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Abstract

Mittag-Leffler condition ensures the exactness of the inverse limit of short exact sequences
indexed on a partially ordered set admitting a countable cofinal subset. We extend Mittag-
Leffler condition by relatively relaxing the countability assumption. As an application we
prove an ultrametric analogous of a result of V.P.Palamodov in relation with the acyclicity
of Fréchet spaces with respect to the completion functor.
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Introduction

In several mathematical theories one encounters objects defined as inverse limits. Typically this
happens in sheaf theory, where the set of global sections of a sheaf is the inverse limit of the local
ones. Analogous structures actually largely appear in several theories such as topos theory, linear
algebra, algebraic geometry, functional analysis and many others. Limits contain crucial information
of the original systems and it is interesting to study what properties are lost in the limit process. One
of these is the exactness of short exact sequences. The importance of this property is illustrated again
by the example of sheaf theory, where there is an entire cohomology theory devoted to “measure”
the default of exactness of the global section functor. More specifically, we are interested here in
a precise criterion, originally due to Mittag-Leffler [Bou07b, II.19, No5, Exemple], ensuring that
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the exactness of short exact sequences is preserved when passing to the limit. Here is the classical
Mittag-Leffler statement1

Theorem 1 (Classical Mittag-Leffler). Let R be a ring with unit element and let (I,6) be a directed2

partially ordered set. Let (ρAi,j : Ai → Aj)i,j∈I , (ρBi,j : Bi → Bj)i,j∈I and (ρCi,j : Ci → Cj)i,j∈I be three
inverse systems of left (or right) R-modules indexed on I. For all i ∈ I consider an exact sequence

0→ Ai
gi−→ Bi

hi−→ Ci → 0 compatible with the transition maps of the systems3. Assume that

i) There exists a cofinal4 subset of I which is at most countable;

ii) For all i ∈ I, there exists j > i such that for all r > j one has

ρAj,i(Aj) = ρAr,i(Ar) . (0.1)

Then, the short sequence of limits

0 −→ lim←−
i∈I

Ai
g−→ lim←−

i∈I
Bi

h−→ lim←−
i∈I

Ci −→ 0 (0.2)

is exact and the first derived functor lim←−
(1)
i∈I of lim←−i∈I vanishes at (Ai)i : lim←−

(1)
i∈I Ai = 0.

The condition ii) of the theorem is not a necessary condition for the vanishing of lim←−
(1)
i∈I . Actually,

if I is the set of natural numbers N = {1, 2, 3, . . .}, then condition ii) characterizes inverse systems

(Ai)i satisfying lim
(1)
i∈I Ai ⊗E = 0 for all R-module E (cf. [Emm96]). On the other hand, condition

i) is quite restrictive. From it, one deduces the existence of a map τ : N → I respecting the order
relation whose image is a cofinal subset of I (cf. Lemma 4.0.12). The existence of τ is a strong
condition because it implies that for all inverse systems (Qi)i∈I of R-modules and for all n > 0
we have a canonical isomorphism lim←−

(n)
i∈I Qi

∼= lim←−
(n)
i∈NQi between the n-th derived functors of lim←−

(cf. [Mit73, Theorem B]). Hence, from a cohomological point of view, inverse systems over I are
indistinguishable from those over N. In particular, the claim implies lim←−

(n)
i∈I Ai = 0, for all integer

n > 2, because this is true for every inverse system of modules indexed by N (cf. [Mit73], see below).

The proof of Mittag-Leffler Theorem deals with the surjectivity of the map h by a quite explicit
set-theoretical argument. Namely, if x = (xi)i∈N ∈ lim←−i∈NCi, then the inverse images h−1

i (xi) ⊂ Bi

form an inverse system of sets, whose inverse limit verifies h−1(x) = lim←−i∈N h
−1
i (xi). The fact that

this limit of sets is not empty follows from the fact that this system is “locally”5 isomorphic to
(Ai)i∈N and condition ii) allows us to replace this system by a system of sets indexed on N with
surjective transition maps, which obviously has a non empty inverse limit.

In this paper we are interested in extending this statement relaxing the countability condition
i) of Theorem 1. The situation is indeed more dangerous because, for instance, there are explicit
non trivial examples of inverse systems of sets indexed on some uncountable poset I with surjective
transition maps whose inverse limit is empty (cf. [Bou06, III.94, Exercice 4-d)]), so that the last part
of the above proof is strongly jeopardized. Indeed, without the countability assumption i), there are
actually few results in literature ensuring the non vanishing of an inverse limit of sets. The more
important ones seem due to Bourbaki [Bou06, III.57, §7, N.4, Théorème 1] and [Bou07b, TG.17,

1Following the tradition, we state it for R-modules. However, it holds more generally for inverse systems of topological
groups and certain Abelian categories as considered in [Roo06].
2The word directed means that for all i, j ∈ I there exists k ∈ I such that k > i and k > j.
3i.e. for all j > i ∈ I one has gi ◦ ρAj,i = ρBj,i ◦ gj and hi ◦ ρBj,i = ρCj,i ◦ hj
4A subset J ⊆ I is cofinal if for all i ∈ I there exists j ∈ J such that j > i.
5The word locally here has a precise meaning. It is possible to associate to (I,6) a topology on I such that sheaves on
I with respect to this topology are exactly inverse systems indexed on I. In this correspondence, the global sections
of a sheaf over I is exactly the inverse limit of the associated systems (cf. [Jen72, p.4], see Section 1).
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§3, N.5, Théorème 1] and impose strong conditions on the sets and the maps, conditions that we
can classify as of finiteness in nature. For instance, it applies to inverse systems of finite sets, finite
groups, Artinian modules (cf. [Bou06, III.60, §7, N.4, Examples]) or to compact topological spaces
[Bou07b, I.64, §9, N.6, Proposition 8].6

These issues show that without countability assumption on I the first derived functor lim←−
(1)
i∈I Ai

possibly not vanishes for an inverse system with surjective transition maps. Therefore, several au-
thors addressed the question of what can be said about the smallest natural number s > 0 such
that for all m > s and all inverse systems (Mi)i∈I one has lim←−

(m)
i∈I Mi = 0 (this number is called

cohomological dimension of the poset I). Barry Mitchel proved that if (I,6) admits a cofinal subset
of cardinal ℵn, and if n is the smallest natural number with this property, then for all k > n + 2,
the k-derived functor lim←−

(k)
i∈I vanishes on every inverse system of R-modules (cf. [Mit73], extending

previous results of J-E. Roos [Roo61, Roo62b, Roo62a, Roo06], [Gob70] and Jensen [Jen72, Propo-
sition 6.2, p.53]). On the other hand, it is known that for any given ring R, one can find a partially
ordered set (I,6) and an inverse system (Mi)i∈I of R-modules indexed by I such that for all n > 0
the n-th derived limit lim←−

(n)
i∈IMi is not zero [Jen72, Proposition 6.1, p.51].

In particular, this last result shows that for the vanishing of lim←−
(1)
i∈I Ai in Theorem 1, some

finiteness condition is really needed either on the set I, or on the objects, or on the transition maps.
For instance, the countability condition i) in Theorem 1 can be seen as a finiteness assumption on
the set I and condition ii) is a finiteness condition on the transition maps. On the other hand, the
quoted statements of Bourbaki, or their consequence for Artinian R-modules, can be considered as
finiteness conditions on the nature of the objects Ai.

Surprisingly enough, if I does not contain any cofinal countable subset and if no condition about
on R and the modules Ai are made, then in our knowledge no statement ensuring the vanishing
of lim←−

(1)
i∈I Ai exists in literature. Nevertheless, in this general context, there are interesting cases

of inverse systems behaving very similarly to Mittag-Leffler ones just because much part of the
restriction maps ρAi,j are isomorphisms and their limit is then “controlled” by some countable subset
of maps. Situations of this type show up for instance in sheaf theory as pull-back of some sheaf on a
Stein space, which actually inspired our approach to this problem. In Section 5 we give an interesting
example provided by the theory of ultrametric locally convex topological vector spaces. We prove an
ulrametric analogous of a result of V.P.Palamodov [Pal72], in relation with the acyclicity of Fréchet
spaces with respect to the completion functor. In that case, a direct set-theoretical attempt as in
Bourbaki is unhelpful as one can easily see.

We provide here two generalizations of Theorem 1 to the case of an uncountable I without
countable cofinal subsets that only involve a finiteness condition on the transition maps of the
system (Ai)i∈I and no conditions on I nor on the objects.

Theorem 2 (cf. Corollary 2.2.4). Let R be a ring with unit element and let (I,6) be a directed
partially ordered set. Let (ρAi,j : Ai → Aj)i,j∈I be an inverse systems of left (or right) R-modules
indexed on I.

Assume that there exists another directed partially ordered set (J,6) together with an inverse
system of R-modules (ρSi,j : Si → Sj)i,j∈J such that

i) There exists a cofinal directed subset I ′ ⊆ I, a cofinal directed subset J ′ ⊆ J and a surjective
map preserving the order relation

p : I ′ → J ′ ; (0.3)

6See also the more general case of linearly compact modules with continuous maps [Jen72, Théorème 7.1, p.57].
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ii) There exists a system of R-linear isomorphisms (ψi : Ai
∼→ Sp(i))i∈I′ such that for all i, j ∈ I ′

with i > j one has a commutative diagram

Ai

	ρAi,j
��

ψi

∼
// Sp(i)

ρS
p(i),p(j)

��
Aj ∼

ψj // Sp(j)

(0.4)

Then, for all integer n > 0, we have a canonical isomorphism

lim←−
i∈I

(n)Ai
∼−−→ lim←−

j∈J

(n)Sj . (0.5)

In particular, if the partially ordered set J and the system (Sj)j∈J satisfy the conditions i) and ii)

of Theorem 1 respectively, then lim←−
(n)
i∈I Ai = 0 for all n > 1.

Theorem 3 (cf. Corollary 3.0.11). Let R be a ring with unit element and let (I,6) be a partially
ordered set. Let (ρAi,j : Ai → Aj)i,j∈I be an inverse systems of left (or right) R-modules indexed on
I.

Assume that there exists a directed partially ordered set (J,6) together with an inverse system
of R-modules (ρTi,j : Ti → Tj)i,j∈J such that

i) There exists a cofinal directed subset I ′ ⊆ I, a cofinal directed subset J ′ ⊆ J and a map
preserving the order relation

q : J ′ → I ′ (0.6)

such that for all i ∈ I ′, the set Ui := {j ∈ J ′, q(j) 6 i}, endowed with the partial order induced
by J ′, satisfies at least one of the following conditions

(a) Ui is empty;
(b) Ui has a unique maximal element r(i);
(c) Ui is directed, it has countable cofinal directed poset J ′i and the system (ρTj,k : Tj → Tk)j,k∈J ′i

satisfies (0.1).

ii) For all i ∈ I ′ there exists an R-linear isomorphisms7 φi : Ai
∼→ lim←−j∈Ui

Tj and for all k, i ∈ I ′

with k > i one has a commutative diagram

Ak

	ρAk,i

��

φk
∼

// lim←−j∈Uk
Tj

ρq∗Tk,i

��
Ai ∼

φi // lim←−j∈Ui
Tj

(0.7)

where the right hand vertical arrow ρq∗Tk,i is deduced by the universal properties of the limits.

Then, for all integer n > 0, we have a canonical isomorphism

lim←−
i∈I

(n)Ai
∼−−→ lim←−

j∈J

(n)Tj . (0.8)

In particular, if the partially ordered set J and the system (Tj)j∈J satisfy the conditions i) and ii)

of Theorem 1 respectively, then lim←−
(n)
i∈I Ai = 0 for all n > 1.

Remark that if J ′ = N the assumptions of Theorem 3 are particularly easy.

7Notice that under condition (a) we have lim←−j∈Ui
Tj = 0, and under condition (b) we have lim←−j∈Ui

Tj = Tr(i).
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It is not hard to see that the assumptions of Theorem 1 imply those of Theorems 2 and 3.
Therefore, they are both generalizations of Theorem 1. Indeed, if I ′ ⊆ I is a countable cofinal
directed subset in Theorem 1, then the setting (I ′ = J, p = q = id, Si = Ai = Ti, ρ

S
i,j = ρTi,j =

ρAi,j , ψi = φi = id) satisfies the assumptions of Theorems 2 and 3. Besides, it is clear that Theorems
2 and 3 allow the set (I,6) to be arbitrarily large, while Theorem 1 artificially forces it to be
relatively small.

The proofs of these results rely on the fact that inverse systems indexed on (I,6) can be seen as
sheaves on a topological space X(I) canonically associated to (I,6). In this correspondence, inverse
limits and their cohomology functors lim←−

(n)
i∈I(−) coincide with sheaf cohomology groups Hn(X(I),−).

This coincidence of theories permits to apply all sheaf theoretic cohomological operations, such
as, for instance, pull-back and push-forward. Indeed, as the reader may recognize, condition ii) of
Theorem 2 expresses the idea that the system (Ai)i∈I′ , interpreted as a sheaf on X(I ′), is isomorphic
to the pull-back of the system (Sj)j∈J ′ by the map p : X(I ′) → X(J ′). While in Theorem 3, the
system (Ai)i∈I′ is isomorphic to the push-forward of (Tj)j∈J by the map q : X(J ′)→ X(I ′). Actually,
Theorem 3 is a special case of a more general statement that holds for possibly non directed partially
ordered sets and which does not assume specific conditions on Uj (cf. Proposition 3.0.5). The fact
that we move the set of indexes I along pull-back and push-forward is in contrast with Theorem
1, where one fixes the set of indexes once for all and there is no cohomological distinction between
cohomology over N and over I. We show indeed that there is no danger in moving I because, in
this particular context, the pull-back and the push-forward operations behave much better than
in a general topological space. Namely, they preserve cohomology under quite mild assumptions.
Informally speaking, even though X(I) is allowed to have an enormous amount of open subsets,
from a cohomological point of view it behaves as a relatively tiny space.

Finally, we observe that a set-theoretical attempt to the proof of Theorems 2 and 3 in similarity
to the quoted claims of Bourbaki is not enough powerful to imply these results. It is necessary to
use Čech cohomolgy of sheaf theory.

Although certainly possible, an extension of these results to the context of inverse limit of non
abelian groups fits in the context of non abelian cohomology of sheaves and goes beyond the scopes
of this paper. Indeed, since this is a result that is used by a wide range of mathematicians, we made
the choice to maintain this paper as self contained and basic as possible.

Acknowledgments. This work was partially done during a sabbatical term of the author at
Imperial College of London from January to March 2020. The author wishes to thank Imperial
College of London and UMI Abraham de Moivre for the hospitality, French CNRS and the ANR
project ANR-15-IDEX-02 which all partially supported this work.

Moreover, the author wishes to thank Stephane Guillermou for useful discussions. Thanks also
to Michel Brion and Jean-Pierre Demailly for having shown interest in this work.

1. Notations

Everywhere in the paper “countable” set means at most countable (i.e. finite or in bijection with
the set of natural numbers N). We fix once for all a ring R with unit element and denote by R-Mod
the category of left R-modules. We denote by S the category of sets.

Let 6 be an partial order relation on a set I. For brevity, we use the terminology poset for
partially ordered set and we may indicate (I,6) by I. For all i ∈ I we set

Λ(i) := {j ∈ I, j 6 i} , (1.1)

V (i) := {j ∈ I, j > i} , (1.2)
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and D(i) = I − V (i) = {j ∈ I, j /∈ V (i)}. We say that the poset I is directed if for all i, j ∈ I there
exists k ∈ I such that k > i and k > j. If I is directed, we say that a subset I ′ ⊂ I is cofinal if for
all i ∈ I we can find i′ ∈ I ′ such that i′ > i, in particular I ′ is a directed poset too. For the moment,
we do not assume I directed, this condition will be specified when necessary.

Following a classical construction, we now define a topological space X(I) associated to a poset
(I,6) (cf. for instance [Jen72, p.4]). The points of X(I) are the elements of I and open subsets are
the subsets U ⊆ I with the property that for all i ∈ U one has Λ(i) ⊆ U (cf. (1.1)). In this topology
arbitrary intersections of open subsets are open and therefore every subset S of X(I) admits a
minimum open subset O(S) = ∪i∈SΛ(i) containing it. In particular, Λ(i) is the smallest open
subset containing i. On the other hand, the closure of a subset S ⊂ X(I) is given by S = ∪j∈SV (j).
If (J,6) is another poset, then a map f : X(I)→ X(J) is continuous if, and only if, f preserves the
order relations, that is, if i 6 j, then f(i) 6 f(j). We also say that f is order preserving. The space
X(I) acquires special properties when I is a directed poset and we will need the following Lemma

Lemma 1.0.1. Let S ⊆ I be a subset. Then, S is a directed poset with respect to the order relation
induced by I if, and only if, so is O(S). 2

Inverse systems and inverse limits. We quote [Jen72] and [Bou06, Chapter III, §7] for
the notations and basic facts about inverse systems of sets or R-modules. We quickly recall some
notations that will be constantly used in the sequel of the paper. An inverse system of sets indexed
on a poset (I,6) is a covariant functor S : (I,6) → S, where (I,6) is interpreted as a category
in the usual way. More concretely, S is a collection (Si)i∈I of sets indexed by I, together with a
family of maps (ρSi,j : Si → Sj)(i,j)∈I2,i>j such that for all i ∈ I we have ρSi,i = IdSi , and for all

i, j, k ∈ I such that i > j > k one has ρSj,k ◦ ρSi,j = ρSi,k. We will use the notation S = (Si)i∈I or

S = (ρSi,j : Si → Sj)(i,j)∈I2,i>j to indicate an inverse system. A morphism g : (Si)i∈I → (Ti)i∈I of
inverse systems is a collection of maps (gi : Si → Ti)i∈I such that for all i, j ∈ I with i > j one has
ρTi,j ◦gi = gj ◦ρSi,j . The inverse limit Ŝ = lim←−i∈I(ρ

S
i,j : Si → Sj) of an inverse system S = (Si)i∈I is the

set of sequences (xi)i∈I ∈
∏
i∈I Si satisfying for all i > j the compatibility condition ρSi,j(xi) = xj .

The projections (ρŜi : Ŝ → Si)i∈I satisfy for all i 6 j the compatibility relation ρSi,j ◦ ρŜi = ρŜj .

If every Si is an R-module and every ρSi,j is an R-module homomorphism, we say that (Si)i∈I is
a inverse system of R-modules. Morphisms between inverse systems of R-modules are morphisms
(gi)i∈I as above where, for all i ∈ I, gi is an R-module homomorphism. In this case the limit is
naturally an R-module. The category R-ModI of inverse systems of R-modules inherits almost all
the properties of R-Mod. In particular, it is abelian and it has enough injective elements. The notion
of exactness in R-ModI has a particular interest for us. A short exact sequence in (R-Mod)I is a

collection of short exact sequences of R-modules (0 → Ai
gi−→ Bi

hi−→ Ci → 0)i∈I indexed on I,
such that for every i, j ∈ I with i > j one has the compatibility relation gj ◦ ρAi,j = ρBi,j ◦ gi and

hj ◦ ρBi,j = ρCi,j ◦ hi. It is well known [Bou07a, II.89, §6, N.1, Proposition 1] that this gives rise to

a left exact sequence of limits 0 → lim←−i∈I Ai
g−→ lim←−i∈I Bi

h−→ lim←−i∈I Ci. In other words, the inverse

limit functor lim←−i∈I : R-ModI → R-Mod is left exact. In particular, we can consider its derived

functors lim←−
(n)
i∈I , n > 0.

Sheaves and cohomology. We quote [God73, Ive86] for the notions about sheaves of R-
modules, or of sets, on a topological space X. Let us just fix some quick notations. Let τX be the
family of all open subsets of X.8 A pre-sheaf of sets F on X is a contravariant functor from τX
to the category of sets and morphisms of pre-sheaves are just morphisms of functors. If U ⊂ V

8τX is seen as a category whose objects are the opens and the morphisms are the inculsions.

6



Uncountable Mittag-Leffler and an application to locally convex vector spaces

are two opens, we denote by ρFV,U : F (V ) → F (U) the restriction map. The elements of F (U) are
called sections of F over U and are often indicated by Γ(U,F ) := F (U). We say that a pre-sheaf
of sets F is a sheaf if for every family of open subsets (Vi)i∈I , Vi ∈ τX which is closed by finite
intersection we have F (V ) = lim←−i∈I Vi, where V = ∪i∈IVi. We denote the category of sheaves on X

by Sh(X). For all x ∈ X, we denote the stalk of F at x by Fx := lim−→x∈U F (U). If every F (U) is

and R-module and every restriction map ρFU,V is an R-linear homomorphism, we obtain a sheaf in
R-modules. We denote the category of sheaves of R-modules on X by R-Mod(X). It is an abelian
category with enough injective objects. A sequence of sheaves of R-modules F → G → H is exact
if for every x ∈ X so is the sequence of stalks Fx → Gx → Hx. Typically, this does not implies the
exactness of F (U)→ S(U)→ H(U) for all open U . The functor Γ(X,−) : R-Mod(X)→ R-Mod is
left exact and its right satellites functors are called the sheaf cohomology groups of F , denoted by
Hn(X,F ) = RnΓ(X,F ) (cf. [God73, §4] for the definition). Here is a recipe to compute them. When
Hn(X,A) = 0 for all n > 1, we say that A is an acyclic sheaf of R-module (cf. [Ive86, Definition 7.4]).
Then, if A• : 0→ F → A0 → A1 → A2 → · · · is an acyclic resolution (i.e. a long exact sequence of
sheaves where every sheaf Ak is acyclic), then Hn(X,F ) can be computed as the cohomology groups
of the complex of R-modules Γ(X,A•) : 0→ Γ(X,A0)→ Γ(X,A1)→ · · · . That is, if we set A−1 = 0,
then for every n > 0 the composite map Γ(X,An−1)→ Γ(X,An)→ Γ(X,An+1) is zero, and if we call
Bn := Bn(Γ(X,A•)) ⊆ Γ(X,An) the image of the first map and Zn := Zn(Γ(X,A•)) ⊆ Γ(X,An)
the kernel of the second map, then Bn ⊂ Zn and we have

Hn(X,F ) = Zn/Bn . (1.3)

A standard and compact notation to indicate this process consist in writing

Hn(X,F ) = RnΓ(X,A•) . (1.4)

Inverse systems indexed by (I,6) and sheaves on X(I). Let (I,6) be a poset. In this
section we recall the strong link between the notions of inverse systems indexed on I and sheaves
on X(I). Let S := (ρSi,j : Si → Sj)i,j∈I be a inverse system of sets indexed on I. We can define a
pre-sheaf S on X(I) by associating to every open subset U of X(I) the set Γ(U, S) := lim←−i∈U Si,
where U has the order relation induced by I. For every inclusion of open subsets V ⊂ U there is an
obvious restriction map ρSU,V : Γ(U, S)→ Γ(V, S) provided by the universal property of the inverse
limit. It is not hard to show that S is automatically a sheaf of sets on X(I) and that every sheaf on
X(I) is of this type (cf. [Jen72, p.4]). The stalk of a sheaf S at a point i ∈ X(I) is S(Λ(i)) and it
coincides with the value Si at i of the associated inverse system. In the sequel we do not distinguish
sheaves on X(I) from inverse systems and we will indicate them by the same symbol S, so that we
write S = (Si)i∈I , S(Λ(i)) = Si, or S(U) = Γ(U, S). In this correspondence, the inverse limit of an
inverse system S = (Si)i corresponds to the global sections of the associated sheaf:

Γ(X(I), S) = lim←−
i∈I

Si . (1.5)

Moreover, if (Ai)i is an inverse system of R-modules, then the derived functors lim←−
(n)
i∈I Ai are defined

as the sheaf cohomology groups Hn(X(I), A)

lim←−
i∈I

(n)Ai := Hn(X(I), A) . (1.6)

1.1. Pull-back and push-forward operations

Let (I,6) and (J,6) be two poset. Let f : I → J be a map preserving the order. Since f : X(I)→
X(J) is continuous, we may consider usual pull-back f−1 : Sh(X(J))→ Sh(X(I)) and push-forward
f∗ : Sh(X(I)) → Sh(X(J)) operations We refer to [God73, Ive86] for their definitions. We bound
ourself to describe them for inverse systems.
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Push-forward. Let S := (ρSi,j : Si → Sj)i,j∈I be an inverse system of sets indexed by I
and let k ∈ J . By definition, for all open subset U ⊆ X(J) the push-forward of S is given by

f∗S(U) = S(f−1(U)) with evident transition maps ρf∗SU,V = ρSf−1(U),f−1(V ) deduced by those of S.

In particular the stalk at a point k ∈ J is given by (f∗S)k = f∗S(Λ(k)) = lim←−j∈f−1(Λ(k))
Sj with

evident transition maps ρf∗Sk,t , k > t ∈ J , obtained by universal property of the limits.

Pull-back. Let now T = (ρTi,j : Ti → Tj)i,j∈J be an inverse system of sets indexed indexed

by J . In usual sheaf theory f−1 is the sheaf associated to the pre-sheaf associating to every open
U ⊆ X(I) the set lim−→f(U)⊂V T (V ). However, in our setting, arbitrary intersections of opens are

opens, therefore lim−→f(U)⊂V T (V ) = T ( O(f(U)) ), where O(f(U)) = ∪i∈UΛ(f(i)). It is indeed easier

to define f−1T as an inverse system indexed by I. Namely, for every i ∈ I, we have (f−1T )i := Tf(i)

and for all i, j ∈ I, i > j, we have ρf
−1T
i,j := ρTf(i),f(j). If I is a subset of J with the order relation

induced by J and if f : I → J is the inclusion, we use the notation T|I := f−1T .9

Lemma 1.1.1. Let f : I → J be a map of directed posets that preserves the order relations. Assume
that the image f(I) is a cofinal subset of J . Then

Γ(X(J),−) ∼= Γ(X(I),−) ◦ f−1.

In other words, for all inverse system T := (Tj)j∈J the natural map lim←−j∈J Tj → lim←−i∈I(f
−1T )i is

bijective.

Usual properties of f−1 and f∗. By the above descriptions, it is not hard to see that the
functor f−1 : R-Mod(X(J)) → R-Mod(X(I)) is exact and f∗ : R-Mod(X(I)) → R-Mod(X(J))
is left exact. On the other hand, it is well known that f−1 is left adjoint to f∗, i.e. for all pair
of sheaves S ∈ R-Mod(X(I)) and T ∈ R-Mod(X(J)) there is a canonical functorial isomorphism
HomR-Mod(X(I))(f

−1T, S)
∼→ HomR-Mod(X(J))(T, f∗S). Moreover, we have canonical unit and counit

morphisms T → f∗f
−1T and f−1f∗S → S respectively. In general, if (F,G) is a pair of adjoint

functors such that F is exact and left adjoint to G, then G sends injective into injective. In particular,
this is the case of f∗ which preserves injective objects. It is not hard to see that f∗ also preserve
flabbiness (cf. Section 2).

A typical application of this fact is the following interpretation of the cohomology groups
Hn(X(I),−). Let us denote by • the poset with an individual element. The category of sheafs
in sets (resp. R-modules) over X(•) is identified with the category of sets (resp. R-modules) itself
by the global functor Γ(X(•),−) : R-Mod(X(•)) ∼→ R-Mod. The poset • is the final object of the
category of posets and we denote by πI : X(I)→ X(•) the projection. Then one has an equality of
functors Γ(X(I),−) = Γ(X(•),−)◦ (πI)∗. By the above identification, usually we drop the notation
Γ(X(•),−) and we simply write

Γ(X(I),−) = πI,∗ . (1.7)

If F is a sheaf in R-modules over X(I) we can translate (1.4) into the notation

Hn(X(I), F ) = RnπI,∗(F ) , (1.8)

where RπI,∗ denotes the derived functor of πI,∗.

9Notice that, when using this notation, the partial order relation of I has to be induced by that of J . The reason is
that the injectivity of f is not enough to ensure good relations between Γ(X(I), f−1F ) and Γ(X(J), F ). For example,
assume that we have the set-theoretic equality I = {i1, i2} = J but i1 and i2 are not comparable in I while i1 6 i2 in
J . Then the identity ι : I → J preserves the order relation and it hence continuous, in this case we do not want to
write F|I = ι−1F .
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2. Some acyclicity results

Unfortunately, in general f−1 does not preserve injectives nor acyclic objects, for this reason it does
not behave well for the computation of the cohomology of sheaves. Similarly, f∗ is not exact and
this makes difficult its use in the computation of the cohomology because some spectral sequences
are needed. However, we provide in the next sections some interesting situations where f−1 and f∗
preserve the cohomology groups.

Let (I,6) a poset. In this section we introduce several types of acyclic sheaves that can be used
to compute the derived functor of the inverse limit by means of (1.4), (1.6) and (1.8).

Flabby and skyscraper sheaves. A sheaf F of R-modules on X(I) is flabby if for every open
subset U ⊆ X(I) the restriction F (X(I))→ F (U) is set theoretically surjective. Flabby sheaves are
acyclic (cf. [God73, Théorème 4.7.1]). It follows from the definition that if f : X(I)→ X(J) is any
continuous map, and if F is a flabby sheaf on X(I), then its push-forward f∗F is flabby. This is a
simple way to construct acyclic sheaves.

In particular, assume that I = • is a point and consider the map σj : X(•)→ X(J) whose image
is a point j ∈ J , then for all R-module A ∈ R-Mod = R-Mod(X(•)), the push-forward σj,∗(A) is
flabby. The sheaf σj,∗(A) is called the skyscraper sheaf at j with value A. It is easily seen that for
k ∈ J we have σj,∗(A)k = A, if k ∈ V (j), and σj,∗(A)k = 0 otherwise, and the transition maps

ρ
σj,∗(A)
k,t are either the identity maps if k > t ∈ V (j), or they equals 0 otherwise. Skyscraper sheaves

are acyclic because σj,∗ preserves flabbiness.

Godement resolution. We now use skyscraper sheaves to define an acyclic resolution of every
sheaf of F of R-modules over X(J) called the Godement resolution of F (cf. [God73, Section 4.2]).
For all open U of X(J) we set Γ(U,Gode(F )) =

∏
j∈U Fj , endowed with the natural projections as

transition maps. It is a sheaf indicated by Gode(F ) and it is given by Gode(F ) :=
∏
j∈J σj,∗σ

−1
j F .

The sheaf Gode(F ) is flabby because skyscraper sheaves are flabby, and a product of flabby sheaves
is flabby. By adjunction, for all j ∈ J , we have a canonical morphism F → σj,∗σ

−1
j F . There-

fore, we have a morphism σF : F → Gode(F ), which is easily seen to be a mono-morphism
(cf. [Jen72, Proposition 1.1]). Now, we may consider the quotient Gode(F )/F and include it into
its Gode(Gode(F )/σF (F )) and repeating inductively this operation we obtain a flabby resolution
0→ F → G0 → G1 → · · · of F which is called the Godement resolution of F .

2.1. Directed posets and weak flabbiness

Flabbiness is not really a common property because, for instance, if we have two disjoint open subsets
U and V of X(I), then F (U ∪ V ) = F (U)×F (V ) and the surjectivity of F (X(I))→ F (U)×F (V )
tells us that any arbitrary pair of sections over U and V have to glue to a global section over X(I).
In particular, a constant sheaf is possibly not flabby (cf. Remark 2.1.4). This problem related to
connectedness is avoided with the introduction of a weaker notion, due to C.U. Jensen, called weak
flabbiness in the context of directed posets which is satisfied by a larger class of sheaves over X(I)
and is more suitable for our purposes.

Definition 2.1.1. Let (I,6) be a poset. We say that a sheaf of R-modules F is weakly flabby if
for every open and directed subset J ⊆ I the restriction F (X(I))→ F (X(J)) is surjective.

This definition is important when I is a directed poset because of the following Theorem

Theorem 2.1.2 ([Jen72, Théorème 1.8, p.9]). Assume that (I,6) is a directed poset. Then any
weakly flabby sheaf on X(I) is acyclic. 2

Remark 2.1.3. Let I be a directed poset. It was proved by C.U.Jensen that, if F is regarded as an

9
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inverse system, then F is weakly flabby on I if, and only if, for any subset J ⊆ I which is directed
with respect to the partial order induced by I, the restriction F (X(I)) = lim←−i∈I Fi → lim←−j∈J Fj
is surjective (cf. [Jen72, Lemme 1.3, p.6]). That is, the open condition in Definition 2.1.1 can be
relaxed if needed.

Remark 2.1.4 (Acyclicity of constant sheaves over directed posets.). Recall that a constant sheaf
on X(I) with value C ∈ R-Mod is by definition the sheaf π−1

I (C), where πI : X(I) → X(•) is
the constant function considered in (1.8). For general X(I), constant sheaves are not flabby nor
acyclic and their cohmology groups contain important information about the topological space X(I).
However, if I is a directed poset, the following corollary shows that they are acyclic.

If I is a directed poset, then any constant sheaf over X(I) is weakly flabby, hence acyclic by
Theorem 2.1.2. 2

2.2. Inverse image and weakly flabbiness

For general topological space, the inverse image functor does not preserve flabbiness. However, in
our context, weak flabbiness is preserved when we have directed posets.

Proposition 2.2.1. Let f : I → J be a map of directed posets that preserves the order relations. If
W is a weakly flabby sheaf on J , then f−1W is weakly flabby.

Proof. Let I ′ ⊆ I be a directed subset of I. We consider f(I ′) ⊆ f(I) as subsets of J with the order
relation induced by J . They are both directed poset. They are possibly not open in J . However, with
an abuse, let us set W (X(f(I))) = lim←−j∈f(I)

Wj and similarly for W (X(f(I ′))). Since W is weakly

flabby, both restrictions W (X(J))→W (X(f(I))) and W (X(J))→W (X(f(I ′))) are surjective by
Remark 2.1.3. Hence, so is the restriction map W (X(f(I)))→W (X(f(I ′))) by composition. Now,
by Lemma 1.1.1 the restriction f−1W (X(I))→ f−1W (X(I ′)) equals the restriction W (X(f(I)))→
W (X(f(I ′))). The claim follows.

In the proof of Proposition 2.2.1, a key ingredient is Lemma 1.1.1 in which the fact that the
posets are directed is a crucial assumption. The following proposition is a similar statement for J
possibly not directed posets.

Proposition 2.2.2. Let f : I → J be a map of posets that preserves the order relations. Assume
moreover that I is directed. Then the following hold:

i) Let A be a skyscraper sheaf on X(J), then the inverse image f−1A of A is weakly flabby.

ii) Let F be a sheaf of R-modules over J and let Gode(F ) be the Godement sheaf associated to F .
Then f−1(Gode(F )) is wealkly flabby.

iii) The inverse image of the Godement resolution of F is a weakly flabby resolution of f−1(F ).

Proof. Let j ∈ X(J) and A ∈ R-Mod. Let us denote by (Ak)k∈J := σj,∗A the skyscraper sheaf at
j ∈ X(J) with value A (cf. Section 2). Since A is flabby on {j}, so is σj,∗A on X(J). We want to
show that F := f−1(σj,∗A) is weakly flabby over X(I). Let U ⊂ X(I) be any open subset which
is directed as a poset with the order relation induced by X(I). Then, we need to show that the
restriction map F (X(I))→ F (U) is surjective. Now, by the definition of f−1, this restriction map

identifies to the natural restriction map ρ
σj,∗A
O(f(X(I))),O(f(U)) : σj,∗A(O(f(X(I))))→ σj,∗A(O(f(U))),

which is surjective because σj,∗A is flabby.

Let us now prove ii). By definition Gode(F ) =
∏
j∈J σj,∗σ

−1
j F . Since f−1 commutes with prod-

ucts and since products of weakly flabby is weakly flabby, it is enough to prove that if S = σj,∗A is

10
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a skyscraper sheaf on X(J), then f−1S is weakly flabby. The claim then follows from i). The third
statement is also an immediate consequence of the exactness of f−1 and of ii).

Theorem 2.2.3. Let f : I → J be a map of directed posets preserving the order relations and such
that f(I) is a cofinal subset of J . Then for all sheaves of R-modules F on X(J) one has

Hn(X(I), f−1F ) = Hn(X(J), F ) . (2.1)

In particular, F is acyclic if, and only if, so is f−1F .

Proof. The proof is straightforward. We use (1.3) to compute the cohomology of f−1F . Let 0 →
F → G0 → G1 → · · · be the Godement resolution of F . Its pull-back 0 → f−1F → f−1G0 →
f−1G1 → · · · is a resolution of f−1F because f−1 is an exact functor. Every term of the sequence is
acyclic by Proposition 2.2.2. Therefore, by (1.3), we know that the complex 0→ Γ(X(I), f−1F )→
Γ(X(I), f−1G0) → Γ(X(I), f−1G1) → · · · computes the cohomology of f−1F . Now, Lemma 1.1.1
ensures that this complex equals 0 → Γ(X(J), F ) → Γ(X(J), G0) → Γ(X(J), G1) → · · · and the
claim follows.

Theorem 2.2.3 holds sometimes for non directed posets as we will see in Proposition 4.0.13 in the
case of Galois connections between posets. Let us now show that Theorem 2.2.3 implies Theorem 2
quite directly, which we translate in term of sheaves.

Corollary 2.2.4 (Theorem 2). Let I and J be directed posets and I ′ ⊆ I and J ′ ⊆ J be cofinal
directed posets. Let p : I ′ → J ′ be a surjective map preserving the order relations. Let A and S be
sheaves of R-modules over X(I) and X(J) respectively. Assume that the restriction A|I′ of A to
X(I ′) is isomorphic to the pull-back p−1(S|J ′) of the restriction S|J ′ of S to X(J ′)

ψ : A|I′
∼−−→ p−1(S|J ′) . (2.2)

Then, for every integer n > 0 one has

Hn(X(I), A) ∼= Hn(X(J), S) . (2.3)

Proof. By Theorem 2.2.3 applied to the inclusions I ′ → I and J ′ → J we have Hn(X(I), A) =
Hn(X(I ′), A|I′) and Hn(X(J), S) = Hn(X(J ′), S|J ′), for all integer n > 0. Hence, we can assume
I = I ′ and J = J ′. Again, Theorem 2.2.3 then ensures Hn(X(J), S) = Hn(X(I), f−1S) and
Hn(X(I), f−1S) ∼= Hn(X(I), A) because A ∼= f−1S.

3. Direct image and exactness

As mentioned, the direct image functor f∗ is not exact in general. However, we now provide condi-
tions ensuring that f∗ preserves the cohomology. Notice that the posets are possibly not directed.

Proposition 3.0.5. Let f : I → J be an order preserving function between posets. Let F be a sheaf
of R-modules over X(I). Assume that for all j ∈ J the restriction F|f−1(Λ(j)) is acyclic as a sheaf
over the open Uj := f−1(Λ(j)). That is, for all integer n > 1 one has

Hn(Uj , F ) = 0 . (3.1)

Then

i) For all injective (resp. flabby) resolution 0 → F → I1 → I2 → · · · of F , the push-forward
0→ f∗F → f∗I

1 → f∗I
2 → · · · is an injective (resp. flabby) resolution of f∗F (i.e. it remains

exact).

11
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ii) For all integer n > 0 one has

Hn(X(J), f∗F ) = Hn(X(I), F ) . (3.2)

Proof. Let 0 → F → I1 → I2 → · · · be an injective (resp. flabby) resolution of F . Let us set
F 0 := F and, for all k > 0, let F k+1 be the cokernel of the inclusion of F k into Ik. We then have
the classical diagram

F 1

&&

F 3

&&
0 // I0

88

// I1

&&

// I2

88

// I3 //

&&

· · ·

F

88

F 2

88

F 4

77

(3.3)

We now apply the functor f∗ to this diagram. We know that f∗I
k remains injective (resp. flabby),

hence acyclic. Now we claim that 0 → f∗F → f∗I
0 → f∗I

1 → · · · is a resolution of f∗F , i.e. this
sequence is exact. This condition can be checked on the stalks. Hence, we have to prove that for all
j ∈ J and for all k > 0, the sequence 0 → (f∗F

k)j → (f∗I
k)j → (f∗F

k+1)j → 0 is exact. As there
is a minimal open subset Λ(j) containing j, then if we set Uj := f−1(Λ(j)), this sequence coincides
with the sequence 0 → F k(Uj) → Ik(Uj) → F k+1(Uj) → 0. In other words we have to show that,
for every k > 0, Γ(Uj ,−) sends the short exact sequence 0 → F k → Ik → F k+1 → 0 into an exact
one. Let us consider the long exact sequence of cohomology groups

0→ H0(Uj , F
k)→ H0(Uj , I

k)→ H0(Uj , F
k+1)→ H1(Uj , F

k)→ H1(Uj , I
k)→ H1(Uj , F

k+1) · · ·
(3.4)

Since Ik is acyclic on Uj and we have Hn(Uj , I
k) = 0 for all k > 0 and all n > 1. Therefore for all

k > 0 and all n > 1 we have an isomorphism

Hn(Uj , F
k+1)

∼→ Hn+1(Uj , F
k) . (3.5)

Now, for k = 0, our assumption gives Hn(Uj , F
0) = 0 for all n > 1 because F = F 0 is acyclic on

Uj . The isomorphism (3.5) ensures by induction that F k is acyclic on Uj for all k > 0. Therefore
the sequence 0→ f∗F → f∗I

0 → f∗I
1 → · · · is exact and it is an injective (resp. flabby) resolution

of f∗F .

It follows then by (1.4) that Hn(X(J), f∗F ) = RnΓ(X(J), f∗I
•). Finally, for all k > 0, the defi-

nition of push-forward gives Γ(X(J), f∗I
k) = Γ(X(I), Ik). Hence the sequence 0→ Γ(X(J), f∗F )→

Γ(X(J), f∗I
0)→ Γ(X(J), f∗I

1)→ · · · coincides with 0→ Γ(X(I), F )→ Γ(X(I), I0)→ Γ(X(I), I1)→
· · · which computes the cohomology of F by (1.4). The claim follows.

Remark 3.0.6. In Proposition 4.0.13 we will treat a special situation where f∗ preserves also
weakly-flabby resolutions.

An interesting case where Proposition 3.0.5 applies is the following

Theorem 3.0.7. Let f : I → J be an order preserving function between posets. Let F be a sheaf
of R-modules over X(I). Assume that for every j ∈ J the set Uj = f−1(Λ(j)) satisfies at least one
among the following conditions :

i) Uj is empty;

ii) Uj has a unique maximal element (i.e. it is of the form Λ(i), for some i ∈ I);

iii) Uj is a directed poset admitting a countable cofinal directed poset I ′j and the system (Ak)k∈I′j :=

F|I′j satisfies Mittag-Leffler condition (0.1).

Then, the conclusions i) and ii) of Proposition 3.0.5 hold.
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Proof. If i) or iii) hold for Uj , we know by Theorem 1 that F|Uj
is acyclic and the condition of

Proposition 3.0.5 is fulfilled. If ii) holds for Uj , then Uj = Λ(i) for some i ∈ I. Now, the functor
Γ(Λ(i),−) is the fiber functor associating to a sheaf F its stalk Fi at i. Therefore, it is an exact
functor and it preserves injective resolutions. Hence, for every sheaf F of R-modules over X(I) the
restriction F|Λ(i) is acyclic on Λ(i). Proposition 3.0.5 then applies.

Remark 3.0.8. It was proved by O.Laudal [Lau72] that the only posets U over which every sheaf
of R-modules is acyclic are those admitting a maximum element (i.e. U = Λ(i) for some i ∈ U).
Therefore, any generalization of Theorem 3.0.7 to more general maps f requires restrictions on the
class of sheaves F that we consider, as we did in condition i). For instance, let us assume that for
all j ∈ J the poset Uj = f−1(Λ(j)) has only finitely many maximal elements. This mens that Uj
is a finite union of open posets of the form Λ(i). In this situation it might be interesting to use
Mayer-Vietoris long exact sequence to obtain combinatoric conditions on F ensuring (3.1).

From another angle, if we assume that I is directed, then it might be interesting to replace it by
a cofinal directed subset I ′. This operation preserve the cohomology groups of F and reduces the
size of the sets f−1(Λ(j)) (which makes possibly easier to verify (3.1)). However, it should be taken
with some precaution because it does not preserve the push-forward (i.e. f∗F 6= f∗(F|I′)). The claim
is the following.

Corollary 3.0.9. Let I be a directed poset and F a sheaf of R-modules over X(I). Let I ′ ⊆ I be
a directed cofinal subset of I and let f : I ′ → J be an order preserving function between posets
such that, for all j ∈ J , the restriction F|f−1(Λ(j)) is acyclic as a sheaf over the open subset U ′j :=

f−1(Λ(j)) ⊂ X(I ′). That is, for all integer n > 1, one has Hn(U ′j , F|X(I′)) = 0. In particular, this
condition is automatically satisfied if one of the conditions i), ii), iii) of Theorem 3.0.7 holds for
F|U ′j . Then, for all integer n > 0 one has

Hn(X(J), f∗(F|X(I′))) = Hn(X(I), F ) . 2 (3.6)

Another interesting case where Corollary 3.0.9 applies is of course given by the poset of natural
numbers N, where every bounded open subset has a maximum element. We obtain the following
corollary. Notice that no cofinality condition is required for the inclusion of f(I) in J .

Corollary 3.0.10 (Case of a totally ordered countable poset). Let I be a poset and F a sheaf of
R-modules over X(I). Assume that I is directed and has a totally ordered cofinal subset N which is
at most countable (i.e. N is finite or isomorphic to (N,6)).10 Let f : N → J be an order preserving
function between posets such that, for all j ∈ J the following condition holds

i) if Uj := f−1(Λ(j)) = N , then the restriction of F|N satisfies Mittag-Leffler condition (0.1).

Then, for all integer n > 0 one has

Hn(X(J), f∗(F|X(N))) = Hn(X(I), F ) . (3.7)

In particular, i) is an empty condition if for every j ∈ J , there exists η ∈ N such that f(η) 66 j (i.e.
f−1(Λ(j)) 6= N , for all j ∈ J). 2

For the benefit of the reader we now translate Theorem 3 in the sheaf language. The role of
I and J is reversed with respect to the statement in the introduction and, even though it is not
necessary, we assume the posets to be directed in order to allow the restriction to a cofinal poset.

10By Lemma 4.0.12, this is equivalent to the simple existence of a cofinal subset in I which is at most countable.
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Corollary 3.0.11 (Theorem 3). Let (J,6) be a directed poset and A a sheaf of R-modules over
X(J). Assume that there exist a directed partially ordered set (I,6) and a sheaf of R-modules T
over X(I) such that

i) There exists a cofinal directed subset J ′ ⊆ J , a cofinal directed subset I ′ ⊆ I and a map
q : I ′ → J ′ preserving the order relation such that for all j ∈ J ′, the set Uj = {i ∈ I ′, q(i) 6 j}
is either empty, or it has a unique maximal element, or it has a countable cofinal directed poset
I ′j and T|X(I′j) satisfies Mittag-Leffler condition (0.1).

ii) We have an R-linear isomorphism of sheaves φ : A|J ′ ∼= q∗T|I′.

Then, for all integer n > 0, we have a canonical isomorphism

Hn(X(J), A) ∼= Hn(X(I), T ) . (3.8)

In particular, if T is acyclic then so is A.

Proof. By Theorem 2.2.3 applied to the inclusions I ′ → I and J ′ → J we have Hn(X(J), A) =
Hn(X(J ′), A|J ′) and Hn(X(I), T ) = Hn(X(I ′), T|J ′), for all integer n > 0. Hence, we can assume
I = I ′ and J = J ′. The claim then follows from Proposition 3.0.9.

4. Galois connections.

In this section we consider Galois connections between posets. This is a particularly lucky situation,
because the operations of push-foward f∗ and the pull-back g−1 coincide and we automatically have
the benefits of both operations (cf. Proposition 4.0.13 below). We begin by the following Lemma
4.0.12 which says that when we have a countable cofinal subset, we automatically have a Galois
connection with a convenient countable totally ordered subset.

Lemma 4.0.12. Let J be a directed poset that admits a countable cofinal subset. Then, there exists
a countable cofinal subset N ⊂ J which is directed and totally ordered. The set N is finite if, and
only if, J has a maximum element (in this case we can chose N equal to the maximum element of
J). Otherwise, N is isomorphic to the poset of natural numbers (N,6). Moreover, if f : N → J
denotes the inclusion, then there exists a map g : J → N preserving the order relations and such
that

i) The map g ◦ f : N → N is the identity map.

ii) For all j ∈ J , f−1(Λ(j)) = Λ(g(j)), that is g(j) is the biggest element of f−1(Λ(j)).

Proof. Let S ⊆ I be a countable cofinal subset and let S = {s1, s2, . . .} be an enumeration of S. Set
η1 := s1 and, for all integer n > 2, chose inductively an ηn ∈ J such that ηn > ηn−1 and ηn > s3. We
now have an increasing sequence (ηn)n in J . Let N ⊂ J be the set of its values. Then N is cofinal in
J because S is. Clearly N is finite and totally ordered if, and only if, the sequence is stationary, and
in this case its maximum is also a maximum of J . Otherwise, we may find a subsequence (ηnk

)k∈N
of (ηn)n which is strictly increasing whose underling subset is N and the map k → ηnk

provides a
bijection between N and N preserving the order relations.

Now, as N is cofinal, we have J = ∪η∈NΛ(η). Since N is discrete and totally ordered, for every
j ∈ J there exists a minimum ηj ∈ N such that j ∈ Λ(ηj). Therefore, we can define a map g : J → N
as g(i) = min(η ∈ N, i ∈ Λ(η)). The claim follows.

Recall that if

f : I −−→ J and g : J −−→ I (4.1)

14
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are two maps between posets that preserve the order relations, then the following conditions are
equivalent

i) For all i ∈ I and all j ∈ J one has f(g(j)) 6 j and g(f(i)) > i;

ii) For all i ∈ I and all j ∈ J we have f(i) 6 j if, and only if, i 6 g(j).

In this case, the pair (f, g) is called a Galois connection between I and J . If I and J are seen as
categories, these conditions express the fact that f is a left adjoint of g and g is a right adjoint of
f . It is not hard to prove that a map f : I → J , respecting the partial order relations, admits a
right adjoint g : J → I if, and only if, the following condition holds

iii) For all j ∈ J , there exists ij ∈ I such that f−1(Λ(j)) = Λ(ij).

In this case, ij is the value of g at j, so that for all j ∈ J we have

f−1(Λ(j)) = Λ(g(j)) . (4.2)

In particular, when the right adjoint g exists, it is uniquely determined by (4.2). Symmetrically,
g : J → I admits a left adjoint if, and only if, for all i ∈ I there exists ji ∈ J such that g−1(V (i)) =
V (ji) and in this case f(i) = ji.

Proposition 4.0.13. Let (f, g) be a Galois connection as above. Then

i) The functors f∗ : Sh(X(I)) → Sh(X(J)) and g−1 : Sh(X(I)) → Sh(X(J)) coincide. In
particular, for every sheaf F of R-modules over X(I) we have

f∗F = g−1F . (4.3)

ii) The conditions of Theorem 3.0.7 are fulfilled and for every sheaf F of R-modules over X(I)
the conclusions i) and ii) of Proposition 3.0.5 hold.

iii) If I and J are both directed posets, then f∗ preserves weakly flabbiness. In particular, it sends
weakly flabby resolutions of F into weakly flabby resolutions of f∗F .

Proof. Let us see F as an inverse system (ρFi,j : Fi → Fk)i,k∈I . Then, by definition, for all j ∈ J both

f∗F and g−1F verify (f∗F )j = Fg(j) = (g−1F )j and, for all j′ > j, one has ρf∗Fj′,j = ρFg(j′),g(j) = ρg
−1F
j′,j .

Items i) and ii) follow immediately. In particular, f∗ is exact. To prove iii), it is then enough to show
that if W is a weakly flabby sheaf of R-modules over I, then so is f∗W on J . Since f∗W = g−1W ,
this follows from Proposition 2.2.1.

Remark 4.0.14. Lemma 4.0.12 admits the following generalization which does not involve any
cofinality condition. Let J be a directed poset and f : N→ J be an order preserving map satisfying
the following condition:

• For all j ∈ J , f−1(Λ(j)) 6= N (i.e. for all j ∈ J there exists n ∈ N such that f(n) 66 j).

Then, by item iii) before (4.2), f admits a right adjoint g : J → N and Proposition 4.0.13 applies.

5. An application to p-adic locally convex spaces

In this section we give an application to ultrametric locally convex spaces. It is an ultrametric
analogous of a result of V.P.Palamodov [Pal72].

An ultrametric absolute value on a field K is a function |.| : K → R>0 verifying |0| = 0, |1| = 1,
|xy| = |x||y|, and |x+ y| 6 max(|x|, |y|) for all x, y ∈ K. From now on we assume that the absolute
value is non trivial (i.e. there exists x 6= 0 such that |x| 6= 1) and that K is complete with respect
to the topology defined by |.|. We denote by OK = {x ∈ K, |x| 6 1} its ring of integers.
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An ultrametric seminorm on a K-vector space V is a function u : V → R>0 such that for all
r ∈ K and x, y ∈ V one has u(rx) = |r|u(x) and u(x + y) 6 max(u(x), u(y)). A locally convex
space over K is a topological vector space V whose topology is defined by a family of ultrametric
semi-norms. Recall that V has a basis of open neighborhoods of 0 formed by OK-submodules, we
call them convex opens.

A K-linear continuous map f : V → W between locally convex spaces is strict if the topology
induced by W on the image of f coincides with the quotient topology of V .

Proposition 5.0.15. Let f : V → W be a K-linear strict map between Hausdorff complete locally
convex spaces. If the kernel of f is a Fréchet space, then the image of f is a Hausdorff complete
closed subspace of W .

Proof. Let V ′ be the kernel of f and V ′′ its image. Since f is strict, it is enough to show that
V ′′ is Hausdorff and complete with respect to the quotient topology induced by V . For this, we
prove that the strict short exact sequence 0 → V ′ → V → V ′′ → 0 remains strict exact after the
Hausdorff-completion operation. Indeed, V ′ and V are already Hausdorff and complete. Let I be the
family of convex neighborhoods of 0 in V . The set I is naturally partially ordered by the inclusion
of subsets. For all D ∈ I, set D′ := D ∩ V ′ and denote by D′′ the image of D in V ′′. The Hausdorff
completion of the sequence 0 → V ′ → V → V ′′ → 0 is then the inverse limit of the sequences
0 → V ′/D′ → V/D → V ′′/D′′ → 0 for D running in I. Let J be the set of open neighborhoods
of V ′ of the form p(D) = D ∩ V ′ with D ∈ I. The map p : I → J is surjective and the inverse
system (V ′/D′)D∈I is the pull-back of (V ′/D′)D′∈J by p : I → J . The conditions of of Corollary
2.2.4 are fulfilled. It follows that for all n > 0 we have lim←−

(n)
D∈I V

′/D′ = lim←−
(n)
D′∈J V

′/D′. Now, since

V ′ is Hausdorff and Fréchet, then J has a countable cofinal subset N . The transaction maps being
surjective, Theorem 1 applies and lim←−

(n)
D′∈J V

′/D′ = 0 for all n > 1. The claim follows.
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Bou06 Nicolas Bourbaki, Éléments de mathématique. Théorie des ensembles., reprint of the 1970 original
ed., Berlin: Springer, 2006 (French).
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