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Abstract
We study several geometric and group theoretical problems related to Kodaira fibra-
tions, to more general families of Riemann surfaces, and to surface-by-surface groups.
First we provide constraints on Kodaira fibrations that fiber in more than two distinct
ways, addressing a question by Catanese and Salter about their existence. Then we
show that if the fundamental group of a surface bundle over a surface is a CAT(0)
group, the bundle must have injective monodromy (unless the monodromy has finite
image). Finally, given a family of closed Riemann surfaces (of genus ≥ 2) with injec-
tive monodromy E → B over a manifold B, we explain how to build a new family
of Riemann surfaces with injective monodromy whose base is a finite cover of the
total space E and whose fibers have higher genus. We apply our construction to prove
that the mapping class group of a once punctured surface virtually admits injective
and irreducible morphisms into the mapping class group of a closed surface of higher
genus.
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1 Introduction

A Kodaira fibration is a compact complex surface X endowed with a holomorphic
submersion onto a Riemann surface π : X → � which has connected fibers and is not
isotrivial. The genus of the base and the fiber of π must necessarily be greater than 1.
Since the construction of the first examples of such fibrations by Atiyah and Kodaira
[5,44], these complex surfaces have been widely studied, either from the point of view
of complex geometry or from the point of view of the theory of surface bundles. See
for instance [8,15,17,18,20,31,32,36,46,60] for a few works on this topic. In this text
we study several geometric and group theoretical problems related to these complex
surfaces, to more general families of Riemann surfaces, and to surface-by-surface
groups.

Our work consists of three main parts. Firstly, we address the question whether
Kodaira fibrations can fiber in more than two ways (Sect. 2). The question of the exis-
tence of such multiple fibrations has been raised independently by Catanese [15] and
Salter [60]. We apply various tools from the theory of isolated singularities to provide
strong constraints on the existence of such fibrations (Theorem 2). In particular, we use
a classical theorem of Mumford about normal singularities of complex surfaces [55].
Secondly, we discuss the properties of surface-by-surface groups which are CAT(0)
(Sect. 3). Using work of Monod on actions of direct products on CAT(0) spaces [52],
we prove that a necessary condition for such a group to be CAT(0) is to have injective
monodromy, provided the monodromy has infinite image (Theorem 3). Thirdly, we
introduce a technique that produces new families of Riemann surfaces with injective
monodromy out of old ones (Sects. 4 and 5). This relies on some old work of F.E.A.
Johnson [40]. One application of this is the construction of new examples of virtual
injections between certain mapping class groups (Theorem 8).

Before stating our results more precisely, we fix some notations and introduce
additional definitions. Since both real and complex surfaces will appear throughout
this work, we will use the following convention to distinguish between them.

Convention If we do not explicitly state otherwise, then by a surface we always mean
a real oriented surface. In particular, we will be careful to write complex surface when
we refer to a space of complex dimension 2.

As for the notations, if F is a surface, we denote by Mod(F) its mapping class
group and by Mod(F, ∗) the mapping class group of the surface F with one marked
point. Occasionally, we also write Sg to denote the closed oriented surface of genus g.
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Before discussing our first theorem, which concerns multiple Kodaira fibrations,
we state the following notion of equivalence between fiber bundles. Although it is not
completely standard, it is the natural one in the context of our work.

Definition 1 Let M be a smooth manifold and let fi : M → Bi , i = 1, 2, be two
smooth submersions with connected fibers. We call them equivalent if the induced
maps on fundamental groups fi,∗ : π1(M) → π1(Bi ) have the same kernel and we
say that they are distinct otherwise.

There are several classical results concerning the existence of distinct differentiable
fibrations on a given 3- or 4-dimensional manifold. If M is a hyperbolic 3-manifold
which fibers over the circle, then it is known that M fibers in more than one way if
and only if its first Betti number is greater than 1, and if this is the case then M fibers
in infinitely many ways, by results of Thurston [64]. In contrast, if M is a smooth
4-manifold it admits only finitely many distinct fibrations over a surface of genus
greater than 1 with fiber of genus greater than 1. This is a result of Johnson [41] (see
also [61]). Salter proved that the number of such distinct fibrations can be bounded
above in terms of the Euler characteristic of M and gave examples of 4-dimensional
manifolds where the number of distinct fibrations is arbitrarily large [60]. However,
Salter’s examples cannot admit a complex structure [60]. Presently, there are examples
of Kodaira fibrations which are known to fiber in only one way or which admit at least
two distinct fibrations. For some examples,we know that the number of fibrations is
exactly two, see for instance the article [20] which proves that some of the classical
Atiyah–Kodaira examples fiber in exactly two distinct ways. But there is currently no
example of a Kodaira fibration which is known to fiber in more than two distinct ways.
This led Catanese [15] and Salter [60] to independently ask the question whether for
a Kodaira fibration the number of distinct fibrations can be greater than 2.

We prove here the following result which can be seen as a restriction on potential
examples of complex surfaces admitting three distinct Kodaira fibrations.

Theorem 2 Let X be a compact complex surface. Suppose that X admits three distinct
Kodaira fibrations pi : X → �i , 1 ≤ i ≤ 3. Then the image of the induced morphism

π1(X) → π1(�1) × π1(�2) × π1(�3)

is of finite index in π1(�1) × π1(�2) × π1(�3).

The reader will find in Remark 29 a slight reinforcement of this theorem. Note that
Kodaira fibrations are always projective, hence Kähler [6, Ch. V]. If X is a compact
Kähler manifold, the number of distinct surjective holomorphic maps (possibly with
critical points) with connected fibers from X to closed hyperbolic Riemann surfaces
(or orbifolds) is always finite, see for instance [22,24]. This raises the question of
finding upper bounds on the number of such maps for a fixed choice of a compact
Kähler manifold. Catanese and Salter’s question fits into that context. Holomorphic
maps from compact Kähler manifolds to closed Riemann surfaces play a central role
in the study of Kähler groups, see [1]. Recently there has been considerable progress in
understanding holomorphic maps from compact Kähler manifolds to direct products
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of closed Riemann surfaces (see e.g. [25,26,48,49]). Our proof of Theorem 2 will rely
on these ideas and notably on the work of the first author [49], as well as on some
tools from the theory of isolated singularities.

Theorem 2 raises a natural question. Assume that X is a compact complex surface
admitting three distinct Kodaira fibrations pi : X → �i (1 ≤ i ≤ 3). Is it true that
the image of X in the product �1 × �2 × �3 is an ample divisor?

Before turning to the presentation of the second and third part of our work, we state
some group theoretical definitions. From now on, by a surface groupwe will mean the
fundamental group of a closed oriented surface of genus greater than 1. A surface-by-
surface group is a group G which admits a normal subgroup R � G such that both R
and G/R are isomorphic to surface groups. Recall also that the group Out(G) of outer
automorphisms of a group G is defined as the quotient Out(G) = Aut(G)/Inn(G) of
the group of automorphisms of G by the group of inner automorphisms. If R � G is
a normal subgroup of an arbitrary group G, there is a natural morphism

� : G/R → Out(R)

called the monodromy morphism of the extension:

0 R G G/R 0. (1)

The properties of the monodromy of extensions as above with R a surface group, in
particular its injectivity, will be our main object of focus in the rest of this introduction.

We now turn to our second main result. We observe that many examples of Kodaira
fibrations admit CAT(0) metrics (see [10] for basic facts about CAT(0) spaces). This
is the case for all double etale Kodaira fibrations, in the terminology of [17]. As we
will explain in Sect. 3, this follows from standard results on ramified coverings and
nonpositive curvature but does not seem to be widely known (see however [63]). It
is then natural to ask which Kodaira fibrations have a fundamental group which is a
CAT(0) group. We will see that a necessary condition for this is that the monodromy
of the fibration is injective, provided that it has infinite image. This result applies in a
purely group theoretical context, namely:

Theorem 3 Let G be a surface-by-surface group with infinite monodromy. We fix a
normal subgroup R � G isomorphic to a surface group with G/R isomorphic to a
surface group. If the group G is CAT(0) then the monodromy G/R → Out(R) is
injective.

The proof of the above theorem relies on the fact that if the monodromy is not injec-
tive, then G must contain a nontrivial direct product. We then use a splitting theorem
of Monod [52] for actions of product groups on spaces of nonpositive curvature. It
would be interesting to obtain further restrictions on surface-by-surface groups which
are CAT(0) (or, narrowing our focus, on fundamental groups of Kodaira fibrations
which are also CAT(0) groups).

We now turn to the last part of our work. Mirroring Definition 1, we will consider
two extensions of the same group G as in (1) as distinct if the corresponding normal
subgroups are distinct. In [40], F.E.A. Johnson proved the following theorem.
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Theorem 4 (Johnson) Let G be a group which can be realized in two distinct ways as
a surface-by-surface group. Assume that at least one of these realizations has infinite
monodromy. Then the monodromy homormophism associated to any realization of G
as a surface-by-surface group is injective.

In what follows, we apply Johnson’s theorem “in family" to obtain new examples of
groups containing a surface group as a normal subgroup and for which themonodromy
is injective. To state our first result in this direction, we need to consider the higher
dimensional iterated Kodaira fibrations, which we now define. The definition is made
by induction, with the convention that a 2-dimensional iterated Kodaira fibration is
simply a compact complex surface which admits the structure of a Kodaira fibration.

Definition 5 We say that an n-dimensional compact complexmanifold X is an iterated
Kodaira fibration if there exists a holomorphic submersionπ : X → Y with connected
fibers which is not isotrivial, where Y is an (n − 1)-dimensional iterated Kodaira
fibration.

In the following, the expression Kodaira fibration will be reserved for complex
surfaces. When talking about higher dimensional iterated Kodaira fibrations, we will
always mention their dimension. If π : X → Y is as in the definition, one has a natural
representation π1(Y ) → Mod(F) where F is a fiber of π . This is the monodromy
representation of the fibration. It can be (equivalently) defined either in geometric
terms or by considering the exact sequence of fundamental groups induced by π and
applying the algebraic definition given above. It is classical that one can construct
iterated Kodaira fibrations in all dimensions, see for instance Miller’s article [51]. We
prove here:

Theorem 6 For each n ≥ 2, there exists an n-dimensional iterated Kodaira fibration
π : X → Y with fiber F, such that the monodromy representation π1(Y ) → Mod(F)

is injective.

A key ingredient in our proof of Theorem 6 is Proposition 34 which is a fibered
version of Johnson’s Theorem 4. Our arguments actually givemore precise results. For
instance, when n = 3 in the previous theorem, we obtain the following (see Sect. 5.2
for further results).

Theorem 7 If X is a Kodaira fibration with injective monodromy, then there exists a
family of closed Riemann surfaces Z → X ′ above some finite covering space X ′ of X
whose monodromy is injective.

We do not know examples of Kodaira fibrations with injective monodromy which
fiber in only one way. Hence the only current applications of Theorem 7 are to double
Kodaira fibrations, i.e. Kodaira fibrations which fiber in two distinct ways. However,
we have chosen to formulate the theorem in the above way, since it might apply
more generally. Observe also that, precisely because of Johnson’s theorem mentioned
above, one can talk of the property that a Kodaira fibration has injective monodromy
independently of the choice of the fibration. Indeed, if the fibration is not unique, all
fibrations must have injective monodromy by Johnson’s result.
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By generalizing Miller’s construction [51], we also show that starting from any
holomorphic submersion π : Z → B of complex manifolds defining a family of
closed Riemann surfaces (of genus greater than 1) with injective monodromy, one can
construct new families of Riemann surfaces with injective monodromy whose base is
a finite covering space of Z . We refer to Theorem 44 for a more detailed statement.
Here we only state the following consequence of that theorem.

Theorem 8 Let g ≥ 2. Then there exists a finite index subgroup � < Mod(Sg, ∗) and
an injective morphism φ : � → Mod(S2+8(g−1)) with the property that the action of
φ(�) on the space of isotopy classes of simple closed curves on S2+8(g−1) does not
have any finite orbit.

Recall that a subgroup of the mapping class group of a closed surface is irreducible
if it does not fix any isotopy class of simple closed curve. Our result then says that
any finite index subgroup of φ(�) is irreducible. We also mention that our morphism
comes with an equivariant holomorphic map between the corresponding Teichmüller
spaces, see Remark 49.

To motivate Theorem 8, we recall that various authors have studied morphisms
betweendifferentmapping class groups,with a particular focus on their rigidity proper-
ties. The general idea, partly inspired byMargulis superrigidity and by the comparison
of mapping class groups with lattices, is that nontrivial morphisms between mapping
class groups should be induced by geometric constructions obtained by “manipulation
of surfaces".We refer the reader to [2–4,9] formore details. Themorphism constructed
in Theorem 8 seems to be obtained from a more complicated manipulation of surfaces
than the earlier examples. It was previously known that the group Mod(Sg, ∗) embeds
into the group Mod(S2g), see [4, §3.3]. However, the morphism constructed in [4] is
reducible. In contrast, the morphism we build is irreducible but is only defined on a
finite index subgroup and its range is a mapping class group of bigger genus. We will
go back to this topic and prove Theorem 8 in Sect. 5.3.

The text is organized as follows. Section 2 studies complex surfaces admitting three
distinct Kodaira fibrations; it contains the proof of Theorem 2. Section 3 contains the
proof of Theorem 3. Section 4 contains some group theoretical results and notably
Proposition 34 which gives a way to build extensions by surface groups with injec-
tive monodromy. This material is needed in Sect. 5 which contains some geometric
constructions of families of Riemann surfaces and includes the proofs of Theorems 6,
7 and 8. Finally, Sect. 6 contains a few more observations about the fundamental
groups of Kodaira fibrations, including an answer to a question of Bregman about
their residual nilpotence.

The three main parts of this work, namely Sects. 2, 3 and 4 and 5 together are
essentially independent from each other and can be read independently.

2 Multiple fibrations

This section is devoted to the proof of Theorem 2. In Sect. 2.1, we collect some simple
lemmas and observations about complex surfaces admitting several distinct Kodaira
fibrations, as well as results due to Bridson, Howie, Miller and Short on the one hand,
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and the first author of the present article on the other hand. Section 2.2 collects a
few results about isolated singularities of complex surfaces and of holomorphic maps.
Finally, Sect. 2.3 contains the proof of Theorem 2.

2.1 Preliminary results

As we shall see at the very end of Sect. 2.3, besides Theorem 2, we can also obtain
restrictions on compact complex surfaces admitting several fibrations onto Riemann
surfaces even if we allow fibrations which are not submersions, as soon as at least
one of the fibrations is a submersion. For this reason, we introduce fibrations onto
Riemann surfaces in general and state our preliminary lemmas in this more general
context.

Definition 9 A fibration from a compact complex manifold X onto a Riemann surface
� is a surjective holomorphic map with connected fibers.

If f : X → � is a fibration and if F is a singular fiber of f , one can define its
multiplicity m(F), see e.g. [16,24] for the definition. The Riemann surface � then
inherits a natural orbifold structure by assigning to the image p = f (F) of each
critical fiber F the multiplicity m(F). The corresponding orbifold fundamental group
is denoted by πorb

1 (�). The natural morphism from the fundamental group of X to
that of � lifts to a morphism π1(X) → πorb

1 (�) that we still denote by f∗ (where it
is implicit that the orbifold structure is induced by f ). The kernel of this morphism is
generated by the image of a generic fiber of f , hence is finitely generated. For all these
facts we refer the reader to [16,24] for instance. Similarly, we follow [24] to state the
next definition.

Definition 10 Let X be a compact complex manifold. Two fibrations fi : X → �i

(i = 1, 2) onto some Riemann surfaces are equivalent if they have the same fibers, the
same singular fibers and if the multiplicities of their singular fibers are the same. We
say that f1 and f2 are distinct otherwise.

Of course if f1 and f2 are submersions, f1 and f2 are equivalent if and only if they
have the same fibers; there is no need to consider singular fibers. Observe that two
such submersions are equivalent in the sense of Definition 10 if and only if they are
equivalent in the sense of Definition 1. To avoid cumbersome notations, from now on
and until the end of Sect. 2.3, we will assume that all fibrations that we encounter have
no multiple fibers. This includes maps which can have critical points and this allows
us to deal exclusively with surface groups (instead of orbifold surface groups). Since
one can always reduce to this situation by taking finite coverings, this is not a big
restriction. We will only go back to the most general case (including possibly multiple
fibers) in Remark 29.

We also point out that in this section, the word fibration will refer to Definition 9.
We will use the expression Kodaira fibration to designate a fibration defined by a
submersion. We now turn to some preliminary results. We start with the following
elementary lemma, whose proof will be omitted.
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Lemma 11 Let X be a compact complex manifold which admits r ≥ 2 distinct fibra-
tions fi : X → �i , 1 ≤ i ≤ r . For each point si ∈ �i , denote by Fi,si the fiber
f −1
i (si ). Then for i �= j and s j ∈ � j the restriction f j |Fj,s j

: Fj,s j → �i is sur-

jective. In particular, the holomorphic map
(
fi , f j

) : X → �i × � j is surjective for
1 ≤ i < j ≤ r .

Corollary 12 The image of the map π1(X) → π1(�i ) × π1(� j ) induced by ( fi , f j )
has finite index in π1(�i ) × π1(� j ).

Proof This is a general property of surjective holomorphic maps between compact
complex manifolds. 	

To prove Theorem 2, we will need to study the image of the map

X → �1 × �2 × �3

induced by three distinct Kodaira fibrations on the same complex surface. The follow-
ing lemma shows that, if smooth, such an image is well-understood.

Lemma 13 Let X be a complex surface and let fi : X → �i , 1 ≤ i ≤ 3, be distinct
fibrations. Denote by f = ( f1, f2, f3) : X → �1 × �2 × �3 the product map. If
the image Y = f (X) is smooth then it admits itself three distinct fibrations induced
by the projections to the �i . Furthermore, if fi0 was a submersion, the induced map
Y → �i0 is also a submersion.

Proof We assume that Y is smooth and denote by pi : �1 × �2 × �3 → �i the
projection onto the factor number i and by gi = pi |Y its restriction to Y . Then fi
decomposes as

X
f

fi

Y

gi

�i .

Since X , Y and �i are smooth, the chain rule implies that the map gi is a submersion
if fi was so. The fibers of Y → �i are connected, since they are images of the fibers
of fi . This implies that Y admits three distinct fibrations. 	


We now observe that distinct fibrations on a compact complex surface X induce
distinct fibrations on any finite covering space of X . More precisely, let fi : X → �i ,
1 ≤ i ≤ r , be distinct fibrations, and let h : X0 → X be a finite covering. Denote by
pi : �′

i → �i the coverings corresponding to the subgroups fi,∗(π1(X0)) ≤ π1(�i ).
Then there are induced holomorphic maps fi,0 : X0 → �′

i making the diagram

X0
h

fi,0

X

fi

�′
i

pi
�i

(2)
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commutative. We then have:

Lemma 14 The maps fi,0 : X0 → �′
i (1 ≤ i ≤ r) are pairwise distinct fibrations. If

fi was a submersion then so is fi,0.

Proof It is clear that the map fi,0 has connected fibers and is a submersion if fi
was one. The fact that the r fibrations fi,0 : X0 → �′

i are distinct is an immediate
consequence of Lemma 11 applied to the fi and (2). Indeed, they imply that for j �= i
the restriction of fi,0 to any fiber of f j,0 surjects onto �′

i . 	

Wenow introduce some group theoretical notionswhichwill be needed to formulate

the results from [13] that we will use. If G1 × · · ·×Gn is a direct product of arbitrary
groups (Gi )1≤i≤n , and if 1 ≤ i < j ≤ n are distinct indices, we denote by pi j :
G1 × · · · × Gn → Gi × G j and pi : G1 × · · ·Gn → Gi the natural projections.

Definition 15 A subgroup H < G1 × · · · × Gn of a direct product is said to virtually
surject onto pairs if for any pair of indices i < j the group pi j (H) has finite index in
Gi × G j .

Definition 16 A subgroup H < G1 × · · · × Gn of a direct product is a subdirect
product if pi (H) = Gi for every i ∈ {1, . . . , n}. It is full if H ∩ Gi �= {1} for every
index i ∈ {1, . . . , n} (where Gi is naturally embedded in the direct product).

We can now state the following theorem (see Theorem A in [13]):

Theorem 17 (Bridson, Howie, Miller, Short) Let G1, . . . ,Gn be finitely presented
groups. Let H < G1 × · · · × Gn be a subgroup which virtually surjects onto pairs.
Then H is finitely presented.

This is part of a long series of results of these authors about subgroups of direct
products in general, andmore specifically subgroups of direct products of limit groups.
We refer the reader to [11,12] for more results in this vein. Using this and the previous
observation, we shall prove:

Proposition 18 Assume that f = ( f1, f2, f3) : X → �1 × �2 × �3 is a compact
complex surface admitting three distinct fibrations fi . Then f∗(π1(X)) < π1(�1) ×
π1(�2) × π1(�3) is a finitely presented full subdirect product.

Proof The fact that f∗(π1(X)) is finitely presented follows from Corollary 12, com-
bined with Bridson, Howie, Miller and Short’s theorem mentioned above. The fact
that it is subdirect is clear and we must justify that it is full. Although this follows
from the results in [49, §5] (see Lemma 5.3 there), we give the argument here as it
is quite simple. Assume by contradiction that f∗(π1(X)) is not full. Up to reordering
the factors, we assume that f∗(π1(X)) ∩ π1(�1) = {1}. This means that the projec-
tion π1(�1) × π1(�2) × π1(�3) → π1(�2) × π1(�3) induces an isomorphism from
f∗(π1(X)) onto a finite index subgroup of π1(�2) × π1(�3), which is nothing else
than ( f2, f3)∗(π1(X)). This implies that the morphism

f1,∗ : π1(X) → π1(�1)
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factors through the map ( f2, f3)∗, i.e. there exists a morphism

ϕ : ( f2, f3)∗(π1(X)) → π1(�1)

such that

f1,∗ = ϕ ◦ ( f2, f3)∗. (3)

By Corollary 12, the group ( f2, f3)∗(π1(X)) has finite index in π1(�2) × π1(�3),
hence contains a finite index subgroup of the form π1(�

′
2) × π1(�

′
3) for some finite

covering spaces �′
i → �i . Let X0 → X be the finite covering space such that

π1(X0) = ( f2, f3)
−1∗ (π1(�

′
2) × π1(�

′
3)).

Equation (3) then implies that f1,∗(π1(X0)) = ϕ(π1(�
′
2)×π1(�

′
3)). Since this group

has finite index in π1(�1) and since a surface group cannot be generated by two
nontrivial commuting subgroups wemust have ϕ(π1(�

′
2)) = {1} or ϕ(π1(�

′
3)) = {1}.

Let us assume that ϕ(π1(�
′
2)) = {1}. This means that the restriction of f1,∗ to π1(X0)

factors through the map f3,∗. But this contradicts the fact that f1 and f3 induce distinct
fibrations on X0 (see Corollary 12 and Lemma 14). 	


Before stating the last result of this section we recall some developements from the
last fifteen years, around the construction of new examples of Kähler groups. In [27],
Dimca, Papadima and Suciu built new examples of Kähler groups using the following
construction. They consider a finite number of Riemann surfaces �1, . . . , �n each
admitting a ramified covering qi : �i → E of degree two over the same elliptic
curve E . They then prove that if n ≥ 3, the fundamental group of a smooth fiber
of the map q1 + · · · + qn from the direct product of the �i ’s to E injects into the
product π1(�1) × · · · × π1(�n). Moreover the corresponding group has some exotic
finiteness properties. This construction was pushed further by the first author [47,48]
to build more examples of Kähler groups. In a related direction, the article [49] studies
images of Kähler groups in a direct product of surface groups when the morphism
is induced by a holomorphic map. In particular, it studies the following situation.
Consider a compact Kähler manifold X and let pi : X → �i (1 ≤ i ≤ 3) be
surjective holomorphic maps with connected fibers onto some Riemann surfaces. Let
p = (p1, p2, p3) : X → �1 × �2 × �3. What can one say about the subgroup
p∗(π1(X)))? The following result from [49] answers this question (note that [49] also
contains further results around the same question).

Theorem 19 Assume that the image p∗(π1(X)) ofπ1(X) inπ1(�1)×π1(�2)×π1(�3)

is a finitely presented full subdirect product of infinite index. Then there exist finite
covering spaces �′

i → �i (1 ≤ i ≤ 3), an elliptic curve E and some ramified
coverings qi : �′

i → E such that the kernel of the map

(q1 + q2 + q3)∗ : π1(�
′
1) × π1(�

′
2) × π1(�

′
3) → π1(E)

is contained in p∗(π1(X)) as a subgroup of finite index.
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Moreover, let X0 → X be the finite covering space corresponding to the subgroup
p−1∗ (π1(�

′
1) × π1(�

′
2) × π1(�

′
3)). Then the image of X0 in �′

1 × �′
2 × �′

3 coincides
with a (possibly singular) fiber of the map q1 + q2 + q3.

Note that this theorem is not stated in this exact form in [49] but it follows from
Theorems 1.1 and 3.1 there.

2.2 Isolated singularities

In this section we recall some classical facts about isolated singularities of complex
spaces and of holomorphic maps. Our introduction will be based on [50] and we refer
the reader to that book for a detailed introduction to the subject. For an introduction
to complex analytic spaces, we refer the reader to [37].

Let Y be a complex analytic space and let y0 ∈ Y . We shall always assume that
Y − {y0} is smooth. If Y is not smooth at y0, we say that y0 is an isolated singular
point of Y . Note that most of the results from [50] that we will use are valid in greater
generality, but this simple case is enough for our purpose. If U is a neighborhood of
y0 in Y , a function r : U → [0,∞) defines the point y0 if r−1(0) = {y0} and r is
real analytic (this means that U can be realized as an analytic set in some open set
W ⊂ C

N and that r extends to a real analytic function on a neighborhood ofU inside
W ). Note that such maps r always exists for a suitable choice of U .

We now fix such a function r . Up to shrinking Y , we can and do assume that r is
defined on Y . Since r is analytic, there is ε0 > 0 such that 0 is the only critical value
of r in [0, ε0]. We consider a holomorphic map f : Y → C such that f (y0) = 0. We
assume that f is a submersion on Y − {y0}. For ε > 0 and for a subset M ⊂ C, we
will use the notation YM,r≤ε , YM,r=ε, YM,r<ε to denote respectively the sets

{y ∈ Y | f (y) ∈ M, r(y) ≤ ε} , {y ∈ Y | f (y) ∈ M, r(y) = ε} ,

{y ∈ Y | f (y) ∈ M, r(y) < ε} .

In what follows D will be a closed disc centered at the origin in C and we will focus
on sets of the form YD,r≤ε which are schematically pictured in Fig. 1.

Fig. 1 The set YD,r≤ε
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Definition 20 For ε ∈ (0, ε0] we will say that the restriction f : YD,r≤ε → D is a
good proper representative of f if f |r=ε is a submersion at all points of YD,r=ε.

One can always find arbitrarily small ε and D such that f : YD,r≤ε → D is a
good proper representative. The significance of this notion stems from the following
general result.

Theorem 21 (Theorem 2.8 in [50])For a good proper representative f : YD,r≤ε → D
the following holds:

1. f is proper and f : YD,r=ε → D is a trivial smooth fiber bundle;
2. f : (

YD\{0},r≤ε,YD\{0},r=ε

) → D\{0} is a smooth fiber bundle pair.

Definition 22 For s �= 0, we call Ys,r≤ε the Milnor fiber of f |YD,r≤ε
.

A particularly important result for our purposes is:

Lemma 23 (Lemma 2.10 in [50]) Let f : YD,r≤ε → D be a good proper representa-
tive. There is η0 > 0 such that for any disc Dη ⊂ D of radius η0 ≥ η > 0 the variety
YDη,r≤ε is homeomorphic to the cone over ∂(YDη,r≤ε).

Remark 24 Although this is not stated in [50], we observe that ∂(YDη,r≤ε) is home-
omorphic to the link of the singular point y0 ∈ Y . This follows readily from the
arguments presented there (see [50, §2.A] for the definition of the link of an isolated
singular point).

In what follows, we always assume that whenever we choose a good proper rep-
resentative as before, then the radius of D is small enough such that YD,r≤ε is
homeomorphic to the cone over its boundary.

In the next section, we will need to rule out the existence of isolated singular
points for certain (possibly singular) complex surfaces embedded in a product of
three Riemann surfaces. The key tool for this will be the following proposition which
considers isolated singular points on a normal complex analytic surface.

Proposition 25 Assume that Y is normal of dimension 2. Let f : YD,r≤ε → D be a
good proper representative. Assume that the Milnor fiber of f is a disc. Then Y is
smooth at y0 ∈ Y .

Proof Since the Milnor fiber of f is a disc, the map Y∂(D),r≤ε → ∂(D) is a disc
bundle over the circle. Topologically the only orientable disc bundle over the circle is
the trivial bundle, implying that Y∂(D),r≤ε is a solid torus withmeridianμ = Ys,r=ε for
s ∈ ∂(D). Note that, by definition of the Milnor fiber, μ coincides with the longitude
of the solid torus YD,r=ε, since it is a fiber of the locally trivial fibration YD,r=ε → D.
In particular, ∂(YD,r≤ε) is obtained by gluing two solid tori identifying the meridian of
the first torus with the longitude of the second torus. Since this uniquely determines the
resulting 3-manifold, we deduce that ∂(YD,r≤ε) is a topological 3-sphere. By Lemma
23, YD,r≤ε is homeomorphic to a cone over this 3-sphere. This implies that there is a
neighbourhood of y0 in Y which is a topological 4-manifold. It then follows from a
famous theorem of Mumford that y0 is actually a smooth point of Y [55, p.1]. 	
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2.3 Multiple fibrations and singularities

Consider a Kodaira fibration X that admits three distinct fibrations fi : X → �i

(1 ≤ i ≤ 3) in the sense of Definition 9. We let f be the product map:

f = ( f1, f2, f3) : X → �1 × �2 × �3.

We assume that f1 is a submersion. Let Y := f (X). It is a purely 2-dimensional
irreducible analytic subspace of�1×�2×�3.Wewill prove the followingproposition.

Proposition 26 The normalization Ỹ of Y is smooth. In particular Y does not have
any isolated singular point.

Let us explainwhy this proposition implies Theorem 2.We assume by contradiction
that f∗(π1(X)) has infinite index in the group π1(�1) × π1(�2) × π1(�3) and apply
Theorem 19. Let �′

i , qi , E and X0 be as in that theorem and let pi,0 : X0 → �′
i be

the lift of X → �i with respect to the covering X0 → X . Let p = (p1,0, p2,0, p3,0)
and Y0 = p(X0). According to Theorem 19, there exists a point o ∈ E such that

Y0 = (q1 + q2 + q3)
−1(o).

Since the maps pi,0 : X0 → �′
i are distinct Kodaira fibrations, one can apply Propo-

sition 26 to X0 instead of X . We observe that if we fix a point m of �′
1 × �′

2 × �′
3

and choose suitable local coordinates on the �′
i , the map q1 + q2 + q3 is given locally

near m by:

(q1 + q2 + q3)(z1, z2, z3) = zk11 + zk22 + zk33 , (4)

where the ki ’s are nonzero natural integers. Its critical points are thus isolated. If the
point o is not a regular value of the map q1 + q2 + q3, then Eq. (4) shows that Y0 has
isolated singular points, a contradictionwith Proposition 26. Hence omust be a regular
value. We then apply Lemma 13 (to X0 instead of X ) and obtain that the restriction of
p1,0 to Y0 is a submersion. We now pick a point (s1, s2, s3) ∈ X0 ⊂ �′

1 × �′
2 × �′

3
such that s2 and s3 are critical points of q2 and q3 respectively. This is possible since
(p2,0, p3,0) : X0 → �′

2 × �′
3 is surjective. Since o is a regular value, s1 is a regular

point of q1. We consider the following commutative diagram:

X0 �′
2 × �′

3

q2+q3

�′
1

o−q1
E .

The composition of the left and bottom arrow is a submersion at (s1, s2, s3). This gives
a contradiction since (s2, s3) is a critical point of the right arrow. This concludes the
proof of Theorem 2.
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Remark 27 Here is another argument to rule out the case where o is a regular value of
q1 + q2 + q3. Although it is less direct, we find it interesting to note it. If o is a regular
value, we have seen that Y0 is a Kodaira fibration, hence it is aspherical. But according
to [11,27,47] the fundamental group of a smooth fiber of q1 + q2 + q3 is never FP3
(see [14] for the definition of this property), hence cannot be the fundamental group
of a closed aspherical manifold.

We now turn to the proof of Proposition 26. First observe that if Y has an iso-
lated singular point y0, then it must be normal near y0 since Y is a hypersurface
locally embedded in C

3 (see e.g. Theorem 3.1 in [45]). Hence Y coincides with its
normalization near y0 and the smoothness of Ỹ implies the second affirmation of the
proposition.

We now prove that Ỹ is smooth. Since the singular set of a normal space has
codimension at least 2 (see [37, p. 128]), Ỹ has at most isolated singularities. We will
thus work near a fixed (but arbitrary) point ỹ of Ỹ and apply the material presented in
Sect. 2.2 to the germ (Ỹ , ỹ) to prove that Ỹ is smooth at ỹ.

We fix a lift f̃ : X → Ỹ of the map f : X → Y with respect to the natural map
Ỹ → Y and denote by h1 the map that makes the following diagram commutative.

Ỹ
h1

Y �1 × �2 × �3

�1

Let ỹ be a point of Ỹ . After fixing a chart centered at h1(ỹ) in �1 we think of h1 as a
map

(Ỹ , ỹ) → (C, 0).

We shall study its Milnor fiber using the material described in Sect. 2.2.

Lemma 28 The boundary of the Milnor fiber of h1 at ỹ is connected.

Proof We fix a germ of function r : (Ỹ , ỹ) → [0,+∞) which defines ỹ, as defined at
the beginning of Sect. 2.2. We can assume that for a suitable embedding of (Ỹ , ỹ) in
(CN , 0), r is the square of the Euclidean norm. We observe that according to the first
point of Theorem 21, the boundary of the Milnor fiber of h1 at ỹ (which is a disjoint
union of circles) is diffeomorphic to the set h−1

1 (0) ∩ {r = ε} for small enough ε.
Now (h−1

1 (0), ỹ) is a germ of complex analytic curve. Hence h−1
1 (0) ∩ {r = ε} is

the intersection of the curve h−1
1 (0) with a small sphere. Its number of connected

components is the number of irreducible components of h−1
1 (0) at ỹ.

Hence, the statement of the lemma is equivalent to the fact that the curve h−1
1 (0) is

irreducible at ỹ, a fact that we will now prove. At the end the conclusion will follow
from the fact that a holomorphic map ϕ from a disc centered at 0 in C to a complex
curve has its image contained in one (local) irreducible component of the curve at
ϕ(0). Hence it cannot be open if the target curve is reducible.
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Themap f̃ is open, since it is finite-to-one and Ỹ is irreducible at all of its points (see
§4 ofChapter 5 in [37]). Since h1◦ f̃ = f1 this implies that the inducedmap f −1

1 (0) →
Ỹ ∩ h−1

1 (0) is open. We pick a point x ∈ f̃ −1(ỹ) and a connected neighbourhood U
of x in f −1

1 (0) such thatU ∩ f̃ −1(ỹ) = {x}. We may assume thatU is a disc, because
f −1(0) is smooth. Since h−1

1 (0) has dimension 1, if it was reducible at ỹ, f̃ (U −{x})
and hence f̃ (U )would thus be contained in one local irreducible component of h−1

1 (0).
This would contradict the fact that the map f −1

1 (0) → Ỹ ∩ h−1
1 (0) induced by f̃ is

open. Hence h−1
1 (0) is irreducible at ỹ. This implies that the boundary of the Milnor

fiber of h1 is a circle. 	

According to the lemma, the Milnor fiber of h1 at ỹ is a compact Riemann surface

with one boundary component. We shall prove that its genus is zero, hence that it is a
disc. Proposition 25 then implies that Ỹ is smooth at ỹ, the desired result.

We choose again a point x ∈ X with f̃ (x) = ỹ. We fix a chart centered at x in X
in such a way that the function f1 locally coincides with the function (z1, z2) �→ z2
in the chart. Let �(a) be the disc of radius a > 0 in C. We assume that the polydisc
�(a0)2 is contained in the chart for some a0 > 0 and we identify this polydisc with
an open set of X . We fix a good proper representative YD,r≤ε for h1 (see Sect. 2.2).
Since f is open we can assume, up to shrinking ε and D, that YD,r≤ε ⊂ f (�(a0)2).
We fix s ∈ D − {0}. Define

Xs,r≤ε

to be a connected component of the preimage under f |�(a0)2 of theMilnor fiber Ys,r≤ε.
We can always assume that the map

Xs,r≤ε → Ys,r≤ε

induced by f has no critical point near the boundary of Xs,r≤ε. Hence it is a ramified
covering. Since Xs,r≤ε is contained in the disc �(a0) × {s}, it has genus zero. This
implies that Ys,r≤ε also has genus zero. Since we have already seen that it has a
connected boundary, it must be a disc. This concludes the proof of Proposition 26.

Remark 29 Let f1 : X → �1 be a Kodaira fibration. Assume that f2 : X → �2 and
f3 : X → �3 are fibrations, possibly with critical points and multiple fibers. Assume
that f1, f2 and f3 are pairwise distinct. Then the image ofπ1(X) inπ1(�1)×π1(�2)×
π1(�3) under the map ( f1, f2, f3) has finite index. Indeed, by taking finite coverings,
one can first reduce to the case where f2 and f3 have no multiple fibers. Once this has
been done, the proof of Theorem 2 presented above applies verbatim. Indeed during
that proof we only used that one of the three fibrations was a submersion.

3 Kodaira fibrations and CAT(0) spaces

This section first discusses a few classical facts concerning curvature and ramified
coverings, which allow to build examples of surface-by-surface groups which are
CAT(0). Afterwards, we prove Theorem 3.
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Consider a Riemannian manifold M of nonpositive curvature and a smooth totally
geodesic submanifold S ⊂ M of codimension 2. If X → M is a ramified covering
whose branching locus is S, one can lift the metric from M to X . One obtains a
singular tensor which, however, defines a true distance on X . Gromov [38] proved
that this distance on X is locally CAT(0). See also [19,57] for historical references
and further developments around the notions of ramified covering and nonpositive
curvature. Now if �1 and �2 are two Riemann surfaces of genus greater than 1,
endowed with a hyperbolic metric, and if f : �1 → �2 is a holomorphic covering
map (hence a local isometry), the graph of f

Graph( f ) ⊂ �1 × �2

is totally geodesic for the product metric on �1 × �2. In particular any ramified cov-
ering of �1 × �2, ramified along a disjoint union of such graphs, carries a locally
CAT(0) metric. More generally, any smooth Riemann surface D ⊂ �1 × �2 with
the property that both projections D → �i are etale is totally geodesic in �1 × �2.
These observations imply that the Atiyah–Kodaira examples as well as all double etale
Kodaira fibrations in the sense of [17] carry locally CAT(0) metrics. This motivates
the question: when does a Kodaira fibration carry a locally CAT(0)metric? More gen-
erally: when is the fundamental group of a Kodaira fibration a CAT(0) group? Recall
that a group is called CAT(0) if it admits a properly discontinuous and cocompact
action on a proper CAT(0) space.

Theorem 3 gives a partial answer to these questions. In the course of its proof,
as well as in Sects. 4 and 5, we will repeatedly use the next lemma, whose proof is
obvious once one remembers that surface groups have trivial center.

Lemma 30 Let G be a group. Assume that G has a normal subgroup R which is a
surface group and let π : G → G/R be the quotient morphism. Then the centralizer
� of R in G is normal in G. The restriction of π to � is an isomorphism onto the
kernel of the monodromy morphism G/R → Out(R).

We now turn to the proof of Theorem 3. Besides classical results on CAT(0) spaces,
one of our main tools will be a result byMonod [52] concerning actions of direct prod-
ucts on CAT(0) spaces. LetG be a surface-by-surface group with infinite monodromy.
So we have a short exact sequence

0 R G
p

Q 0, (5)

where both R and Q are surface groups. We let ϕ : Q → Out(R) be the natural
monodromy morphism. We asssume that G is CAT(0) and, by contradiction, that ϕ

is not injective. We consider the centralizer of R in G, denoted by �. According to
Lemma 30, it is a normal subgroup of G, the subgroup generated by R and � is
isomorphic to R × � and the restriction of p to � is an isomorphism onto Ker(ϕ).

We fix a properly discontinuous and cocompact action G � (E, d) of G on a
proper CAT(0) space (E, d). We first assume that the group R × � has no fixed point

123

Author's personal copy



Mapping class groups and Kodaira fibrations

in the visual boundary of E . Thanks to Remark 39 in [52] we can take a closed R×�-
invariant convex subset M ⊂ E which is minimal for these properties and canonical.
A careful analysis of the definition of M in [52] shows that it is G-invariant. The
G-action is still properly discontinuous and cocompact on M . We now work with the
space M .

Since the action of R × � on M is minimal, Corollary 10 in [52] implies that there
exists an isometric splitting

M � M1 × M2,

such that the action of R × � is a product action: R acts isometrically on M1, � acts
isometrically on M2 and the action of R×� on M is the product of these two actions.
We will now need a slightly more precise result, which follows from Monod’s proof.
Namely:

Proposition 31 The G-action on M � M1 × M2 is a product action.

Proof We explain why this follows from Monod’s construction in [52, §4.3]. Recall
that by definition M is a closed minimal invariant convex set for the R × �-action.
Monod proves that the set of minimal closed R-invariant convex subsets of M is non-
empty and that the union of all such subsets is closed, convex, R × �-invariant and
splits as a direct product M1 × M2 in such a way that the minimal closed convex
R-invariant subsets are of the form M1 × {∗}. He proves moreover that the action
of R × � is a product action. Since the product action is minimal, the �-action on
M2 must be minimal. Hence the set of minimal R-invariant (resp. �-invariant) closed
convex subsets can be identified with M2 (resp. M1). The identification between M
and M1 × M2 can be thought of as a map

M → M1 × M2

which takes a point x to the pair of minimal closed convex subsets containing x for the
respective actions of R and �. Since G normalizes both R and �, it acts naturally on
M1 and M2 and the previous identification shows that the G-action on M is a product
action. 	


The previous proposition implies that we can now consider the G-action on each
Mi separately. It factors through a faithful action of G/� on M1 (resp. G/R on M2).

Proposition 32 The G/�-action on M1 is properly discontinuous and cocompact.
Similarly the G/R-action on M2 is properly discontinuous and cocompact.

Proof The fact that both actions are cocompact is clear. Indeed the G-action on M
is cocompact. Hence the G-action on each Mi , which are quotients of M , is also
cocompact.

To show that the actions are properly discontinuous, we make the following obser-
vations. The spaces Mi are complete locally compact CAT(0) spaces. Endowed with
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the compact open topology their isometry groups are locally compact groups. A sub-
group

H < Isom(X)

of the isometry group of a complete locally compact CAT(0) space (endowed with
the compact open topology) is discrete if and only if its action on X is properly
discontinuous (see [28, 5.67]). Hence we must show that G/� and G/R are discrete
in the groups Isom(M1) and Isom(M2) respectively. We consider the case of G/�

first. Since M1 arises as a convex invariant subset for the action of R on M , R acts
properly discontinuously on M1. Hence

R < Isom(M1)

is a discrete subgroup. Thus there exists a neighborhoodU of the identity in Isom(M1)

such that any element of U which normalizes R must actually centralize R. Since the
centralizer of R in G/� < Isom(M1) is trivial, (G/�) ∩ U is trivial and G/� is
discrete.

The argument is similar for the action ofG/R onM2. The subgroup� < Isom(M2)

is discrete (as M2 appears as an invariant subset for the action of � on M). Let
�0 < � be a 2-generated free subgroup; such a subgroup exists, since � is a non-
trivial normal subgroup of a surface group. Then there is a neighbourhood U of the
identity in Isom(M2) such that any element ofU which normalizes � must centralize
�0. Hence, we only have to explain why the centralizer of �0 in G/R is trivial. But
G/R is isomorphic to a surface group, and the centralizer of any non-cyclic subgroup
of a surface group is trivial. This concludes the proof. 	


We now fix a point (m1,m2) ∈ M1 × M2. Consider the map f : G → M1 × M2
defined by f (g) = (g · m1, g · m2). This is a quasi-isometry since the action of G on
M is properly discontinuous and cocompact. We have a commutative diagram:

G
f

M1 × M2

G/� × G/R M1 × M2

where the vertical map on the right is the identity and the horizontal map on the
bottom is given by the orbit maps of m1 and m2 for the actions of G/� and G/R.
Proposition 32 implies that the bottom map is a quasi-isometry. Hence the vertical
arrow on the left must also be a quasi-isometry. But an injective morphism between
two finitely generated groups is a quasi-isometry only if its image has finite index. On
the other hand the image of the “diagonal” morphism

G → G/� × G/R (6)
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is of infinite index. Indeed, by taking the quotient by the subgroup R on the left and
by its image on the right, we obtain a morphism

G/R → ϕ(Q) × G/R

whose image is the graph of ϕ. If the image of the diagonal morphism in (6) had finite
index, the graph of ϕ would have finite index in ϕ(Q) × G/R, but this only happens
if the image of ϕ is finite. We thus obtain a contradiction.

To conclude the proof, we must now deal with the case when R×� fixes a point in
the visual boundary of E . We will need the following proposition, which is classical
(see for instance [39]). We include the proof for the sake of completeness.

Proposition 33 Let � � Z be a group acting properly discontinuously and cocom-
pactly on a CAT(0) space. Let N < � be a finitely generated subgroup. If N fixes a
point in the visual boundary of Z, then the centralizer of N in � is infinite.

Proof Let {n1, . . . , nk} be a finite generating set for N . Let ξ be a fixed point for N
in the visual boundary of Z . We pick a geodesic ray α : [0,+∞) → Z representing
ξ . We pick a constant C such that

d(n jα(t), α(t)) ≤ C

for any t ≥ 0 and any j ∈ {1, . . . , k}. Since the �-action on Z is cocompact, there
must exist a constant A ≥ 0 such that the translates by � of the ball of radius A
centered at α(0) cover Z . So we pick a sequence (γi )i≥0 of elements of � such
that d(γiα(0), α(i)) ≤ A. We now estimate d(γ −1

i nsγiα(0), α(0)). By the triangle
inequality, this is less or equal to:

d(γ −1
i nsγiα(0), γ −1

i nsα(i)) + d(γ −1
i nsα(i), γ −1

i α(i)) + d(γ −1
i α(i), α(0)).

By our previous choices this is bounded above by 2A + C . Hence:

d(γ −1
i nsγiα(0), α(0)) ≤ 2A + C .

Since the action of � is properly discontinuous, the set

{γ −1
i nsγi }i≥0,1≤s≤k

must be finite. Hence there exists a subsequence (γi(m))m≥0 of distinct elements such
that for each s ∈ {1, . . . , k}, γ −1

i(m)nsγi(m) does not depend on m. Thus the infinite set

{γi(0)γ −1
i(m)}m≥1 is made of elements commuting with a generating set for N ; it follows

that it is contained in the centralizer of N . 	

Let us explain how to conclude from this proposition. Since the monodromy of

the extension (5) is assumed to have infinite image, the kernel of the monodromy
morphism is an infinite rank free group. Hence the group �, which is isomorphic to
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that kernel, is also an infinite rank free group. We fix a basis B for�, pick two distinct
elements b1, b2 in B and consider the free group �0 < � generated by b1 and b2.
If R × � fixes a point in the visual boundary of E , so does the finitely generated
group R × �0. We apply the previous proposition to N = R × �0 and obtain that
the centralizer CG(N ) of N is infinite. But this centralizer is the intersection of the
centralizer of R inG, which is�, with the centralizerCG(�0) of�0 inG. We thus get
CG(N ) = C�(�0). This is absurd since C�(�0) is trivial. This concludes the proof
of Theorem 3.

4 Building injective morphisms to themapping class group

This section contains some preliminary material which will be used in Sect. 5. In
Sect. 4.1 we give a criterion to establish the injectivity of certain morphisms to the
mapping class group (Proposition 34) and then introduce polysurface groups and some
of their properties in Sect. 4.2.

4.1 Extensions by surface groups and their monodromy

The ideas presented below are inspired by Johnson’s proof of Theorem 4. They will
allow us to build new examples of extensions of the form

0 R G G/R 0 (7)

with R a surface group where the monodromy morphism is injective. We thus con-
sider the following algebraic construction, which will reappear as a consequence of a
geometric construction in Sect. 5.

Let G be a group which fits into a short exact sequence

0 N G
p

Q 0, (8)

where N is a surface-by-surface group with injective monodromy.We assume further-
more that we are given two more exact sequences as follows:

0 R1 H1
p1

Q 0 (9)

0 R2 H2
p2

Q 0 (10)

where the Ri are surface groups, and the two extensions have injective monodromy.
Furthermore, we assume that we are given surjective morphisms fi : G → Hi and
ui : N → Ri for i = 1, 2 such that the kernel of each ui is a surface group, Ker(u1) �=
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Ker(u2) and such that the following diagram is commutative for i = 1, 2:

0 N

ui

G
p

fi

Q

id

0

0 Ri Hi
pi

Q 0.

(11)

This implies that the groups Ker(ui ) are normal inG and that the quotientsG/Ker(ui )
are naturally isomorphic to Hi . We then have:

Proposition 34 Under the previous hypotheses, the monodromy of the extension

0 Ker(ui ) G Hi 0 (12)

is injective for i = 1, 2.

In the course of the proof below we will use that a nontrivial, finitely generated nor-
mal subgroup of a surface group must have finite index. Since Ker(u1) and Ker(u2)
are distinct, this implies that Ker(u1) cannot be contained in Ker(u2) (and vice versa).
Indeed if Ker(u1) < Ker(u2), then the group Ker(u2)/Ker(u1)must be finite. Since
R1 is torsion-free, we must then have Ker(u2) = Ker(u1), and this contradicts our
initial hypothesis. We will also need the following:

Lemma 35 Let R be a surface group and let L be a nontrivial normal subgroup of R.
Let f be an automorphism of R. If f is the identity on L then f is the identity on all
of R.

Proof The group R and the automorphism f act on the Gromov boundary ∂(R) of R,
which is a circle. The map f fixes the limit set of L in ∂(R) pointwise. Since L � R
is normal, this limit set is invariant under the action of R. By the minimality of the
action of R on ∂(R) [35, Ch. 8, Obs. 27], it must coincide with ∂(R). Hence f is the
identity on ∂(R). This implies that f is the identity on R. 	

Proof of Proposition 34 We consider the case i = 1. We assume by contradiction that
the monodromy is not injective. Then G contains the direct product Ker(u1) × �1,
where �1 is the centralizer of Ker(u1) in G, which is nontrivial by Lemma 30. The
groups u2(Ker(u1)) and f2(�1) commute in H2. Since Ker(u1) is normal in N ,
u2(Ker(u1)) is normal in R2. It is also non-trivial since Ker(u1) is not contained
in Ker(u2). Lemma 35 then implies that f2(�1) centralizes all of R2. Since the
monodromy of the extension (10) is injective we must have f2(�1) = {e}. This
implies that �1 and hence Ker(u1) × �1 is contained in N . This contradicts the
injectivity of the monodromy of u1 : N → R1, thus completing the proof. 	


4.2 Central extensions of polysurface groups

Polysurface groups are the groups obtained via iterated extensions by surface groups.
More precisely, we define them as follows.
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Definition 36 A group G is a polysurface group of length n if there exists a filtration
(Gi )0≤i≤n with {e} = G0 < G1 < · · · < Gn = G such that Gi is a normal subgroup
of G and Gi/Gi−1 is isomorphic to a surface group for each 1 ≤ i ≤ n.

When n = 2, we recover the definition of surface-by-surface groups. Note that if G
and (Gi )0≤i≤n are as in the definition, then G/G1 and Gn−1 are polysurface groups
of length n − 1.

When n ≥ 3, this definition differs slightly from the one given in [41]where theGi ’s
are only assumed to be normal in Gi+1.1 But we will work with the above definition.

We can now state the following proposition, that we will use repeatedly in Sect. 5.1.

Proposition 37 Let G be a polysurface group and let A be a finite abelian group. Then
any central extension

0 A � G 0

becomes trivial after passing to a finite index subgroup of G.

Proof We first prove the assertion if G is a surface group. The extension we consider
corresponds to a class in the group H2(G, A). Since H1(G, Z) is torsion-free, the
universal coefficient theorem implies that

H2(G, A) � Hom(H2(G, Z), A).

If G1 < G is a subgroup of finite index such that the image of the natural map
H2(G1, Z) → H2(G, Z) is generated by an element which is divisible in H2(G, Z)

by the order of A, then the extension is trivial when restricted to G1. This proves the
proposition in the case of a surface group.

We now assume that G is a polysurface group of length n and prove the assertion
by induction on n. We can assume that n ≥ 2. Let G1 �G be a normal subgroup such
that G/G1 is a polysurface group of length n − 1. We pick G ′

1 of finite index in G1
such that the extension is trivial over G ′

1. Let i : G ′
1 → � be a lift of G ′

1. Let �′ be
the normalizer of i(G ′

1) in �. It has finite index in �. So we have an extension

0 A �′ G ′ 0, (13)

where G ′ is the image of �′ in G and the subgroups A and i(G ′
1) are normal in �′. By

taking the quotient by i(G ′
1) in (13), we obtain a central extension of G ′/G ′

1 by A:

0 A �′/i(G ′
1) G ′/G ′

1 0. (14)

The group G ′/G ′
1 is an extension of a polysurface group of length n − 1 by a finite

group. Indeed it contains the finite group
(
G1 ∩ G ′) /G ′

1, and the quotient is a finite

1 However, one can prove that a group satisfying Johnson’s definition must virtually satisfy our definition.
This follows from Johnson’s result saying that a given group has finitely many polysurface group structures
[41].
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index subgroup of a polysurface group of length n−1, hence is a polysurface group of
the same length. In particular, G ′/G ′

1 admits a finite index subgroup which is a central
extension of a finite abelian group by a polysurface group of length n − 1. Using
the induction hypothesis twice, we obtain a finite index subgroup M < �′/i(G ′

1),
containing A, on which the extension is trivial. This implies that there is a left-splitting
M → A for the inclusion A ↪→ M . It induces a left-splitting �′′ → A of the inverse
image �′′ of M in �′. Thus, �′′ < � is a finite index subgroup on which the extension
is trivial. 	


Remark 38 The above proposition is not true for arbitrary groups G. Indeed, if G is
residually finite and if� is a central extension ofG by a finite group, then the extension
is trivial on a finite index subgroup of G if and only if � is residually finite. However,
there are examples showing that this condition need not be satisfied (see [23], as well
as [1, Ch. 8] for more examples).

5 Families of Riemann surfaces with injectivemonodromy

In this section we provide two geometric constructions of surface bundles to which we
apply the group theoretic results from Sect. 4. Roughly, they both rely on performing
the classical construction of Kodaira fibrations from [5,44] “in family". The first con-
struction leads to families of Riemann surfaces with injective monodromy but only
applies in the context of iterated Kodaira fibrations. The second construction applies
more generally although it produces families with fibers of higher genus.

If π : Z → B is a fiber bundle whose fiber F is a closed oriented surface of genus
greater than 1, then π always induces a short exact sequence between the fundamental
groups of F , Z and B. This is due to the fact that the map π2(B) → π1(F) coming
from the long exact sequence in homotopy induced by π is always trivial. Indeed,
π1(F) does not contain any nontrivial Abelian normal subgroup. The same conclusion
applies as long as π1(F) has this last property (e.g. if F is a Kodaira fibration). We
will regularly use this fact without further reference.

5.1 Iterated fibrations with a fiberwise involution

Sections 5.1 and 5.2 are devoted to a geometric construction which will lead to the
proof of Theorem6. The construction ismade by induction. So for now,we assume that
we are given an iteratedKodaira fibration X of dimension nwith injectivemonodromy.
Let

π : X → Y (15)

be the corresponding fibration, where Y is an iterated Kodaira fibration of dimension
n − 1. In this section we explain how, by taking finite coverings, we can produce
another fibration with the same property but which moreover carries a fixed point free
involution which preserves the map π .
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We write R for the kernel of the map

(p1)∗ : π1(X) → π1(Y ).

Let R2 be the kernel of the natural map R → H1(R, Z/2Z). Since R2 < R is
characteristic, we have an extension

0 H1(R, Z/2Z) π1(X)/R2 π1(Y ) 0. (16)

After passing to a finite index subgroup of π1(Y ), we can assume that this extension is
central and applying Proposition 37 and passing to another finite index subgroup, we
can assume that it is actually trivial. So let Y ′ → Y be a finite covering such that the
above extension is trivial on π1(Y ′). Let X ′ → X be the induced covering. We have a
surjectivemorphismπ1(X ′) → H1(R, Z/2Z)whose restriction to R is the naturalmap
R → H1(R, Z/2Z). Thus we can choose a surjective morphism ϕ : π1(X ′) → Z/2Z

which is nontrivial on R. Let X ′′ be the covering space corresponding to the kernel of
the morphism ϕ. Let π ′′ : X ′′ → Y ′ be the composition of the covering map X ′′ → X ′
with a lift π ′ : X ′ → Y ′ of π .

Proposition 39 The monodromy of the fibration π ′′ : X ′′ → Y ′ is injective.

Proof Note that since ϕ(π1(X ′)) = ϕ(R), the map X ′′ → Y ′ is π1-surjective (equiv-
alently, has connected fibers). We now use repeatedly Lemma 30. If the monodromy
of the fibration X ′′ → Y ′ is not injective, the centralizer � of R ∩ π1(X ′′) in π1(X ′′)
is nontrivial. By Lemma 35, � must centralize all of R. This contradicts the fact that
the monodromy of the original fibration (15) is injective. 	


The group Z/2Z acts as a Galois group on X ′′ and this action preserves π ′′. Its
generator 1 ∈ Z/2Z thus defines a fixed point free involution of X ′′ which leaves π ′′
invariant. We finally observe that the covering map X ′′ → X ′ restricts to a covering
of degree two π ′′−1(y) → π ′−1(y) for y ∈ Y ′, while the genus of the fibers of π ′ is
identical to the genus of the fibers of π . Summing up all pieces, we have proved the
following proposition.

Proposition 40 Let π : X → Y be an n-dimensional iterated Kodaira fibration with
injective monodromy and with fibers of genus g. Then there exists a finite covering
space X ′′ → X with the following properties:

1. there is an induced submersion π ′′ : X ′′ → Y ′ equipping X ′′ with the structure of
an n-dimensional iterated Kodaira fibration with injective monodromy;

2. X ′′ carries a fixed point free involution σ : X ′′ → X ′′ such that π ′′ ◦ σ = π ′′;
3. the fibers of π ′′ have genus 1 + 2(g − 1).

5.2 Constructing an (n+ 1)-dimensional fibration

We now proceed with the induction step.We assume that there exists an n-dimensional
iterated Kodaira fibration with injective monodromy and with fibers of genus g (for

123

Author's personal copy



Mapping class groups and Kodaira fibrations

some n ≥ 2). Thanks to Proposition 40, we can pick an iterated Kodaira fibration X
of dimension n

π : X → Y

with injective monodromy and with fibers of genus 1 + 2(g − 1), and assume that
X is endowed with a holomorphic fixed point free involution σ : X → X such
that π ◦ σ = π . We now repeat the arguments from the previous section. We call
again R < π1(X) the fundamental group of the fiber and R2 the kernel of the map
R → H1(R, Z/2Z). First one can pick a finite covering Y ′ → Y and the induced
covering X ′ → X such that the extension (16) is trivial. We fix a lift X ′ → Y ′
of π , called π ′; observe that the fibers of π ′ also have genus 1 + 2(g − 1). We fix
a morphism φ : π1(X ′) → H1(R, Z/2Z) which induces the canonical morphism
R → H1(R, Z/2Z) on R < π1(X ′). Let X ′′ be the covering space corresponding to
the kernel of φ. Let σ ′ : X ′ → X ′ be the lift of σ which preserves the map π ′. We
call f : X ′′ → X ′ the covering map. Let D be the union of the graph of f and of the
graph of σ ′ ◦ f . Note that D naturally sits as a smooth divisor in the fiber product

Z := X ′′ ×Y ′ X ′ = {(x, z) ∈ X ′′ × X ′, π ′( f (x)) = π ′(z)}.

We denote by Zy the fiber of Z above a point y ∈ Y ′. It is the direct product of the
fibers X ′′

y of X ′′ → Y ′ and X ′
y of X ′ → Y ′. Note that by construction f restricts

to the covering X ′′
y → X ′

y corresponding to the kernel of the morphism π1(X ′
y) →

H1(X ′
y, Z/2Z). In particular, this means that we can perform the Atiyah–Kodaira

construction on Zy . In the following, we will simply perform this construction “in
family".

Proposition 41 After possibly passing to a finite covering space Y ′′ → Y ′ and taking
the induced covering spaces Z ′ → Z and D′ → D we can assume that there exists a
morphism

π1(Z
′ − D′) → Z/2Z

which is nontrivial on any small transversal loop enclosing a connected component
of D′.

Observe that given a point y ∈ Y , we can always build a morphism

π1(Zy − Zy ∩ D) → Z/2Z (17)

which is nontrivial on a small loop enclosing a component of Zy∩D. This follows from
the fact that the homology class of Zy ∩D is divisible by 2 in H2(Zy, Z), see [5,44] as
well as [20] for a detailed discussion. This induces a ramified covering Wy → Zy of
degree 2,with ramification locus Zy∩D, togetherwith two submersionsWy → X ′′

y and
Wy → X ′

y , equipping Wy with the structure of a double Kodaira fibration. Note that
the fibers of Wy → X ′′

y are ramified coverings of degree 2 of X ′
y whose ramification

locus consists of two points; in particular their genus is 2 + 4(g − 1).
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The point of Proposition 41 is that the morphism constructed by Kodaira can be
virtually extended to π1(Z − D).

Proof of Proposition 41. This is similar to the arguments presented in Sect. 5.1 except
that we consider the bundle Z − D → Y ′. We denote by L the fundamental group of
the fiber of this new bundle, by L2 the kernel of the natural map L → H1(L, Z/2Z)

and substitute the extension (16) by the following one:

0 H1(L, Z/2Z) π1(Z − D)/L2 π1(Y ′) 0. (18)

ByProposition 37one can take afinite covering spaceY ′′ → Y ′ such that the restriction
of the extension (18) to π1(Y ′) is trivial. Let then Z ′ → Z be the induced covering
space and let D′ be the inverse image of D in Z ′. Note that D′ is a disjoint union
of two connected components which cover the two connected components of D. By
construction there exists a surjection

π1(Z
′ − D′) → H1(L, Z/2Z)

which splits the extension (18) restricted toπ1(Z ′−D′). Composing itwith amorphism
from H1(L, Z/2Z) to Z/2Z which behaves as in (17) on the fibers of Z ′ − D′ → Y ′′
gives the desired morphism. 	


We now fix a morphism ϕ : π1(Z ′ − D′) → Z/2Z as in the proposition. Its kernel
defines a double covering of Z ′ −D′ which extends to give a double ramified covering
Z∗ → Z ′. The map Z∗ → Z ′ → Y ′′ is π1-surjective; we denote it by p. Observe
that by construction the fibers of Z ′ − D′ → Y ′′ are diffeomorphic to the fibers of
Z − D → Y ′. We thus have a holomorphic submersion

p : Z∗ → Y ′′

whose fibers are double Kodaira fibrations Z∗
y , which are diffeomorphic to the double

Kodaira fibrationWy defined above. In particular the fibers of p are Kodaira fibrations
with injective monodromy and one of the submersions has fibers of genus 2+4(g−1).

We are now in the position to apply the results from Sect. 4.1. The short exact
sequence

0 π1(Z∗
y) π1(Z∗) π1(Y ′′) 0 (19)

will play the role of the Sequence (8) from Sect. 4.1. Let q1 : X1 → Y ′′ (resp.
q2 : X2 → Y ′′) be the fibration obtained from the fibration X ′ → Y ′ (resp. X ′′ → Y ′)
by the base change Y ′′ → Y ′. The short exact sequences on fundamental groups
built from these two new fibrations play the role of Sequences (9) and (10). The
corresponding monodromy morphisms are injective since the fibration π : X → Y
we started with at the beginning of this section has injective monodromy. We finally
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have to specify the morphisms f1, f2, u1 and u2. Note that Z ′ is naturally identified
with the fiber product

X1 ×Y ′′ X2.

The morphism fi is simply the map on fundamental groups induced by Z∗ → Z ′ →
Xi , ui being its restriction to the fundamental group of the fiber of p. The fiber of
the projection Z ′ → X1 over x1 ∈ X1 is isomorphic to the fiber X2,q1(x1) of q2 over
q1(x1) ∈ Y ′′, which is connected. In particular, the fiber of Z∗ → X1 is identical
with the fiber of the Kodaira fibration Z∗

q1(x1)
→ X1,q1(x1) and thus also connected.

It follows that f1 is π1-surjective and an analogous argument shows that the same
holds for f2. Moreover, the projections ui are precisely the surjective morphisms
corresponding to the two Kodaira fiberings of Z∗

q1(x1)
. Proposition 34 now implies that

the monodromy of the fibrations Z∗ → Xi is injective for i = 1, 2. This concludes
the proof of Theorem 6.

Finally, let us make the following observations about our proof. We started in
Sect. 5.1 with any n-dimensional iterated Kodaira fibration with injective monodromy
and fibers of genus g. We proved there that, up to changing X and Y by finite covers,
one could assume that X carried a fiberwise holomorphic involution. In particular
the fibration X we started with at the beginning of Sect. 5.2 can be taken to be a
finite covering space of any prescribed iterated Kodaira fibration of dimension n with
injective monodromy. The bases of the fibrations Z∗ → Xi we end up with being
again finite covering spaces of X and the fibration Z∗ → X2 having fibers of genus
2 + 4(g − 1), we have proved:

Theorem 42 Let X be an n-dimensional iterated Kodaira fibration with injective mon-
odromy and fibers of genus g. Then there exists a finite covering space X0 of X and a
family Z → X0 of closed Riemann surfaces of genus 2+4(g−1)whosemonodromy is
injective. In particular the fundamental group of X virtually embeds into the mapping
class group of a closed surface of genus 2 + 4(g − 1).

Note that this statement of course contains Theorem 7. It would be of interest to
make Theorem 42 more effective. Given X as above, what are the minimal degree of
the covering X0 → X and the minimal genus of the fibers of the family Z → X0?
It would be interesting to answer this question even for specific examples of iterated
Kodaira fibrations X .

Remark 43 The construction described in this section can also be performed in the
category of real smooth manifolds. This might allow to construct more real manifolds
which are smooth surface bundles with injective monodromy and whose base is an
iterated surface bundle.

5.3 Virtual representations of themapping class group

The construction presented in the previous sections used that the base of all the families
of Riemann surfaces that we considered was an iterated Kodaira fibration at only one
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place: through the use of Proposition 37. Here we will deal with arbitrary bases,
by generalizing an argument due to Miller [51, §3]. The only price to pay is that
the families that we produce have larger genus. More precisely, we will prove the
following.

Theorem 44 Let π : Z → B be a holomorphic family of closed Riemann surfaces of
genus g ≥ 2 over a complex manifold B. Assume that π has injective monodromy.
Then there exists a finite covering Z ′ → Z and a holomorphic family p : W → Z ′ of
closed Riemann surfaces of genus 2 + 8(g − 1) with injective monodromy. Moreover
the monodromy of p restricted to any finite index subgroup of π1(Z ′) is irreducible.

Let π : Z → B be as in the statement of the theorem. Let as before R � π1(Z)

be the fundamental group of a fiber of π . We write [R, R] for the kernel of the
natural map R → H1(R, Z) and, for an integer m, Rm for the kernel of the map
R → H1(R, Z/mZ). Although the extension

0 R π1(Z) π1(B) 0 (20)

need not have a section, we first observe that the corresponding extension

0 H1(R, Z) π1(Z)/[R, R] π1(B) 0 (21)

virtually has a section. This is the content of the next proposition. This is well-known
to experts, but we include a proof based on Morita’s work [53].

Proposition 45 There exists a finite covering space B0 → B such that the exten-
sion (21) has a section over π1(B0).

Note that Earle [29] has proved that one can build a family E → B of complex tori
and an embedding Z ↪→ E preserving the projection onto B, which coincides (up to
translation) with the Jaocbi map in each fiber. The bundle E → B need not have a
continuous section in general. Indeed, Earle describes precisely when such a section
exists, see [29, §8.1]. Morita has studied the same kind of questions when one starts
with a surface bundle which need not have a complex structure, see [53,54]. Here we
explain how to deduce Proposition 45 from their work. We also refer the reader to [21]
for a similar discussion for general families of complex tori (not necessarily coming
from a family of Riemann surfaces).

Proof We will use the fact that there exists a map u : π1(Z) → H1(R, Z) which
satisfies the following properties:

1. u is a cocycle i.e. u(h1h2) = u(h1)+(h1)∗u(h2), where (h1)∗ is the automorphism
of H1(R, Z) induced by h1;

2. u(n) = (2g − 2)[n] for n ∈ R, where [n] stands for the homology class of n.

To prove that such amap u exists it is enough to prove it in the casewhere one considers
the so-called Birman exact sequence

0 π1(Sg) Mod(Sg, ∗) Mod(Sg) 0.
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Indeed the exact sequence (20) is induced by the one above through a homomorphism
from π1(Z) to Mod(Sg, ∗). The fact that such a map exists for the Birman exact
sequence follows from Morita’s work, see [53, §6] or [54, §1]. Another construction
is also contained in Earle’s work [29].

We fix a cocycle u satisfying the above conditions and call φ : π1(Z)/[R, R] →
π1(B) the morphism appearing in (21). The cocycle relation, together with the fact
that u(n) = 0 if n ∈ [R, R], implies that u descends to a cocycle u : π1(Z)/[R, R] →
H1(R, Z). Let

N := u−1((2g − 2)H1(R, Z))

and let N0 := u−1({0}). Observe that N and N0 are subgroups of π1(Z)/[R, R]
and N0 < N . The group N has finite index in π1(Z)/[R, R]. For each h ∈ N ,
there exists c ∈ H1(R, Z) < N such that u(h) = u(c). Hence c−1h ∈ N0. This
implies that N and N0 have the same image in π1(B). Since N0 does not intersect
the subgroup H1(R, Z) � π1(Z)/[R, R], φ induces an isomorphism between N0 and
φ(N ) = φ(N0). Choosing B0 → B to be the covering space corresponding to the
subgroup φ(N ) < π1(B) concludes the proof. 	


In view of the previous proposition, we now assume that the base B has been
replaced by a finite cover (again denoted by the same letter) so that the extension (21)
has a section. In particular any of the extensions

0 H1(R, Z/mZ) π1(Z)/Rm π1(B) 0 (22)

has a section. We now let m = 2. Let B ′ → B be the finite covering space corre-
sponding to the kernel of the representation

π1(B) → Aut(H1(R, Z/2Z))

and let Z ′ → Z be the induced covering. The extension

0 H1(R, Z/2Z) π1(Z ′)/R2 π1(B ′) 0 (23)

is a central extension with a section hence is trivial. Using this and arguing exactly as
in Sect. 5.1, one obtains:

Up to replacing Z and B by finite covering spaces and up to replacing g by k =
1+4(g−1)we can and do assume that there exists a free (Z/2Z)2-action on Z which
preserves the fibers of π .

Note that the only difference compared to Sect. 5.1 is that to establish the above fact,
we did not make use of Proposition 37 which is not available for an arbitrary base B.
Insteadwe used that the extension (21) has a section. Note also that wewill need below
to have two commuting involutions acting on Z (instead of just one involution as in
Sect. 5.1); this trick is due toMiller [51, §4]. These are provided by the (Z/2Z)2-action
on Z ; we will call them a1 and a2.
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We now consider the fiber product

W := Z ×B Z .

Let D ⊂ W be the union of the graph of the identitymap idZ : Z → Z and the graph of
a1. This is a smooth divisor inW . As before we want to construct a suitable morphism
π1(W − D) → Z/2Z, possibly after changing W and D by finite covering spaces.
This is the analogue of Proposition 41. In the following proposition, we think ofW as
a bundle over Z , via the first projection W → Z . Consider the bundle W − D → Z
and let F be its fiber. This is a twice-punctured surface.

Proposition 46 There exists a finite covering f : Z ′ → Z such that the finite covering
h : W 1 → W induced by base change has the property that for D1 := h−1(D) there
is a morphism π1(W 1 − D1) → Z/2Z which is nontrivial on any small simple loop
enclosing a component of D1.

Proof The key point is that the bundleW − D → Z has a section; this is why we took
a covering with group (Z/2Z)2 at the beginning of this section. A section is given
by the graph of the map a2; the fact that this graph does not intersect D comes from
the fact that a1 and a2 generate a free (Z/2Z)2-action. In particular the corresponding
extension of fundamental groups is a semidirect product. This implies as before that
if f : Z ′ → Z is the covering corresponding to the kernel of the action of π1(Z) on
the first homology group of the fiber F with Z/2Z coefficients, and ifW 1 → W is the
induced covering, then the group π1(W 1 − D1) surjects onto H1(F, Z/2Z) in such a
way that the restriction of this morphism to the fundamental group of F is the natural
map π1(F) → H1(F, Z/2Z). Since a small simple loop enclosing a component of D
and contained in a fiber of F is nontrivial in the first homology group of F this gives
the desired result. 	


LetW 2 be a double covering space ofW 1 ramified along D1 (such a covering exists
by Proposition 46).

We will now explain how to identify W 1 with a suitable fiber product and D1

with a union of two graphs in this fiber product. This will put us in a very similar
situation as in Sect. 5.2 and thus enable us to apply Proposition 34 to the composition
W 2 → W 1 → Z ′.

Let B ′ → B be the finite covering corresponding to the subgroup π∗(π1(Z ′)) <

π1(B) and let Z ′′ → Z be the covering obtained by base change with respect to
B ′ → B. The involution a1 lifts to an involution a′′

1 of Z ′′ which preserves the fibers
of Z ′′ → B ′. These fibers are homeomorphic to the fibers of Z → B and thus
have genus 1 + 4(g − 1). There is a covering f ′ : Z ′ → Z ′′ that commutes with
the projection to B ′ and restricts to a covering Z ′

b → Z ′′
b between the fibers Z ′

b of
Z ′ → B ′ and Z ′′

b of Z ′′ → B ′. It follows that there is a natural identification of W 1

with the fiber product

Z ′ ×B′ Z ′′,
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and the fiber of the projectionW 1 → B ′ above b ∈ B is thus a productW 1
b = Z ′

b× Z ′′
b

of (connected) closed Riemann surfaces. Moreover, this identification maps D1 to the
union of the graphs of f ′ and a′′

1 ◦ f ′.
The family W 1 − D1 → Z ′ restricts to a family W 1

b − (
W 1

b ∩ D1
) → Z ′

b. Thus,
the ramified double covering W 2 → W 1 restricts to a double covering W 2

b → W 1
b =

Z ′
b × Z ′′

b ramified in the smooth divisor W 1
b ∩ D1. This equips the fibers W 2

b of the
projectionW 2 → B ′ with the structure of double Kodaira fibrations; in particular their
two projections onto Z ′

b and Z ′′
b have injective monodromy. By construction the fibers

of the projection W 2
b → Z ′

b are double coverings of Z
′′
b ramified in the two points of({

z′
} × Z ′′

b

) ∩ D1 for z′ ∈ Z ′
b and thus have genus 2 + 8(g − 1). Hence, the same

holds for the fibers of the projection W 2 → Z ′.
For a fixed b0 ∈ B ′ the same arguments as in Sect. 5.2 now show that we can apply

Proposition 34 to the short exact sequence

1 π1(W 2
b0

) π1(W 2) π1(B ′) 1,

with f1 : W 2 → Z ′ and f2 : W 2 → Z ′′ the natural projections and u1 : W 2
b0

→ Z ′
b0

(resp. u2 : W 2
b0

→ Z ′′
b0
) the two distinct holomorphic submersions of the Kodaira

fibration W 2
b0
. In particular, it follows that the monodromy of each of the fibrations fi

is injective.
To conclude the proof of Theorem 44 we simply have to explain the irreducibility

statement. We claim that the monodromy associated to the fibration fi (i = 1, 2) is
irreducible when restricted to any finite index subgroup of the fundamental group of
the fiber of the fibration Z ′ → B ′ or Z ′′ → B ′ (hence is also irreducible on any
finite index subgroup of π1(Z ′)). But this follows from Shiga’s result saying that the
monodromy of any holomorphic family of Riemann surfaces over a Riemann surface
of finite type is irreducible, see [62]. We also refer the reader to [56] for another proof
of this fact.

Remark 47 Of course, the irreducibility statement that we have just proved also holds
in the context of Theorem 42.

We now explain how to deduce the proof of Theorem 8 from the above construction.
For g ≥ 2, we denote by Tg (resp. Tg,∗) the Teichmüller space of closed Riemann
surfaces of genus g (resp. of genus g with one marked point). We refer to [30] for
basic facts on Teichmüller spaces. The spaces Tg and Tg,∗ are complex manifolds
of complex dimension 3g − 3 and 3g − 2 respectively. The group Mod(Sg) (resp.
Mod(Sg, ∗)) acts properly discontinuously by holomorphic maps on Tg (resp. Tg,∗).
In particular, the quotient of either Tg or Tg,∗ by any torsion-free subgroup of the cor-
responding mapping class group is also a complex manifold, while the moduli spaces
Mg := Tg/Mod(Sg) andMg,∗ := Tg,∗/Mod(Sg, ∗) are complex orbifolds. It is well-
known that Mod(Sg) and Mod(Sg, ∗) have torsion-free subgroups of finite index. A
sequence of such torsion-free finite index subgroups is given by the level m congru-
ence subgroups Mod(Sg) [m] < Mod(Sg) and Mod(Sg, ∗) [m] < Mod(Sg, ∗) with
m ≥ 3, which are defined as the kernels of the natural morphisms to Sp(2g, Z/mZ)
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induced by the action of each mapping class group on the homology of the underlying
(unmarked) surface. The universal family of curves of genus g is defined by the holo-
morphic map Mg,∗ → Mg of complex orbifolds which “forgets” the marked point.
It induces the Birman exact sequence

1 π1(Sg) Mod(Sg, ∗) Mod(Sg) 1 (24)

on orbifold fundamental groups. Its monodromy is of course injective. Passing to the
finite index subgroup Mod(Sg)[3] < Mod(Sg) and its preimage Mod(Sg, ∗)[3] <

Mod(Sg, ∗), we obtain a short exact sequence

1 π1(Sg) Mod(Sg, ∗)[3] Mod(Sg)[3] 1 (25)

of torsion-free groups. It is induced by the surjective holomorphic map

q : Tg,∗/Mod(Sg, ∗)[3] → Tg/Mod(Sg)[3]

of complex manifolds. Its fibers are closed Riemann surfaces of genus g and its
monodromy is injective. We are now in the situation of Theorem 44 with Z :=
Tg,∗/Mod(Sg, ∗)[3], B := Tg/Mod(Sg)[3] and π := q. Since by definition the group
π1(Z) = Mod(Sg, ∗)[3] is a finite index subgroup of Mod(Sg, ∗), this completes the
proof of Theorem 8.

Remark 48 There are probably plenty of morphisms as in Theorem 8. Indeed, there
are plenty of choices involved in our proof. Also, we have decided to perform our
construction by taking double ramified covers, but one could also take cyclic ramified
covers of higher orders, as in [44] or possibly use the constructions from [18]. It would
be interesting to investigate how different all the morphisms � → Mod(Sk) obtained
in this way are (where � is a finite index subgroup of Mod(Sg, ∗) and k an integer).

Remark 49 Themorphisms that we construct naturally come with an equivariant holo-
morphic map Tg,∗ → T2+8(g−1). This is interesting in view of the discusion in [4, §5].
Conversely, let � < Mod(Sg, ∗) be a subgroup of finite index and let f : Tg,∗ → Tk
be a holomorphic map, equivariant with respect to a representation of � intoMod(Sk).
Let Ek → Tk be the universal family of curves of genus k and let f ∗Ek → Tg,∗ be its
pullback under f . By taking the quotient of f ∗Ek by � ∩π1(Sg) (where π1(Sg) is the
normal subgroup appearing in Birman’s short exact sequence (24)) we obtain a family
of Kodaira fibrations over Tg . Hence holomorphic equivariant maps Tg,∗ → Tk are
related to families of Kodaira fibrations with large deformation spaces.

6 Further remarks

This section contains two observations about residual properties and coherence of
fundamental groups of surface bundles over surfaces.
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In [8] Bregman proves that certain Kodaira fibrations have a fundamental group
which is not residually torsion-free nilpotent and asks whether there exist such fibra-
tionswith residually nilpotent (or residually torsion-free nilpotent) fundamental group.
Here we observe that there are plenty of Kodaira fibrations with residually nilpotent
fundamental group. This follows from Johnson’s result discussed earlier, together with
a result by Paris [58]. This is also a result about surface bundles in general, which is
independent of the consideration of complex structures. We summarize this observa-
tion in the following proposition.

Proposition 50 Let π : X → B be any surface bundle over a surface. We assume
that the monodromy of π is injective. Then the fundamental group of X is virtually
residually p and hence virtually residually nilpotent.

Note that anyfinite covering space of a surface bundle is again a surface bundle (with
a base of higher genus), hence this provides plenty of examples of surface bundles
with residually nilpotent fundamental group.

Proof Let E → X be the fibration whose fiber above a point x ∈ X is the punctured
surface π−1(x) − {x}. By fixing a base point x0 ∈ X and letting F0 = π−1(x0) we
obtain a morphism

ϕ : π1(X , x0) → Mod(F0, x0)

whereMod(F0, x0) is themapping class group of the once-punctured surface (F0, x0).
This group fits into Birman’s short exact sequence:

0 π1(F0) Mod(F0, x0) Mod(F0) 0 .

Using this short exact sequence, one sees easily that ϕ is injective (this observation is
classical; it relies on the fact that π has injective monodromy). Since Mod(F0, x0) is
virtually residually p [58], this completes the proof. 	


As a consequence of Proposition 50, we also obtain the existence of surface bun-
dles over surfaces with non-injective monodromy and virtually residually nilpotent
fundamental group, as shown by the next remark.

Remark 51 Let π : X → B be a surface bundle over a surface with injective mon-
odromy and let q : C → B be a ramified covering with q∗(π1(C)) = π1(B)

(e.g. a double covering with two ramification points of order 2). Consider the base
change Y = {(x, c) ∈ X × C | π(x) = q(c)} of X with respect to q. The projection
πC : Y → C equips Y with the structure of a surface bundle over a surface and the
map Y → X × C induces an embedding π1(Y ) ↪→ π1(X) × π1(C). In particular, it
follows from Proposition 50 that π1(Y ) is virtually residually nilpotent. On the other
hand, the monodromy of πC : Y → C is not injective, since it is the composition
of the epimorphism q∗ : π1(C) → π1(B), which has non-trivial kernel, with the
monodromy of π : X → B.
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Finally, we close this section with an elementary observation about coherence of
surface-by-surface groups, which is certainly well-known to experts (see e.g. [34]).
Recall that a group G is called coherent if any finitely generated subgroup of G is
finitely presented.

Proposition 52 Let π : X → B be any surface bundle over a surface. If the cor-
responding monodromy morphism is not injective, then π1(X) contains a copy of a
direct product of two nonabelian free groups and consequently is not coherent.

Proof Let R � π1(X) be the fundamental group of the fiber of π . By Lemma 30 the
centralizer � of R in π1(X) is a normal subgroup of π1(X) which is isomorphic to
the kernel of the monodromy morphism

π1(B) → Out(R),

and the subgroup generated by R and � is isomorphic to R ×�. If the monodromy is
not injective, � must be isomorphic to an infinite rank free group or a surface group.
Hence, R × � (and also π1(X)) contains a copy of F2 × F2. Non-coherence now
follows from [7]. 	


Let us explain why this observation seems interesting to us in relation to the study
of the coherence of fundamental groups of aspherical Kähler surfaces. The study of
coherence in the context of fundamental groups of complex surfaces was started by
Kapovich [42]. It was later pursued in [33,34,43,59]. The outcome is that if X is an
aspherical Kähler surface with b1(X) > 0, then in most cases π1(X) is not coherent.
More precisely, Friedl and Vidussi [33] prove that π1(X) is not coherent unless it
is virtually the direct product of Z

2 with the fundamental group of a closed surface
or it is the fundamental group of a Kodaira fibration of virtual Albanese dimension
1. In the last case, coherence is an open question. The proposition above shows for
instance that the obvious examples of Kodaira fibrations with Albanese dimension 1
(namely those whose monodromy has finite index in the mapping class group) have
non-coherent fundamental group.
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