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Abstract

We study homomorphisms from Kähler groups to Coxeter groups. As an application, we
prove that a cocompact complex hyperbolic lattice (in complex dimension at least 2) does
not embed into a Coxeter group or a right-angled Artin group. This is in contrast with the
case of real hyperbolic lattices.

1. Introduction

A Kähler group is by definition the fundamental group of a compact Kähler manifold. We
refer the reader to [2] for an introduction to these groups, and to [5, 10, 27] for more recent
developments. The purpose of this note is to study homomorphisms from Kähler groups to
Coxeter groups (for the definition of Coxeter groups, see Section 2 and [16, 24] for a more
detailed introduction).

We first recall a few classical definitions. In this text, a 2-dimensional orbifold � is a
compact Riemann surface S marked with a finite set of points p1, . . . , pn , each point pi

being assigned a multiplicity mi � 2. The orbifold � is called hyperbolic if its orbifold
Euler characteristic

χorb(�) := χ(S) −
n∑

i=1

(
1 − 1

mi

)

is negative. In this case, there exists a cocompact discrete subgroup � ⊂ PSL2(R) acting on
the unit disc � ⊂ C, such that S can be identified with the quotient �/�, the pi correspond-
ing to orbits of points of � with a non-trivial stabilizer in �. The group � is isomorphic to the
orbifold fundamental group πorb

1 (�) of �, i.e. the quotient of the group π1(S−{p1, . . . , pn})
by the normal subgroup generated by the elements γ

mi
i (γi being the conjugacy class of a

loop around the puncture pi ). In such a situation, we will always think of � as a quotient of
the unit disc and say that � is a hyperbolic 2-orbifold.

A map from a complex manifold X to a hyperbolic 2-orbifold � is holomorphic if it lifts
to a holomorphic map from the universal cover of X to the unit disc. A fibration from X
onto � is a proper holomorphic surjective map f : X → � with connected fibers; such a
map induces a surjection f� : π1(X) → πorb

1 (�) (see for instance [12, lemma 3] for more
on this topic).
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In the following, if G is any group, we will denote by Gab the abelianization of G. If
f1 : G → H1 and f2 : G → H2 are homomorphisms we will say that f1 factors through f2

if the kernel of f2 is contained in the kernel of f1.
We can now state:

THEOREM A. Let X be a compact Kähler manifold with fundamental group � = π1(X).
Let W be a Coxeter group and ϕ : � → W be any homomorphism. Then, there is a finite
cover

X0 −→ X

with fundamental group �0 := π1(X0), and finitely many fibrations pi : X0 → �i (1 � i � N)
onto hyperbolic 2-orbifolds such that the restriction of ϕ to �0 factors through the map

�0 → (�0)ab × πorb
1 (�1) × · · · × πorb

1 (�N )

induced by the pi ’s and by the natural map �0 → (�0)ab.

From now on, by a surface group we will mean the fundamental group of a closed orient-
able surface of genus greater than 1. The orbifold fundamental groups appearing above have
finite index subgroups isomorphic to surface groups. One thus deduces from Theorem A
that if a Kähler group � admits a faithful homomorphism into a Coxeter group, it must have
a finite index subgroup �1 isomorphic to a subgroup of the direct product of a free Abelian
group with a direct product of surface groups. We refer the reader to [18] for other situations
where one can construct faithful homomorphisms from certain Kähler groups to products of
surface groups (possibly with an Abelian factor).

On the other hand, Bridson, Howie, Miller and Short [7] have studied subgroups of dir-
ect products of surface groups and free groups, from the point of view of their homological
properties; see also [6, 8] for more general results. They proved in [7] that a subgroup of
a direct product of free and surface groups with strong enough finiteness properties is vir-
tually isomorphic to a product of finitely generated subgroups of the factors (see Section 3
for a precise statement). Hence, it is tempting to use their result to obtain restrictions on
Kähler groups with strong enough finiteness properties (this possibility was already men-
tioned in [6, 8]). Indeed, from the Theorem above and the results of [7] we easily deduce (see
Section 3):

COROLLARY 1. If a Coxeter group W is commensurable with a Kähler group, then any
infinite irreducible factor of W is either Euclidean or has a finite index subgroup isomorphic
to a surface group.

From Theorem A, one also deduces immediately:

COROLLARY 2. Let PU(n, 1) be the group of holomorphic isometries of the unit ball in
C

n and � ⊂ PU(n, 1) be a cocompact lattice. If n � 2, � does not admit any faithful
homomorphism into any Coxeter group.

Although this last corollary could also be deduced from [7], it admits the following direct
proof. First we observe that a subgroup G of a direct product A × B of torsion-free groups
which does not embed in either A or B contains elements of the form (a, 1) and (1, b) (for
a, b � 1). In particular, it contains a copy of Z

2. Hence a Gromov hyperbolic group embeds
in such a direct product only if it embeds in one of the factors. Combined with the remarks
above, this proves Corollary 2.
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The statement of Corollary 2 for non-uniform lattices in PU(n, 1) follows from the fact
that nilpotent subgroups of Coxeter groups are virtually Abelian. Note that higher rank lat-
tices cannot embed in Coxeter groups; this follows from the result in [31], combined, for
instance, with Margulis’ normal subgroup theorem (see [34] for a weaker statement).

We now recall the definition of a right-angled Artin group (denoted by RAAG in what
follows). Let G be a finite graph with vertex set V (G). The RAAG A(G) associated to G is
the group defined by the following presentation:

A(G) := 〈
gv, v ∈ V (G) | [gv, gw] = 1 if (v, w) is an edge of G

〉
.

See for instance [13] for an introduction to RAAG’s. Note that Davis and Januszkiewicz [17]
have proved that any RAAG embeds (as a subgroup of finite index) into a right-angled
Coxeter group. This implies that Theorem A and Corollary 2 above still hold when one
replaces Coxeter groups by RAAG’s. In particular one obtains:

COROLLARY 3. Let � ⊂ PU(n, 1) be a cocompact lattice with n � 2. Then � does not
admit any faithful homomorphism into any right-angled Artin group.

This contrasts with the fact that the fundamental group of any compact real hyperbolic
3-manifold as well as the fundamental groups of “standard” arithmetic real hyperbolic mani-
folds in all dimensions virtually embed into RAAGs. The first statement follows from Agol’s
recent solution to the virtual Haken conjecture; see [1] and the references there. For the case
of standard arithmetic hyperbolic manifolds, see [4]. The non-existence of quasi-isometric
embeddings of complex hyperbolic lattices into RAAGs was already known thanks to [18]
(see also [30]).

From the previous results we will also deduce:

COROLLARY 4. If a RAAG A(G) is commensurable with a Kähler group, then A(G) is
free Abelian of even rank.

The fact that the only RAAG’s isomorphic to Kähler groups are the free Abelian groups
of even rank was already established in a different way in [21, section 11·13] (that article
also describes which RAAG’s are fundamental groups of quasi-Kähler manifolds).

Note that any RAAG acts properly and cocompactly on a CAT(0) cubical complex,
see [13] for the definition. Although partial results on actions of Kähler groups on CAT(0)

cubical complexes were obtained by Delzant and Gromov (see [18] or [10]), it would be
interesting to study these actions in general.

The proof of our results is an easy combination of two classical facts. First, we use
the fact that Coxeter groups act faithfully and properly on a product of finitely many
trees: this appears for instance in the work of Dranishnikov and Januszkiewicz [22]
and Januszkiewicz [25], see also [31]. More recently, this construction was used by
Lécureux [29]. Second, we use the fact, due to Gromov and Schoen [23], that a non-
elementary action of the fundamental group of a Kähler manifold X on a tree gives rise
to a fibration of X onto a hyperbolic 2-orbifold.

After recalling a few facts about Coxeter groups and their Davis complexes in Section 2,
we prove Theorem A and Corollaries 1 and 4 in Section 3.
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2. Coxeter groups and Davis complexes

A Coxeter system (W, S) is a group W with a finite generating set S ⊂ W all of whose
elements have order 2 and such that W admits the presentation:

〈S|(st)ms,t 〉
where ms,t ∈ [1, +∞] is the order of st . To the pair (W, S), one associates its Coxeter
diagram G which is the graph whose set of vertices is parametrized by S and where two
vertices s and t are adjacent if ms,t � 3. We say that (W, S) is irreducible if its Coxeter
diagram is connected. In general the partition of G into connected components gives rise
to a decomposition of S as a disjoint union S = S1 	 · · · 	 Sp, and of W as a direct
product:

W := W1 × · · · × Wp

where Wi is the subgroup generated by Si . Each Coxeter system (W, S) has a canonical
faithful linear representation defined as follows. One considers a vector space V with a
basis (us)s∈S indexed by the elements of S. On V we define a symmetric bilinear form B
by:

B(us, ut) = − cos

(
π

ms,t

)
.

For each s ∈ S we define the reflection σs : V → V by σs(v) = v − 2B(v, us)us . There is
a unique homomorphism σ : W → GL(V ) such that σ(s) = σs ; it is faithful and the group
σ(W ) preserves the form B. This result is due to Tits, see [24, section 5·3].

We say that an irreducible Coxeter group (W, S) is Euclidean if the bilinear form B
defined above is positive semidefinite but not positive definite. In this case, W can be realized
as a cocompact discrete group of affine isometries of a Euclidean space, generated by affine
reflections [24, section 6·5]. We finally recall two more facts about Coxeter groups. The first
one is the construction of their Davis complex. The second one concerns decompositions
into direct products.

We start with the description of the Davis complex of a Coxeter group. This is a contract-
ible simplicial complex on which the group W acts properly and cocompactly (see [16] for a
detailed study). Say that a subset T ⊂ S is spherical if the associated group WT := 〈T 〉 ⊂ W
is finite. In this case we also say that WT is a spherical special subgroup of W . We define
WS to be the union of all cosets of spherical special subgroups:

WS =
⊔

T

W/WT ,

where the union runs over the spherical subsets of S. The set WS is partially ordered by
inclusion. One gets a simplicial complex Flag(WS) (with set of vertices equal to WS) by
considering flags in WS: a flag is a finite totally ordered subset of WS, i.e. a finite chain

u1WT1 ⊂ · · · ⊂ ul WTl .

The Davis complex �(W ) is the geometric realization of Flag(WS). The group W acts
naturally by left translations on WS; this action induces a simplicial action of W on �(W ).
A reflection is an element of W which is conjugated to an element of S; the wall associated
to a reflection is its fixed point set in �(W ).

The following proposition is classical:
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PROPOSITION 1. The complex �(W ) carries a W -invariant piecewise Euclidean
CAT(0) metric. As a consequence, �(W ) is contractible. For any reflection r ∈ W , the
fixed point set Fi x(r) ⊂ �(W ) separates �(W ) into two connected components (called the
half-spaces associated to r).

Proof. The fact that �(W ) carries an invariant CAT(0) metric is due to Moussong, see [16,
chapter 12]. For a proof of the fact that the fixed-point set of a reflection separates �(W )

into two components, see for instance [16, section 5·3·3].

Finally, we will need to use the following fact. See [15, 32, 33] for various proofs of it.

PROPOSITION 2. Let W be an infinite irreducible Coxeter group. Assume that W is not
Euclidean. Let G ⊂ W be a finite index subgroup. If G 
 A × B is decomposed as a direct
product of two subgroups A and B, either A = {1} or B = {1}.

3. Proofs

Let W0 be a torsion-free finite index normal subgroup of W (such a subgroup exists since
Coxeter groups are virtually torsion-free, by Selberg’s lemma). We recall here how to pro-
duce some actions of W0 on certain simplicial trees constructed from the Davis complex
�(W ) of W . This construction is taken from [22, 25]. The key fact is the following obser-
vation.

If H is a wall of �, and if γ ∈ W0, then either γ (H) = H or γ (H) � H = �.

See [25, lemma 1] for a proof. Choose now a W0-orbit of walls, say O. We define a tree TO
associated to O as follows. Let

U = �(W ) −
⋃
H∈O

H.

The vertex set of TO is the set of connected components of U ; two connected components
U1 and U2 are adjacent if the intersection of their closures is nonempty (in which case it is
a wall from O). One obtains in this way a graph. It is easy to see that TO is a tree: indeed
let eH be the edge associated to a wall H ∈ O. From the fact that the set �(W ) − H has
two connected components, one sees that TO − eH has two connected components. We refer
the reader to [22, 25] or [16, section 14·1] for more details on this construction. Note that
W sits inside WS, which is the set of vertices of �(W ). The image of W in �(W ) does not
intersect any wall, hence there is a natural map pO : W −→ TO. The group W0 acts on TO
and the map pO is W0-equivariant.

Consider now the collection of all W0-orbits of walls in �(W ); there are finitely many
such orbits O1, . . . ,Ok . Write Ti = TOi and pi = pOi for the corresponding trees and
projections. We get a map

F = (p1, . . . , pk) : W −→ T1 × · · · × Tk,

which is proper (see for instance [25]). Since W0 is torsion-free, the properness of F implies:

LEMMA 3. The action of W0 on T1 × · · · × Tk is free.

We are now ready to prove our main result.

Proof of Theorem A. We consider a homomorphism ϕ : � → W where � = π1(X)

is Kähler and W is a Coxeter group. Let W0 be a torsion-free normal subgroup of finite
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index of W and put �0 := ϕ−1(W0). Let T1, . . . , Tk be the simplicial trees obtained from
the construction above. Via the homomorphism ϕ, the group �0 acts isometrically on each
of these trees. We decompose the set {1, . . . , k} according to the properties of the action
�0 � Ti . Write

{1, . . . , k} := I1 � I2 � I3

where I1 is the set of indices i such that �0 fixes a point on Ti , I2 is the set of indices i such
that �0 preserves a finite set in the boundary ∂Ti of Ti but no point in Ti itself, finally I3 is
the set of remaining indices.

LEMMA 4. For each i ∈ I2, there exists a finite index subgroup �i ⊂ �0 and a homo-
morphism φi : �i → R with the following property: each element in the kernel Hi of φi fixes
a point in Ti .

Proof. Let F ⊂ ∂Ti be a finite �0-invariant subset. A finite index subgroup �i of �0 fixes
F pointwise. Let bξ : �i → R be the Busemann character associated to any point ξ ∈ F . Its
kernel is made up of elements acting as elliptic isometries on Ti .

We define:

�1 =
⋂
i∈I2

�i .

This group has finite index in �. We now deal with the actions on the trees Ti for i ∈ I3. In
the following, X1 is the finite cover of the Kähler manifold X with fundamental group �1.

PROPOSITION 5. For each i ∈ I3, there exists a fibration X1 → �i such that the kernel
Hi of the induced map (pi )� : �1 → πorb

1 (�i) fixes a point in Ti .

Proof. This result is due to Gromov and Schoen [23]. Here we only sketch the ideas of the
proof, see [2, section 6·6] and [35] for details. Since the action of �1 on Ti is non-elementary
(i.e. does not preserve any finite set in Ti � ∂Ti ), there exists an equivariant pluriharmonic
map f : X̃1 → Ti , where X̃1 is the universal cover of X1 (see [23]). This map gives rise to
a (singular) holomorphic foliation of codimension 1 on X1 and one proves that this foliation
is induced by a holomorphic fibration pi onto some hyperbolic 2-dimensional orbifold �i .
The harmonic map f is constant on the fibers of pi , hence the kernel Hi of the map

�1 → πorb
1 (�i)

fixes pointwise the image of f in Ti . This proves the proposition.

Remark 1. The trees constructed from the Davis complex of W need not be locally finite.
But this does not affect the proof of the previous proposition. As suggested to us by Marc
Burger, one can also recover the result of Gromov and Schoen describing non-elementary
actions of Kähler groups on trees as follows. One combines the fact that an action on a tree
gives rise to an action on the infinite dimensional real hyperbolic space H

∞
R

[11] with the
description of actions of Kähler groups on the space H

∞
R

obtained in [19].

We now define:

H =
⋂

i∈I2�I3

Hi ⊂ �1.
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Each element of the group H fixes a point on each of the trees (Ti)1�i�k : for i ∈ I1 this is
because �1 itself fixes a point on Ti , for i ∈ I2 � I3, this follows from the definition of the
groups Hi . Since the action of W0 on T1 × · · · × Tk is free, the group ϕ(H) ⊂ W0 must be
trivial. In other words, the restriction of ϕ to �1 factors through the homomorphism

�1 −→ (�1)ab ×
∏
i∈I3

πorb
1 (�i).

This concludes the proof of Theorem A.
Before proving Corollaries 1 and 4, let us recall the main result from [7]:

Let G be a subgroup of a direct product H1 × · · · × Hn where each Hi is a surface group
or a free group. If G is of type FPn, it has a subgroup of finite index isomorphic to a direct
product of the form A1 × · · ·× Ar where r � n and each Ai is a finitely generated subgroup
of one of the Hj ’s.

Recall that a group G is of type FPn if there is an exact sequence

Pn −→ Pn−1 −→ · · · −→ P0 −→ Z −→ 0

of ZG-modules, where the Pi are finitely generated and projective and where Z is considered
as a trivial ZG-module. See [9, section VIII·5] for more details on this notion. We will
apply this result to torsion-free finite index subgroups of Coxeter groups (since they act
cocompactly and freely on the Davis complex, they admit a classifying space which is a
finite complex, hence are of type FP∞). For examples of Kähler groups which are not of
type FP∞, see [20].

Note that the result of [7] applies in particular to subgroups of direct products of the form

Z
l × H1 × · · · × Hm

where the Hi ’s are surface groups.

Proof of Corollary 1. Let W be a Coxeter group admitting a finite index subgroup H
isomorphic to a Kähler group. According to Theorem A, a finite index subgroup H1 of H
admits a faithful homomorphism

φ : H1 −→ Z
l × π1(�g1) × · · · × π1(�gm ),

where the �g j are closed orientable surfaces of genus greater than 1. Let Wi be an infinite
irreducible factor of W which is not Euclidean. We will show that Wi has a finite index
subgroup isomorphic to a surface group. We start with the following lemma.

LEMMA 6. The group Wi is not virtually free.

Proof. Assume by contradiction that a finite index subgroup of Wi is free of rank �
2 (note that, being non-Euclidean, Wi is not virtually Abelian; this follows for instance
from [3]). We know that the group W has a finite index subgroup H which is a Kähler
group. There is a finite index subgroup H2 of H which is a direct product of finite index
subgroups of each irreducible factor of W . Hence, under our hypothesis, we can take H2 of
the form F × A where F is free non-Abelian. But there is no Kähler group of the form F × A
according to [26, theorem 3].

Let G := H1 � Wi . The restriction of φ to G gives a faithful homomorphism

G −→ Z
l × π1(�g1) × · · · × π1(�gm ).
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According to the result from [7] stated above, we obtain that a finite index subgroup G1 of
G is isomorphic to a product

A0 × A1 × · · · × Ar

where r � m, A0 is free Abelian and each Ai (1 � i � r ) is a finitely generated subgroup
of one of the π1(�g j ). By Proposition 2, there is only one nontrivial factor in this decom-
position. Since Wi is not virtually Abelian, this implies that G1 is isomorphic to a subgroup
of one of the π1(�g j ). Since G1 cannot be free, according to Lemma 6, it has to be of finite
index in π1(�g j ). This proves the corollary.

In the proof of the next corollary, we will use several times the following fact: if A(G) is a
RAAG and if G1 ⊂ G is the subgraph with vertex set V1, the subgroup of A(G) generated by
the gv’s for v ∈ V1 is isomorphic to the RAAG A(G1) (see [13, section 3·2]). In particular, a
pair of generators generates either a free group or a free Abelian group.

Proof of Corollary 4. Any RAAG A(G) has a natural quotient which is a right-angled
Coxeter group W (G): one simply adds the relations g2

v = 1 to the presentation of the group.
We will say that a RAAG is irreducible if W (G) is irreducible. Any RAAG A(G) can be
written as a direct product of irreducible RAAGs

A(G) 
 A(G1) × · · · × A(Gr ),

see [14, lemma 2·2·6]. According to [17], each irreducible factor A(G j ) embeds as a sub-
group of finite index in a Coxeter group W j . One sees from the proof in [17] that the irredu-
cibility of A(G j ) implies that W j is also irreducible.

If A(G) is commensurable with a Kähler group, the Coxeter group W1 × · · · × Wr is also
commensurable with a Kähler group. According to Corollary 1, each group A(G j ) must be
either virtually Abelian or virtually a surface group. The surface group case does not occur
(if a RAAG does not contain Z

2, it is free). Each factor A(G j ) is thus virtually Abelian
hence Abelian. This proves that A(G) is Abelian, its rank being necessarily even if it is
commensurable with a Kähler group. �

Remark 2. To prove Corollaries 1 and 4, one can also use the following argument in re-
placement of the result from [7]: if a group G admits a Zariski dense embedding into a
simple Lie group with trivial center, any two nontrivial normal subgroups of G have non-
trivial intersection. As a consequence, if G embeds into a direct product A× B, G embeds in
either A or B. This applies to irreducible, infinite, non-Euclidean Coxeter groups (as follows
from the results in [3] and [28, section 6·1]). This alternative proof was pointed out to us by
Yves de Cornulier.
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[29] J. LÉCUREUX. Amenability of actions on the boundary of a building. Int. Math. Res. Not. No. 17

(2010), 3265–3302.
[30] D. D. LONG and A. W. REID. Subgroup separability and virtual retractions of groups. Topology 47,

No. 3 (2008), 137–159.
[31] G. A. NOSKOV and E. B. VINBERG. Strong Tits alternative for subgroups of Coxeter groups. J. Lie

Theory 12, No. 1 (2002), 259–264.



566 PIERRE PY

[32] L. PARIS. Irreducible Coxeter groups. Internat. J. Algebra Comput. 17, No. 3 (2007), 427–
447.

[33] D. QI. On irreducible, infinite, nonaffine Coxeter groups. Fund. Math. 193, No. 1 (2007), 79–
93.

[34] S. SINGH. Coxeter groups are not higher rank arithmetic groups. Preprint arXiv:1208.6569 (2012).
[35] C. SIMPSON. Lefschetz theorems for the integral leaves of a holomorphic one-form. Compositio

Math. 87, No. 1 (1993), 99–113.


