

Hence in particular we have the
Corollary XI.4.6. — Every simply connected open set of C admitting a Green’s
majorant is biholomorphic to the unit disc.

Only this corollary appears explicitly in Osgood’s article [OsgW1900]. To
prove it, it suffices to obtain a parametrization by the unit disc in the proof of
Theorem XI.3.1. However, Osgood’s arguments establish the more general state-
ment XI.4.5, and it was this version that Poincaré used in his proof of the general
uniformization theorem in 1907.
Proof of Theorem XI.4.5. — Write t for the Green’s majorant on S. By taking
into account that the composite of t with the universal covering map is a Green’s
majorant on the universal cover, we may assume that S is simply connected.

We now reprise the notation and strategy of the proof of XI.3.1: we con-
struct an exhaustion of S by means of simply connected regions Dk with com-
pact closure and polygonal boundaries. We ensure that the Dk are such that their
boundaries ∂Dk contain none of the singularities of t while D0 contains a sim-
ple logarithmic singularity p0 of t. We then consider the Green’s functions gk on
the Dk , all with their logarithmic singularity at p0, whose existence is guaranteed
by Theorem XI.1.5.

We saw in the proof of XI.3.1 that the function sequence (gk ) tends uniformly
on compact subsets of S \ {p0} to a positive harmonic function g with a simple
logarithmic singularity at p0. We shall prove that in fact g is a Green’s function
on S.

For each positive integer k and every Green’s majorant t ′ having p0 as a simple
logarithmic singularity, the function t ′−gk is positive on ∂Dk , and harmonic in the
interior of Dk , apart from finitely many singularities in neighborhoods of which it
tends to infinity. The maximum principle ensures that, for each k, t ′ − gk attains
its minimum on the boundary of Dk . In other words, gk is less than every Green’s
majorant on S, whence p0 is a simple logarithmic singularity. And then the same
holds for the function g.
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Suppose that g does not tend to 0 at infinity. Then there exists a sequence (qn )
of points of S tending to infinity for which there is a number ε > 0 such that
g(qn ) ≥ ε . Consider the function G = e−(g+ig∗), the limit of the functions
Gk = e−(gk+ig∗

k
). We saw in the preceding section that G is injective. The se-

quence G(qn ) satisfies |G(qn ) | ≤ e−ε < 1. Modulo choosing a suitable subse-
quence, we may therefore suppose that G(qn ) converges to a point q of D.

This point cannot belong to the image of G. For, if it did, then we could choose
a preimage p of q under G and a relatively compact neighborhood U of p such
that G(U) is a neighborhood of q (since the non-constant holomorphic map G is
open). Then almost all terms of the sequence (G(qn )) would belong to G(U) and
the injectivity of G would guarantee that almost all the (qn ) were in U, contra-
dicting the fact that the sequence (qn ) leaves every compact subset.

We now consider the universal cover of the punctured disc7 π : D → D \ {q}.
Since S is simply connected, the map G : S → G(S) ⊂ D \ {q} lifts to a map
G̃ : S → D such that G = π ◦ G̃. Then since the sequence G̃(qn ) leaves every
compact set, we have |G̃(qn ) | → 1.

If F is the Green’s function on the disc with logarithmic singularity at G̃(p0),
then the map F̃ = F ◦ G̃ affords a new Green’s majorant on S with a simple
logarithmic singularity at p0 and satisfying F̃ (qn ) → 0. However, since g is less
than every Green’s majorant on S, this contradicts the assumption g(qn ) ≥ ε and
completes the proof of the theorem. �

Note that Osgood’s theorem implies in particular the Riemann Mapping The-
orem.
Corollary XI.4.7. — Every simply connected region D of the plane different from
the whole plane, is biholomorphic to the unit disc.
Proof. — By assumption, the boundary of D in C is nonempty and, since D is
simply connected, this boundary contains at least two points. Modulo replacing D
by its image under an affine transformation, we may assume that 0 and 1 are on
the boundary of D. Now we know that there exists a holomorphic covering map
π : D→ C \ {0,1}: such a covering arises from the action on the upper half-plane
of the Fuchsian group generated by z 7→ z

2z+1 and z 7→ z + 2. The inclusion ι

of D in C \ {0,1} then lifts to an injection ι̃ : D → D. We can then define a
Green’s majorant on D by inducing one from D via ι̃, and apply Corollary XI.4.6
to conclude that D is biholomorphic to the unit disc. �

7It suffices to compose the universal covering map

D → D \ {0}
z 7→ exp

(
z+1
z−1

)
with an automorphism of the disc.
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XI.5. The problem of branch points

By examining the proof of Theorem XI.3.1, one sees that the parametrization of
the the surface determined by a function x 7→ y(x) admits critical points (branch
points). The set E of such points is the preimage under x of the set of critical
points of F. The set E is discrete in S. The surface S \ E is parametrized, without
branch points, by an open subset of the unit disc. This is how Poincaré formulates
his result in his 1883 memoir. Theorem XI.3.1 is not entirely satisfactory since
we would like to obtain a parametrization of the whole surface S. Osgood em-
phasized this point in the presentation of Poincaré’s theorem that he made in the
course of a series of talks he gave in 1898 ([OsgW1898]), and made suggestions
as to what a “truly satisfactory” statement about uniformization might be. Hilbert
also stressed, at the 1900 International Congress of Mathematicians, the problem
presented by the presence of branch points in Poincaré’s result. Here is how he
formulated his 22nd problem:

Wie Poincaré zuerst bewiesen hat, gelingt die Uniformisirung einer belie-
bigen algebraischen Beziehung zwischen zwei Variabeln stets durch au-
tomorphe Functionen einer Variabeln; d. h. wenn eine beliebige alge-
braische Gleichung zwischen zwei Variabeln vorgelegt ist, so lassen sich
für dieselben stets solche eindeutigen automorphen Functionen einer Vari-
abeln finden, nach deren Einsetzung die algebraische Gleichung identisch
in dieser Variabeln erfüllt ist. Die Verallgemeinerung dieses fundamentalen
Satzes auf nicht algebraische, sondern beliebige analytische Beziehungen
zwischen zwei Variabeln hat Poincaré { Bulletin de la Société Mathéma-
tique de France XI. 1883 } ebenfalls mit Erfolg in Angriff genommen und
zwar auf einem völlig anderen Wege als derjenige war, der ihn bei dem an-
fangs genannten speziellen Probleme zum Ziele führte. Aus Poincarés Be-
weis für die Möglichkeit der Uniformisirung einer beliebigen analytischen
Beziehung zwischen zwei Variabeln geht jedoch noch nicht hervor, ob es
möglich ist, die eindeutigen Functionen der neuen Variabeln so zu wählen,
da, während diese Variabele das reguläre Gebiet jener Functionen durch-
läuft, auch wirklich die Gesamtheit aller regulären Stellen des vorgelegten,
analytischen Gebildes zur Darstellung gelangt. Vielmehr scheinen in Poin-
carés Untersuchungen, abgesehen von den Verzweigungspunkten, noch ge-
wisse andere im Allgemeinen unendlichviele diskrete Stellen vorgelegten
analytischen Gebildes ausgenommen zu sein, zu denen man nur gelangt, in-
dem man die neue Variable gewissen Grenzstellen der Functionen nähert.
Eine Klärung und Lösung dieser Schwierigkeit scheint mir in Anbetra-
cht der fundamentalen Bedeutung der Poincaréschen Fragestellung äußerst
wünschenswert.
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Here is an approximate translation:

As Poincaré was the first to prove, it is always possible to uniformize any al-
gebraic relation between two variables by means of automorphic functions
of a single variable. That is, given an algebraic equation in two variables,
one can always express the latter as functions of a third variable so that, after
substituting, the algebraic relation holds identically. Poincaré also tackled
with success the generalization of this fundamental theorem to any relations
between two variables that are not algebraic but just analytic, and this by
using methods completely different from those he brought to the solution of
the first problem mentioned. From Poincaré’s proof of the possibility of uni-
formizing an arbitrary analytic relation between two variables, it still does
not always follow that it is possible to choose the single-valued functions of
the new variable so that as said variable ranges over its domain of definition,
the totality of regular points of the analytic surface under consideration are
obtained. On the contrary, there appear in Poincaré’s investigations, apart
from the branch points, certain other points, which in general comprise an
infinite discrete part of the surface in question, and which cannot be reached
except by letting the new variable tend to certain points on the boundary of
its domain of definition. In view of the fundamental importance attaching
to Poincaré’s problem, it seems to me that a clarification and a resolution of
this difficulty would be most desirable.



Chapter XII

Koebe’s proof of the uniformization
theorem

When he produced his masterful solution of Hilbert’s twenty-second problem,
Koebe was a 25-year-young mathematician who just two years before had de-
fended a thesis under the supervision of Schwarz and Schottky. The result in
question, nowadays called The Uniformization Theorem, was presented to the
Göttingen Scientific Society by Klein on May 11, 1907 [Koe1907a]:

Theorem XII.0.1. — Every simply connected Riemann surface is biholomorphic
to the Riemann sphere, the complex plane, or the unit disc in C.

Remark XII.0.2. — As always at the time in question, the Riemann surfaces con-
sidered by Koebe were assumed extended over the plane. However, his proof of
the uniformization theorem goes through without change for an abstract Riemann
surface.

XII.1. Idea of the proof

Let S be a simply connected Riemann surface. We wish to show that S is bi-
holomorphic to the Riemann sphere, to C, or to the unit disc. Since Schwarz had
already proved that a compact simply connected Riemann surface is biholomor-
phic to the Riemann sphere, Koebe could assume that S is not compact. Consider
an exhaustion (Dk )k ∈N of S by means of simply connected regions with com-
pact closures and polygonal boundaries, and such that for every k, the inclusion
Dk ⊂ Dk+1 holds (see Lemma XI.2.1 for the existence of such an exhaustion).
Choose a point p0 in the interior of D0, and denote by (gk ) the sequence of Green’s
functions associated with (Dk ), each with its logarithmic singularity at p0, the ex-
istence of this sequence of functions being guaranteed by Theorem XI.1.5. Now
fix on another point p1 in D0 and consider “the” harmonic conjugate g∗

k
of gk ,
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defined on Dk \ {p0} by

g∗k (p) =

∫ p

p1

∗ dgk .

Then as we saw in the proof of Theorem XI.1.4 the function Gk := e−(gk+ig∗
k

) is
single-valued and realizes a biholomorphism from Dk to the unit disc. Koebe’s
approach consists in a (more or less) direct investigation of the convergence of
the Gk , following possible renormalization. One of the most interesting ideas
of his proof is that of regulating the size of the image of the unit disc under a
holomorphic injection in terms of the modulus of the derivative at 0. This forms
the essential content of Lemma XII.3.2, which is a slightly more primitive version
of what is now called the “Koebe Quarter Theorem” (see for example [Pom1975]):

Lemma XII.1.1. — If f : D→ C is a holomorphic injection of the unit disc fixing
the origin, then the image f (D) contains the disc of radius | f ′(0) |/4 centered at
the origin.

Consider a holomorphic chart z : U0 → C defined in a neighborhood U0 of p0
and centered at p0 (that is, z(p0) = 0). Each function gk has a simple logarithmic
singularity at p0 (see Definition XI.1.1); in other words, there is a neighborhood
of p0 in which it has a development of the form

gk (z) = log
1
|z |

+ ck + o(1).

For all k the function gk+1 − gk is harmonic on Dk , extends continuously to Dk ,
and is positive on ∂Dk . Hence by the maximum principle it is positive on Dk . It
follows in particular that its value at p0, namely ck+1 − ck , is positive, so that the
sequence (ck ) is strictly increasing. Moreover, one verifies that on the chart U0
one has |G′

k
(p0) | = e−ck . Koebe now splits his proof into two cases: that where

the sequence (ck ) converges to a finite limit c∞, and that where ck tends to +∞.

XII.2. The case where the sequence (ck ) is bounded

We are assuming here that ck tends to a real number c∞. We have seen above that
on every relatively compact open set D of S, the sequence (gk ) is, from some k
on, defined, harmonic, and strictly increasing on DK{p0}. On our open set with
chart U0 about p0, we consider the sequence of functions uk := gk − log

(
1
|z |

)
.

This is an increasing sequence of harmonic functions for which uk (p0) = ck
forms a convergent sequence. We may therefore apply Harnack’s principle, whose
statement and proof we now recall.
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Theorem XII.2.1 (Harnack’s principle). — LetΩ be a connected open subset of
a Riemann surface and (uk ) an increasing sequence of harmonic functions defined
on Ω. Then (uk ) converges uniformly on every compact subset of Ω, either to +∞

or to a harmonic function.

Proof. — Since every compact subset of Ω can be covered by open subsets bi-
holomorphic to D by means of biholomorphisms extending to homeomorphisms
on the boundary, we need consider only the case where (uk ) is an increasing se-
quence of functions continuous on D and harmonic on D.

Harnack’s principle is then a consequence of the following result:
Proposition XII.2.2 (Harnack’s inequality). — Corresponding to each compact
subset K of D there is a constant CK > 0 such that for every continuous, positive
function u : D→ R harmonic on D, one has

∀(x, y) ∈ K2 u(x) ≤ CK u(y). (XII.1)

Proof. — Observe first that there exists a constant CK > 0 such that (XII.1) holds
for every function u of the form

Pθ : z 7→
1 − |z |2

|1 − e−iθ z |2
,

where θ ∈ [0,2π]. To see this, it suffices to note that the map

(x, y, θ) 7→
Pθ (x)
Pθ (y)

is bounded on K2 × [0,2π]. Now let u : D → R be continuous, positive, and
harmonic in D. Poisson’s formula gives

u(z) =
1

2π

∫ 2π

0
Pθ (z) u(eiθ )dθ.

Hence for every (x, y) ∈ K2 we have

u(x) =
1

2π

∫ 2π

0
Pθ (x) u(eiθ )dθ ≤ CK

1
2π

∫ 2π

0
Pθ (y) u(eiθ )dθ = CK u(y).

�

To deduce Harnack’s principle from his inequality, one begins by reducing to
the case where the functions uk are positive: to this end it suffices to consider
instead the sequence (uk −u0 +1), for example. This assumed, since the sequence
(uk ) is increasing, it tends to a Borel function u : D → R ∪ {+∞}. We then have
a dichotomy according to whether u(0) = +∞ or u(0) ∈ R.
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In the first case we have, for every compact subset K of D containing 0 and
for every natural number k,

min
K

uk ≥ uk (0)/CK ,

so that the sequence (uk ) tends to +∞ uniformly on every compact subset. In the
second case, we have, for every compact subset K of D containing 0 and every k,

max
K

uk ≤ CK uk (0) ≤ CK u(0),

showing that the function u is bounded on every compact subset of D. Hence by
the dominated convergence theorem u has the mean-value property:

u(z) =
1

2π

∫ 2π

0
u(z + reiθ )dθ

for all z inD and all r satisfying 0 < r < 1−|z |. It follows that u is harmonic onD.
To see this it suffices to use a regularizing kernel ρn: the regularized function
ρn ?u is smooth and has the mean-value property, and is therefore harmonic. But
then ρn ? u = u by the mean-value property. Thus in particular the function u
is continuous, and we conclude by Dini’s theorem that (uk ) converges uniformly
to u on every compact subset of D. �

Returning to the case of the uniformization theorem we are at present con-
cerned with, we note that by Harnack’s principle, the function sequence (uk ) con-
verges uniformly on every compact subset of U0 \ {p0}. In particular, for any p
in U0 other than p0, the sequence (gk (p)) is bounded. Hence in this case we may
apply Harnack’s principle to (gk ) to infer that (gk ) converges uniformly on every
compact subset S \ {p0} to a function g that is harmonic, positive, and has a simple
logarithmic singularity at p0. The function g is therefore a Green majorant on S,
and Theorem XI.4.5 then tells us that S is biholomorphic to the unit disc. �

XII.3. The case where the sequence (ck ) tends to infinity

The sequence
(
gk − log 1

|z |

)
is an increasing sequence of harmonic functions de-

fined on the open set with chart U0, and with kth term taking the value ck at p0.
We are now assuming that ck tends to +∞. In this case, Harnack’s inequality im-
plies that the sequence

(
gk − log 1

|z |

)
diverges to infinity on a neighborhood of p0,

so that this is a fortiori the case for (gk ). Hence by Harnack’s principle gk tends
uniformly to infinity on the compact subsets of S, or, what amounts to the same
thing, Gk tends uniformly to 0 on compact subsets of S since |Gk | = e−gk .
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It therefore natural to consider the sequence of functions Fk = eck Gk with
derivatives at p0 equal to 1 on our chart z : U0 → C. Koebe proves the following
proposition:
Proposition XII.3.1. — For all k,m ≥ 0, the image of Dk under Fm+k contains
a disc centered at 0 and of radius Ceck where C is a positive universal constant.

Proof. — Koebe’s idea is that a holomorphic embedding of the unit disc whose
derivative at 0 has large modulus should contain large discs. More precisely:
Lemma XII.3.2. — Let ϕ : D → C be a holomorphic injection fixing 0. If R
denotes the largest real such that the disc of center 0 and radius R is contained in
ϕ(D) then

R ≥ C |ϕ′(0) |,

where C is a positive constant independent of ϕ.

Proof. — One chooses a point Reiθ on the boundary of ϕ(D) and considers the
function

ψ(w) :=
ϕ(w)
Reiθ

.

The open set ψ(D) contains the unit disc but not the point 1. Write r for holomor-
phic determination of the square root restricted to the disc of radius 1 centered
at −1, taking the value i at −1. For every complex number w in the image of r ,
its negative −w is not in that image. Hence there is a neighborhood U of −i on
the Riemann sphere that does not intersect the image of the function r and for
which there is a biholomorphism k : Ĉ \ U → D satisfying k (i) = 0. Write
h(w) = r (ψ(w) − 1). The function k ◦ h is then a holomorphic map of D to itself,
sending 0 to 0. It follows from Schwarz’s lemma that

|k ′(i) | |h′(0) | ≤ 1.

Furthermore, from h2 = ψ − 1 one infers that

|h′(0) | =
|ψ ′(0) |

2
=
|ϕ′(0) |

2R
,

whence R ≥ |k ′(i) | |ϕ′(0) |. (Note that |k ′(i) | depends only on r and the choice
of U , so is independent of ϕ). This establishes the claim. �

One calculates without difficulty that

|(Fk+m ◦ G−1
k )′(0) | = eck .

The proposition now follows directly from the preceding lemma since Fk+m ◦ G−1
k

is a holomorphic embedding of D into C fixing 0 and with image precisely
Fk+m (Dk ). �
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Using this proposition one would like to show directly that the sequence (Fk )
converges to a biholomorphism from S to C. However, Koebe is unable to make
this direct approach work, so he considers instead the sequence of functions

Kk = e−ck
(

1
Gk
− Gk

)
,

which he investigates utilizing what he knows about the functions Fk . The trans-
formation w 7→ 1

w −w sends the unit disc biholomorphically onto the complement,
in CP1, of the segment [−2i,2i] ⊂ iR. Hence Kk sends Dk onto the complement in
CP1 of the segment [−2ie−ck ,2ie−ck ]. On the chart z : U0 → C, the function Kk

admits a series development of the form

Kk =
1
z

+ O(1).

Koebe’s idea is now to use Proposition XII.3.1 not to establish the convergence
of the sequence (Kk ) directly, but rather to show the convergence of the real parts
Uk = Re(Kk ) and to show that this suffices to yield the uniformization theorem.
Thus suppose the sequence of functions Uk : Dk \ {p0} → R does indeed converge
uniformly on compact subsets of S \ {p0}. Poisson’s formula then shows that
the partial derivatives of the Uk also converge uniformly on compact subsets of
S \ {p0}. Hence, in particular, for any point p1 of D0 other than p0, the single-
valued functions

U∗k : p 7→
∫ p

p1

∗dUk

on Dk \ {p0} converge uniformly on compact subsets of S. By construction,
Uk + iU∗

k
is equal to Kk + ak for a certain purely imaginary number ak and,

with this choice of ak , the sequence of functions (Kk + ak ) converges uniformly
on compact subsets of S to a holomorphic function K : S → CP1 with a simple
pole at p0. Hence K is certainly not constant, whence, by Hurwitz’s theorem, it is
injective. The open subset K (S) of CP1 is simply connected. Koebe now argues
that the the boundary of K (S) consists of a single point, so that S must in fact
be biholomorphic to the complex plane. In fact, in view of the simple connect-
edness of K (S), if its boundary contained more than one point it would have to
contain infinitely many, and in this case, by Corollary XI.4.7, K (S), and there-
fore S, would be biholomorphic to the unit disc. This leads to a contradiction,
however, since then S would admit a Green majorant g with a simple logarithmic
singularity at p0, with the consequence that the ck are bounded.

It now only remains to show how Koebe establishes the convergence of the
sequence (Uk ). The functions Uk are characterized by their harmonicity on
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Dk \ {p0}, their convergence to 0 on the boundary of Dk , and their having a devel-
opment in a neighborhood of p0 of the form Uk (z) = Re

(
1
z

)
+O(1). The uniform

convergence of the sequence (Uk ) on compact subsets of S \ {p0}, is established
by deducing from these properties that it is uniformly Cauchy.
Lemma XII.3.3. — For all k,m ≥ 0, the following inequality holds on the re-
gion Dk :

|Uk+m −Uk | ≤

(
1 +

1
C

)
e−ck . (XII.2)

Proof. — On Fk+m (Dk+m ) = D(0,eck+m ), the function

Vk+m (w) := Uk+m ◦ F−1
k+m (w) − Re

(
1
w

)
is harmonic and extends to a continuous function on D(0,eck+m ). The function

Vk (w) := Uk ◦ F−1
k+m (w) − Re

(
1
w

)
is harmonic on Fk+m (Dk ) and extends continuously to the boundary Fk+m (Dk ).
On the boundary of D(0,eck+m ), one has

Vk+m (w) = −Re
(

1
w

)
, whence |Vk+m | ≤ e−cm+k ≤ e−ck .

By the maximum principle this inequality is then valid on D(0,eck+m ), and so, in
particular, on Fk+m (Dk ). Furthermore, by Proposition XII.3.1, Fk+m (Dk ) con-
tains a disc centered at 0 of radius Ceck . Hence on the boundary of Fk+m (Dk ),
where Vk (w) = −Re

(
1
w

)
, one has

|Vk | ≤
1
C

e−ck ,

and one concludes finally that, on Fk+m (Dk ),

|Vm+k − Vk | ≤ 2e−ck ,

yielding the desired inequality (XII.2). �

The sequence (Uk ) is thus uniformly Cauchy on compact subsets of S \ {p0}.
As explained earlier, this implies that the surface S is biholomorphic to the com-
plex plane, and the proof of Theorem XII.0.1 is complete.
Remark XII.3.4. — The dichotomy (ck → c∞) versus (ck → +∞) allows one to
distinguish between surfaces S biholomorphic to the unit disc and those biholo-
morphic to the complex plane. Note also that, instead of introducing — admittedly
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very cleverly — the functions Kk , it would have been preferable to establish the
desired result by working directly with the renormalized maps Fk , if possible. It
turns out that this can indeed be done using Lemma XII.3.2, which tells us that
for all k,m ≥ 0, Fk+m ◦ F−1

k
(D) contains the unit disc. In fact, in the proof

of that lemma, we saw in effect that, setting hm (z) = r (Fk+m ◦ F−1
k
− 1), we

have that the complement of hm (Dk ) contains a neighborhood U of −i indepen-
dent of m and k. It follows that the sequence

(
1

hm+i

)
m∈N

is bounded in modulus
and therefore constitutes a normal family. Hence there is a subsequence of (hm )
that converges uniformly on compact subsets of Dk . It follows, finally, that (Fk )
possesses a subsequence converging uniformly on compact subsets of S to a holo-
morphic function F : S → C. This function cannot be constant since its derivative
at p0 is 1, so by Hurwitz’s theorem it is injective. Then one concludes as before,
via Corollary XI.4.7, that F (S) = C.

Note that it was in June 1907, so almost simultaneously with Koebe’s note,
that P. Montel defended his thesis entitled On infinite sequences of functions
[Mon1907], in which he defined the notion of a normal family.



Chapter XIII

Poincaré’s proof of the uniformization
theorem

This last chapter is based essentially on the memoir [Poin1907], written at the
beginning of 1907 and published in November of that year, in which Poincaré
gives his own proof of the uniformization theorem XII.0.1, one based on a gen-
eralization of Schwarz’s alternating procedure which he calls the “sweeping-out
method”.1 The first two sections of this chapter are devoted to an exposition of
this proof. In the third section, we present the contents of the note [Koe1907b], in
which Koebe revisits Poincaré’s proof, simplifying it significantly.

Throughout the chapter we will be concerned with a simply connected Rie-
mann surface S. Theorem XII.0.1 states that S is biholomorphic to the Riemann
sphere, the complex plane, or the unit disc, so this is what we have to prove. The
compact case was dealt with earlier: according to Theorem IV.2.1, if S is compact
then it is biholomorphic to the Riemann sphere. Thus it will be assumed hence-
forth in this chapter that S is non-compact (and the aim will then be to show that S
is biholomorphic to the complex plane or the unit disc). For any subset X of S, we
shall, as earlier, denote by X the closure of X in S and by ∂X the boundary of X
in S.

XIII.1. Strategy of the proof

Poincaré’s strategy for proving the uniformization theorem rests on Osgood’s the-
orem XI.4.5, affirming that the universal cover of a non-compact Riemann surface
admitting a Green’s majorant is biholomorphic to the unit disc. He attempts to
construct a Green’s majorant on the Riemann surface A obtained by removing a

1Sometimes translated into English as the “scanning method”. The original French word “bal-
ayage” is also used in English texts. (See also e.g. Chapter XI.) Trans
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small disc ∆ from S. His procedure is, more precisely, as follows. He first chooses
a holomorphic chart z : U → C defined on an open subset U of S. Up to follow-
ing z by a suitable automorphism of C, one may suppose z(U) contains the unit
disc in C. Poincaré then chooses a real number r ∈ (0,1) and sets

∆ := {p ∈ S | |z(p) | < r } and A := S \ ∆.

Observe that A is an open subset of the surface S homeomorphic to an annu-
lus, and that the boundary of A in S is the curve ∂A = ∂∆ = {p ∈ S | |z(p) | = r }.
The construction of a Green’s majorant on A will form the subject-matter of sec-
tion XIII.2; here we shall explain why the existence of such a Green’s majorant
implies that S is biholomorphic to the complex plane C or the unit disc D.

Proposition XIII.1.1. — If A admits a Green’s majorant, then it is biholomorphic
to the complex plane or the unit disc.

Proof. — We begin by showing that the fundamental group of A is isomorphic
to Z.2 Choose r ′ ∈ (r,1) and write

∆
′ := {p ∈ S | |z(p) | < r ′}.

The existence of an exhaustion of S by means of topological discs with smooth
boundaries (see the proof of Lemma XI.2.1) implies that the inclusion of ∂∆′

in A induces a surjection from π1(∂∆′) onto π1(A), which is therefore cyclic.
Furthermore, by Theorem XI.4.5 the universal cover of A is biholomorphic to
the unit disc D, whence A is biholomorphic to the quotient of the disc D by a
cyclic subgroup Γ of Aut(D). If Γ were trivial, the surface A would be a disc
and S would be the union of two relatively compact subsets so compact. Hence
the group Γ is generated by an element γ acting fixed-point free on the disc, so
necessarily parabolic or hyperbolic and of infinite order. (For the classification of
the automorphisms of the disc, see §VI.1.1.)

It is now easy to see that there is a biholomorphism h sending A to a plane
annulus of the form A(r1,r2) = {w ∈ C | r1 < |w | < r2} where 0 ≤ r1 < r2 < ∞

(more precisely 0 = r1 < r2 < ∞ if γ is parabolic and 0 < r1 < r2 < ∞ if γ is
hyperbolic). Write A′ := S \ ∆′. For sufficiently small ε > 0, A′ contains either
the annulus h−1(A(r1,r1 + ε)) or the annulus h−1(A(r2 − ε,r2)). We distinguish
three cases.

First case: A′ contains h−1(A(r2 − ε,r2)). If one attaches the annulus
A(r2 − ε,r2 + ε) to the surface S by identifying the subset A(r2 − ε,r2) of it
with h−1(A(r2 − ε,r2)), one obtains a Riemann surface Ŝ of which S is a simply

2As mentioned in the introduction to Part C, Poincaré and Koebe consider it obvious that S is
homeomorphic to the plane, so that A = S \ ∆ is homeomorphic to an annulus.
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connected region with compact closure and analytic boundary. Hence by Corol-
lary XI.1.6, one concludes in this case that S is biholomorphic to the unit disc.

Second case: A′ contains h−1(A(r1,r1 + ε)) and r1 > 0. If one attaches the
annulus A(r1 − ε,r1 + ε) to the surface S by identifying its subset A(r1,r1 + ε)
with h−1(A(r1,r1 + ε)), one obtains a Riemann surface Ŝ in which S is again a
simply connected region with compact closure and analytic boundary. As in the
first case we conclude via Corollary XI.1.6 that S is biholomorphic to the unit
disc.

Third case: A′ contains h−1(A(r1,r1 + ε)) and r1 = 0. If one attaches the disc
D(0,r1 + ε) = {w ∈ C | |w | < r1 + ε} to the surface S by identifying its subset
A(r1,r1 +ε) with the annulus h−1(A(r1,r1 +ε)), one obtains a Riemann surface Ŝ
homeomorphic to the sphere3. By Theorem IV.2.1, Ŝ is then biholomorphic to
the Riemann sphere. The surface S is the complement of a point in Ŝ, so is bi-
holomorphic to the Riemann sphere with a point removed, that is, to the complex
plane. �

In view of this proposition, the proof of the uniformization theorem XII.0.1
reduces to establishing the existence of a Green’s majorant on the annulus A.

XIII.2. The existence of a Green’s majorant on the annulus A

We shall now explain how Poincaré proves the existence of a Green’s majorant
on A. His proof uses a generalization of Schwarz’s alternating procedure called
the sweeping-out method, for which he provides an electrostatic interpretation.
The implementation of this method, especially the justification of its conver-
gence, presents problems of analysis whose difficulty Poincaré fully appreciates
but which were only solved a half-century later with the advent of the theory of
distributions. Lacking these tools, Poincaré relies on physical arguments. In the
proof we give here we expound the ideas from [Poin1907], occasionally supple-
menting them with anachronistic arguments in order to render them rigorous.

XIII.2.1. Presentation of the sweeping-out method

This method rests on an electrostatic analogy: given a distribution of charges on
a surface covered by discs, one lets the discs successively become conducting,
which has the effect of “sweeping out” the charges, that is, causing them to move
to the boundary of their disc without altering the potential except in the interior

3Actually setting r1 = 0 may make this clearer. Trans
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of the disc, the total charge being conserved. One hopes that by iterating this pro-
cedure, the charges will be ultimately “dispersed” to infinity, leaving a perfectly
harmonic potential on the Riemann surface.

In order to construct a Green’s function, one begins with a charge distribu-
tion consisting of a single positive point charge and some distribution of nega-
tive charges. The procedure is then modified so as to preserve the positive point
charge. In other words, only the negative charges are subject to sweeping out.

Here is what the method amounts to mathematically speaking. One considers
a Riemann surface S and a point p0 of S. Each point p of S has a neighborhood D
for which there is a biholomorphism from D to the open unit disc D of C, ex-
tending to a homeomorphism from D to D (so that, in particular, D has compact
closure). Every continuous function v : ∂D → R has an harmonic extension to D,
that is, a function v̄ : D → R continuous on D and harmonic in D. (This function
is obtained via convolution of v with the Poisson kernel after sending D to the
closed unit disc.) Furthermore, if p0 is in D, then there is a Green’s function on D
with a simple logarithmic singularity at p0.

Let u be a continuous real-valued function defined on S \ {p0} with a simple
logarithmic singularity at p0. The scan4 on D of the function u is the func-
tion B(u,D) defined as follows: B(u,D) is equal to u outside D; if D does not
contain p0, then B(u,D) |D is the harmonic extension of u |∂D; and finally if D
contains p0, then B(u,D) |D is to be the sum of the harmonic extension of u |∂D
and the Green’s function on D with a simple logarithmic singularity at p0. Thus
the possible logarithmic singularity of u is preserved.

The sweeping-out process consists in repeating this operation infinitely often
on a family R of discs covering the surface S and not containing the point p0 on
their boundaries. It is important that each disc be swept out infinitely often. If
R = {D1,D2 . . . }, one might, for instance, sweep out the discs in the order D1,
D2, D1, D2, D3, D1, D2, D3, D4 . . . .

Starting with a positive continuous function u0 : S \ {p0} → R with a sim-
ple logarithmic singularity at p0, the scanning process determines a sequence of
functions (un )n≥0 via the recurrence relation

un+1 := B(un ,Dn+1).

Box XIII.1: Electrostatic interpretation of sweeping-out

We begin by recalling certain facts from electrostatics. A planar charge

4Or “sweeping-out” or “balayage”. Trans
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distribution q of compact support gives rise to an electric field ~E given by:

~E(x) :=
∫
R2

−→xy

‖
−→xy‖2

dq(y). (XIII.1)

The flux of the field ~E across an arbitrary simple closed curve C is equal to the
total charge contained in the region D bounded by C:∫

C

〈~E,~n〉 =

∫
D

q, (XIII.2)

where ~n is the outward-directed unit normal vector field along C. Green’s
theorem yields another expression for the left-hand integral:∫

C

〈~E,~n〉 =

∫
D

div ~E. (XIII.3)

Furthermore, the field ~E can be considered as arising from a potential u, that
is, a real-valued function for which E = −~∇u. The potential is a priori well
defined only up to an additive constant. The equations (XIII.2) and (XIII.3)
imply that the potential satisfies

∆u = div ~∇u = −div ~E = −q. (XIII.4)

The elementary potential function u(z) = − log |z | yields for every (small)
circle C = C(0,r): ∫

C
〈~E,~n〉 = r

∫ 2π
0

∂u
∂n (reiθ )dθ

= r
∫ 2π

0 − dθ
r

= −2π.

The Laplacian ∆u corresponds intuitively to −2πδ0, where δ0 is a Dirac mass
at 0. This represents a relatively recent analytic formulation of a much older
intuition concerning a positive point charge.

Imagine now a charge distribution including a positive point charge at p0.
Such a distribution is described by a potential u with a logarithmic singularity
at p0. We now carry out the following thought experiment: we allow a small
disc D in the plane to “become conducting”.

If the disc D contains p0, we only allow D \ {p0} to become conduct-
ing. This has the effect of “sweeping” the electric charges contained in D
(or in D\{p0}, as the case may be) out towards the boundary of D. After having
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allowed the charge distribution to evolve to equilibrium, we obtain a new dis-
tribution q′, arising from a potential u′. The potential u′ is harmonic in D
(resp. D \ {p0}) since there are no longer any charges in D (resp. D \ {p0}).
On the complement of D, we will have ∆u′ = ∆u since the charges outside D
have not moved, the complement of D being supposed to have remainednon-
conducting. Since u and u′ both tend to 0 at infinity, it follows that u′ is pre-
cisely the scana of u on D, that is, u′ = B(u,D).

Thus a sweeping-out process on a Riemann surface S “corresponds” to the
following electrostatic experiment (which is clearly only a “thought experi-
ment” if S is not an open subset of the plane): Starting from a charge distribu-
tion including a positive point charge at p0, we let the members of a family of
discs covering the surface become conducting one after the other.

aOr “sweeping-out” or “balayage”. Trans

In order to see more clearly the importance of sweeping-out for the construc-
tion of Green’s majorants, suppose for a moment that the sequence (un ) converges
uniformly on compact subsets of S\{p0} to a function u. Then (un−u0) converges
uniformly on compact subsets of S\{p0} to a function v, say. Letting D denote any
disc in R and uϕ (n) be terms of a subsequence satisfying uϕ (n) = B(uϕ (n)−1,D),
we then have that each function uϕ (n) − u0 is harmonic on D, whence, since uni-
form passage to the limit preserves the mean value property, we shall have that v
is also harmonic. Thus u is harmonic on S \ {p0} with a simple logarithmic sin-
gularity at p0. It is readily verified that if we start with a positive function u0, all
the terms un will likewise be positive. Hence the function u is indeed a Green’s
majorant on S \ {p0}.

XIII.2.2. Growth in the sweeping-out process and convergence criteria

Our aim is now clear: we have to make some sweeping-out process converge. A
appropriate means to this end involves beginning the process with a subharmonic
function.

Box XIII.2: Subharmonic functions

Let U be an open subset of C. A continuous function u : U → R is called
subharmonic if the value of u at each point of U is less than or equal to the
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average of u on every circle centered at that point, that is, for all x0 ∈ U and
r > 0,

u(x0) ≤
1

2π

∫ 2π

0
u(x0 + reiθ )dθ. (XIII.5)

Using Green’s theorem, one infers that, provided the function u is smooth,
this property is equivalent to the condition that the Laplacian ∆u of u be non-
negative. In fact, it is more natural to introduce the operator dc = ?d acting on
functions and to consider the 2-form ddcu, which is invariant under holomor-
phic coordinate changes. Recall that the Hodge operator ?, acting on 1-forms
via the formula?α(ξ) = −α(iξ), is a conformal invariant. This is also the case
for ddc , since on a chart x = a + ib, one may write

ddcu = ∆u da ∧ db.

Furthermore, this 2-form has an electrostatic interpretation: given a neg-
ative charge distribution defined by a 2-form µ, the potential associated with
this charge distribution is a function u satisfying −ddcu = µ. From this it fol-
lows that a smooth function u is subharmonic if and only if ddcu is a positive
2-form.

However, in the sweeping-out process of interest to us, we shall be consid-
ering subharmonic functions that are not differentiable. An example typical of
those we shall encounter is the maximum of two harmonic functions; for such
functions we would like to define the “corresponding repartition of charges”.
Thus we seek to define ddcu for any continuous function u, and for this pur-
pose we shall need to have recourse to the theory of distributions.

Let C∞c (U) denote the space of smooth functions on U with compact sup-
port. For any continuous function u on U , one defines ddcu in the distribu-
tional sense to be the linear form on C∞c (U) given by

〈ddcu, ϕ〉 :=
∫
U

u ddcϕ.

If u is smooth, then ddcu in the distributional sense coincides with ddcu in the
usual sense, interpreted as a linear form on C∞c (U) via integration.

Proposition XIII.2.1. — A continuous function u : U → R is subharmonic if
and only if ddcu is a positive linear form, that is, a positive measure.
Proof. — Let u : U → R be a continuous function, and consider a rotation-
invariant, positive regularizing kernel (ρε )ε>0 with compact support. For each
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ε > 0, write uε := u ∗ ρε ; this is a smooth function tending uniformly to u on
every compact subset of U as ε tends to 0.

Assume first that ddcu is, in the distributional sense, a positive linear form,
and consider ϕ ∈ C∞c (U) with ϕ ≥ 0. Then for ε sufficiently small, we have

〈ddcuε , ϕ〉 =

∫
U

uε ddcϕ

=

∫
U

u ddc (ϕ ∗ ρε )

= 〈ddcu, ϕ ∗ ρε〉 ≥ 0.

This shows that ddcuε is (in the distributional sense) also a positive linear
form. Since uε is smooth, ddcuε is well defined in the standard sense and (as
a 2-form) positive. Hence uε satisfies the inequality (XIII.5). Then since uε
tends to u uniformly on every compact subset as ε tends to 0, it follows that u
also satisfies (XIII.5), and so is subharmonic.

Conversely, suppose u is subharmonic, that is, that it satisfies the inequality
(XIII.5). From the rotational invariance of ρε it follows that uε also satisfies
that inequality. Since uε is smooth, we infer in turn that ddcuε is positive. By
invoking the uniform convergence of uε to u, one then has, for every function
ϕ ∈ C∞c (U) with ϕ ≥ 0,

〈ddcu, ϕ〉 =

∫
U

uddcϕ

= lim
ε→0

∫
U

uεddcϕ

= lim
ε→0

∫
U

ϕddcuε ≥ 0.

This shows that ddcu is, in the distributional sense, a positive linear form. �
As mentioned earlier, if u is a smooth function, then ddcu is invariant under

holomorphic coordinate changes. Hence ddcu has a well defined sense when
u is a smooth function defined on a region of a Riemann surface. One sees
immediately that this remains true (in the distributional sense) for a function
that is merely continuous. For, if u is a continuous function on a Riemann
surface S, then by Proposition XIII.2.1 the following properties are equivalent:

(i) the linear form ddcu is a positive measure;
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(ii) in terms of any holomorphic coordinate on S, for every x0 and every
positive r ,

u(x0) ≤
1

2π

∫ 2π

0
u(x0 + reiθ )dθ.

We call the function u subharmonic if it has these two properties.
Note that since the function defined on C \ {0} by u(z) = − log |z | is inte-

grable over compact subsets of C, it has, in the distributional sense, a Laplacian
on C defined by

〈ddcu, ϕ〉 :=
∫
C

u ddcϕ

for every smooth function ϕ with compact support. Green’s theorem gives
ddcu = −2πδ0. To see this, one considers real numbers 0 < ε < r such that ϕ
vanishes outside the disc of radius r . One then has∫

ε≤ |z | ≤r
u ddcϕ = −

∫
|z |=ε

ϕ

ε
+

∫
|z |=ε

log ε
∂ϕ

∂n
,

from which one obtains 〈ddcu, ϕ〉 = −2πϕ(0) on letting ε tend to 0. Hence
for a Riemann surface S, every subharmonic function on S \ {p0} with a sim-
ple logarithmic singularity at p0 admits a Laplacian in the distributional sense
defined on the whole surface S, namely a signed measure with mass −2π at p0
and positive elsewhere.

We now consider a Riemann surface S and a subharmonic function u0 : S → R
on S, with a simple logarithmic singularity. One way of constructing such func-
tions is to choose a disc D with compact closure in S, for which there exists a
biholomorphism ϕ : D → D; it then suffices to define u0 by u0(p) := − log |ϕ(p) |
for ϕ(p) in D \ {0} and u0(p) = 0 otherwise. The logarithmic singularity is then
located at the point p0 := ϕ−1(0). Denote by (un )n≥0 the sequence of functions
generated by a sweeping-out process on S starting with u0.

Proposition XIII.2.2. — For all n the function un is subharmonic on S \ {p0}

with a simple logarithmic singularity at p0. Moreover, the sequence (un )n≥0 is
increasing.

Proof. — Assuming inductively that un is subharmonic on S \ {p0}, let D be
the open disc such that un+1 has been obtained from un by sweeping-out on D.
Assume D contains p0. Recall that un+1 is equal to un on S \D, and that un+1 |D is
the sum of the harmonic extension of un |∂D and the Green’s function on D with
a logarithmic singularity at p0. It follows that un − un+1 is subharmonic on D
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and vanishes on ∂D. This implies, via the maximum principle for subharmonic
functions, that un ≤ un+1.

We now show that un+1 is subharmonic. This is clearly the case on D \ {p0}

and on S \ D. If, finally, x0 ∈ ∂D, if z : U0 → C is a holomorphic chart on a
neighborhood of x0 with z(x0) = 0, and if r > 0 is such that D(0,r) ⊂ z(U0),
then un+1(x0) = un (x0) and

un (x0) ≤
1

2π

∫ 2π

0
un (z−1(reiθ ))dθ ≤

1
2π

∫ 2π

0
un+1(z−1(reiθ ))dθ.

This shows that un+1 is indeed subharmonic on S \ {p0}. In the case that the disc D
does not contain p0, the proof is similar. �

Proposition XIII.2.3. — If, for a point p of S \ {p0}, the sequence (un (p))n≥0
is bounded above, then the function sequence (un ) converges uniformly on com-
pact subsets of S \ {p0} to a Green’s majorant u : S → R possessing a unique
logarithmic singularity, simple and located at p0.

Proof. — This follows directly from Harnack’s principle (Theorem XII.2.1) and
Proposition XIII.2.2. �

The following proposition is crucial to Poincaré’s proof. It is this that allows
the sweeping-out process to be controlled. It represents the mathematical interpre-
tation of the following physical intuition: throughout the sweeping-out procedure,
the total electric charge does not change. Poincaré considers the result physically
obvious and gives no proof.

Proposition XIII.2.4. — The mass
∫
S

ddcun is independent of n.

Proof. — Choose any n and let D denote the disc of S such that un+1 is obtained
by sweeping-out un on D. If ϕ ∈ C∞c (S) is equal to 1 on D, then

〈ddcun , ϕ〉 =

∫
S

un ddcϕ =

∫
S

un+1 ddcϕ = 〈ddcun+1, ϕ〉.

The middle equality follows from the facts that ddcϕ vanishes on D and un is
equal to un+1 outside D. If one lets ϕ approach the function taking the constant
value 1 on D and 0 elsewhere, one obtains in the limit the equality of the total
mass ddcun with that of ddcun+1. �

XIII.2.3. The convergence of the sweeping-out process on A

We shall now prove that any sweeping-out process on the annulus A starting from
a subharmonic function with a simple logarithmic singularity, converges. This
establishes the existence of a Green’s majorant on A.



XIII Poincaré’s proof of the uniformization theorem 371

We recall the construction of the annulus A. We chose a holomorphic chart z
defined on an open subset U of S such that the image of z contains the unit disc
of C; we also chose a real number r ∈ (0,1) and set ∆ := {p ∈ S | |z(p) | < r } and
A = S \ ∆. We now choose a real number r ′ ∈ (r,1) and write

∆
′ := {p ∈ S | |z(p) | < r ′}.

Fix on a point p0 ∈ A such that p0 < ∆
′, and consider a subharmonic function

u0 : S → R on S with a simple logarithmic singularity at p0 and with support
a compact subset of A. Let (un )n≥0 be the sequence of functions generated by
a sweeping-out process on A starting with u0. By Proposition XIII.2.2, this is
an increasing sequence of subharmonic functions on A \ {p0}, all with a simple
logarithmic singularity at p0. Observe that furthermore these functions all have
compact support in A. By Proposition XIII.2.3, in order to establish the existence
of a Green’s majorant on A it suffices to find a point p ∈ A for which the sequence
(un (p))n≥0 is bounded. For each n ≥ 0, we consider the function ūn : S → R
coinciding with un on A and identically zero on

S \ A = ∆ = {p ∈ S | |z(p) | ≤ r }.

We shall need the following lemma.
Lemma XIII.2.5. — Let r and r ′ be such that 0 < r < r ′ < 1. For each s, denote
by D(0, s) the open disc of radius s and center the origin in C. If u : D(0,1) → R
is a continuous subharmonic function vanishing on the disc D(0,r), then

1
2π

∫ 2π

0
u(r ′eiθ )dθ ≤ log

r ′

r

∫
D(0,r ′)

ddcu. (XIII.6)

Proof. — For each s such that 0 < s < 1, write J (s) = 1
2π

∫ 2π
0 u(seiθ )dθ. We first

consider the case that u is a smooth function; we shall in this case bound J (r ′) by
integrating its derivative. For 0 ≤ s < 1, we have

sJ ′(s) =

∫ 2π

0

du
ds

(seiθ )s
dθ
2π
.

By Green’s theorem the right-hand side of this equation can be interpreted as
the integral of the Laplacian of u over the disc D(0, s): we therefore have, for
0 < s < r ′,

J ′(s) =
1
s

∫
D(0,s)

ddcu ≤
1
s

∫
D(0,r ′)

ddcu.

Integration of this inequality yields

J (r ′) − J (r) ≤ log
r ′

r

∫
D(0,r ′)

ddcu.
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Then since J (r) is zero, we obtain the desired inequality (XIII.6).
In the case that u is not smooth, we consider, as in the proof of Weyl’s

lemma III.2.4 or that of Proposition XIII.2.4, a positive, rotation-invariant reg-
ularizing kernel (ρε )ε>0 with compact support. For 0 < ε < 1 − r1, the function
uε := u ∗ ρε is subharmonic and smooth, so the inequality (XIII.6) holds for uε .
As ε approaches 0, the function uε tends uniformly to u and the measure ddcuε
converges weakly to ddcu (see the proof of Proposition XIII.2.1). The inequality
(XIII.6) for u therefore follows from that same inequality for uε . �

From Lemma XIII.2.5 it follows that for each n ≥ 0∫
∂∆′

un =

∫
∂∆′

ūn ≤ log
r ′

r

∫
∆′

ddc ūn = log
r ′

r

∫
∆′\∆

ddcun .

Note that ddcu0 restricted to A \ {p0} is a measure of finite mass. Recall also that
by Proposition XIII.2.4 “the total electric charge does not change in the course
of the sweeping-out process”, or, in other words, the integral

∫
A\{p0 }

ddcun is

independent of n and consequently
∫
∆′

ddcun is bounded independently of n. It
follows from this that

∫
∂∆′

un is also bounded above independently of n, by a
constant C, say.

This last bound suffices to control the functions un at a point. Consider the
sequence of functions un restricted to ∂∆′. We have just shown that they are all
of mean at most C. Moreover, the sequence (un ) is increasing. It follows from
the theorem on nested compact sets that there exists a point p of ∂∆′ ⊂ A \ {p0}

for which the sequence (un (p)) is bounded above by C. The sequence (un )n≥0
(viewed as a sequence of functions on A \ {p0}, rather than on S \ {p0}) there-
fore converges uniformly on compact subsets of A \ {p0} to a Green’s majo-
rant u : A \ {p0} → R with a simple logarithmic singularity at p0. By Proposi-
tion XIII.1.1, the uniformization theorem XII.0.1 now follows. �

XIII.3. The more direct proof of Koebe

We now expound the proof of the existence of a Green’s majorant on the annu-
lus A given by Koebe in his note [Koe1907b]. Koebe explains that this proof
was inspired by his reading of Poincaré’s memoir [Poin1907]. In fact it is not
a question of a really new proof, but rather of a “radical tidying up” of the one
in [Poin1907]. Apart from being significantly shorter than Poincaré’s, Koebe’s
proof has a further advantage: it is no longer necessary to appeal to the theory of
distributions to render it rigorous.

We shall use the notation of §XIII.1. Koebe’s proof utilises an exhaustion of
A := S \ ∆ by means of relatively compact annuli. One begins by choosing an
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exhaustion D0 ⊂ D1 ⊂ · · · of the surface S by means of an increasing sequence
of relatively compact, simply connected regions, with analytic boundaries (see
Corollary XI.2.2), with D0 containing ∆. For each n ≥ 0, we write An := Dn \ ∆.
Thus we now have an exhaustion A0 ⊂ A1 ⊂ · · · of the annulus A by means of an
increasing sequence of relatively compact topological annuli in S. For each n, the
boundary of An in S is made up of the two components ∂∆ and ∂Dn .

Choose a point p0 in A0. Work of Schwarz shows that, for each n, the annu-
lus An admits a Green’s function un with its pole at p0 (Corollary XI.1.6). Recall
that this means that un is a well defined harmonic function on An \ {p0} with a
simple logarithmic singularity at p0 (see Definition XI.1.1), and tends to zero on
leaving every compact subset of An . The function un is extended to the annulus A
by setting un = 0 on A \ An; the extended function so obtained is continuous.

Koebe’s proof consists in showing that the function sequence (un )n≥0 con-
verges (uniformly on every compact subset of A \ {p0}) to a Green’s majorant
on A. For each n ≥ 0, the function un is harmonic on An \ {p0}, zero on A \ An ,
and tends to +∞ near p0; hence by the maximum principle un is non-negative.
This implies that the function un+1 − un is non-negative on A \ An (since un+1
is non-negative and un zero on A \ An); then since un+1 − un is harmonic on An

(including p0), we infer, once again from the maximum principle, that un+1 − un

is non-negative on the whole of A. Hence (un )n≥0 is an increasing sequence of
non-negative functions. By Harnack’s principle XII.2.1, in order to show that the
sequence (un )n≥0 converges uniformly on every compact subset of A to a function
u : A \ {p0} → R (which will then automatically serve as a Green’s majorant), it
suffices to find a point p ∈ A\ {p0} such that the sequence (un (p))n≥0 is bounded.

The key argument here concerns the bounding of the integral along ∂A of
the partial derivative of un in a direction normal to ∂A. For sufficiently small
ε > 0, denote by Bε the open disc of radius ε centered at p0, referred to a lo-
cal holomorphic coordinate system defined in a neighborhood of p0, and write
An,ε := An \ Bε . The boundary of An,ε (in S) is comprised of the three compo-
nents ∂A, ∂Dn and ∂Bε . For any point p of the boundary of An,ε , write ∂un

∂ν (p)
for the partial derivative of the function un in the direction of the normal directed
into the interior of An,ε , evaluated at the point p. Green’s theorem gives:∫

∂A

∂un

∂ν
= −

∫
An,ε

∆un −

∫
∂Bε

∂un

∂ν
−

∫
∂Dn

∂un

∂ν
. (XIII.7)

Since the function un is harmonic on An \ {p0}, the first term on the right-hand
side is zero. Secondly, if w is a holomorphic coordinate given on a neighborhood
of p0, the function un (p) behaves like − log |w(p) − w(p0) | to within a bounded
quantity, so that the second integral on the right-hand side approaches −2π as ε
tends to 0. Finally, since, as we saw above, the function un is non-negative on An
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and zero on ∂An , the derivative ∂un

∂ν (p) must be non-negative at every point p
of ∂An . Hence the third integral on the right-hand side of (XIII.7) is non-negative.
We have thus established the following bound:

∫
∂A

∂un

∂ν
≤ 2π. (XIII.8)

Remark XIII.3.1. — Just like Poincaré, Koebe ignores, purely and simply, prob-
lems concerning the regularity of the functions he considers! For n ≥ 0, the
Green’s function un is analytic on An \ {p0} but a priori only continuous on
An \ {p0}; thus talk of the normal derivative of un along ∂An and applying Green’s
theorem makes no sense a priori. In order to resolve this sort of problem in
Poincaré’s proof, we had to appeal to the theory of distributions. However, in
the present proof the difficulties turn out to be only apparent: one can show that
the function un can be continued to an analytic function on a neighborhood of
An \ {p0}. Here is a proof. Consider two copies A1

n and A2
n of the closed annulus

An . By gluing A1
n and A2

n together along their boundaries, one obtains a Riemann
surface Σn , the double of the annulus An . The surface Σn has the topology of the
torus T2, so it is an elliptic curve. Denote by σ the involution of Σn interchanging
A1
n and A2

n . By §II.2.4, there exists a unique function vn : Σn → R that is har-
monic save at the points p1

0 and p2
0, with a singularity of the form − log |w−w(p1

0) |
at p1

0 and of the form log |w − w(p2
0) | at p2

0. The function vn ◦ σ is therefore har-
monic save at the points p2

0 = σ(p1
0) and p1

0 = σ(p2
0), with a singularity of the

form − log |w−w(p2
0) | at p2

0 and of the form log |w−w(p1
0) | at p1

0. By uniqueness,
one must have −vn = vn ◦ σ. Since the points of ∂A1

n = ∂A2
n are fixed points

under σ, it follows that vn vanishes on ∂A1
n = ∂A2

n . Hence the restriction of vn
to A1

n is a Green’s function on A1
n ' An with a pole of the form − log |z − z(p0) |

at p0, so by uniqueness again it must be the function un! This shows that un may
be regarded as the restriction of an analytic function defined on a Riemann sur-
face containing An; there is therefore no need to scruple in talking of the normal
derivative of un along ∂An and applying Green’s theorem.

It remains to show that the inequality (XIII.8) suffices for bounding the se-
quence (un (p))n∈N at a point p ∈ A. Recall that the annulus A is the complement
in S of the closed disc ∆ := {p ∈ S | |z(p) | ≤ r } (r < 1) defined in terms of a
holomorphic chart z whose image contains the unit disc of C. Choose r ′ ∈ (r,1)
and write ∆′ := {p ∈ S | |z(p) | < r ′}. By taking r ′ sufficiently close to r , we
may assume the point p0 is not in ∆

′
. For each n ≥ 0, denote by mn the least

value of the function un on the circle ∂∆′ = {p ∈ S | |z(p) | = r ′} and consider the
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function hn defined on the open subset U by

hn (q) := mn

log |z (q) |
r

log r ′

r

.

On the circle ∂∆ = ∂A = {p ∈ S | |z(p) | = r } the functions un and hn are both
zero, and on the circle ∂∆′ = {p ∈ S | |z(p) | = r ′} they satisfy

un ≥ hn = mn .

Since the functions un and hn are both harmonic on ∆′ \ ∆, it follows that un

majorizes hn on ∆′ \ ∆. Since un and hn coincide on ∂∆, this implies that

∂un

∂ν
(q) ≥

∂hn

∂ν
(q)

at every point q of ∂∆ = ∂A. In view of the bound on the integral of ∂un

∂ν obtained
above, we therefore have ∫

∂A

∂hn

∂ν
≤ 2π.

On the other hand, a direct calculation using the formula defining hn yields∫
∂A

∂hn

∂ν
= 2πrmn .

It follows that the real sequence (mn )n≥0 is bounded. Choose any point p on ∂∆′.
Harnack’s inequality (XII.1) now implies the existence of a constant K such that

un (p) ≤ Kmn

for all n. We therefore conclude, as desired, that the sequence (un (p))n≥0 is
bounded, and, as explained earlier, this entails that the sequence (un )n≥0 con-
verges (uniformly on every compact subset of A \ {p0}) to a Green’s majorant on
the annulus A. �

Remark XIII.3.2. — The key arguments in Koebe’s proof are very similar to
those of Poincaré’s proof: in both cases one controls the sequence (un (p))n∈N at a
certain point p of A by bounding the integral over a (or possibly several) circle(s)
centered at p, of the derivative of un in a direction transverse to this (these) cir-
cle(s) (this bound being obtained via Green’s theorem). An important difference
is that in Poincaré’s proof the measure ddcun has its support in a compact subset
of A, while in that of Koebe it is concentrated on ∂An ∪ {p0}. (In Koebe’s proof,
if one extends the function un to S by setting un = 0 on S \ A, then un becomes
a subharmonic function of S with a simple logarithmic singularity at p0; on the
other hand, the measure ddcun is concentrated at p0 and on ∂An , and the linear
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density of ddcun along ∂An is nothing more or less than the function ∂un

∂ν .) Thus
Koebe’s contribution in his note [Koe1907b] was to show:

— first, that Poincaré’s memoir contained a fundamentally new argument,
namely, that the conservation of electric charge during the sweeping-out
process implies that the integral along the boundary of A of the normal
derivative of the functions arising in that process is bounded;

— second, that this argument of Poincaré suffices by itself for the desired con-
clusion, provided the sequence of functions arising in the sweeping-out pro-
cess is replaced by a much simpler sequence of functions — for example,
the sequence of Green’s functions associated with an exhaustion of A.
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The uniformization theorem
from 1907 to 2007

By the end of 1907 the uniformization theorem was definitely proved. Koebe’s
proof and that of Poincaré (as revised by Koebe) seem to us rigorous in the modern
sense of the word. However, it took some time for these proofs to be tidied up
and the “simple and natural” versions arrived at that one finds in modern works.
The theorem itself has ceased to be a research topic and has become a tool that
mathematicians hold in their minds to be endlessly polished.

In 1909 Koebe was invited by Poincaré to republish his proofs of the uni-
formization theorem in his Notes in the Comptes rendus de l’Académie des sci-
ences de Paris [Koe1909b, Koe1909c]. In the note [Koe1909b], Koebe states
that the uniformization problem separates into two sub-problems: one of Anal-
ysis Situs (given a Riemann surface, find a not necessarily simply connected
covering homeomorphic to an open subset of the Riemann sphere), and a con-
formal problem (replace “homeomorphic” by “biholomorphic”). According to
Weyl [Wey1955]:

From then on, Koebe spent his whole scientific life in studying the problem
of uniformization thoroughly from all sides, and with the most varied meth-
ods. To him above all we owe it that today the theory of uniformization,
which certainly may claim a central role in complex function theory, stands
before us as a mathematical structure of a particular harmony and grandeur.

The list of Koebe’s publications on uniformization is indeed impressive. He
used the very latest techniques to improve the proof — for instance, ideas of
Hilbert — or to produce more general theorems [Koe1908a,Koe1908b,Koe1910a,
Koe1910b, Koe1910c]. He also published articles on the case of algebraic sur-
faces, examining the connections between different aspects of uniformization (lin-
ear differential equations and projective structures, Fuchsian groups and their de-
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formations and fundamental polygons, Fuchsian functions, the method of con-
tinuity, uniformization à la Schottky, explicit examples of uniformization, . . . )
[Koe1909e, Koe1910a, Koe1912, Koe1914].

In his 1976 article reviewing the status of Hilbert’s twenty-second problem
(uniformization), Bers points up his theme with the following quotation from
Goethe:

Was du ererbt von deinen Vätern hast, erwirb es, um es zu besitzen.1

According to Bers [Ber1976]

Each generation of mathematicians, obedient to Goethe’s advice, rethinks
and reworks the solutions discovered by their predecessors and places them
within the framework of the concepts and notation of their epoch.

It is not our aim to describe here the development of the theory of Riemann
surfaces in the course of the 20th century. We shall, however, provide a reading
list that will allow the reader to retrace the process by means of which the various
proofs of the theorem have been progressively simplified between 1907 and today.

Apart from their complexity, Koebe’s and Poincaré’s 1907 proofs possess
other weak points. A Riemann surface as they understood the concept, is en-
dowed a priori with a globally defined meromorphic function. It is true, however,
that Poincaré and Koebe would not have considered this a weakness since it was
built into their definition of Riemann surface. The construction of Green’s func-
tions rested on Schwarz’s alternating method in Koebe’s proof, and on “sweeping-
out” in Poincaré’s. Now although Schwarz’s alternating method is certainly solid
enough, it is not very natural since it depends on a choice of triangulation, whereas
an abstract Riemann surface does not possess a canonical triangulation. And the
sweeping-out method requires certain analytic refinements not actually available
to Poincaré.

Improvements were made in quick succession. In June 1907, Montel pub-
lished his first article [Mon1907] on normal families, work which lent itself to
significantly clarifying and simplifying the last part of Koebe’s and Poincaré’s
proofs, dealing with the convergence of the partial uniformizations defined on
relatively compact regions.

In 1899, Hilbert resuscitated Dirichlet’s principle using new methods al-
lowing him to show that certain functionals in effect admit a minimum (see
[Hil1900a, Hil1904, Hil1905]). Then in 1909, he finally announced that his re-
sults sufficed to establish the existence of a Green’s majorant in a very general

1In order to possess what you have inherited from your parents, you need to earn it.
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framework [Hil1909], and this served to liberate the proofs of the uniformiza-
tion theorem from the need to use Schwarz’s alternating procedure. Koebe was
not slow to publish, in 1909 and 1910, articles in which he improved his proof
by means of Hilbert’s methods [Koe1909a, Koe1910b]. Of course, the scope of
Hilbert’s ideas went beyond this since they opened the way to Hodge theory.

Let us summarise the situation as of 1909: for a Riemann surface endowed
with a meromorphic function, one has a simple proof of the uniformization the-
orem. The topological part (the existence of a countable base of open subsets)
is given by the Volterra–Poincaré theorem while the conformal part is given by
Hilbert’s results.

During the Göttingen Winter semester of 1911–1912, Weyl expounded the
theory of Riemann surfaces. His book Die Idee der Riemannschen Fläche
appeared in 1913 and was revised several times right up to 1955 [Wey1913,
Wey1955]. It played a fundamental role. One of the contributions of this book
was to give for the first time the modern definition of an abstract manifold and
hence of a Riemann surface not a priori endowed with a meromorphic function.
Weyl notes that this “abstract” approach goes back essentially to Klein, who him-
self talked in this regard of the influence of Prym, however.2 The proof of the
uniformization theorem offered by Weyl uses the ideas of Hilbert, at that time
fresh, concerning Dirichlet’s principle. This proof does not easily extend to ab-
stract Riemann surfaces, however, since it was not then clear that these possess a
countable open base. The first edition also used triangulated Riemann surfaces.

As far as we know, Weyl’s book remained the principal complete reference
for the uniformization theorem till the 1950s. Of course, various facets of the
theorem were considered in other books. We may mention the two volumes of
Appell–Goursat and Fatou [ApGo1929, Fat1930], and Ford’s book [Ford1929].
There is also the overview by Fricke and Klein, essential, but not easy, reading.

In 1925, Radó showed that every abstract Riemann surface is triangulable
and has a countable open base [Rad1925], which eliminated the need for these
assumptions noted above in connection with Weyl’s book. Thus the theorem was
now completely proved for abstract surfaces.

In 1941, van der Waerden proposed a very simple topological argument — not
using the topological classification of surfaces — showing that an open, simply
connected Riemann surface is an increasing union of compact, simply connected
regions with polygonal boundaries [Wae1941]. This simplified a portion of the
proofs by Koebe and Poincaré that had not been clear in detail in their articles,
and allowed Carathéodory to give a simplified proof of the uniformization theo-

2Thus we are faced with the unique situation that the less restrictive idea of a Riemann surface is
due to some unknown comment made by Prym and misunderstood by Klein, according to the review
of Weyl’s book by Sario.
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rem in 1952, once again using Schwarz’s method for polygons [Car1932, Second
Edition].

Another important approach was opened up in the 1920s. The use of subhar-
monic functions and “Perron families” led to a considerable simplification of the
construction of Green’s functions. The method was established in [Per1923] and
simplified in [Wien1924a, Wien1924b, Wien1925] and then in [Bre1939]. The
Dirichlet principle thus attained its simplest formulation and proof at this time.
One may consult [Han1979, Gard1979] for the history of this principle and suc-
cessive approaches to it.

In 1949, Heins observed that Perron’s methods require no topological assump-
tion and so allow one to bypass the results of Radó mentioned above [Hei1949].

Thus by the beginning of the 1950s all the requisite tools were in place: nor-
mal families, harmonic and subharmonic functions, and the elements of topology.
This was also the epoch when the theory of sheafs made its appearance, allowing
the limpid formulation of a great number of concepts often somewhat unclear be-
fore: divisors, cohomology, the Riemann–Roch theorem, Serre duality, etc. The
time was ripe for “optimized” presentations of the theory of Riemann surfaces,
and in particular the uniformization theorem, using little topology and little anal-
ysis.

Here are a few reference works published since 1950, all containing a proof
and in which the successive improvements are clear from the order of the details.

1. Nevanlinna, Uniformisierung [Nev1953]. Existence theorems are proved
with the aid of Schwarz’s alternating method. One finds here a new proof
of the fact that a Riemann surface has a countable open base.

2. Springer, Introduction to Riemann surfaces [Spr1957]. Uses the orthogo-
nal projection method à la Hilbert and follows Koebe’s proof [Koe1910b].
This book presents physical intuitions well. However, it is less rigorous
topologically (in connection with the existence of a triangulation).

3. Ahlfors and Sario, Riemann surfaces [AhSa1960]. This book gives a de-
tailed exposition of the topological classification of surfaces and Radó’s
theorem on the existence of a triangulation. It also presents Dirichlet’s prin-
ciple and analytical methods (Hilbert’s method, and capacities).

4. Ahlfors, Conformal invariants [Ahl1973]. Here Perron’s method is used
systematically to construct Green’s functions.

5. Farkas and Kra, Riemann surfaces [FaKr1980]. Contains a complete pre-
sentation of the uniformization theorem based on Perron’s method, occupy-
ing around 80 pages.
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6. Beardon, A primer on Riemann surfaces [Bea1984]. Gives a complete proof
of the uniformization theorem based on Perron’s method.

7. Reyssat, Quelques aspects des surfaces de Riemann [Rey1989]. Here
twenty pages suffice for a clear presentation of the theorem. The main ar-
gument in the proof involves Perron’s method.

8. Forster, Lectures on Riemann surfaces [Forst1977]. Surprisingly, this book
talks of “Riemann’s theorem” rather than the uniformization theorem.

9. Jones, Rudiments of Riemann surfaces [Jon1971]. Provides a detailed proof
of uniformization using Perron’s method.

10. Abikoff, The uniformization theorem [Abi1981]. In less that twenty (effec-
tive and instructive) pages the author presents a proof of the uniformization
theorem inspired by Perron’s method.

11. Hubbard, Teichmüller theory and applications to geometry, topology, and
dynamics [Hub2006], provides a crystal-clear proof that “goes by itself”.
However, behind it looms a two-hundred-year-long mathematical heritage
— even if one looks in vain for a reference to “Vätern”!

12. Donaldson, Riemann surfaces [Don2011]. This last book on our list bases
the proof of the uniformization theorem on the global surjectivity of the
Laplacian under certain constraints. It avoids the use of Perron’s method
and does not give historical information.

To conclude, we should mention again that the special case of compact sur-
faces has recently undergone a resurgence of interest as a result of the emergence
of methods of Hamilton–Perelman type used in proving the Poincaré conjecture. It
was of course natural to attempt to prove that every Riemannian metric on a com-
pact surface is conformally equivalent to a metric of constant curvature by tracking
the “Ricci flow”. The proof that this procedure functions effectively is unfortu-
nately not as elementary as one might have hoped (it dates from 2006 [CLT2006]).
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The correspondence between Klein and
Poincaré

We give here the correspondence between Klein and Poincaré from the period
1881–1882. A translation of Klein’s letters (originally in German) into French
by François Poincaré, Henri Poincaré’s grandson, was published in the Cahiers
du Séminaire d’Histoire des Mathématiques [Poin1989].3 These letters have also
been published, in untranslated form, in Acta Mathematica [KlePoi1923]. These
two references are extensively annotated.

By way of introduction, we confine ourselves to a quotation from Freudenthal
[Freu1955]:

Twenty-six letters were exchanged between Klein and Poincaré on the topic
of automorphic functions. Klein wrote first following the appearance of
Poincaré’s third Note. In this correspondence, Poincaré is the pupil who
asks the questions and Klein the master who, in all sincerity and fidelity
guides his pupil and forces him to make good the huge gaps in his mathe-
matical knowledge. Only one thing was in dispute: Klein disapproved of the
name Fuchsian functions which Poincaré had chosen unaware of the merits
of the mathematicians of Riemann’s school, but Poincaré persisted with it.
In talking of automorphic functions one is accepting Klein’s viewpoint.

Who can measure the feelings provoked in Klein by the tremendous and
instantaneous advance made by Poincaré along the path where they, Klein
and his students, had progressed by slow steps? The more one considers
this situation, the more one has to admire Klein’s irreproachable attitude.

3The English translation of Klein’s correspondence appearing below is based on the original
German, with François Poincaré’s French version used as a crib. Trans
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I

Leipzig, June 12, 1881
Dear Sir!
Your three Notes in the Comptes rendus: “On Fuchsian functions”

[Poin1881b], which I first became acquainted with yesterday and then only fleet-
ingly, are so closely related to the reflections and endeavors that have occupied
me these last years, that I feel obliged to write to you. First of all I would
like to tell you of various works of mine on elliptic functions published in Vol-
umes XIV [Kle1878b,Kle1878a,Kle1878c], XV [Kle1879a,Kle1879b], and XVII
[Kle1880a] of the Mathematische Annalen. As far as modular elliptic functions
are concerned, I dealt with only a special case of the independence relation that
you consider; but a closer examination will show you that I did indeed have a
general point of view. In this regard, I draw your attention to certain particular
points:

— p. 128 of Volume XIV [Kle1878b] deals with general functions repre-
sentable by modular functions, independently of being connected with dou-
bly periodic functions. Then follows, first in a special case, the important
theorem on the fundamental polygon;

— pp. 159–160 of Volume XIV [Kle1878b] where I expound the result that
every hypergeometric series can be represented by single-valued functions
of suitable modular functions;

— p. 428 et seqq. of Volume XIV [Kle1878b] contain a table illustrating the
mutual disposition of triangles with sides circular arcs and angles π

7 ,
π
3 ,

π
2

(which is also an example from the classes of special functions studied by
Halphen), apropos of which I should mention by the way that Mr. Schwarz
has elaborated the case π

2 ,
π
4 ,

π
4 in Volume LXXV of Crelle’s Journal.

Starting from p. 62 of Volume XVII [Kle1880a], I present a rapid overview
of the more mature conceptions of the theory of elliptic modular functions which
in the meantime had occurred to me. I have not published anything on these;
however I did present them during the summer of 1879 in a course at the Munich
Polytechnic. My line of thought, which comes very close to your exposition at
many points, was as follows:

1. Periodic and doubly periodic functions are just examples of single-valued
functions admitting linear transformations.4 It is the task of modern analysis to
determine all these functions.

4The naming of these function became the subject of a lively debate between Klein and Poincaré,
who called them Fuchsian functions. Today they are called automorphic functions.
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2. The number of such transformations may be finite; these give the equations
of the icosahedron, octahedron, . . . that I investigated earlier (Math. Annalen IX
[Kle1875], XII [Kle1877a,Kle1877b]) and served as the point of departure for all
of these sets of ideas.

3. Groups of infinitely many linear transformations, giving rise to useful
groups (discontinuous groups, in your terminology), are obtained for example
when one starts with a polygon with circular arcs as sides, such that these circles
cut a fixed circle orthogonally and have angles equal to exact simple fractions
of π.

4. One should investigate all such functions (as indeed you have already be-
gun doing); however, in order to attain concrete goals, let us confine ourselves to
triangles of circular arcs, and, in particular, to elliptic modular functions.

Since then I have been much occupied with these questions, also in discus-
sions with other mathematicians, but except to say that I have not yet obtained
any definitive result, this is really not the place for them. I would like to limit
myself to what I have published or lectured on. Perhaps I should have made con-
tact with you sooner, or with one of your friends, such as Mr. Picard. (When the
occasion presents itself, would you draw Mr. Picard’s attention to Annalen, XIV,
p. 122, §8! [Kle1878b].) For, the line of development of the set of ideas that have
engaged you for the last 2 or 3 years, is, in actuality, very close to mine. I would
also be very happy if this first letter led to a continuing correspondence. It is true
that at the moment other business takes me from these questions, but I am the
more encouraged to take them up again in that next Winter I am to give a course
on differential equations.

Please convey my compliments to Mr. Hermite. I have often thought of start-
ing a correspondence with him, and would have done so long ago — doubtless to
my great profit — if it were not for the language problem. As you may perhaps
know, I was in Paris long enough to learn to speak and write in French; however,
in the meantime this ability has faded through disuse.

With the greatest respect,
Prof. Dr. F. Klein

Address: Leipzig, Sophienstraße 10/II.

II

[Caen] June 15 [1881]
Monsieur,
Your letter proves that you anticipated me in some of the results I have ob-

tained in the theory of Fuchsian functions. I am not at all surprised for I know
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how well versed you are in non-Euclidean geometry, which is the true key to the
problem now occupying us.

I will do justice to you in that regard when I publish my results; I hope to be
able to obtain here Volumes 14, 15, and 17 of Mathematische Annalen, which are
not in the University of Caen library. Regarding the talk you gave at the Munich
Polytechnic, I would ask you if you might give me some details on that subject
so that I may add to my memoir a note rendering full justice to you; for I will
doubtless not be able to get direct access to your work.

Since without doubt I won’t immediately be able to get hold of Mathematis-
chen Annalen, I would beg you also to kindly give me explanations of some points
in your letter. You speak of the elliptic modular functions∗.5

Why the plural? If the modular function is the square of the modulus ex-
pressed as a function of the ratio of the periods, then there is only one such func-
tion; thus the expression modular functions∗ must mean something else.

What do you mean by algebraic functions capable of being represented by
modular functions? Also, what is the theory of the fundamental polygon∗?

I would also ask you to clarify for me the following points: Have you found
all polygons of circular arcs∗ giving rise to a discontinuous group?

Have you proved the existence of functions corresponding to all discontinuous
groups?

I have written to Mr. Picard to communicate your remark.
I am pleased, Monsieur, to have the opportunity of making contact with you.

I have taken the liberty of writing to you in French since you tell me you know
that language.

Please be assured, Monsieur, of my respectful regard.
Poincaré

III

Leipzig, June 19, 1881
Dear Sir!
On receiving your welcome letter yesterday, I immediately sent you those

offprints I still have of works relating to our topic. Allow me to add today a few
lines of explanation pertaining to them. Of course, the question will not be settled
by a single letter; rather must we correspond more extensively in order to establish
mutually close contact. I would like today to emphasize the following points:

5In Poincaré’s letters, an italicised expression marked with an asterisk indicates that that expres-
sion was in German in the original letters.
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1. Of the papers sent to you the three most important from Volume XIV of
the Annalen [Kle1878a, Kle1878b, Kle1878c] are missing, as also my investiga-
tions of the icosahedron in Volumes IX and XII [Kle1875, Kle1877b], and my
second memoir on linear differential equations (which seems also to be unknown
to Mr. Picard) in Volume XII [Kle1877a]. I entreat you to procure them somehow.
I have been sending various offprints to Paris, for instance to Hermite.

2. The work of my students Dyck and Gierster complements my own. I am
asking both of them to send you their offprints. Mr. Hurwitz’s doctoral disser-
tation, relating to these same theories, is soon to be published and you will get a
copy within a few weeks.

3. A compatriot of yours whose name you must surely know since he studied
under Picard and Appell, namely Mr. Brunel (at the address Liebigstraße 38/2),
has been here since last Autumn. Perhaps you would be interested in starting a
correspondence also with him; he could better than I tell you about the organiza-
tion of our seminar and the role played there by single-valued functions invariant
under linear transformations.

4. I have had Mr. Gierster write up a set of notes from the course I gave in the
summer of 1879. For the time being it is on loan, but I should get it back in a few
days and will go through it with Mr. Brunel before giving you an account of it.

5. I reject the name “Fuchsian functions” although I understand that you
were led to these ideas via work of Fuchs. In essence, all these investigations
are based on those of Riemann. My own evolution in this regard was strongly
influenced by Schwarz’s deliberations, closely linked to Riemann’s and of great
significance, appearing in Volume 75 of Borchardt’s Journal [Schw1873] (and
which I can strongly recommend if you are unaware of them). Mr. Dedekind’s
memoir on elliptic modular functions appeared only in Volume 83 of Borchardt’s
Journal [Ded1877], when the geometric representation of modular functions was
already clear to me (by the autumn of 1877). In their ungeometric form, Fuchs’s
memoirs stand in deliberate opposition to that of Dedekind. I don’t deny the great
service that Mr. Fuchs has rendered other parts of the theory of differential equa-
tions, but his work here leaves so much to be desired that on the only occasion
when, in a letter to Hermite, he expatiated on elliptic modular functions, he made
a fundamental mistake, which Dedekind criticizes only lightly in the abovemen-
tioned memoir.

6. One may, in particular, define a function invariant under linear transforma-
tions by the property that it maps the half-plane onto a given polygon with sides
circular arcs. This in fact represents only a special case of the general situation
(I don’t know yet if you have been limiting yourself to just this particular case).
The corresponding group of linear transformations is then characterized by the
fact that it is contained in a group of operations twice as large, which, in addition
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to linear transformations, contains reflections (inversions). In this case the exis-
tence of the function was rigorously established in much earlier work of Schwarz
and Weierstrass, if only one would prefer not to appeal to general principles of
Riemann. See Volume 70 of Borchardt: “Mapping the half-plane on polygons of
circular arcs” [Schw1869].

7. Even in this special case I haven’t yet been able to find all “discontinuous
groups”; I have only established that there are many for which there is no deter-
mined fundamental circle, so that the analogy with non-Euclidean geometry (with
which, by the way, I am very familiar) does not hold. If you take, for example,
any polygon with sides any tangentially incident circles whatever, then generation
via symmetry will always yield a discontinuous group.6

Figure 1: A polygon of circular arcs giving rise to a discontinuous group

8. You will doubtless find answers to the other questions you pose in your
letter in the articles I am sending you, in particular to those concerning the plural
form of “modular functions” and, especially, “fundamental polygons”.

In the hope of hearing from you again soon
your very devoted

F. Klein

IV

Caen, June 22, 1881
Monsieur,
I have not yet received the items you mentioned but I shall doubtless not long

await their arrival. However, I did not want to put off thanking you for your
undertaking, and for your letter, which I read with the greatest interest. Imme-
diately upon receiving it, I ran to the library to request Volume 70 of Borchardt;

6See Figure 1.
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unfortunately that volume was on loan so I was unable to read Mr. Schwarz’s
memoir. However, I expect I’ll be able to reconstruct it from what you have told
me and to recognize there certain results I had found without thinking they had
been the object of earlier research. I therefore expect to understand that the Fuch-
sian functions determined by the investigations of Mr. Schwarz and yourself are
none other than those with which I have been occupied, in particular in my note of
May 23 [Poin1881c]. The particular group you speak of in your last letter seems
to me of great interest and I beg your permission to cite that passage of your letter
in a communication that I will shortly be delivering to the Académie in which I
will try to generalize your result.

As far as the name Fuchsian functions is concerned, I will not change it. The
regard in which I hold Mr. Fuchs forbids changing it. Furthermore, even if it is
true that the viewpoint of the scholarly Heidelberg geometer is completely at odds
with yours and mine, it is nonetheless certain that it was his work that served as
the point of departure of all that has been done since in that theory. It is thus only
fair that his name remain attached to the functions that play such an important role
in it.

Please be assured, Monsieur, of my respectful regard.
Poincaré

V

Leipzig, June 25, 1881
Dear Sir!
Please send me at once a postcard informing me if my package of offprints

has not yet arrived; I myself took it to the post office eight days ago. You will
express yourself differently about F.7 when you become familiar with the relevant
literature. The theory concerning maps of polygons of circular arcs is completely
independent of his paper in Volume 66 [Fuc1866]; the only thing they have in
common is to have been inspired by Riemann.

With the greatest respect
Prof. Dr. F. Klein

7Fuchs.
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VI

Caen, June 27, 1881
Monsieur,
At the very moment when I received your postcard, I was on the point of

writing to thank you for your parcel and announce its arrival. If it was held up it
was through a mistake on the part of the post office, which sent it first to the Sor-
bonne and then to the Collège de France, even though it was addressed perfectly
correctly.

As far as Mr. Fuchs and the naming of Fuchsian functions is concerned,
clearly I would have chosen another name if I had been aware of Mr. Schwarz’s
work; however, I came to know of that only from your letter and therefore after
the publication of my results, so that I cannot now change the name I gave those
functions without demonstrating a lack of respect for Mr. Fuchs. I have begun
reading those of your papers of liveliest interest to me, mainly that entitled “Über
elliptische Modulfunktionen” [Kle1880a]. It is concerning that paper that I would
like to put certain questions to you.

1. Have you determined the fundamental polygons∗ of all the subgroups∗ that
you call congruence groups∗, and, in particular, of the following one:

α = δ = 1, β = γ = 0 mod n.

2. In my memoir on Fuchsian functions, I classified Fuchsian groups ac-
cording to various principles, among others by means of a number I called their
genus. You similarly classify subgroups∗ by means of a number you call their
Geschlecht8. Are the genus (as I understand it) and the Geschlecht one and the
same number? I haven’t been able to find out since I do not know what the
Geschlecht im Sinne der Analysis Situs9 is. All I see is that these numbers cancel
each other out. Would you please, therefore, do me the favor of telling me what
Geschlecht im Sinne der Analysis Situs means, or, if the definition is too long to
be included in a letter, in which work I might find it? In your last letter you ask me
if I have confined myself to the special case where “the group of linear transfor-
mations is characterized by the fact that it is contained in a group of operations
twice as large, which, besides linear transformations, also contains reflections”∗.
I have in fact not limited myself to this case, but I have assumed that all the linear
transformations preserve a certain fundamental circle. Furthermore, I believe I
can address the more general case by means of a similar method.

8That is, “genus”. We leave the word untranslated since it is the object of a discussion between
Klein and Poincaré.

9Genus in the sense of Analysis Situs.
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Apropos of that, it seems to me that all the subgroups∗ relevant to modular
functions do not fall into this special case.

Concerning the discontinuous group you spoke of, obtained via reflections and
by reproduction via symmetries of a polygon bounded by arcs of circles tangent
in pairs, it seems to me that there is a supplementary condition that you failed to
mention although it doubtless had not escaped you: no two of the circular arcs
should intersect. Would it abuse your complaisance if I asked you yet another
question?

You write “in this case, the existence of the function was established in much
earlier work of Schwarz and Weierstrass”∗, and you add “if only one would prefer
not to appeal to general principles of Riemann”∗. What do you mean by this?

I recently wrote to Mr. Hermite; I communicated succinctly the content of
your letters, and conveyed to him your compliments as requested.

Please be assured, Monsieur, of my consideration and respect.
Poincaré

VII

Leipzig, July 2, 1881
Dear Sir!
Allow me to answer at once the various questions you pose in your welcome

letter of June 27.
1. In Volume 14 [Kle1878b, Kle1878c] I describe in detail the congruence

groups α ≡ δ ≡ 1, β ≡ γ ≡ 0 mod n for n = 5 (where by means of simultaneous
deformation of the edges one obtains the icosahedron) and for n = 7. The general
case n = a prime number is the topic of a memoir of Dyck, at present in press. I
have not yet completed the investigation of the case where n is composite.

2. A “Geschlecht im Sinne der Analysis Situs” is associated with every closed
surface. It is equal to the largest number of closed curves that one can draw on the
surface without dividing it in two. If one now considers the surface in question
as the image of the values of the numbers w, z satisfying an algebraic equation
f (w, z) = 0, then its genus is that of the equation. Your genus and my Geschlecht
are thus in fact the same number; only my interpretation is presumably more
clearly associated with the Riemann surface and the definition of p that it affords.

3. There do exist, however, in the group of modular functions, subgroups
with asymmetric fundamental polygon, including in particular, as I have shown
in Volume 14 [Kle1878a], those subgroups corresponding to the resolvents of the
modular equation for n = 7 and n = 11.

4. I did of course know that in the case of a polygon, the circles should
not intersect when extended towards the exterior if one wishes to have a single-
valued function. In my opinion, one should concentrate precisely on this point in



394 The correspondence between Klein and Poincaré

order to prove that the coordinates w, z of the points of any algebraic curve can
be represented by a single-valued function invariant under linear transformations.
I will now indicate to you how far I have advanced with this question. By work
of Schwarz and Weierstrass, one can always map the half-plane onto a polygon
of circular arcs in such a way that the points I, II, III, IV, V corresponding to the
points 1, 2, 3, 4, 5 of the boundary of the half-plane are positioned arbitrarily.10

Figure 2: A polygon in the half-plane

Suppose now that I, II, III, IV, V, . . . are the branch points of an algebraic function
w(z) and that this algebraic function has no other branch points. Then obviously
w and z are single-valued functions of the desired sort of auxiliary variables in
the plane of the indicated polygon. If, therefore, all of the branch points of an
algebraic function w(z) lie on a circle in the z-plane, then the answer to the
question is immediately in the affirmative. What if, however, that is not the case?
Then I arrive, in fact, at polygons of the type noted last time. If the figure has
no symmetry , I obtain (by establishing associated differential equations of the

form η′′′

η′ −
3
2

(
η′′

η′

)2
= R(z), which I have dealt with before) a fundamental region

in similar fashion, where the edges meet tangentially, and which, moreover, are
grouped together in pairs by means of certain linear substitutions. But I cannot
prove that this fundamental region together with its iterates covers only a part of
the complex plane. And this difficulty has held me up for a long time.

5. Furthermore, one obtains other remarkable examples of discontinuous
groups if one takes an arbitrary number of pairwise disjoint circles and reflects
them onto one another by inversions. For greater clarity I have shaded the part of
the plane exterior to all the circles, representing the fundamental half-polygon.11
These groups have been investigated occasionally by Schottky (Journal de Bor-
chardt, Volume 83, pp. 300–351 [Schot1877]) without bringing their fundamental
significance to light.

10See Figure 2.
11See Figure 3.
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Figure 3: A “Schottky” group

6. Riemann’s principles don’t at first yield any means for actually constructing
a function whose existence has been established. One is therefore inclined to con-
sider them as uncertain even though the results following from them are correct.
On the other hand, in connection with the abovementioned mapping of a polygon
of circular arcs, Weierstrass and Schwarz have effectively determined the relevant
constants by means of convergent processes. If one is prepared to use Riemann’s
principles, then one can prove the following very general theorem. Suppose given
a polygon with one or more separate boundary components. The polygon may
have several sheets, joined at branch points. Each boundary component is to be
made up of several pieces, each of which can be transformed into another via a
prescribed linear substitution. One can then always construct a function with ar-
bitrarily prescribed discontinuities in the interior of the polygon and with real part
taking on certain prescribed periodicity moduli as one passes from one piece of
the boundary to the corresponding one by traversing the interior of the polygon.
These functions include, in particular, those that are single-valued everywhere in
the interior of the polygon and take the same value at each pair of corresponding
points of the boundary. The proof is along precisely the same lines as that given
by Riemann in §12 of the first part of his “Abelian Functions” [Rie1857] in the
case of the special polygon made up of p parallelograms arranged one above the
other and joined by means of 2p − 2 branch points. This theorem, which by the
way I have only fully established in the last few days, includes, it seems to me, all
the existence proofs you mention in your notes as special cases or easy inferences.
Incidentally, my theorem, like many that I write down these days, is not yet for-
mulated precisely; otherwise I would have had to go into much more detail; you
will easily get my meaning.
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7. Allow me to make a remark concerning another of your publications
[Poin1881a]. You say that the θ-functions resulting from inversion of algebraic
integrals on curves of genus p are not θ-functions of the most general sort. You
could not know that in Germany precisely these ideas are common knowledge: a
large number of young mathematicians are engaged in finding the conditions dis-
tinguishing so-called Riemann θ-functions from general θ-functions. On the other
hand, I am surprised that you give the number of moduli of Riemann θ-functions
as 4p + 2, whereas in fact it should be 3p − 3. Haven’t you read the relevant ex-
planations of Riemann? And aren’t you aware of the whole discussion that Brill
and Noether settled in Volume 7 of Math. Annalen, pp. 300–307 [BrNo1874]?

Hoping to hear from you soon, very respectfully yours,
F. Klein

VIII

Caen, July 5, 1881
Monsieur,
I have received you letter and read it with the greatest interest. I offer a thou-

sand apologies for the question I asked you concerning “Geschlecht im Sinne der
Analysis Situs”. I could have saved you the trouble of responding since I found
the explanation on the next page of your memoir. You will doubtless recall that in
one of my recent letters I asked your permission to quote a sentence in a commu-
nication in which I proposed generalizing your results. You have not responded
on this matter, so I am taking silence as acquiescence. The communication was
made twice, at the meetings of June 27 and July 4 [Poin1881d, Poin1881e].

You will find that we have overlapped on some points. However, I think you
will find the citing of your sentence sufficient guarantee.

Please allow me, Monsieur, another question: where can I find the works of
Messrs. Schwarz and Weierstrass that you speak of, first concerning the theorem
that: one can always map the half-plane onto a polygon of circular arcs in such
a way that the points I, II, III, IV, V corresponding to the points 1, 2, 3, 4, 5 of
the boundary of the half-plane are positioned arbitrarily∗? This theorem was not
unknown to me, since I myself gave a proof of it in my communication of May 23
[Poin1881c]. But where can I find the works of my anticipators? In Volume 70
of Crelle? Where also can I find the developments of which you speak in the
following sentence: On the other hand, in connection with the above-mentioned
problem of mapping a polygon of circular arcs, Weierstrass and Schwarz have
effectively determined the relevant constants by means of convergent processes∗?

The theorem you say you have discovered interests me a great deal. It is clear
that, as you say, your result includes as special cases all my existence proofs∗.
However, it comes later.
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I now come to your remark about Abelian functions. When I spoke of 4p + 2
constants, it wasn’t a question of the number of moduli. What I actually said
was this [Poin1881a]: an algebraic equation of genus p can always be reduced to
degree p + 1. An equation of degree p + 1 depends on 4p + 2 parameters; for, a
general equation of degree p + 1 depends on

(p + 1)(p + 4)
2

parameters. But there are
p(p − 1)

2
− p

double points. Therefore there remain 4p + 2 independent parameters. I thus
obtain, not the number of moduli, but an upper bound for that number, and this
was sufficient for my aim.

Please be assured, Monsieur, of my respectful regard.
Poincaré

IX

Leipzig, July 9, 1881
Dear Sir!
By way of a quick reply to your letter, I have more-or-less the following to

say.
1. As far as I’m concerned, it is completely correct for you to have quoted that

passage of my letter. Thus far I only have your first Note of June 27 [Poin1881d].
As to the name you have given that class of functions, here I was quite surprised;
but then I myself had no more than noticed the existence of these groups. For
my part, I will use neither “Fuchsian” nor “Kleinian” but stay with my “functions
invariant under linear transformations”.

2. What I said about the value of Riemann’s principles was not precise enough.
There can be no doubt that Dirichlet’s principle must be abandoned as not at all
conclusive. However, it can be completely replaced by more rigorous methods
of proof. You will find this expounded in more detail in a work by Schwarz that
I have just recently seen (in connection with my course) and in which you will
find information on the determination of the constants, which was only indicated
in Borchardt’s Journal [Schw1873] (you must in any case examine the memoirs
published in Volumes 70, 74, and 75 of Borchardt’s Journal); the work of Schwarz
in question is in the Berliner Monatsberichten 1870, pp. 767–795 [Schw1870a].

3. The general existence proof I mentioned last time remains valid, naturally,
for groups made up of arbitrary analytic (not necessarily linear) substitutions. It is



398 The correspondence between Klein and Poincaré

remarkable that in this sense every group of operations defines functions remain-
ing unchanged by them. “Discontinuous groups” have the advantage that they
have associated single-valued functions, a very fundamental property, moreover.
Might one be able to master higher cases by means of single-valued functions of
several variables as was the custom in connection with the case treated by Rie-
mann in §12 [Rie1857] relating to the Jacobi inversion problem?

Enough for today. In the meantime, with Mr. Brunel I have looked over my
works, notably the lecture notes from 1877–78 and 78–79 (which I had reworked
back then), and he will shortly write to you about these.

With the greatest respect, your devoted
Prof. Dr. F. Klein.

X

Leipzig, December 4, 1881
Sophienstraße 10/II

Dear Sir!
After having long reflected casually on the the problems of mutual interest to

us, this morning I took the opportunity of reading together the different communi-
cations that you have published successively in the Comptes rendus. I see that now
you have definitely proved (as of August 8): that every linear differential equation
with algebraic coefficients is integrable by means of zeta Fuchsian functions and
that the coordinates of any algebraic curve whatever can be expressed via Fuch-
sian functions of an auxiliary variable12. While congratulating you on the results
you have obtained, I would also like to put a proposition to you respecting both
your interests and mine equally. I would ask you to to send me, for Mathematis-
che Annalen, a more or less long article, or, if you don’t have the time to write up
such a work, then a letter, expounding, in broad strokes, your points of view and
results. I would then write an accompanying note in which I would describe how
I view the whole matter and how at this juncture the research program that you
are now pursuing has served as a fundamental guiding principle for my work on
modular functions. Of course, I would submit this note to you for your approval
prior to publication. Such a publication would have a double effect: first, it would
definitely draw the attention of the readers of Math. Annalen to your work, doubt-
less a desirable outcome for you; and second, your work would be presented to a
large general readership, at the same time demonstrating the connections with my
work as they actually are. As I know from what you wrote to me, you intend to

12In French in Klein’s letter.
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analyse these equations in a detailed memoir; but writing it will take time, and I
would like an announcement to be made in the Annalen also.

For my part, I have meanwhile written up a a little treatment of “Riemann’s
theory” [Kle1882c] which may be of interest to you since it presents a version
of the concept of a Riemann surface that I believe R. himself actually worked on.
Perhaps Mr. Brunel has told you of this. I have also been busy lately with different
existence proofs designed to replace Dirichlet’s principle, and I am convinced that
the methods expounded by Schwarz in the Berliner Monatsberichten, 1870, p. 767
et seqq. [Schw1870a] in any case suffice completely to yield, for example, the
general theorem I wrote to you about once or twice this past summer.

With the greatest respect,
F. Klein

XI

December 8, 1881
Paris, rue Gay-Lussac 66

Monsieur,
I am infinitely grateful for the obliging offer you make me and am fully pre-

pared to avail myself of it. I shall shortly send you the letter you request; I would
ask you, however, how much room you are prepared to devote to it in the Annales.
I know that your journal’s clientele is numerous and that the space you can allow
each article is necessarily limited and I would not wish to abuse your benevolence.
As soon as I know what length I can make my letter, I shall write it for you at once.

I shall soon be honored to send you various notes relating to the general theory
of functions, if you should wish to accept them.

I have recently read Schwarz’s memoir in the Monatsberichten [Schw1870a]
and his proofs appeared rigorous to me.

Please accept, Monsieur, my thanks and the expression of my great consider-
ation.

Poincaré

XII

Leipzig, December 10, 1881
Dear Sir!
I am pleased that my proposition is agreeable to you: voilà une loi de réciproc-

ité.13 Concerning your question, I wish primarily to say that your article will be

13There we have a reciprocity law.
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the more apropos the sooner I receive it. If I receive it by the 20th of this month,
I will include it in Issue 4 of Volume 19 of the Annalen; it will then appear at the
beginning of March at the latest. As to the size, I would say, if you’re agreeable,
about a printed sheet (16 pages). This is enough for you to be able to convey
clearly the essentials, and not too long for a quick perusal. I would also ask you
especially to give the necessary indications as to the methods of your proofs, that
is, how you actually construct the functions in question, etc. But you can better
assess all such matters than I can prescribe them.

One more question! Are you now permanently in Paris? And what is Picard’s
present address? I would be happy if I could also obtain a contribution to the
Annalen from him.

With the greatest respect, your devoted
F. Klein

XIII

Paris, December 17, 1881
rue Gay-Lussac 66

Monsieur,
I have the honor of sending you the little work in question [Poin1882c]; I

have not, as you asked me, described succinctly my methods. I was unable to
do so without substantially exceeding the limits you imposed. I know that they
are not at all rigid. However, on the other hand I don’t believe that a proof can
be summarized; one cannot subtract from it without depriving it of its rigor and a
proof without rigor is no proof. I would prefer, therefore, to send you from time to
time a series of short letters in which I would give successive proofs of the stated
results or at least the main ones. You may do with these letters whatever you think
fit. I do indeed live in Paris now; I am a lecturer in the Faculty of Science.

Here is Picard’s address: Adjunct Professor in the Faculty of Science, rue
Michelet 13, Paris.

Here also is Appell’s: Lecturer at the École Normale Supérieure, rue Souf-
flot 22, Paris.

Please be assured, Monsieur, of my highest regard.
Poincaré
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XIV

Leipzig, January 13, 1882
Dear Sir!
I have not yet thanked you personally for sending your article, for which I

am exceedingly obliged to you. As things stand, it will go to press in a few
days. You will be getting page proofs, which I ask you to return to Teubner
Publishers in Leipzig. Would you, in particular, examine the short commentary
that I have, along the lines mentioned earlier, appended to your article, and in
which I protest, as strongly as I can, against the two names Fuchsian and Kleinian,
citing Schottky with respect to the latter, and, incidentally, pointing to Riemann
as the one who initiated all these investigations? I endeavored to preserve as
moderate a tone as possible in this commentary, but I beg you to write to me
immediately if you should require further amendments. I in no way wished to
diminish your work with these comments. Furthermore, I have written another
short article [Kle1882a] which will appear right after yours. It contains, also
without proof, some results relating to the area in question, primarily the following
one: every algebraic equation f (w, z) = 0 can be solved in one and only one
way by w = ϕ(η), z = ψ(η) in terms of p independent reentrant cuts14 on the
corresponding Riemann surface, where η is a discontinuous group of the kind
you spoke of regarding my letter. This theorem is the more beautiful in that this
group has exactly 3p − 3 essential parameters, that is, the same as the number
of moduli possessed by the equations of the given p. In this connection further
considerations arise which seem to me to be of interest. In order to share this with
you fully I have ordered the publisher to send you the page proofs of my article
for you to have at your disposal.

As far as the proofs are concerned, they are difficult. I always operate with
Riemann’s ideas respecting “geometria situs”. This is very difficult to get clear. I
shall make every effort to achieve this in due time. Meanwhile I would like very
much to correspond with you on that subject and also on your proofs. You can be
sure that I will study with the greatest interest any letters on this subject that you
may send me, and accord them a quick reply. If you should wish to publish them
in one form or other, the Annalen are naturally at your disposal.

Very respectfully, your devoted
F. Klein

14Or “cuspidal” or “recurrent” cuts. In German, “Rückkehrschnitte”. Trans



402 The correspondence between Klein and Poincaré

XV

[Paris, January 1882]
Monsieur,
I have received the page proofs from Teubner, and am returning them cor-

rected. I have read your note and don’t see any need to change anything there.
However, I hope you will permit me to write you a few lines in an attempt to
justify my terminology. I await impatiently the theorem you have told me of and
which seems to me of the greatest interest.

Please be assured, Monsieur, of my greatest regard.
Poincaré

XVI

Paris, March 28, 1882
Monsieur,
You have adjoined to my article On the single-valued functions that replicate

themselves under linear substitutions [Poin1882c] a note in which you list the
reasons for your rejection of my terminology. You were good enough to send me
the page proofs and to ask me if I wanted any changes made. I am grateful to you
for the delicacy of your actions, and I was unable to abuse it by asking you to keep
half your opinion to yourself.

You must understand, however, that I cannot leave the readers of the Annales
with the impression that I have committed an injustice. That is why I wrote, if
you recall, asking for no change to your note, but also permission to address a few
lines to you justifying my terminology.

Thus here are those lines; perhaps you might judge them suitable for insertion.
In turn I wonder if you would like me to make changes to this little note. I am
ready to make all such changes on condition they don’t alter the sense.

Please excuse my importunity and forgive this small piece of advocacy pro
domo.

Please rest assured, Monsieur, of my greatest regard.
Poincaré

I would be obliged if you could tell me the address of Mr. Hurwitz, to whom
I would like to pay homage by sending him a copy of my work.

I would be very grateful also, if you could indicate the general features of the
proof by means of which you establish the theorem stated in your latest work:
“Über eindeutige Funktionen mit linearen Transformation in sich” [Kle1882a].
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On single-valued functions that replicate themselves under linear substitutions
(Excerpt from a letter addressed to Mr. F. Klein)

By H. Poincaré in Paris

. . . Recently you were good enough to have published in the Mathematis-
che Annalen (Vol. XIX, pp. 553–564) [Poin1882c] an article of mine on single-
valued functions that replicate themselves under linear substitutions, with a note
appended in which you explain why you find the names I have given to these tran-
scendental functions unsuitable. Allow me to address you a few lines in defense
of my terminology, which I did not choose at random. If I believed I should be-
stow on these new functions the name of Mr. Fuchs, it was not out of disregard
for the value of your work and that of Mr. Schwarz — on the contrary, I would
be the first to appreciate its great importance. However, it was impossible for
me to ignore the remarkable discoveries published by the Heidelberg professor
in Crelle’s Journal. They form the basis of the theory of linear equations and
without them I would not have been able to begin my investigations of my tran-
scendental functions, so directly linked to that theory. In his first articles, it is true,
Mr. Fuchs takes a point of view a little different from mine and concerns himself
neither with the discontinuity of the groups nor with the single-valuedness of the
functions. However, neither is Mr. Schwarz, in his memoirs in Volumes 70 and 74
of Crelle’s Journal, concerned with these things; he has a few words to say in that
connection in a very special case in his memoir in Volume 75, which I cite in my
note. It is only there that he finds himself in the domain of Fuchsian functions. In
your beautiful research on modular functions, your manner of perceiving things
differs little from mine, but you have more in mind the study of elliptic functions
than linear equations. As for Mr. Fuchs, in his memoirs in Volumes 83 and 89 of
Crelle’s Journal he has risen to a new point of view and shed light on the close
connection between the theory of differential equations and that of certain single-
valued functions. It was the reading of these memoirs that set me on the path to
my investigations.

As far as Kleinian functions are concerned, I should have felt I had committed
an injustice had I given them a name other than yours. It was Mr. Schottky who
discovered the figure you discuss in your letter, but it was you who “underlined
their fundamental importance”∗, as you did at the conclusion of your learned work
“Über eindeutige Funktionen mit linearen Transformationen in sich” [Kle1882a].
I cannot fully subscribe to what you say concerning Riemann. He was one of
those geniuses who so change the face of science that they leave their imprint,
not only on the works of their immediate students, but also on those of all their
successors over many years. Riemann created a new theory of functions, and it
will always be possible to find there the seed of everything that has been done and
will be done after him in mathematical analysis. . . .

Paris, March 30, 1882
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XVIII

Düsseldorf, April 3, 1882
Address: Bahnstraße 15

Dear Sir,
Your letter, which I received yesterday via Leipzig, arrived at the very moment

when I was about to write you a few words apropos of my most recent note in the
Annalen [Kle1882a], whose page proofs should already be in your hands. In the
meantime I have obtained a copy of Prof. Fuchs’s note published in the Göttingen
Nachrichten. If I had to say two words concerning the latter, they would be to
the effect that I judge it to be completely beside the point. I claim only that
Fuchs has never published anything on “Fuchsian functions”. It follows that the
second article that he cites (which I must get hold of in order to examine it more
closely) is objectless. The first may, however, be considered to be concerned
with “Fuchsian functions” insofar as it deals with modular functions, but, lacking
geometric intuition, Fuchs has not correctly recognized the proper character of the
latter, which resides in the nature of singular lines, as Dedekind showed already
in Volume 83 of Borchardt [Ded1877]. Finally, as for the insinuations at the
end of his note to the effect that my own work has been essentially stimulated
by his, this is quite simply historically false. My research began in 1874 with
the determination of all finite groups of linear transformations in one variable
[Kle1875]. Then in 1976 I showed that the problem raised at that time by Fuchs
of determining all integrable second order linear differential equations was eo ipso
solved [Kle1877a]. The situation is precisely the reverse of what Fuchs claims.
It was not that I took his ideas, but rather that I showed that his topic should be
treated using my ideas.

As you may well suspect, I am not in agreement with your presentation of the
matter. If it were a matter of a general appreciation of Fuchs’s oeuvre, I would
willingly have his name bestowed on some new class of functions that no one had
yet studied, or even, for instance, on the functions of several variables that he has
put forward. (Are these really single-valued? All I understand is that over the
whole of the range of values taken by them there is no branching. However, I may
be mistaken in this.) However, the functions you have named after Fuchs already
belonged to others before you suggested the name. I am also quite sure that you
would have not proposed this name had you been then (at the beginning) familiar
with the literature. You then offer me, so to speak in compensation, “Kleinian
functions”. To the extent that I perceive your friendly intention here, to just that
extent is it impossible for me to accept the offer, as again perpetrating an historical
untruth. If my memoir in Volume XIX [Kle1882a] might give the impression that
I am now especially preoccupied with “Kleinian” functions, my more recent work
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in Volume XX [Kle1882b] shows that as before I continue to regard “Fuchsian”
functions as my domain.

But enough on that theme. I immediately dispatched your note to the printer,
appending only a remark to the effect that for my part I adhere to my previous
opinion (and on this occasion drawing the public’s attention to Mr. Fuchs’s note).
You will receive the page proofs very soon and I ask you to return them quickly
to me here (where I am spending the Easter holidays), and I will then do what
is necessary as far as publication is concerned. (Your note will appear directly
after mine.) As far as the passage about Schottky is concerned, I would like to
point out to you a posthumous article in Riemann’s Works, p. 413, where exactly
the same ideas are developed. I should say, however, that it would be difficult
to determine the extent of a possible contribution by the editor, Prof. Weber.
Riemann’s Works appeared in 1876, and Schottky’s dissertation was completed
in 1875 and published in 1877 as a memoir in Borchardt’s Journal [Schot1877].
However, the 1875 dissertation constitutes only a part of the 1877 memoir, and I
cannot recall if the figure in question had already appeared in the 1875 text.

I should add that on my part I have no intention of prolonging our termino-
logical disagreement (once I have added the above-mentioned footnote to your
explanation). However, if I should be led to intervene in the matter anew then
I would, it is true, give a very complete and frank account of it. Let us rather
compete to see which of us is best equipped to advance the theory in question!
On my side, I believe my new note represents a certain advance. A whole series
of theorems on algebraic functions can be proved using the new η-function — for
instance, the theorem that, in my book on Riemann, I initially indicated as only
probably true, namely that a surface of genus p > 0 never admits infinitely many
single-valued discrete transformations (since otherwise it would decompose into
an infinite number of “equivalent fundamental polygons”). And also the theorem
that various of Picard’s results for the case p = 0 extend to general p, etc.

As for the methods I use to prove my theorems, I will write to you of them
as soon as I have clarified them some more. In the meantime could you describe
for me the ideas you are pursuing at the moment? I scarcely need add that we
would be pleased to publish in the Mathematische Annalen any article you cared
to send us. It would mean a great deal to me to remain in active contact with you.
Lively contact with mathematicians aspiring to similar ends is always for me a
prior condition of my own mathematical production.

Very respectfully, your devoted
F. Klein

Until further notice, Dr. Hurwitz’s address is: Hildesheim, Langer Hagen.



406 The correspondence between Klein and Poincaré

XIX

Paris, April 4, 1882
Monsieur,
I have just received your letter and hasten to reply. You say you wish to

cease our sterile debate for science’s sake and I can only congratulate you on your
resolution. I know it cannot have cost your too dear since it was you who, in
the note you appended to my last letter, had the last word, but I am nonetheless
grateful to you. As for me, I did not begin the dispute and entered into it only to
voice once and for all my opinion that it was impossible for me to keep silent. It
was not I who prolonged it, and I only spoke up because I was compelled to; and
there are not too many things that could so compel me.

If I named Kleinian functions after you, it was for the reasons I gave and not,
as you insinuate, “by way of compensation∗” since there is nothing to compensate
you for; I will only recognize a property right prior to mine when you can show
me that someone had earlier investigated the discontinuity of the groups and the
single-valuedness of the functions in even just a slightly general case and had
given the series expansions of these functions. I wish to respond to a query in a
footnote to a page of your letter. Speaking of the functions defined by Mr. Fuchs in
Volume 89 of Crelle, you ask: “Are these really single-valued? All I understand is
that over the whole of the range of values taken by them there is no branching∗.”
Here is my response. The functions investigated by Mr. Fuchs subdivide into
three large classes: those of the first two are indeed single-valued; those of the
third are in general only without branching∗; they are only single-valued if one
adds a condition to those given by Mr. Fuchs. These distinctions are not made
in the first of Mr. Fuchs’s works; they can be found in two additional notes,
unfortunately too concise, one of which is in Borchardt’s Journal and the other in
the Göttingen Nachrichten of 1880 [Fuc1880, Fuc1881].

I thank you very much for the last note that you had the goodness to send
me. The results you state interest me greatly, and here is why: I discovered them
myself some time ago, but did not publish them since I wished to clarify the proof
a little; that is why I would like to see your proof when you in turn have clarified
it.

I hope that the battle, albeit fought with weapons of courtesy, over a name,
will not alter our good relations. At every instance not at all wanting to take the
offensive, I hope that you will not hold it against me that I went on the defensive.
In any case, it would be ridiculous for us to continue falling out over a name.
Name ist Schall und Rauch15 and after all that, it’s all the same to me: do as you
wish, and for my part I will do as I wish.

Please be assured, Monsieur, of my greatest regard.
Poincaré

15“A name is just noise and smoke”, from Goethe’s Faust.
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XX

Paris, April 7, 1882
Monsieur,
I have the honor of returning to you the corrected page proofs of my letter.

Now that our little dispute is over — and I hope it never revives — allow me to
thank you for the courtesy which you demonstrated throughout it.

Please be assured, Monsieur, of my highest regard.
Poincaré

XXI

Leipzig, May 7, 1882
Sophienstraße 10

Dear Sir!
A short time ago I read your note in the Comptes rendus of April 10

[Poin1882a]. It was all the more interesting to me in that I believe your present
considerations, and also methods, are related to mine. I prove my theorems using
continuity, relying on the the following two lemmas: 1) to every “discontinuous
group” there belongs a Riemann surface, and 2) to each suitably cut Riemann
surface there belongs just one such group (if any group at all belongs to it). Up
till now I have not attempted to derive the series developments that you establish.
How in fact do you prove the existence of the number m for which

∑ 1
(γiη+δi )m

converges absolutely? And do you have an exact lower bound or an approximate
one?

As for me, I have in the meantime been able to give the theorems in question
an even more general form, but I shall have to write to you about that later in view
of the need to prepare a note for the Annalen for which I have insufficient time. In
the case of my first theorem, the whole of the closed sphere η with infinitely many
points removed is covered by the images of the fundamental region. In the case of
the second theorem, the interior of a disc, but of one only, remains uncovered. I
have now noted the existence of representations (which for each Riemann surface
are always unique) for which the case of infinitely many discs is excluded. In this
direction, I formulate here only the the simplest theorem (in which it is assumed
always that one has an unbranched representation of the Riemann surface). Let
p = µ1 + µ2 + · · · + µm , where none of the µ is equal to 1. Choose m points
O1, . . . ,Om on the Riemann surface, and starting from O1 make, in the usual way,
2µ1 cuts A1,B1; A2,B2; . . . ; Aµ1 ,Bµ1 ; from O2 make 2µ2 cuts, etc. On the other
hand on the sphere η, one draws m pairwise disjoint circles and in the interior of
the space bounded by the latter taken together a polygon bounded by 4µ1 circular
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arcs orthogonal to the first fundamental circle, next one bounded by 4µ2 circu-
lar arcs orthogonal to the second fundamental circle, etc. (so that each polygon of
circular arcs is m-fold connected). The bounding circles are ordered in pairs in ac-
cordance with the familiar sequence A1,B1, A−1

1 ,B−1
1 , A2,B2, . . . , that is, by means

of linear substitutions acting on η in each case leaving the fundamental circle in-
variant. Furthermore, assume the product of the linear transformations in question
— for example A1B1 A−1

1 B−1
1 . . . A−1

µ1
B−1
µ1

— is always the identity. Then there is
always one and only one analytic function mapping the sectioned Riemann sur-
face onto one of the given polygons of circular arcs. The case when one of the µ
is equal to 1 differs only in that then the corresponding fundamental circle reduces
to a point and the corresponding linear substitutions become “parabolic”, and fix
that point. So, enough for today. Would it be possible to obtain a complete collec-
tion of your relevant offprints? After Pentecost I will be giving a series of lectures
in my seminar on single-valued functions admitting linear transformations, and
would, if possible, like to make available such a collection to my auditors.

Very respectfully yours,
F. Klein

XXII

Paris, May 12, 1882
Monsieur,
I have been slow in replying and I beg your forgiveness; I had to be away for

a short time. Like you I believe our methods are very similar and differ less in
principle than in the details. As for the lemmas you speak of, the first I proved
using ideas related to series expansions, while you, I conjecture, used the theorem
of which you spoke in one of your letters of last year. The second lemma presents
no difficulties, and it’s likely that we both prove it in the same way. Once these
two lemmas are established, then that is in fact the point from which I start, as you
do. Like you I appeal to continuity, but there are many ways of doing so and it is
possible that we differ in some of the details.

You ask me how I established the convergence of the series
∑ 1

(γiη+δi )2m . I
have two proofs but they are both too long to be included in a letter; I shall be
publishing them shortly. The first is based in principle on the fact that the surface
of the fundamental circle is finite. The second requires the same assumption,
but is based on non-Euclidean geometry. What is a lower bound of the number
m? It’s 2. Here if one assumes m to be an integer one has an exact bound. As
far as series relating to zeta Fuchsian functions are concerned, in contrast I have
only an approximate bound. What most interested me in your letter was what
you had to say about functions admitting an infinity of circles as their lacunary
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spaces. I also have encountered such functions and have an example in one or
two of my notes. However, I arrived at them by a completely different route from
yours. It seems likely that your functions and mine are closely related; it is not
at all obvious, however, that they are identical. I am willing to believe that your
method and mine can be very extensively generalized so that both yield a large
class of transcendental functions including as special cases those we have already
met with.

You asked me about offprints of my articles. Do you mean my notes in the
Comptes rendus? I did not order offprints and it will now be difficult to obtain
them, at least for the earlier articles.

I will shortly send you, that is, as soon as I receive them, offprints of my
two most recent articles; the first is On curves defined by differential equations
[Poin1885a]. This concerns the geometric form of curves defined by first-order
differential equations. Unfortunately, only the first part of this memoir has as
yet appeared and contains only the preliminaries. The second is on the topic
of cubic ternary forms, of which I wish to conduct an arithmetic investigation.
I wanted first to recall certain algebraic results involved in the first part of the
memoir. This first part has appeared only in Issue 50 of the Journal de l’École
Polytechnique, and the remainder is to appear in Issue 51 [Poin1882b]. Thus the
first part will not be of much interest to you. It does contain, however, a study of
linear transformations and certain continuous groups contained in the linear group
in 3 or 4 variables.

By the way, I don’t remember if I sent you my dissertation, or earlier articles
on differential equations and a work on functions related to lacunary spaces.

Please be assured, Monsieur, of my highest regard.
Poincaré

XXIII

Leipzig, May 14, 1882
Dear Sir!
In answer to your letter, just received, I would like to explain in a few words

how I use “continuity”. Only in principle, of course, since the detailed exposi-
tion, which cost me much effort to write up, can in any case be modified in many
ways. I will confine myself completely to unbranched η-functions of the sec-
ond kind, as I called them in my note. Here it is primarily a question of proving
that the two manifolds to be compared — on the one hand the set of systems of
substitutions considered and on the other the set of all existing Riemann surfaces
— not only have the same dimension (6p − 6 real dimensions) but form analytic
manifolds with analytic boundaries (in the sense of the terminology introduced
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by Weierstrass). By the first lemma stated in my previous letter, these two man-
ifolds are related in a (1 ←→ x)-valued manner, where, by the second lemma,
for the various parts of the second manifold x can take only the values 0 or 1.
Now this relation turns out to be analytic and, what follows from both lemmas,
an analytic relation whose functional determinant vanishes nowhere. From this I
deduce that x always has the value 1. For in fact if there existed a transition from
a region with x = 0 to one with x = 1, then, in view of the analyticity of the cor-
respondence, the first region would correspond to definite points (those actually
attained) of the other region and then for these, contrary to what has already been
noted, the functional determinant of the relation would have to vanish. Such is my
proof. Mr. Schwarz communicated to me a quite different proof, also based on
considerations of continuity, when I visited him recently (on April 11) in Göttin-
gen. Although I haven’t obtained his permission to do so, I thought I should tell
you about it all the same. He imagines the Riemann surface cut appropriately and
then covered infinitely often with the various sheets so connected along the cuts
that a complete surface results corresponding to a set of polygons placed side by
side in the plane. This complete surface, if one may so term an infinitely extended
surface (which is something to be cleared up), is, in the case of an η-function of
the second kind (the case first considered by Schwarz), simply connected and with
simple boundary curve, and then it is a question of seeing whether such a simply
connected surface with simple boundary can be mapped in the usual way onto the
interior of a disc. In any case, Schwarz’s chain of argument is very beautiful.

You mention offprints. I would, above all, not wish to trouble you about
that, and the more so in that I can always get hold of all your works with the
single exception of your dissertation. However, I would very much like to have as
complete a collection as possible of your offprints. Thus I would be very happy if
you could send me anything at all (I don’t have any).

Have you perhaps had the chance to read Lie’s theory of transformation
groups? Lie always takes the parameter figuring in his groups to be complex-
valued; it would be interesting to see how his results extend to the situation where
one considers groups generated only by a real iteration of certain infinitely small
operations.

Some time ago Hermite sent me a lithographed copy of his Cours d’analyse.
Would it be possible (of course for appropriate payment) to obtain all such copies?
That would be especially useful to me as far as my present aims in my seminar
are concerned.

As always
your most devoted

F. Klein
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XXIV

Paris, May 18, 1882
Monsieur,
I don’t need to tell you how much your last letter interested me. I now see

clearly that your proof and mine differ at most in the terminology and details: it
is thus possible that we don’t establish in the same way the analytic character of
the relation between the two manifolds∗ you speak of; I myself connect this fact
to the convergence of my series, but it is clear that one can obtain the same result
by other means.

Figure 4: A half-disc

Mr. Schwarz’s ideas are of much greater scope; it is clear that the general
theorem in question, assuming he has proved it, will find application to the theory
of a great many functions and in particular to that of functions defined by non-
linear differential equations. It was in studying such equations that I myself came
to ask if a Riemann surface of infinitely many sheets could be extended over a
disc, and in this regard I was led to the following problem, which would allow
one to prove that such an extension is indeed possible:

One begins with a partial differential equation

X1
d2u
dx2 + X2

d2u
dxdy

+ X3
d2u
dy2 + X4

du
dx

+ X5
du
dy

= 0,

and a half-disc AMBO16. Here X1,X2,X3,X4,X5 are given functions of x and y;
these functions are analytic in the interior of the half-disc but not on its perimeter.
Can one always find a function u of x and y satisfying the equation, analytic in the
interior of the half-disc, and tending to 1 as the point x, y approaches the curved

16See Figure 4.
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portion of the perimeter and to 0 as it approaches the diameter AOB? All my
efforts in this direction have proved fruitless, but I hope that Mr. Schwarz, who
has solved the problem in the simplest case, will be more fortunate than I.

I am sending you the offprints of my earlier articles, and I hope to be able to
send you soon other more recent memoirs I mentioned to you of which offprints
shouldn’t be too long in arriving.

Mr. Hermite’s lithographed course is published by Hermann, Librairie des
Lycées, rue de la Sorbonne; the price of a subscription is 12 francs. I don’t believe
the editor sent Mr. Hermite any offprints.

Please be assured of my most devoted sentiments and my sincere esteem.
Poincaré

XXV

Leipzig, September 19, 1882
Sophienstraße 10/II

Dear Sir!
While on the point of completing a rather long paper on the new functions, I

reread yet once more your article in Volume 19 of the Annalen [Poin1882c]. There
is a point there that I do not understand. You mention, in two places (in the middle
of p. 558 and at the bottom of p. 560), “Fuchsian functions” existing only in a
space bounded by infinitely many circles all orthogonal to the fundamental circle.
Now I am very familiar with functions (as I wrote to you three months ago) having
as their natural boundary an infinitude of circles. However, the corresponding
group always contains substitutions leaving invariant only a single limit circle,
chosen at random. Now you define as “Fuchsian” those functions all of whose
substitutions are real (p. 552), and this definition remains essentially unchanged
by the generalization on p. 557 where the real axis is replaced by an arbitrary
circle. Thus the functions I am familiar with do not fall under your definition
of “Fuchsian”. Is this a misunderstanding on my part or an imprecision in the
formulation on yours? As far as my own work is concerned, I confine myself to
expounding the geometric viewpoint, by virtue of which I consider I have defined
the new functions in Riemann’s sense. One finds, as is only natural, many points
of contact with your geometric conception of the subject. The most general groups
that I consider are generated by a certain number of “isolated” substitutions and
a certain number of groups “with a fundamental circle” (which may be real or
imaginary or reduced to a point) “nested in one another”. The theorems of my
two Annalen notes then become special cases of the following general theorem:
to every Riemann surface with arbitrarily prescribed branching and cuts there
corresponds one and only one η-function of the type in question.
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I have heard from Mittag-Leffler that you also are at present busy with impor-
tant work. I don’t need to tell you how much I would be interested in knowing
more about that work. If in a month’s time you’re in Paris, you will meet my
friend S. Lie, who has been visiting me for a few days and who, although not yet
a function-theoretician, is very interested in the progress made latterly in function
theory.

With the greatest respect,
F. Klein

XXVI

Nancy, September 22, 1882
Monsieur,
Here are a few details concerning the functions I spoke of in my note in the

Annalen with natural limit comprised of an infinitude of circles. To simplify the
exposition, I shall take by way of example a very special case. Suppose we have
four points a,b,c,d on the fundamental circle and four circles meeting it orthog-
onally: the first at a and b, the second at b and c, the third at c and d, and the
fourth at d and a. Thus we have a curvilinear quadrilateral. Let us consider two
substitutions (hyperbolic or parabolic), the first sending the circle ab to the circle
ad, and the second sending the circle cb to the circle cd. Iterates∗ of our quadri-
lateral will cover the fundamental disc or only part of that surface; however, in
every case the group will obviously be discontinuous. One sees easily that the
fundamental disc will be entirely covered only in a single case, namely when the
four points abcd are harmonic and the two substitutions (ab,ad) and (cb,cd) are
parabolic. Thus here we have to do with the modular function. In every other
case, one finds that the iterates∗ in question cover only a region bounded by an
infinity of circles. Now the whole plane can be mapped∗ onto our quadrilateral
in such a way that two corresponding points on the perimeter correspond to the
same point of the plane. This mapping∗ determines a function defined only on
the region covered by the iterates∗. However, there is an important point to make
here. The group generated by the two substitutions (ab,ad) and (cb,cd) may be
considered as generated in another manner. Consider four circles C1,C2,C3,C4
meeting the fundamental circle orthogonally and such that none of them contains
any other. Consider two substitutions interchanging C1 with C2 and C3 with C4;
the group they generate is obviously discontinuous and, for a suitable choice of
the four circles, it will be the same as the group considered above. The part of the
plane exterior to the four circles is a sort of quadrilateral which can be mapped∗

onto a Riemann surface of genus 2 and which therefore determines a function de-
fined on the whole plane. So there you have one and the same group giving rise to
two essentially different functions. One can ask in this connection a great many
delicate questions which I shall not go into here.



414 The correspondence between Klein and Poincaré

In sum, you see that we can have functions defined only in a region bounded
by an infinitude of circles and yet which are still “Fuchsian functions” since all
the group’s substitutions preserve the fundamental circle. Each of the circles of
the boundary is preserved by a substitution from the group, which also preserves
the fundamental circle. You know, of course, that every hyperbolic substitution
preserves all circles passing through the two double points.

I learn with pleasure that you are preparing a substantial piece of work of
the topic of common interest. I shall read it with the greatest pleasure. As
Mr. Mittag-Leffler told you, I myself am writing a paper on that theme; but
in view of its length I am dividing it up into five memoirs: the first, which
will appear this year, on groups of real substitutions (those I called Fuchsian
groups) [Poin1882c]; the second on Fuchsian functions (I will shortly complete
writing this up) [Poin1882d]; and the third on the more general groups and func-
tions that I call Kleinian [Poin1883a]. In the fourth, I will address a range of issues
left aside in the second memoir — the proof of the existence of functions satis-
fying certain conditions, such as, for example, the proof of the fact that to every
Riemann surface there corresponds an analogous function and the determination
of the relevant constants [Poin1884b].

Finally, in the fifth, I will discuss zetafuchsian functions and the integration
of linear equations [Poin1884b].

I have to return to Paris the day after tomorrow; thus I will be there when
Mr. Lie is visiting. I would be sorry to miss the opportunity of seeing this famous
geometer. You should have received the first part of my paper on curves defined
by differential equations. I will send you the second part shortly and at the same
time my memoir on cubic forms.

Please be assured, Monsieur, of my highest regard.
Poincaré
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Some historical reference points

In the following pages, we give some chronological reference points showing how
the “uniformization adventure” fits into the general historical context. For each
decade from 1800 to 1910, we list certain events of significance for the time in
question, grouped under the following heads:

— the theme of this book: The Uniformization Theorem;

— mathematics in general;

— science;

— technology;

— the arts, philosophy, and the humanities;

— history (Franco–German, since it was in these two countries that the adven-
ture’s protagonists lived).

It goes without saying that the choice of such events is extremely subjec-
tive, especially with respect to the last headings. Despite this, we hope that these
chronological glimpses will help the reader to better situate the uniformization
theorem within its scientific, cultural, social, and historical contexts.

The “light” character of these few pages allows us to dispense with exact
references for this rather disconnected inventory; they were inspired by the great
number of friezes or historical chronologies one comes across here and there.
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1800–1809
Uniformization
1806 : The geometric representation of complex numbers, sketched by Euler, is formalized by

Argand and Buée.

Mathematics
1801 : Gauss publishes “Disquisitiones arithmeticae”. This book remains a model of rigor. De-

voted to the theory of numbers, it above all contains such pleasures as quadratic reciprocity and
criteria for the construction of regular polygons by straight-edge and compasses, prefiguring
Galois theory.

1803 : L. Carnot publishes his book “The geometry of position”, in which he systematically gives
signs to oriented geometric entities.

1806 : Legendre introduces the method of least squares, allowing the best fitting of a curve to
possibly flawed experimental data. This method will play an important role in the development
of the experimental sciences.

1806 : Poinsot discovers the last two regular stellated Kepler–Poinsot polyhedra.
1807 : Fourier submits his first important memoir “On the propagation of heat in solid bodies”, in

which he decomposes a periodic function into an infinite sum of harmonics: harmonic analysis
is born.

Sciences
1800–1805 : Cuvier publishes the five volumes of his “Lessons in comparative anatomy”.
1801 : In “On the theory of light and colours”, Young brings out the wave character of light.
1801 : Pinel publishes his “Medico-philosophic treatise on insanity”: the first classification of men-

tal illnesses.
1802 : Publication of Dalton’s law on pressure in gases.
1804 : In his “Chemical investigations into plant life”, de Saussure proves that water is consumed

in photosynthesis.
1807 : Davy isolates the elements sodium and potassium.
1808 : Dalton, in his “New system of chemical philosophy”, proposes an atomic theory according

to which all matter is made up of a (small) number of elements.
1808 : Malus discovers the polarization of light.
1809 : Lamarck publishes “Zoological philosophy”, proposing his theory of “transformism”, the

first attempt to give a materialistic and mechanistic explanation of the evolution of living crea-
tures.
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Technological Advances
1801 : Jacquard develops the loom.
1801 : Volta produces an electric battery.
1803 : Fulton brings into operation the first steampowered boat on the Seine.
1804 : Trevithick builds the first locomotive.
1805 : Appert develops the first effective technique for conserving foodstuffs.
1806 : Morphine is isolated by Setürner. It will be used for therapeutic purposes in 1827.
1806 : The British engineer William Murdoch installs gas lighting in a cotton spinning mill in

Manchester, U.K. First gas plant opened at Salford.

The Arts, Philosophy, et Humanities
1801 : In “René”, Chateaubriand describes for the first time the “wave of passions”, destined to

become a commonplace of Romanticism. The next year will see the appearance of the “Genius
of Christianity”, in which he claims to prove that Christianity is no less favorable to art than the
“fictions” of Antiquity.

1802 : The philologist Grotefend deciphers cuneiform script.
1804–1805 : Beethoven composes the “Appassionata”, his sonata for piano No. 23 in F minor,

described as a “torrent of fire in a bed of granite” by the writer Romain Rolland.
1808 : Appearance of the first part of Goethe’s “Faust”.
1808 : Ingres paints “The Valpinçon Bather” (Fr: “La Grande Baigneuse”), the first picture in a

series of depictions of bathing women that he will continue producing for the rest of his life.
1809 : First volume of the “Description of Epypt or compilation of observations and investigations

carried out in Egypt during the French expedition”.

Franco–German history
1804 : Napoleon promulgates the French code of civil law (the so-called “Napoleonic code”),

defining new rights and obligations of the French people.
1804 : Napoleon Bonaparte has himself proclaimed emperor of the French by the Senate in May,

and then crowns himself in Notre-Dame Cathedral on December 2. The imperial symbolism is
designed to recognize Napoleon I as heir of Charlemagne and the Roman Empire.

1806 : On August 6, the last emperor of the Germanic Holy Roman Empire, submissive to
Napoleon’s ultimatum, renounces his crown. Prussia reacts by declaring war on Napoleon.
In October, the battles of Jena and Auerstädt end in total victory for Napoleon’s “Grande Ar-
mée” over the Prussian army. Napoleon enters Berlin and parades his troops along Unter den
Linden. The trauma resulting from this humiliation will trigger a violent German nationalism,
developing over the course of the 19th century and leading to the unification of the German
nation.
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1810–1819
Uniformization
1811 : In a letter to Bessel, Gauss explains integration of holomorphic functions along paths.
1814 : First of Cauchy’s articles on the theory of residues.

Mathematics
1810 : Gergonne publishes the first volume of the “Annales de mathématiques pures et appliquées”,

which will play an important role in the diffusion of mathematics.
1811 : Poisson publishes his “Treatise on mechanics”, containing applications to electricity, mag-

netism, and of course mechanics.
1812 : The two volumes of Laplace’s “Analytic theory of probabilities” establish probability at the

center of mathematics.
1814 : Publication of “Barlow’s tables”, containing squares, cubes, square roots, logarithms, etc.

of the integers from 1 to 10,000.
1815 : Pfaff publishes an article on systems of partial differential equations, which will later influ-

ence Jacobi and Lie.
1817 : Bolzano publishes “Rein analytischer Beweis . . . ”. One finds here, in particular, the

infinite-simal-free definition of continuous functions and the Bolzano–Weierstrass theorem.
1817 : Bessel discovers a new class of transcendental functions, today called Bessel functions,

satisfying a second-order algebraic differential equation.

Science
1811 : Avogadro proposes the idea that equal volumes of gas at the same temperature and pressure

contain the same number of molecules.
1813 : Von Fraunhofer invents the spectroscope, permitting him to identify the lines of the solar

spectrum (1814) and later to classify stars according to their light spectra (1822).
1815 : Prout states that the atomic weights of the elements are multiples of that of hydrogen.
1815 : Ampère establishes the difference between an atom and a molecule.
1816 : Fresnel shows that the phenomena of interference and diffraction can be explained in terms

of the wave theory of light.
1817 : Pelletier and Caventou isolate chlorophyll.
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Technological advances
1816 : Laennec invents the stethoscope.
1816 : The Davy lamp is a safety lamp allowing miners to work in the presence of inflammable

gases such as firedamp (methane).
1817 : Drais invents the draisine (or velocipede (bicycle)).
1819 : The steamship Savannah crosses the Atlantic Ocean (although part of the voyage is by sail).
1819 : Pelletier isolates quinine.

The Arts, Philosophy, and the Humanities
1811–1816 : Four of Jane Austen’s novels appear in succession: “Sense and Sensibility”, “Pride

and Prejudice”, “Mansfield Park”, and “Emma”.
1812 : First publication of “Kinder und Hausmärchen” (Children’s and household tales) by the

brothers Grimm.
1814 : Goya paints “El tres de mayo”, portraying the execution of Spanish prisoners by soldiers

of Napoleon’s army on May 3, 1808, following a revolt the day before. The painting was
commissioned by the provisional government of Spain at Goya’s suggestion.

1817 : Friedrich paints “Der Wanderer über dem Nebelmeer” (Wanderer above the sea of fog),
emblematic of German romantic art.

1818–1819 : Géricault paints “Le Radeau de la Méduse” (The raft of the Medusa).

Franco–German history
1812 : The Russian campaign, marked by the burning of Moscow by the Russians the day after the

entrance of the French into the city, ends with a catastrophic retreat of Napoleon’s army through
Poland and Germany. Cold, snow, and harassing attacks by Cossacks result in considerable
losses; the “Grande Armée” is destroyed.

1813 : Napoleon succeeds in assembling an army of 200,000 men but the Battle of Nations at
Leipzig results in a decisive defeat for the French army opposed to a coalition made up of
almost all of Europe.

1814 : Napoleon is forced to abdicate and is exiled to the island of Elba. The French nobility is
restored and the allies install Louis XVIII on the throne. The defunct Germanic Holy Roman
Empire is replaced by a German Confederation of thirty-nine states under the nominal leader-
ship of the Habsburgs.

1815 : Napoleon returns to France at the head of a small army and succeeds in resuming power.
However, the allies do not accept his return and take up arms once again against France;
Napoleon’s army is finally defeated at the Battle of Waterloo. Napoleon is exiled to Saint
Helena. He leaves behind a France bled white.
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1820–1829
Uniformization
1825 : Gauss proves his theorem on local uniformization: every surface is locally conformally

equivalent to the Euclidean plane. This result will later allow an arbitrary Riemannian surface
to be viewed as a Riemann surface.

1827–1829 : Abel and Jacobi understand that the inverses of elliptic integrals are doubly periodic
single-valued functions; the way is open to the uniformization of elliptic curves.

Mathematics
1821 : Cauchy publishes his “Cours d’analyse”, presenting mathematical analysis as rigorously as

possible.
1824 : Abel proves that the general equation of degree 5 is not solvable by radicals.
1825 : Fermat’s last theorem is proved for n = 5 by Dirichlet and Legendre.
1826 : Lobachevsky announces that he has developed a geometry in which Euclid’s fifth postulate

does not hold: through a point off a straight line there are infinitely many straight lines parallel
to that line.

1826 : Founding of the “Journal für die reine und angewandte Mathematik” by Crelle.
1828 : In his “Disquisitiones generales circa superficies” Gauss proves his “Theorema Egregium”,

which opens the way to the concept of the curvature of an abstract surface, independent of how
it is embedded in space.

1829 : Proof of Sturm’s theorem, permitting the calculation of the number of distinct real roots of
a polynomial contained in a given interval.

Science
1820 : Oersted observes that an electric current produces a magnetic field, thus initiating the study

of electromagnetism.
1821 : Arago and Gay-Lussac invent the electromagnet.
1822 : By studying the Rosetta stone, Champollion manages to decipher Egyptian hieroglyphs.
1824 : Carnot publishes his “Réflexions sur la puissance motrice du feu et sur les machines pro-

pres à développer cette puissance” (Reflections on the motive power of fire and the machines
appropriate to develop this power). This contains his theory of the Carnot cycle, which will be
fundamental to the development of steam engines and more generally of thermodynamics.

1825–1828 : Publication of the three volumes of Legendre’s “Traité des fonctions elliptiques et
intégrales eulériennes". This monumental work, a standard reference for the manipulation and
calculation of elliptic integrals, is, however, superseded in its theoretical point of view by work
of Gauss, Abel, and Jacobi.

1827 : The botanist Brown observe the erratic movements of particles of pollen in suspension in a
liquid; this is brownian motion.

1829 : Lyell publishes his “Principles of Geology” in which he affirms, in particular, that the
Earth’s surface changes very slowly but continuously; this will be an important idea for the
theory of evolution.
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Technological advances
1820 : Fabian von Bellingshausen discovers the continent Antarctica.
1821 : Mary Anning discovers the first complete skeleton of a plesiosaurus.
1821 : Faraday perfects the electric motor.
1822 : Mantell discovers the first fossils of dinosaurs: the teeth of an iguanodon.
1823 : Macintosh files a patent for his waterproof cloth.
1825 : Chevreul and Gay-Lussac manufacture candles made of soapstone (steatite).
1825 : Inauguration of the first commercial railroad line Stockton–Darlington; first passenger train

drawn by the steam locomotive invented by Stephenson.
1826 : Moray builds the first internal combustion engine, fueled by a mixture of ethanol and tur-

pentine.
1826 : The first photograph, “Point de vue du Gras” (View of le Gras), is taken by Niépce.

The Arts, Philosophy, and the Humanities
1823 : Pushkin begins writing his chef d’œuvre “Eugene Onegin”.
1824 : Beethoven composes his ninth and last symphony.
1826 : Mendelssohn composes his overture to “A midsummer night’s dream”.
1827 : A year before his death, Schubert composes “Winterreise” (Winter voyage).
1829 : Chopin composes his first book of Études at the age of 19.
1829 : In May 1829, the young Gérard, not yet calling himself de Nerval, is called upon by Hugo

to lend his support to Hugo’s play “Hernani”. The year before, he had published a translation of
“Faust”, serving as the inspiration of the composer Berlioz’s opera “La Damnation de Faust”.
Like Galois he spent some of the year 1831 in Sainte-Pélagie prison.

1829 : “William Tell”, Rossini’s last opera, opens in Paris on August 3.

Franco–German history
1824 : On the death of Louis XVIII, his brother accedes to the throne as Charles X, at the age of

66. Charles X revives the tradition of the coronation at Reims on May 29, 1825, surrounded by
pomp recalling the Ancien Régime at its height. His reign will be marked by the domination of
the ultra-royalists, and he will alienate the public with his granting of indemnities to the émigrés,
his law punishing by death anyone guilty of sacrilege, and his reintroduction of censorship.
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1830–1839
Uniformization
1835 : Jacobi invents ϑ-functions, thereby providing a very general procedure for constructing

elliptic functions.

Mathematics
1831 : Cauchy proves that holomorphic functions can be developed in power series.
1832 : Bolyai’s work on non-Euclidean geometry is published.
1832 : Galois dies following a duel. During the night before his death, he sketches in haste the

theory which today bears his name and will exert a profound influence on almost all of mathe-
matics.

1834 : Hamilton publishes “On a general method in dynamics”.
1835 : Quételet publishes “Sur l’homme et le développement de ses facultés, essai de physique

sociale” (On man and the development of his faculties, an essay on social physics).
1837 : In his book “Recherches sur la probabilité des jugements” (Investigations into the probabil-

ity of judgements), Poisson introduces the law of probability bearing his name and applies it to
concrete problems related to the functioning of law courts.

1837 : Dirichlet publishes the first version of his theorem on arithmetic progressions, thereby
founding analytic number theory.

Science
1833 : In his work “On a general method of expressing the paths of light and of the planets by the

coefficients of a characteristic function” Hamilton founds Hamiltonian dynamics, centered on
the concept of action. The principle according to which the action is stationary generalizes the
principle of least action and remains today one of the pillars of science.

1834 : Payen and Persoz isolate the first enzyme: diastase.
1834 : Babbage conceives of a mechanical programmable calculating machine using punched

cards.
1838 : Schleiden observes that plants are constituted of cells and shows the importance of their

nuclei.
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Technological advances
1831 : The discovery of electromagnetic induction by Faraday allows the production of alternating

current. Pixii builds the first alternator, soon to be improved.
1833 : Gauss and Weber develop the electromagnetic telegraph.
1835 : Colt invents the revolver.
1835 : Invention of Morse code.
1836 : Madersperger invents the sewing machine.

The Arts, Philosophy, and the Humanities
1830 : Publication of the third and last version of the “Enzyklopädie der philosophischen Wis-

senschaften im Grundrisse” (Encyclopedia of the philosophical sciences) in which Hegel ex-
pounds his system of philosophy.

1830–1842 : Comte expounds the principles of scientific positivism in his “Cours de philosophie
positive”.

1831 : Delacroix’s painting “La Liberté guidant le peuple” (Liberty guiding the people), depicting
the July revolution, is exhibited at the Salon de Paris.

1831 : “La Peau de chagrin” (The magic skin), published in the series “Romans et contes
philosoph-iques” (Philosophical novels and stories), is the first volume of what will become
Balzac’s “Comédie humaine”.

1831 : On December 26, “Norma” is performed at La Scala, Milan.
1835 : Chopin publishes his “Ballad No. 1 in G minor”, an odyssey of the soul of Chopin, as Liszt

later describes it, mingling happiness, melancholy, sadness, and delight.
1837 : Büchner dies, leaving his “Woyzeck” unfinished.
1839 : Stendhal’s “La Chartreuse de Parme” is published in two volumes..

Franco–German history
1830 : On May 11, using as pretext an altercation between the Dey of Algiers and the French

consul, Charles X launches the Algerian campaign. This date marks the beginning of the ac-
quisition of a second French colonial empire (the first having been entirely dissolved at the fall
of the first Empire).

1830 : In July, an attempt by Charles X to dissolve the Chamber of deputies, change the electoral
law, and abolish the freedom of the press, triggers a riot rapidly escalating into a popular revolu-
tion. Barricades are erected everywhere in Paris, the armed forces are caught in the middle, and
Charles X is forced to flee. The liberal deputies, for the most part monarchists, succeed in sav-
ing the situation, and are able to preserve constitutional monarchy at the expense of a dynastic
change. Louis-Philippe I is proclaimed “king of the French”. He will be the “bourgeois king”;
his reign will be characterized by rapid development and enrichment of the manufacturing and
financial bourgeoisie.
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1840–1849
Uniformization
1844 : In his memoir on higher geodesy, Gauss introduces the word conformal.
1847–51 : Publication of Eisenstein’s articles on elliptic functions: the series he introduces allow

the coefficients of the polynomial appearing in an elliptic integral to be related to the periods of
the inverse function.

1847 : In Göttingen, Riemann attends Eisenstein’s course on elliptic functions.

Mathematics
1841 : Quételet opens the first bureau of statistics. Statistics develops and becomes a

mathematically-based field in its own right.
1843–1845 : The concept of a vector space of n dimensions is independently formulated by Cayley

and Grassmann.
1843 : Hamilton discovers the quaternions.
1844 : Liouville describes the first transcendental numbers.
1845 : Cayley studies the composition of linear mappings in his “Theory of linear transforma-

tions”.
1847 : Boole shows that one can algebraicize logic in “The Mathematical Analysis of Logic”.
1847 : Kummer publishes “Über die Zerlegung der aus Wurzeln der Einheit gebildeten complexen

Zahlen in ihre Primfactoren” (On the decomposition into prime factors of complex numbers
formed from roots of unity). He succeeds in proving Fermat’s last theorem for all integers n up
to 100 except for 37, 59, and 67.

1847 : Von Staudt publishes “Geometrie der Lage” (Positional geometry), the first metric-free
treatment of projective geometry.

Science
1843 : Joule and Mayer independently demonstrate the equivalence between heat and mechanical

energy.
1843 : Schwabe discovers the cycle of sunspots.
1844 : Darwin writes, but does not publish, an essay prefiguring his theory of evolution of species.
1847 : Helmholz formulates the law of conservation of energy in “Über die Erhaltung der Kraft”.
1848 : Kelvin proposes an absolute temperature scale which will be named after him.
1849 : Fizeau measures the speed of light using rotating cog wheels.
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Technological advances
1841 : The steam hammer, an industrial forging tool, is improved by Bourdon, resulting in a leap

forward in metallurgy, then a rapidly developing industry.
1842 : Long develops the process for inducing anaesthesia using ether. He convinces James Ven-

able, one of his patients, that he can remove a tumor painlessly.
1844 : Manzetti suggests the feasibility of a talking telegraph, the future telephone, which will be

gradually perfected.
1846 : Hoe invents the rolling press, allowing more rapid printing.
1847 : Krupp produces his first steel cannons.
1848 : Lambot and Monier invent reinforced concrete.

The Arts, Philosophy, and the Humanities
1840 : Appearance of the second volume of de Tocqueville’s “Democracy in America”.
1840 : Publication of Schopenhauer’s “Über die Grundlage der Moral” (On the foundations of

morality).
1844 : Heine, living in Paris since 1831, makes a last voyage to Germany, where his works are

banned, and writes “Deutschland: Ein Wintermärchen” (Germany: A Winter’s tale).
1844 : Turner paints “Rain, Steam and Speed — The Great Western Railway”.
1845 : Schumann completes his “Concerto for piano in A minor op. 54”.

Franco–German history
1848 : On July 23, incited by republicans, Paris rises. Louis-Philippe, refusing to begin an assault

on the Parisians, is forced to abdicate. The revolutionaries install a republican provisional
government, removing the July monarchy and proclaiming the second republic on February 25,
1848. In December, Louis-Napoleon Bonaparte, Napoleon’s nephew, is elected president of the
French republic by universal male suffrage.

1848 : In March 1848, at the news of the Parisian and Viennese revolutions, rebellion ignites also
in Germany. The revolutionaries wish to create a united and democratic Germany. They con-
front the king of Prussia Frederick-William IV, who shortly thereafter convokes a constituent
assembly but soon dissolves it when the balance of power goes over to him. The revolutions
of 1848 are destined to fail in securing German unity, however the majority of German states
concede constitutions mollifying the liberal bourgeoisie.
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1850–1859
Uniformization
1851 : In his dissertation, Riemann develops a systematic theory of holomorphic functions; he

defines the surfaces bearing his name, explains how to manipulate them and how to construct
meromorphic functions on them; he “proves” the Riemann Mapping Theorem.

1854 : Weierstrass publishes an article expounding his viewpoint of elliptic functions developed in
normally convergent series of functions.

1857 : In an article in Crelle’s journal, Riemann creates a general theory of algebraic functions and
Abelian integrals. There he explains, in particular, how to view algebraic curves as compact
Riemann surfaces, and describes the topology and analytic geometry of these surfaces, their
moduli spaces, etc.

Mathematics
1852 : Chasles introduces the concepts of the cross ratio, a pencil of conics, and involutions in his

“Treatise on geometry”.
1854 : In his Habilitation dissertation “Über die Hypothesen welche der Geometrie zu Grunde

liegen”, Riemann lays the foundations of differential geometry, introducing in particular the
concept of an n-dimensional manifold.

1854 : Cayley defines the notion of an abstract group of permutations.
1858 : Dedekind proposes a rigorous way of constructing the real numbers by means of Dedekind

cuts.
1859 : Riemann publishes a memoir entitled “Über die Anzahl der Primzahlen unter einer gegebe-

nen Grösse”, in which he uses, among other things, the zeta function to estimate the number of
primes less than a given number.

1859 : Mannheim invents the modern slide rule with its sliding scale and cursor.

Science
1850 : Clausius introduces the concept of entropy and formulates the second law of thermodynam-

ics, generalizing the Carnot cycle.
1851 : The Foucault pendulum affords an experimental demonstration of the rotation of the Earth.
1859 : Darwin publishes “On the Origin of Species by Means of Natural Selection or the Preser-

vation of Favored Races in the Struggle for Life”.
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Technological advances
1850 : A commercial undersea telegraphic cable is laid between France and England, which will

keep functioning for more than 40 years.
1852 : Giffard constructs the first dirigible airship which, by virtue of a steam engine installed in

its gondola, can change direction relative to the wind.
1853 : Otis founds the Otis Elevator Company and sells the first reliable elevators, thus paving the

way to the construction of skyscrapers.
1859 : Colonel Drake drills the first oil wells in Pennsylvania.

The Arts, Philosophy, and the Humanities
1850 : “Les Chouans” is the final volume of Balzac’s “La Comédie humaine”.
1850 : Melville begins writing “Moby Dick”.
1851–1854 : Comte writes his “Système de politique positive”: he has gone from scientific posi-

tivism to religious positivism.
1852–1853 : Liszt composes his “Sonata in B minor”, dedicated to Schumann.
1856 : “Madame Bovary” is serialized in the “Revue de Paris”. The following year the manager

of the Revue, the publisher, and Flaubert will be tried for “contempt for public and religious
morals and good ethics”; they will be acquitted.

1857 : Publication of “Les Fleurs du Mal”, a collection including almost all of Baudelaire’s poetic
production since 1840.

Franco–German history
1850 : This year marks the beginning of a period of industrial development of great importance

for Germany. This development, affecting all of Germany’s states, culminates in an economic
union around Prussia, foreshadowing the political union.

1851–1852 : The coup d’état of December 2, organized by Louis-Napoleon Bonaparte, puts an
end to the Second Republic. The National Assembly is dissolved and the prince-president’s
mandate extended to ten years. Democratic-socialist and republican deputies are exiled in great
numbers, and only the conservative press is authorized to publish. A few months later, the title
“imperial highness” is reinstated by referendum. Louis-Napoléon Bonaparte becomes officially
“Napoleon III, Emperor of the French” on December 2, 1852. From 1859 his regime will take
a significantly more liberal turn.

1853 : Napoleon III appoints Haussmann Prefect of the Seine. Till 1870 he will undertake a radical
transformation of Paris, symbolic of the era of economic development and explosive capitalism
characterizing the Second Empire.
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1860–1869
Uniformization
1865 : Clebsch proves that every compact Riemann surface of genus zero is biholomorphic to the

Riemann sphere and every compact Riemann surface of genus 1 is biholomorphic to the quotient
of the plane by a lattice.

1866 : Fuchs publishes his articles on second-order linear differential equations which will serve
as a basis for those of Poincaré.

1869 : Schwarz publishes explicit examples of uniformization of open subsets of the plane with
polygonal boundaries. The connection he discovers between the Schwarzian derivative and
the uniformization problem is the direct precursor of Poincaré’s approach to uniformization via
differential equations.

Mathematics
1861 : Weierstrass constructs a continuous, nowhere differentiable curve.
1863 : Weierstrass’s construction of the set of real numbers.
1865 : Plücker introduces the coordinates bearing his name identifying the lines of the (complex

projective) space of dimension 3. This is one of the first occasions where a space is considered
whose elements are not necessarily points.

1868 : Beltrami constructs the first concrete model of the non-Euclidean geometry of Lobachevsky
and Bolyai.

Science
1861 : Bunsen and Kirchhoff lay the foundations of spectrography.
1861 : Pasteur refutes the theory of spontaneous generation.
1862 : Pasteur publishes his theory of germs: infections are caused by micro-organisms which

reproduce themselves.
1862 : Foucault makes a precise measurement of the speed of light.
1865 : Maxwell’s equations, appearing for the first time in “A Dynamical theory of the electromag-

netic field”, unite the electric and magnetic fields into a single electromagnetic field.
1866 : In “Versuche Über Pflantenhybriden”, Mendel interprets heredity in terms of pairs of dom-

inant or recessive traits.
1869 : Mendeleev and Meyer independently draw up the periodic table of the elements, in partic-

ular leaving gaps allowing for elements not yet discovered.
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Technological advances
1860 : In London, Fowler contributes to the construction of the first underground railway, the

“Metropolitan line”, a short line built using the cut and cover method.
1862 : Gatling applies for a patent of his machine gun, employing from six to ten rotating barrels

thus allowing the parallelization of the firing mechanism and time for each barrel to cool down
without reducing the rate of fire.

1866 : The Sholes and Glidden typewriter (later known as the “Remington No. 1”) is the first such
to enjoy commercial success.

1867 : Nobel patents his invention of dynamite, the first powerful explosive that is both cheap and
stable.

1867 : The engineer Eiffel sets up his workshops.

The Arts, Philosophy, and the Humanities
1862 : Publication of Hugo’s “Les Misérables”, an immediate great popular success.
1865–1869 : Tolstoy’s “War and Peace” is published in “Russkiı̆ Vestnik”. The novel relates the

history of the Napoleonic Wars as they affected Russia.
1866 : Courbet paints “L’Origine du monde” (The origin of the world).
1867 : Appearance of Book 1 of Marx’s “Das Capital”, devoted to the development of capitalist

production. Books 2 and 3 will be published in 1885 and 1894 by Engels from Marx’s drafts
following on the latter’s death.

1869 : Publication of the first part of Jules Verne’s novel “Twenty thousand leagues under the sea”.
The second part will appear the following year.

Franco–Germanic history
1864 : In France, the “crime of association” is repealed, giving workers the right to force improve-

ments in their working conditions by organizing strikes.
1867 : The North German Confederation, uniting the twenty-two German states north of the river

Main, is formed at the initiative of the Prussian minister-president von Bismarck following the
Prussian victory over Austria and the dissolution of the German Confederation. De facto, the
Kingdom of Prussia simply annexes those states that had supported Austria. Although Bismarck
refrained from including the south German states in order not to provoke Napoleon III, those
states do sign treaties of military alliance with Prussia.
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1870–1879
Uniformization
1870 : Schwarz invents his alternating method, allowing him to prove that open subsets of a Rie-

mann surface that are simply connected, relatively compact and have polygonal boundaries are
biholomorphic to the disc.

1878–79 : Klein publishes a series of articles on modular equations. These articles contain, in
particular, the first example of explicit uniformization of a Riemann surface of higher genus
(albeit with a finite number of points removed).

Mathematics
1871 : Dedekind introduces the notions of field, ring, module, ideal.
1872 : In his Erlanger Programm, Klein views a geometry as a set of structures left invariant by a

group of transformations.
1872 : Founding of the Mathematical Society of France.
1872 : Sylow proves his theorems on finite groups in “Theorems on groups of substitutions”.
1873 : Hermite proves the transcendence of the number e.
1874 : Cantor lays the foundations of the theory of sets, introducing, in particular, the idea of

countability.
1878 : Sylvester founds the “American Journal of Mathematics”.

Science
1872 : Bolzmann explains that the growth of entropy and the second law of thermodynamics can

only be understood in terms of large populations of particles, and not in terms of their individual
trajectories; this marks the beginning of statistical mechanics.

1873 : Schneider describes chromosomes undergoing mitosis.
1873 : In “Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires”

(Experimental statics and liquids subject only to molecular forces), Plateau shows experimen-
tally that, in the absence of external forces, the surface of a liquid minimizes its area.

1878 : Gibbs develops the general concept of thermodynamic equilibrium in “On the equilibrium
of heterogeneous substances”.
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Technological advances
1873 : The first mass-produced commercial automobile: “L’Obéissante” (The obedient one) of

Amédée Bollée.
1877 : Edison invents the phonograph and tests it by recording “Mary had a little lamb”.
1879 : Edison presents his first electric light bulb. In the same year a 7 kW hydroelectric power

plant is built at Saint-Moritz.
1879 : Beginning of commercial exploitation of the telephone in France.

The Arts, Philosophy, and the Humanities
1871 : The premiere of Verdi’s opera “Aïda” is held at the Khedival Opera House in Cairo.
1872 : Monet paints “Impression, soleil levant” (Impression, rising sun), a view of the former port

of Le Havre. It is this picture that will lend its name to the impressionist movement.
1873 : Rimbaud writes “Une saison en enfer” (A season in hell).
1875 : The premiere of Bizet’s “Carmen” at the Paris Opéra-Comique on March 3.
1876 : The Bayreuth “Festspielhaus”, specially conceived by Wagner for the performance of his

operas, opens its doors on the occasion of the performance of “The Ring of the Nibelung”.
1879–1880 : “The brothers Karamazov”, Dostoevsky’s last novel, is serialized in the magazine

“Russkiı̆ Vestnik”.

Franco–Germanic history
1870 : On July 19 France declares war on Prussia. The French lack of preparation leads to disaster:

Napoleon III is taken prisoner and on September 19 the siege of Paris begins.
1871 : On January 18, the German Empire is proclaimed — very symbolically at Versailles. The

constitution provides for the Reichstag to pass laws, but real power rests in the hands of William
I and his chancellor Bismarck.

1871 : On January 28, France officially capitulates. Alsace and part of Lorraine become German
(again). The National Guard and workers of Paris, refusing to accept defeat, take control of
the capital and install an insurrectional government: this is the Paris Commune. With tacit
Prussian agreement, they are crushed during bloody week by the Thiers government, removed
to Versailles.
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1880–1889
Uniformization
1881 : Klein presents his view of Riemann’s works; he develops hydrodynamic and electrostatic

interpretations of results on the existence of meromorphic forms.
1881 : Poincaré’s investigations of second-order linear equations lead him to the “invention” of

Fuchsian groups.
1882 : Following on Poincaré’s articles on Fuchsian groups, Klein and Poincaré “prove” the uni-

formization theorem for algebraic Riemann surfaces using the method of continuity.
1883 : Poincaré proves his uniformization theorem for functions: the Riemann surface associated

with a germ of any analytic function can be parametrized by an open subset of the plane (with
possible branch points).

Mathematics
1882 : Lindemann proves the transcendence of π, hence showing the impossibility of squaring the

circle by means of straight-edge and compasses.
1884 : Volterra publishes his work on integral equations.
1885 : In his memoir “On curves defined by differential equations”, Poincaré creates the theory of

dynamical systems.
1888 : Engel and Lie publish the first volume of “Theorie der Transformationsgruppen”, laying the

foundations of the theory of Lie groups.
1889 : In his memoir on the three-body problem, Poincaré discovers the possibility of deterministic

chaos.
1890 : Peano exhibits a continuous curve completely filling a square.

Science
1882 : Tesla invents the induction motor using the idea of a rotating magnetic field.
1883 : Roux suggests that threads visible in the nuclei of cells are vectors of heredity.
1885 : Pasteur vaccinates the young Joseph Meister, bitten by a rabid dog.
1886 : Hertz demonstrates radio waves experimentally.
1887 : Michelson and Morley demonstrate the non-existence of the ether experimentally by mea-

suring the speed of light in various directions.
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Technological advances
1885 : Benz develops the “Benz Patent Motorwagen”, installing a cylinder generating 560 watts

on a tricycle.
1886 : Mergenthaler’s Linotype machine is used to print the “New York Tribune”: this is a machine

employing an alphanumeric keyboard allowing the composition of a complete line of text to be
cast as a single lead piece.

1887 : Berliner proposes a zinc disc recording machine with horizontal sound groove. (Edison’s
device used a cylinder with a vertical groove.)

1888 : The name “Kodak” appears for the first time with the launching of the first photo apparatuses
using photographic film.

The Arts, Philosophy, and the Humanities
1880–1881 : Henry James’s “The Portrait of a Lady” is serialized in the “Atlantic Monthly” and

“Macmillan’s Magazine”.
1885 : Zola’s novel “Germinal”, describing the daily life, labor, and suffering of the miners, is a

significant popular success.
1888 : Mahler begins composing his first two symphonies (“Titan” and “Resurrection”) which he

will complete in 1896 and 1894.
1889 : Publication of “Jenseits von Gut und Böse” (Beyond good and evil) in which Nietzsche

proposes transcending “belief in the oppositions of values”.
1889 : Van Gogh paints “Starry night”.

Franco–German history
1880–1887 : William I, in a weakened state, tends more and more to abdicate power to Bismarck.

In 1882, the latter signs the Triple Alliance with Austria-Hungary and the Kingdom of Italy.
1879–1885 : In France, Jules Ferry is the dominant member of the first republican governments.

He establishes free compulsory and secular elementary education. He has laws passed ensuring
the freedom of the press and freedom of association. He is also a very active supporter of French
colonial expansion. In this he is opposed to Clemenceau, who regards colonialist adventures as
distracting attention from the lost provinces of Alsace and Lorraine; for this reason Ferry earns
the goodwill of Bismarck.

1888 : Following the death of William I and the very short reign of Frederick III, William II is
proclaimed emperor (Kaiser Wilhelm II).
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1890–1899
Uniformization
1890 : The Royal Scientific Society of Göttingen proposes a new approach to the uniformization

theorem, via an investigation of the equation ∆u = k .eu . This suggestion soon leads Picard and
Poincaré to a new proof of the uniformization theorem for compact Riemann surfaces.

Mathematics
1894 : In his dissertation, É. Cartan classifies complex semi-simple Lie algebras.
1895 : Poincaré publishes his first article on “Analysis Situs”, in which he founds algebraic topol-

ogy.
1895 : Weber publishes his famous “Lehrbuch der Algebra”.
1895 : “Lessons from Stockholm”: Painlevé replaces Poincaré (on the advice of Mittag-Leffler) as

the appropriate choice to expound before the Swedish king Oscar II the latest progress in the
analytic theory of differential equations.

1896 : Hadamard and de la Vallée Poussin independently prove the prime number theorem, thereby
giving an estimate of the number of primes less than a given number.

1896 : Frobenius makes a major contribution to group representations and the theory of finite fields
in his publication “Über die Gruppencharactere”.

1897 : Burnside publishes “The Theory of Groups of Finite Order”.
1898 : Hadamard’s article on the geodesics of negatively curved surfaces lays the foundation of

symbolic dynamics.

Science
1891 : Dubois discoves the first remains of Homo erectus at Trinil, east of the Indonesian island of

Java. He names it Pithecanthropus erectus in an account published in 1894.
1895 : Röntgen discovers X-rays.
1896 : Becquerel discovers the radioactivity of uranium.
1897 : Thomson discovers the electron.
1898 : P. et M. Curie discover radium and polonium and show that radioactivity is an atomic prop-

erty.
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Technological advances
1890 : On board his aircraft Éole, Ader lifts off and shaves the ground for around fifty meters.
1895 : The brothers Lumière organize the first cinema projections.
1895 : Diesel perfects an internal combustion engine with spontaneous compression-ignition

(rather than ignition by spark plugs).
1899 : Hoffmann patents aspirin.

The Arts, Philosophy, and the Humanities
1890 : Klimt’s “Judith” is considered a crime against artistic creation.
1891 : Gauguin moves to Tahiti in the hope of escaping from western civilization. He paints sixty-

six canvases in the course of a few months.
1893 : The definitive edition of Michelet’s “Histoire de France”.
1895 : In his “Rules of the sociological method” Durkheim describes the method he employs to

guarantee the scientific rectitude of the discipline he founded.
1898 : Apollinaire begins writing his anthology “Alcools”.
1899 : Conrad’s novella “Heart of darkness” is serialized in the Scottish review “Blackwood’s

Magazine”.

Franco–German history
1890 : Bismarck is forced to step down. Realpolitik gives way to Weltpolitik, whose goal is to find

for Germany a “place in the sun” proportionate to her industrial power. Colonial politics is
resumed and the construction of a navy to rival the Royal Navy is made a national priority.

1891 : Creation of the pan-German League which meets with rapid success and will last till 1939.
Its aim is to unite all German speakers, Germanize all aliens living in the Reich, recover lost
territories, and seize lands “necessary for the development of the German race”.

1893 : The Franco–Russian Alliance, signed at the end of December, stipulates that those countries
will provide mutual support if attacked by a member of the Triple Alliance.

1894 : Captain Dreyfus, accused of spying for Germany, is condemned to deportation to Guyana.
Several individuals try in vain to prove his innocence. The Dreyfus affair really explodes in
1898, on the publication of Zola’s article “J’accuse” (I accuse). France is split between drey-
fusards, for whom truth must prevail whatever the consequences, and the antidreyfusards, for
whom the prestige of the army — the instrument of revenge — demands that a judgement once
passed should not be revised.
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1900–1909
Uniformization
1900 : The uniformization of Riemann surfaces is one of the twenty-three problems put forward by

Hilbert at the International Congress of Mathematicians.
1900 : Osgood shows that every bounded, simply connected, open subset of the plane is biholo-

morphic to the unit disc.
1907 : Poincaré and Koebe simultaneously prove the uniformization theorem.

Mathematics
1900 : Hilbert publishes “Grundlagen der Geometrie”, providing a complete axiomatization of Eu-

clidean geometry.
1902 : In his dissertation, Lebesgue founds integration theory.
1906 : Markov introduces the random processes bearing his name, to become a basic tool in prob-

ability theory.
1907 : Brouwer’s dissertation on the foundations of mathematics marks the beginning of the intu-

itionist school.

Sciences
1900 : Freud publishes “Die Traumdeutung” (The interpretation of dreams). Ida Bauer begins a

course of treatment with him: psychoanalysis is born!
1900 : Planck lays the foundations of quantum mechanics in “Zur Theorie des Gesetzes der En-

ergieverteilung im Normalspektrum”: his quantum of action provides an explanation of the
experimental facts concerning black body radiation.

1904 : In “Elektromagnetische Vorgänge in einem Systeme. . . ”, Lorentz formulates the group of
transformations bearing his name, which will play a central role in the special theory of relativ-
ity.

1904–1905 : Weber publishes in the form of articles “Die protestantische Ethik und der Geist des
Kapitalismus” (The protestant ethic and the spirit of capitalism). This work, centered on indi-
vidual motives for action, will have a considerable influence on sociology.

1905 : In “Drei Abhandlungen zur Sexualtheorie”, Freud assembles his hypotheses on the place of
sexuality and its future in the development of the personality.

1905 : Einstein’s four fundamental papers revolutionize physics and open a new era. They concern
the photoelectric effect, brownian motion, the special theory of relativity and the equivalence of
mass and energy.

1906 : De Saussure begins his investigations of the structural principles of linguistics.
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Technological advances
1904 : Fleming, of the Marconi company, invents the diode vacuum tube.
1907 : World’s first genuine takeoff of a helicopter, invented and piloted by Cornu.
1907 : Bakelite is one of the first plastic materials, developed by the chemist Baekeland.
1908 : Painlevé flies as a passenger with one of the Wright brothers in their biplane.
1910 : Claude invents neon lighting.

The Arts, Philosophy, and the Humanities
1901 : Chekhov’s play “The three sisters” is performed at the Moscow Arts Theater.
1902 : On April 30, at the Paris Comic Opera, Messager directs “Pelléas et Mélisande”, a lyrical

drama in five acts by Debussy with libretto adapted from a play by Maeterlinck.
1906 : Appearance of Musil’s novel “Die Verwirrungen des Zöglings Törless” (The confusions of

young Törless). Musil’s “Preliminary studies for a novel” prefigure “The man without quali-
ties”.

1907 : Proust begins writing “À la recherche du temps perdu”, the various volumes of which will
be published between 1913 and 1927.

1908–1911 : Schoenberg progressively invents the musical language “free atonality”, liberated
from tonal functions and hierarchies. His “String quartet No. 2” (1908), “Five orchestral
pieces” (1909) and “Six little pieces for piano” (1911) mark important stages on the way to
this new language.

1909 : Picasso paints “Les Demoiselles d’Avignon”, considered to represent the point of departure
of cubism.

Franco–German history
1902 : In France, legislative elections give power to an alliance of radicals and socialists: the

Left Bloc. The government program of Émile Combes consists essentially in combatting the
influence of the church. This culminates in the law of separation of church and state of 1905
and the nationalization of church property.

1904 : France and the United Kingdom sign a treaty, the Entente Cordiale, marking a diplomatic
rapprochement between the two countries, faced with the Triple Alliance. The Entente Cordiale,
the Franco–Russian Alliance, and the Anglo–Russian Convention, which will be signed in 1907,
will together constitute the Triple Entente.

1905 : In Germany, von Schlieffen presents his plan for an offensive strategy on the French and
Russian fronts.
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[Plü1831] J. Plücker – Analytisch-geometrische Entwicklungen, Vol. 2,
Baedeker, Essen, 1831.
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