Exponents for irregular differential modules A Tannakian approach to the theory of exponents

(beginning of a work in progress with C.Lazda and A.Pál)

Andrea Pulita

Université Grenoble Alpes

Padova, 20th September 2022

Table of contents

Introduction

- Why exponents for irregular modules?
- Some inconvenient facts about the existing theory
- Remind of the theory over a field of power series
 - The formal Newton polygon associated with a differential module
 - Decomposition by the slopes
 - Decomposition of the slope zero part by the exponents
 - Turrittin-Hukuhara-Levelt theorem
 - Tannakian group
 - Exponents for irregular differential equations
- p-adic exponents for irregular differential modules over the Robba ring
 - The Robba ring as a counterpart of K((t))
 - Frobenius structure
 - No cyclic vector nor slopes in *p*-adic (not always)
 - Slope theory in presence of Frobenius
 - Regular(=Robba) modules in p-adic and their p-adic exponents
 - *p*-adic Turrittin (with Frobenius)
 - Analogies and differences with respect to K((t))
 - p-adic tannakian exponents (case of Frobenius)
 - p-adic exponents (without Frobenius)
 - Really regular modules
 - p-adic Tannakian exponents in general
- Bibliography

Introduction

Let K be an algebraically closed field, complete with respect to a non archimedean absolute value.

Exponents are invariants associated with differential equations of the form

$$t \frac{d}{dt}(y(t)) = a \cdot y(t) , \qquad a \in K$$

The solution is symbolically given by

$$y(t) = t^a$$
.

Hence the terminology exponent associated with this equation.

There is a definition of the exponents only for **regular** differential modules.

We want to extend this definition to irregular one.

This is useful in *p*-adic cohomology.

Over the complex numbers, exponents are useful to **classify regular** differential modules (Riemann-Hilbert as in the talk of Piotr Achinger).

Exponents are also a necessary tool to investigate on the **algebraicity** of the solutions. Indeed,

$$y(t) = t^a$$

is an algebraic function only when *a* is **rational**.

For **regular** differential equations over K((t)), we find a definition in E.L. Ince [Inc39], A.H.M.Levelt [Lev61], P.Deligne [Del70], N.M.Katz [Kat70].

For **irregular** differential equations over K((t)), there is a definition in the Book by Y.André and F.Baldassarri [ABC20] which I discuss later on.

In *p*-adic we may have **infinite dimensional de Rham cohomology spaces**.

Lemma

The differential equation $t \frac{d}{dt}(y(t)) = a \cdot y(t)$ has a finite dimensional de Rham cohomology over \mathbb{G}_m if, and only if, a is not a p-adic **Liouville** *number*.

We skip the definition of Liouville numbers which is technical. We only point out that

- the set of Liouville numbers is not a group
- Liouville numbers are p-adic numbers in Z_p
- Liouville numbers are not algebraic over ${\mathbb Q}$

Introduction

In this context, exponents have been introduced by Christol and Mebkhout [CM97] mainly to deal with the problem of **finite dimensionality of the cohomology**.

As well as in the complex case, they are also related to the problem of the **algebraicity of solutions**.

The existing definition in *p*-adic is given by an iterative process which is quite **complicated**. A simplification was obtained by B.Dwork [Dwo97].

The two definitions are **potentially different** and nobody verified their equivalence. The definition of Dwork is the one adopted today.

Since then, important improvements have been obtained by K.S.Kedlaya and A.Shiho [Ked15, KS17].

Our aim is twofold, we wish to **simplify** the existing definition; on the other hand, we wish to generalize it to **irregular** diff.eq.

We (mainly) deal with two kind of rings :

- R = K((t)), with K =a field with discrete topology
- $R = \mathcal{R}$ the Robba ring over K =a field complete with respect to an ultrametric absolute value (see later for the definition).

In fact, this is the same ring : the Robba ring **equals** K((t)) when the absolute value is trivial.

Denote the category of differential modules over R by

d - Mod(R)

Why exponents for irregular modules?

"Hidden" exponents

Assume that $M \in d - Mod(R)$.

In several statements, one encounters condition for the exponents of the Regular part of M, but also of the Regular part of $End(M) = M \otimes M^*$.

This is because we may have a large regular part of $M \otimes M^*$ even when the regular part of M is little or = 0.

The exponents of the regular part of $M \otimes M^*$ are supposed to be the differences of M, but, in the existing theory, M does not has "**enough exponents**", because no definition exists for its irregular part.

Some inconvenient facts about the existing theory

In *p*-adic :

Lemma

Let $a \in K$. If M is the module associated with $t\frac{d}{dt} - a$, then

M is regular
$$\iff a \in \mathbb{Z}_p$$

M has a Frobenius
$$\iff a \in \mathbb{Z}_p \cap \mathbb{Q}$$

Problem

Exponents are not always defined for $t\frac{d}{dt} - a$ when $a \in K$ is general.

We expect from any reasonable definition that, for all $a \in K$

$$a =$$
exponent of $(t \frac{d}{dt} - a)$.

But, if $a \notin \mathbb{Z}_p$ there is no definition at all.

In the original spirit of Robba-Christol-Mebkhout, exponents are useful to **test the finite dimensionality of de Rham cohomology**.

Namely, for a **regular** module $M \in d - Mod(\mathcal{R})$, they prove that we have the following implications

Let $M \in d - Mod(\mathcal{O}(I))$ be a Regular (=Robba) module.

In order to have finite dimensionality of de Rham cohomology, the assumption M **is extension of rank one sub-quotients** is enough.

So, there is no need of Frobenius, nor rationality, nor DNL condition.

In this case our definition will coincide with the classical one :

Tannakian exponents = exponents

From a cohomological point of view, do we really need the complicate definition ? $~\rightarrow~$ Not really.

Incompatibility with the formal definition

Assume that $I =]0, \varepsilon[$ and M has a **meromorphic singularity at** t = 0. In this case we may consider two modules

 $\widehat{M} := M \otimes K((t))$ = the formal completion of M

 $M_0:=M\otimes \mathcal{R}_0$

where

$$\mathcal{R}_0 = \bigcup_{\varepsilon > 0} \mathcal{O}(]0, \varepsilon[)$$
.

Then, it is possible to extend the definition of Christol-Mebkhout-Dwork-Kedlaya-Shiho to this case. But

Problem

The regular part of $\widehat{M}(0)$ and the regular part of M_0 possibly **do not** have the same dimension. How to compare their exponents?

Want a definition which gives a multi-set of exponents with r = rank(M) elements in both cases, and which makes the two definitions compatible.

AIM :

If r = rank(M), we want exponents to be

- a multi-set of *r* constants $\{a_1, \ldots, a_r\}$, with $a_i \in K/\mathbb{Z}$
- invariant by isomorphisms of differential modules
- compatible with direct sums, tensor products, internal homs and duals.

Moreover, we want a **uniform definition** working over K((t)) and over the Robba ring \mathcal{R} .

FACT :

The definition will not be intrinsic. However, the existing definition in *p*-adic, is relatively not intrinsic neither (it depends on some choices).

Remind of exponents over a field of power series

Let $M \in d - Mod(K((t)))$ of rank *r*. It is possible to use **cyclic vector theorem** to obtain an operator

$$L = \sum_{i=0}^{r} f_i \nabla^i$$

associated with M.

From the *t*-adic valuations of the coefficients f_i we may recover a polygon called **formal newton polygon**.

Problem : In *p*-adic we do not have cyclic vector.

There is another interpretation of this polygon, which will be relevant in p-adic.

Let us consider on *K* the trivial absolute value, then we may interpret every power series $f(t) = \sum_{i \ge n} a_i t^i \in K((t))$ as a **bounded function** on the punctured open unit disk.

For all $\rho \in]0, 1[$, we may find a complete non trivially valued field (K', |.|')/(K, |.|) whose absolute value extends that of *K* and such that there exists a point $x_{\rho} \in K'$ with $|x_{\rho}|' = \rho$.

The series $f(t) \in K((t))$ converge at x_{ρ} as $|a_i x_{\rho}^i|' \leq \rho^i \rightarrow 0$ (indeed $|a_n|' = |a_n|$ is either equal to 0 or 1, because the valuation of *K* is trivial).

The formal Newton polygon

This means that, over K', we can find solutions of our differential module M around x_{ρ} .

More precisely, we can consider the largest open disk $D_i := D(x_{\rho}, R_i) \subset K'$ over which $\text{Ker}(\nabla \otimes 1 : M \otimes_K K' \to M \otimes_K K')$ has at least r - i + 1 linearly independent solutions.

One has (recall that r = rank(M))

$$D_1 \subseteq D_2 \subseteq \cdots \subseteq D_r$$
$$R_1 \leq R_2 \leq \cdots \leq R_r$$

Now, it is a theorem that these numbers do not depend on the choice of x_{ρ} nor K'. The interesting fact is that

Theorem

Let s_i be the *i*-th slope of the **formal Newton polygon of the operator** L. Then, for all $\rho \in]0, 1[$

$$R_i(\rho) = \rho^{1+s_i}$$

The above equality can be written as

 $\log(R_i(\rho)/\rho) = s_i \cdot \log(\rho) , \qquad \rho \in]0,1[$

which means that with respect to the coordinate $\tau := \log(\rho)$ we have

- The function τ → log(R_i(e^τ)/e^τ) = s_i · τ is a line passing through the origin (=Solvability property)
- the slope of that line is s_i =the *i*th slope of the Formal Newton polygon of L.

A differential module over K((t)) is **pure of slope** $s \in [0, +\infty[$ if we have $s_i = s$ for all i = 1, ..., rank(M).

Theorem (Formal decomposition)

We have a decomposition of M by the slopes

$$M = \bigoplus_{s} M(s)$$

where M(s) is a submodule of M which is pure of slope s.

If M is pure of slope 0, we say that it is a **REGULAR** module.

Theorem (Fuchs decomposition theorem)

The slope zero part M(0) is successive extension (in the sense of exact sequences) of **rank one** differential modules isomorphic to some modules N(a) defined by the operator $(t \frac{d}{dt} - a)$.

Every $a \in K$ such that N(a) appears in a Jordan-Hölder sequence of M(0) is called **exponent** of M(0). The class $a \in K/\mathbb{Z}$ is an invariant.

Let $r' := \operatorname{rank} M(0)$ and $a_1, \ldots, a_{r'}$ be the multi-set of the exponents associated with M(0).

Then, the image in K/\mathbb{Z} of the multi-set $\{a_1, \ldots, a_{r'}\}$ is an invariant of the isomorphism class of M(0).

The theory classifying the isomorphism classes of slope zero modules is similar to Jordan classification of endomorphisms of finite dimensional vector spaces.

Theorem

Let $\operatorname{Reg}(K((t)))$ be the category of regular differential modules. Then

 $\operatorname{Reg}(\mathcal{K}((t))) \cong \operatorname{Rep}_{\mathcal{K}}(\mathbb{Z}^{env})$

where \mathbb{Z}^{env} is the algebraic envelop of \mathbb{Z} .

We have

$$\mathbb{Z}^{env} = \mathbb{G}_a \times Z$$

with

 $Z := \operatorname{Hom}(K/\mathbb{Z}, K^{\times}) = \operatorname{Gal}^{\operatorname{diff}}(K((t))[t^a, a \in K]/K((t)))$

Slogan

Diff. eq.	Solution	Tannakian Group	Character group
$(t\frac{d}{dt})(y) = ay$	t ^a	$Z = Hom(K/\mathbb{Z}, K^{\times})$	$K/\mathbb{Z} = Hom(Z, K^{\times})$

The group \mathbb{G}_a "describes" the extensions of such rank one diff.eq.

Turrittin-Hukuhara-Levelt theorem

For all $n \ge 1$ we can pull-back M over $K((t^{\frac{1}{n}}))$:

$$\mathbf{M}_n := \mathbf{M} \otimes_{\mathcal{K}((t))} \mathcal{K}((t^{\frac{1}{n}}))$$

It is a differential module over $K((t^{\frac{1}{n}}))$.

Theorem

There exists $n \ge 1$ such that M_n is successive extension of **rank one** differential modules. Moreover

• The slopes are multiplied by n :

$$M(s)_n = M_n(ns)$$

- The exponents of M(0) are also multiplied by n.
- M_n is trivial if and only if M is direct sum of rank one modules of the form N(a) with a ∈ ¹/_nZ.

Theorem

There is an equivalence of categories

$$d - \operatorname{Mod}(K((t))) \cong \operatorname{Rep}_{K}(G)$$

where G is a pro-algebraic group satisfying

• there is an exact sequence

$$1 \to \mathcal{T} \to \textbf{\textit{G}} \to \mathbb{Z}^{\textit{env}} \to 1$$

where T is a **pro-torus**.

• G is a semi-direct product

$$G = \mathcal{T} \rtimes \mathbb{Z}^{env}$$

(1)

Description of ${\mathcal T}$

The group ${\mathcal T}$ is

- abelian ;
- It is the dual of the group

$$\mathcal{Q} = \bigcup_{n \ge 1} t^{-1/n} K[t^{-1/n}] .$$

$$\mathcal{T} = \textit{Hom}(\mathcal{Q},\textit{K}^{\times})$$

Slogan

Diff. eq.	Solution	Tannakian Group	Character group
$oldsymbol{q}\in\mathcal{Q}$			
y' = q'(t)y	$\exp(q(t))$	$\mathcal{T} = \textit{Hom}(\mathcal{Q}, \textit{K}^{ imes})$	$\mathcal{Q} = \textit{Hom}(\mathcal{T}, \textit{K}^{\times})$

The filtration of Q by the degree induces a filtration on G.

The existing definition of exponents is given only for **regular** (i.e. slope zero) differential modules.

Idea :

- Exponents for **irregular** differential modules are well defined in rank one
- Use Turrittin's theorem plus Galois descent to reduce to rank one case.

In the end, we will obtain a direct Tannakian definition bypassing this process.

Exponents for irregular differential equations

Rank one irregular differential modules Let

$$y' = (q'(t) + \frac{a}{t}) \cdot y, \qquad q' \in t^{-1} \mathcal{K}[t^{-1}]$$

be a rank one diff. equation.

We have

$${\it Pic}({\it K}((t)))\cong t^{-1}{\it K}[t^{-1}]\oplus rac{{\it K}}{{\mathbb Z}} \; ,$$

so the class of *a* in K/\mathbb{Z} is an invariant of the isomorphism class.

Definition (Exponents in rank one)

We call the image of *a* in K/\mathbb{Z} the exponent of this differential module.

The definition extends trivially to successive **extensions** (in the sense of exact sequences) of rank one differential modules.

Exponents for irregular differential equations

Reduction to Rank one case

Let $K((t^{1/n}))/K((t))$ be a finite étale extension such that $M_n = M \otimes_{K((t))} K((t^{1/n}))$ is extension of rank one differential modules.

How do we define the exponents of M?

We know that the pull-back $M \mapsto M_n$ sends a rank one regular differential module $N(a) = (t \frac{d}{dt} - a)$ into

 $N(a)_n = N(na)$.

Therefore, it would be natural to define the exponents of M as those of M_n divided by *n*. This is actually the approach of [ABC20].

However, **this kills rational exponents** as we have the exact sequence

$$0 \to \mathbb{Z}[1/n]/\mathbb{Z} \to K/\mathbb{Z} \xrightarrow{a \mapsto na} K/\mathbb{Z} \to 0$$

In particular, this will be a problem in *p*-adic, as **all** the exponents are rational in presence of a Frobenius structure.

This permits to associate to any differential module M an **intrinsic exponent** as a multi-set in

 K/\mathbb{Q} .

We now propose a definition which is not canonical, but furnishes naturally exponents in K/\mathbb{Z} .

Remember that

$$Reg(K((t))) \cong Rep_K(\mathbb{Z}^{env})$$

We need to start from a representation of *G* and find back a representation of \mathbb{Z}^{env} .

Now, $G = \mathcal{T} \rtimes \mathbb{Z}^{env}$. We do not have knowledge of a theory capable to produce a **canonical** functor

$$\mathbf{R} : \operatorname{Rep}_{\mathcal{K}}(G) \longrightarrow \operatorname{Rep}_{\mathcal{K}}(\mathbb{Z}^{env}).$$

There is a non canonical solution : consider the exact sequence

$$1 \to \mathcal{T} \to G \to \mathbb{Z}^{\textit{env}} \to 1$$

Chose a section $s: \mathbb{Z}^{env} \to G$.

Then, the functor **R** can be just the restriction to $s(\mathbb{Z}^{env})$.

Definition (Tannakian exponents over K((t)))

Let M be a differential module over K((t)).

See M as a representation of G.

The restriction of M to $s(\mathbb{Z}^{env}) \subset G$ is a representation in

 $M_{|s(\mathbb{Z}^{env})} \in \operatorname{Rep}(\mathbb{Z}^{env})$

It corresponds to a **regular** differential module in Reg(K((t))) whose exponent multi-set is called the **Tannakian exponent** of M.

In a suitable way, the above definition is compatible with Turrittin result.

It is clear that the exponent multi-set so obtained is

- invariant by isomorphisms of differential modules
- compatible with
 - direct sums,
 - exact sequences,
 - tensor products,
 - internal homs,
 - duals

p-adic exponents for irregular differential modules over the Robba ring

The Robba ring as a counterpart of K((t))

Recall that (K, |.|) is an algebraically closed complete valued field w.r.t. a non archimedean absolute value |.|.

Definition

Let $I \subset \mathbb{R}_{>0}$ be an interval. Define the ring

 $\mathcal{O}(I)$

of analytic functions on the annulus $\{|t| \in I\}$ as the ring of series

$$f(t) = \sum_{i \in \mathbb{Z}} a_i t^i$$

where $a_i \in K$ and such that *f* converges for all *t* satisfying $|t| \in I$. Define the Robba ring \mathcal{R} as

$$\mathcal{R} := \bigcup_{0 < e < 1} \mathcal{O}(]e, 1[) .$$

- Within rigid cohomology, \mathcal{R} is an appropriate lifting in characteristic 0 of a field of power series in characteristic *p*.
- If the valuation of K is trivial, we actually find

$$\mathcal{R} = K((t)) .$$

Frobenius structure on differential modules over \mathcal{R}

In the sequel, we consider the categories

 $d - Mod(\mathcal{O}(I))$ and $d - Mod(\mathcal{R})$

Moreover, we pay a particular attention to the category

 $d - Mod(\mathcal{R})^{(arphi)}$

of differential modules over ${\mathcal R}$ with an **unspecified Frobenius** structure.

This means that we chose a Frobenius map $\varphi : \mathcal{R} \to \mathcal{R}$ and we assume that our differential modules M have a unspecified action of φ commuting with the connection. However, we do not ask the morphisms of the category to commute with the Frobenius action. (Please forgive the abuse here : in some theorems *K* needs to be discretely valued, but this abuse can be easily fixed ...)

What is a regular differential module over these rings?

Recall that over K((t)) : regular = slope zero

What is the slope in *p*-adic?

Over the above rings, we have **no cyclic vector theorem.**

For general differential modules over O(I) there is no notion of **slopes**. Not even if you use the definition with the radii o convergence. However, for differential modules in $d - Mod(\mathcal{R})^{(\varphi)}$, we have the same **solvability property** as in the formal case.

Moreover, for differential modules M in $d - Mod(\mathcal{R})^{(\varphi)}$, we have a decomposition by the slopes

$$M = \oplus_{\boldsymbol{s} \geq \boldsymbol{0}} M(\boldsymbol{s})$$

Exponents for Regular differential modules.

Christol-Mebkhout, after Robba, proposed then the following definition

Definition (Robba)

A module $M \in d - Mod(\mathcal{O}(]a, b[))$ (possibly with no Frobenius) is **regular** (or **Robba**) if all its solutions converge with **maximal radius**. If $M \in d - Mod(\mathcal{R})^{(\varphi)}$, this means M = M(0).

The following is due to [CM97, Dwo97, Ked15, KS17].

Theorem (Existence of exponents)

For every **regular** $M \in d - Mod(\mathcal{O}(]a, b[))$, there exists an exponent.

The exponent is an element of a certain quotient of $(\mathbb{Z}_p/\mathbb{Z})^{rank(M)}$.

Theorem (p-adic Fuchs theorem)

Let $M \in d - Mod(\mathcal{O}(]a, b[))$ be a **regular** module. If the exponent satisfy the **DNL** condition (=the Exponents and their differences are non Liouville), then M is extension of **rank one** sub-quotients.

Andrea Pulita (Université Grenoble Alpes)

A *p*-adic Turrittin holds for $d - Mod(\mathcal{R})^{(\varphi)}$

We also have an analogous of Turrittin theorem.

- Let *k* be the residual field of *K*.
- Let $I := Gal(k((t))^{sep}/k((t)))$.
- Finite separable extensions of k((t)) lift canonically into finite étale extensions of R.

Theorem (Y.André-K.S.Kedlaya-Z.Mebkhout)

For every $M \in d - Mod(\mathcal{R})^{(\varphi)}$, there is a finite étale extension \mathcal{R}' of \mathcal{R} coming from a finite separable extension of k((t)) such that $M \otimes_{\mathcal{R}} \mathcal{R}'$ is unipotent (i.e. it is extension of rank one trivial sub-quotient).

The Tannakian group G_p of $d - Mod(\mathcal{R})^{(\varphi)}$ is

$$G_{p} = \mathcal{I} \times \mathbb{G}_{a}$$

Analogies and differences with respect to K((t))

		d - Mod(K((t)))	$d - Mod(\mathcal{R})$	$d - \mathit{Mod}(\mathcal{R})^{(arphi)}$
ĺ	Existence of			
	cyclic vector	Yes	?	Yes
ĺ	Slopes	Yes	?	Yes
Ì	Decomposition			
	by the slopes	Yes	?	Yes
	Notion of			
	Regular			
	diff. mod.	Yes	Yes (?)	Yes
ĺ	Decomposition			
	of $M(0)$ by the			
	exponents	Yes	?	Yes
ĺ	Tannakian			
	group	$\textit{G} = \mathcal{T} times \mathbb{Z}^{\textit{env}}$	G =?	$\mathit{G}_{\!\mathcal{P}} = \mathcal{I} imes \mathbb{G}_{\!\mathcal{a}}$
ſ	Regular			
	Tannakian			
	group	$\mathbb{Z}^{\mathit{env}} = Z imes \mathbb{G}_a$?	$\widehat{\mathbb{Z}}' imes \mathbb{G}_{a}$

Andrea Pulita (Université Grenoble Alpes)

Remind that

$$G = \mathcal{T} \rtimes \mathbb{Z}^{env}$$
, $\mathbb{Z}^{env} = Z \times \mathbb{G}_a$.

We actually have for $d - Mod(\mathcal{R})^{(\varphi)}$ a similar situation.

$$\mathcal{I} = \mathcal{P} \rtimes \widehat{\mathbb{Z}}'$$

where $\widehat{\mathbb{Z}}' = \prod_{\ell \neq p} \mathbb{Z}_{\ell}$ and \mathcal{P} is the wild inertia subgroup of \mathcal{I} .

So that

$$G_{\rho} = \mathcal{I} \times \mathbb{G}_{a} = \mathcal{P} \rtimes (\widehat{\mathbb{Z}}' \times \mathbb{G}_{a}).$$

Regular differential modules

A differential module $M \in d - Mod(\mathcal{R})^{(\varphi)}$ is **regular** if, and only if, it corresponds to a representation of the group

$$G_{
m p}/{\cal P}=\widehat{\mathbb{Z}}' imes \mathbb{G}_{a}$$
 .

p-adic Tannakian exponents for irregular modules in $d - \operatorname{Mod}(\mathcal{R})^{(\varphi)}$

Definition (Tannakian Exponents for irregular modules in $d - Mod(\mathcal{R})^{(\varphi)}$)

Consider a section $\widehat{\mathbb{Z}}' \to \mathcal{I}.$ This produces a section

 $s : \widehat{\mathbb{Z}}' \times \mathbb{G}_a \to G_p$

Let $M \in d - Mod(\mathcal{R})^{(\varphi)}$, which we see as a representation of G_{ρ} .

The restriction

$$\mathsf{M}_{|s(\widehat{\mathbb{Z}}' imes \mathbb{G}_a)}$$

corresponds to a regular differential module (in the sense of Robba), which has a well defined exponent. We call it the **Tannakian exponent** of M.

It is clear that, this is compatible with all the standard operations such as

- o direct sum
- tensor product
- dual
- internal Hom
- ...

p-adic Tannakian exponents without Frobenius

Really regular modules

Let $R \in \{ K((t)), \mathcal{R}, \mathcal{O}(I) \}.$

Definition (Really regular modules)

A differential module is **really regular** if it is **extension of rank one** sub-quotients of the form $(t\frac{d}{dt} - a)$.

Theorem

Let

RReg(R)

be the full sub-category of d - Mod(R) whose objects are isomorphism classes of **really regular modules**.

Then the Tannakian group of RReg(R) is

 \mathbb{Z}^{env}

Universal property of Z^{env}

The group \mathbb{Z}^{env} is a **projective object** in the category of pro-algebraic groups.

In particular, for every surjective map $\boldsymbol{G} \to \mathbb{Z}^{\textit{env}}$ there is a section

$$s : \mathbb{Z}^{env} \to \mathbf{G}$$

Definition (Tannakian exponents in general)

Let $R \in \{K((t)), \mathcal{R}, \mathcal{O}(I)\}$. Let $M \in d - Mod(R)$.

Let **G** be the Tannakian group of the category d - Mod(R).

We have a natural surjective projection

$$\mathbf{G}
ightarrow \mathbb{Z}^{env}$$

associated with the inclusion of categories

$$d - \operatorname{Mod}(R) \supset RReg(R)$$

Chose a section (which exists because \mathbb{Z}^{env} is aprojective object)

$$s : \mathbb{Z}^{env} \to \mathbf{G}$$

Define the **Tannakian exponent** of M as that associated with the representation

$$\mathrm{M}_{|s(\mathbb{Z}^{\mathit{env}})}$$
 .

Andrea Pulita (Université Grenoble Alpes)

Again we have immediately the nice properties with respect to

- o direct sum
- tensor product
- dual
- internal Hom
- ...

Compatibility

If M is Regular (in the sense of Robba), **and if it is extension of rank one modules**, the above definition coincides with that of Christol-Mebkhout-Dwork-Kedlaya-Shiho :

Tannakian exponent = exponent

In particular, this is the case in presence of a Frobenius structure on M.

We plan to deal with the following open questions :

- Compare the two definitions when M does not split into rank one pieces.
- Assume that M ∈ d − Mod(O(I)) is regular in the sense of Robba (i.e. maximal solutions), and it satisfies the DNL condition on the Tannakian exponents. Then, is M extension of rank one sub-quotients? (i.e. *p*-adic Fuchs theorem using Tannakian exponents)
- If we have a Frobenius structure on a module M ∈ d − Mod(R), we know that the two definitions coincide. Is there another Tannakian proof of the fact that we have rational exponents?
- How much is this Tannakian definition of exponents intrinsic? It actually depends on the choice of the coordinate *t*.
- Can we control the behavior of these Tannakian exponents by pull-back and push-forward by finite étale morphisms? (this is essentially unknown for classical exponents).

Andrea Pulita (Université Grenoble Alpes)

Exponen

- [ABC20] Yves André, Francesco Baldassarri, and Maurizio Cailotto, *De Rham cohomology of differential modules on algebraic varieties*, 2nd revised edition ed., Prog. Math., vol. 189, Cham : Birkhäuser, 2020 (English).
- [Ber98] Daniel Bertrand, On andré's proof of the siegel-shidlovsky theorem., Colloque de Théorie des Nombres, Maison franco-japonaise et Université Keio, Novembre 1998., 1998.
- [CM97] G. Christol and Z. Mebkhout, Sur le théorème de l'indice des équations différentielles p-adiques. II, Ann. of Math. (2) 146 (1997), no. 2, 345–410. MR 1477761 (99a :12009)
- [Cor04] Eduardo Corel, *On Fuchs' relation for linear differential systems*, Compos. Math. **140** (2004), no. 5, 1367–1398 (English).
- [Del70] Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin, 1970. MR MR0417174 (54 #5232)
- [Dwo97] Bernard M. Dwork, *On exponents of p-adic differential modules.*, J. Reine Angew. Math. **484** (1997), 85–126 (English).
- [Inc39] E. L. Ince, University mathematics texts (integration of ordinary differential equations), London : Oliver & Boyd, Ltd. viii, 149 p. (1939)., 1939.

- [Kat70] Nicholas M. Katz, Nilpotent connections and the monodromy theorem : Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. (1970), no. 39, 175–232. MR 0291177 (45 #271)
- [Ked15] Kiran S. Kedlaya, Local and global structure of connections on nonarchimedean curves, Compos. Math. 151 (2015), no. 6, 1096–1156 (English).
- [KS17] Kiran S. Kedlaya and Atsushi Shiho, Corrigendum to : "Local and global structure of connections on nonarchimedean curves", Compos. Math. 153 (2017), no. 12, 2658–2665 (English).
- [Lev61] A. H. M. Levelt, Hypergeometric functions, I; II; III; IV, Nederl. Akad. Wet., Proc., Ser. A 64 (1961), 361–372, 373–385, 386–396, 397–403 (English).