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Hyperbolic spaces, principal series, and O(2,∞)
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Abstract. We prove that there exists no irreducible representation of the
identity component of the isometry group PO(1, n) of the real hyperbolic
space of dimension n into the group O(2,∞) if n ≥ 3. This is motivated
by the existence of irreducible representations (arising from the spherical
principal series) of PO(1, n)◦ into the groups O(p,∞) for other values of
p.
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1. Introduction.

1.1. Strongly nondegenerate bilinear forms of finite index. Consider a real
separable Hilbert space H , and a Hilbert basis (ei)i≥1 of H . Define a bilinear
form Bp on H by the formula

Bp(x, x) =
p∑

j=1

x2
i −

∑

j≥p+1

x2
j ,

where x is an arbitrary vector in H written as x =
∑+∞

j=1 xjej . The forms ±Bp

can be characterized intrinsically as the unique (up to isomorphism) strongly
nondegenerate bilinear forms of index p on a real separable Hilbert space,
see [2]. The word strongly here refers to a completeness condition [2, §2]. The
isometry group of Bp is denoted by O(p,∞). It is interesting to study which
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locally compact groups admit irreducible representations into this group.1 This
question was suggested by Gromov [8, §6] and studied by Duchesne who con-
structed tools to establish superrigidity results with target O(p,∞) [5–7]. See
also [3] for more recent results in this direction. Note also that the groups
O(p,∞) were already studied in the 40’s and 60’s by Ismagilov, Naimark, and
Pontryagin, see e.g. [9,10] as well as the references cited in [13].

A natural family of groups admitting interesting irreducible representations
into the groups O(p,∞) is the family of isometry groups of the real hyperbolic
spaces. This fact has been well-known to representation theorists for years [11,
14], and was put in a geometric context more recently [4,13]. We describe this
in the next section.

1.2. The spherical principal series and representations into O(2,∞). Fix n ≥
2 and let Hn be the n-dimensional real hyperbolic space. We identify its isom-
etry group with the group PO(1, n) = O(1, n)/{±Id}. The irreducible repre-
sentations of PO(1, n) into the groups O(p,∞) that we alluded to above come
from the study of the so-called analytic continuation of the spherical principal
series. We recall now the definition of this classical representation theoretic
object.

We fix a point o ∈ H
n and denote by K ⊂ PO(1, n) its stabilizer and by μ

the unique K-invariant volume form of total volume 1 on the boundary ∂Hn

of Hn. The spherical principal series is a family (πs)s∈C of representations of
PO(1, n) on the space L2(∂Hn, μ). It is defined by the formula:

πs(g)(f) = |Jac(g−1)| 1
2+s · f ◦ g−1 (g ∈ PO(1, n), f ∈ L2(∂Hn, μ)).

Here Jac(g) is the Radon–Nikodym derivative of the measure μ with respect
to an element g ∈ PO(1, n). The study of the properties of πs depending on
the value of s is a classical topic. We will not describe all the known properties
of these representations but we only mention a few classical facts. If s is purely
imaginary, πs is unitary. Also, the representation πs is irreducible if and only
if s /∈ {±( 12 + k

n−1 ), k ∈ N} [16]. When s is real and positive, it is known
that there exists a continuous invariant bilinear form Bs for πs. This form is
nondegenerate and of finite index when πs is irreducible. We call p(s) its index,
which is locally constant on R

∗
+ − { 1

2 + k
n−1 , k ∈ N}. Note that the bilinear

form Bs is not strongly nondegenerate, but it can be naturally completed, thus
providing an irreducible representation that we shall call πs:

πs : PO(1, n) → O(p(s),∞).

The nonzero values of the function s �→ p(s) (when s > 0 and s /∈ {1
2 + k

n−1 ,

k ∈ N} can be checked to be the set of integers of the form
(

n − 1 + j

n − 1

)
, j ≥ 0. (1)

1All the representations that we consider in this text will be continuous, i.e. the orbit maps
g �→ g · v are continuous.
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We refer to [13, §3.B] for a detailed discussion of this fact. This naturally leads
to the following question (where we restrict to the identity component of the
isometry group of Hn for simplicity).

Is it true that any irreducible representation PO(1, n)◦ → O(p,∞) is con-
jugated to one of the representations πs?
A more specific question goes as follows.

If p is not equal to one of the integers of the form (1), is it true that there
is no irreducible representation of PO(1, n)◦ into O(p,∞)?
Recall that the first gap occuring in the values of the indices is the set {2, . . . , n−
1}. This problem was studied in [13] where the authors proved the following:

Theorem 1. Let p be an integer with 2 < p < n where n > 4. Then there is no
irreducible representation PO(1, n)◦ → O(p,∞).

Assuming that p ∈ {2, . . . , n−1}, this left open the problem of the existence
of irreducible representations PO(1, n)◦ → O(p,∞) in the following cases:
p = 2, n ≥ 3 and p = 3, n = 4. The main result of this note is the following
theorem, which settles the case p = 2.

MainTheorem. Let n ≥ 3. Then there is no irreducible representation

PO(n, 1)◦ → O(2,∞). (2)

Let us describe the strategy of the proof. Using a result from [13], we
prove that if � is an irreducible representation as in (2), then its complexifica-
tion cannot be irreducible. One is thus led to study closed invariant complex
subspaces in the complexification. We observe that the complexified Hilbert
space, possibly modulo a negative definite invariant factor, is always the di-
rect sum of at most two closed invariant irreducible strongly nondegenerate
subspaces. Looking at the signature of these subspaces, we are thus led to
consider representations into the groups U(2,∞) and U(1,∞), which appear
as subrepresentations of the complexification of �. From these considerations,
we finally derive a contradiction.

In Section 2, we make a few general observations about linear representa-
tions of arbitrary groups into O(2,∞), assuming that their complexification
is not irreducible, before proving our main theorem in Section 3. It is possible
that some of our ideas could be used to disprove the existence of irreducible
representations into O(2,∞) for other groups.

2. Complexifications of representations in O(2,∞). In this section, we con-
sider a topological group G, a Hilbert space H , and a strongly nondegenerate
bilinear form B on H , of signature (2,∞). We denote by O(H , B) the group
of all bijective linear operators of H preserving B (such an operator is auto-
matically bounded). Let

� : G → O(H , B)

be an irreducible representation. We let �C be the complexification of �. This
is a linear representation of G on the space H ⊗ C. We identify H with
H ⊗ 1 ⊂ H ⊗ C and denote by Re, Im the maps H ⊗ C → H which send
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x + iy (x, y ∈ H ) to x and y respectively. We still denote by B the Hermitian
extension of B to H ⊗ C.

We assume that �C is not irreducible. This means that there exists a closed,
nontrivial G-invariant complex subspace in H ⊗ C. In the following propo-
sition, we discuss properties of any such complex subspace. This proposition
remains true whenever B is strongly nondegenerate of any finite index (not
necessarily equal to 2).

Proposition 2. Let W ⊂ H ⊗C be a nonzero, proper closed G-invariant com-
plex subspace.

1. The restrictions of Re and Im to W are injective.
2. The dimension of W is infinite.
3. The restriction of B to W is strongly nondegenerate.

Proof. If the restriction of Im to W is not injective, W ∩ H is a nonzero
closed G-invariant subspace of H , hence must be equal to all of H since � is
irreducible. Hence H ⊂ W and since W is complex, W = H ⊗ C, which is a
contradiction. The proof is similar for Re.

If the dimension of W was finite, Re(W ) and Im(W ) would be finite dimen-
sional G-invariant subspaces of H , hence they should both be equal to {0}.
This would imply W = {0}, a contradiction. Hence W is infinite dimensional.

Let NW be the radical of the restriction of B to W . This space is isotropic,
hence finite dimensional since B has finite index. Since it is also G-invariant,
it must be {0} by the previous item. Hence the restriction of B to W is
nondegenerate. The fact that this restriction is strongly nondegenerate now
follows from [2, Proposition 2.8]. Note that all results in [2] are stated in the
real case but also hold in the complex case. �

The next proposition is a particular case of a result due to Ismagilov [9] (see
also [15, p. 154] for a detailed proof). The proof essentially consists in observing
that, thanks to Zorn’s lemma, there exists a maximal invariant closed complex
subspace of H ⊗C on which B is negative definite. Combining this observation
with the fact that B has finite index and with Proposition 2, one obtains the
result.

Proposition 3. There is a G-invariant orthogonal decomposition into closed
strongly nondegenerate complex subspaces of one of the following type.

1. H ⊗ C = V ⊕ W where W is negative definite for B, the restriction of
B to V is of signature (2,∞), and the action of G on V is irreducible.

2. H ⊗C = V1 ⊕V2 ⊕W where W is negative definite for B, the restriction
of B to each Vi is of signature (1,∞), and the action of G on each Vi is
irreducible.

In the next section, we turn to the special case where G = PO(1, n)◦.

3. Representations of PO(1, n)◦ into O(2,∞). We now turn to the proof of
our main theorem. We consider an irreducible representation

� : PO◦(1, n) → O(2,∞)
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with n ≥ 3 and we are looking for a contradiction. As before, we call H the
Hilbert space and B the bilinear form underlying the representation �. We fix
once and for all a maximal compact subgroup

K ⊂ PO◦(1, n).

Note that K is isomorphic to the group SO(n). We start with the following
elementary observation, already used in [13].

Proposition 4. There exists a 2-dimensional, positive definite subspace P ⊂ H
which is pointwise fixed by K.

Proof. Since this simple result will be used several times here, we recall its
proof, although it already appears in the proof of [13, Theorem 5.3]. Since K
is compact, it must fix a point in the symmetric space of O(2,∞) which can be
identified with the space of positive definite planes in H . Hence there exists a
positive definite K-invariant plane P ⊂ H . The action of K on P is given, up
to conjugacy, by a homomorphism K → O(2). Any such morphism is trivial
since n ≥ 3, hence P ⊂ H K . �

The following statement is proved in [13, Prop. 5.4]. Since we will apply it
repeatedly to the pair (PO◦(1, n),SO(n)), we state it explicitly here.

Proposition 5. Let (G,K) be a Gelfand pair. Let π be a linear representation
of G on a complex Hilbert space W preserving a continuous, strongly nonde-
generate sesquilinear form of finite index. If π is irreducible, then the space
WK of K-invariant vectors has complex dimension at most 1.

The previous two propositions imply that the complexification �C of � can-
not be irreducible. Indeed the real dimension of the space of K-fixed points in
H is equal to the complex dimension of the space of K-fixed points in H ⊗C:

dimRH
K = dimC(H ⊗ C)K .

If �C is irreducible, the right-hand side is less or equal than 1 according to
Proposition 5, whereas the left-hand side is greater or equal to 2 according
to Proposition 4. Hence �C cannot be irreducible. We will now apply Propo-
sition 3. In the next two subsections, we deal separately with the two cases
appearing in that proposition.

3.1. Irreducible representations in U(2,∞). We assume here that we have a
PO(1, n)◦-invariant orthogonal decomposition into closed strongly nondegen-
erate complex subspaces

H ⊗ C = V ⊕ W

where V is irreducible of signature (2,∞) and where W is negative definite.
Consider the space of positive definite complex 2-dimensional planes in V .
One shows exactly as in Proposition 4 that the group K must fix a point P in
that space. Consider now the action of K on P . Since this action preserves the
restriction of B to P , this defines a homomorphism from K to the unitary group
U(2) (well-defined up to conjugacy). But one has the following proposition.
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Proposition 6. Let n ≥ 3. Any continuous homomorphism from SO(n) to U(2)
is trivial.

This yields a contradiction: indeed the space V K must contain P according
to the above proposition. Hence dimCV K is greater or equal to 2, which con-
tradicts again Proposition 5 applied this time to the complex representation
of PO(n, 1)◦ on V .

We now prove Proposition 6.

Proof of Proposition 6. Let ϕ : SO(n) → U(2) be a continuous (hence smooth)
homomorphism. The image of ϕ must be contained in SU(2) so we think of
ϕ as a map from SO(n) to SU(2). For n = 3, the Lie algebra of SO(3) being
simple, ϕ must be a local isomorphism if it is not trivial. But this implies that
ϕ is a covering map. The group SU(2) being simply connected, ϕ must be an
isomorphism. This is a contradiction since SO(3) is not simply connected. (Of
course, it is well-known that there is a local isomorphism going the other way
around, i.e. a 2-sheeted cover SU(2) → SO(3).)

We now deal with the case n = 4. Recall that there is a 2-sheeted cover
π : SU(2) × SU(2) → SO(4) whose kernel is generated by (−Id,−Id). We
consider the composition

ϕ ◦ π : SU(2) × SU(2) → SU(2).

Its restriction to each factor SU(2) × {1} and {1} × SU(2) is either trivial or
an isomorphism onto SU(2). Since the two factors commute, it cannot be an
isomorphism on each factor since SU(2) is not Abelian. Hence the map ϕ ◦ π
factors through one of the projections from SU(2) × SU(2) onto one of its
factors; for instance the first one. Hence we can write:

ϕ ◦ π = Φ ◦ p1 (3)

where p1 is the first projection SU(2)×SU(2) → SU(2) and Φ : SU(2) → SU(2)
is an isomorphism (if ϕ is nontrivial). Applying this identity to (−Id,−Id), one
sees that −Id lies in the kernel of Φ. This contradicts the fact that Φ is an
isomorphism. Hence ϕ is trivial.

Finally, for n ≥ 5, the Lie algebra of SO(n) being simple of dimension > 3,
the morphism ϕ must also be trivial. �

3.2. Actions on complex hyperbolic spaces. To study complex representations
of PO(1, n)◦ into the group U(1,∞), we will need the following proposition.

Proposition 7. Let α : PO(1, n)◦ → U(1,∞) be an irreducible representation.
Then α is the complexification of an irreducible representation PO(1, n)◦ →
O(1,∞).

In [1], Burger and Iozzi classified representations of finitely generated groups
into the group PU(1,m) with vanishing bounded Kähler class. Here we need
to understand complex representations of the group PO(1, n)◦ into the group
U(1,∞). They are automatically of zero bounded Kähler class since the second
continuous bounded cohomology group of PO(1, n)◦ is zero. So one could try
to establish a generalization of Burger and Iozzi’s work [1] where the “source
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group” is nondiscrete and the target is the isometry group of the infinite di-
mensonial complex hyperbolic space. We will not pursue this objective here
but we will only study the case where the source group is PO(1, n)◦, which is
much simpler and sufficient to establish Proposition 7.

We first explain how to conclude the proof of our main theorem before
turning to the proof of that proposition. So we consider a PO(1, n)◦-invariant
decomposition

H ⊗ C = U1 ⊕ U2 ⊕ W,

as in the second case of Proposition 3. We apply Proposition 7 to the complex
representation of PO(1, n)◦ in U1. This yields a totally real subspace V1 ⊂ U1,
whose complexification equals U1 and such that the restriction of B to U1 is
the Hermitian extension of a strongly nondegenerate bilinear form on V1 of
signature (1,∞). Consider the projections H ⊗ C → U1 with kernel U2 ⊕ W
and U1 → V1 with kernel iV1. Let us call π the restriction of the composition of
these projections to H , so that π is an R-linear map from H to V1. Note that
we can suppose that π �= 0, otherwise, we pick the map Im : U1 → V1 instead
of Re : U1 → V1. Now, π is injective since ker(π) is a proper closed invariant
real subspace of H and this implies that ker(π) = {0} by the irreducibility
of �. By Proposition 4, there exists a 2-dimensional subspace P of H wich is
pointwise fixed by K. The space π(P ) is contained in V K

1 and, by injectivity
of π, dimRV1

K ≥ 2. But this implies that dimCU1
K ≥ 2, a contradiction since

the complex representation in U1 is irreducible.
We now turn to the proof of Proposition 7.

Proof of Proposition 7. We call W the complex Hilbert space underlying the
representation α, and C the Hermitian form of signature (1,∞) on W . Let
H

∞
C

be the associated infinite dimensional hyperbolic space, thought of as the
space of positive lines in the projective space P(W ). We denote by

c : H∞
C × H

∞
C × H

∞
C →

(
−π

2
,
π

2

)

the Cartan angular invariant (see e.g. [1,12] for the definition). This is an
alternating cocycle, which is invariant under the diagonal action of the group
PU(1,∞). The representation α defines a continuous isometric action (also
denoted α) of PO(1, n)◦ on H

∞
C

. We choose an α-equivariant continuous map

f : Hn
R → H

∞
C .

It is well-known that any PO(1, n)◦-invariant alternating 3-cocycle defined
on H

n
R

vanishes if n ≥ 3, see for instance [12] for a proof. Hence we have
c(f(x), f(y), f(z)) = 0 for x, y, z in H

n
R
. But this implies that the image of

f is contained in a closed totally real subspace of H
∞
C

, see for instance [12,
Lemma 2.6] for a proof and [1, p. 469] for the definition of totally real sub-
spaces of H∞

C
. The intersection N of all closed totally real subspaces of H∞

C

containing the image of f is PO(1, n)◦-invariant. There exists a totally real
subspace V ⊂ W such that N = H

∞
C

∩ P(V ). The space V must necessarily
be PO(1, n)◦-invariant. Since α is irreducible, we must have that W = V ⊕ iV
and the PO(1, n)◦-action on V must be irreducible. Finally, it is easy to see
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that the restriction of C to V is strongly nondegenerate of signature (1,∞).
This concludes the proof. �
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