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Introduction

In several mathematical theories one encounters objects defined as
inverse limits.

Typically this happens in sheaf theory, where the
global sections of a sheaf are inverse limit of the local ones. Analogous
structures actually largely appear in several theories such as topos
theory, linear algebra, algebraic geometry, functional analysis and
many others. Limits contain crucial information of the original systems
and it is interesting to study what properties are lost in the limit
process.

One of these is the exactness of short exact sequences. The
importance of these properties is illustrated again by the example of
sheaves theory, where there is an entire cohomology theory devoted to
“measure” the default of exactness of the global section functor.

More specifically, we are interested here in a precise criterion,
originally due to Mittag-Leffler [Bou07, II.19, No5, Exemple], ensuring
that exactness of short exact sequences is preserved when passing to
the limit.
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Some notation

Let R be a ring with unit element.

A poset (I,≤) is directed if for all i , j ∈ I there exists k ∈ I such
that k ≥ i and k ≥ j .
For all i ∈ I we set

Λ(i) = {j ∈ I, j ≤ i} , (1)
V (i) = {j ∈ I, j ≥ i} . (2)

A directed subset I′ ⊂ I is cofinal if for every i ∈ I there exists
i ′ ∈ I′ such that i ′ ≥ i .
An inverse system indexed on I is a collection of left R-modules
(Si)i∈I indexed by I, together with a family of maps

(ρS
i,j : Si → Sj)(i,j)∈I2,i≥j

such that
for all i ∈ I the map ρS

i,i is the identity map of Si ,
for all i , j , k ∈ I such that i ≥ j ≥ k one has ρS

j,k ◦ ρS
i,j = ρS

i,k .
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Andrea Pulita (Université Grenoble Alpes) Uncountable Mittag-Leffler and LC Spaces Oxford, 10th of March 2020 5 / 33



For any two systems S = (Si , ρ
S
i,j) and T = (Ti , ρ

T
i,j) indexed on the

same I a morphism f : S → T is a collection

(fi : Si → Ti)i∈I

of R-linear maps such that for every i ≥ j the following diagram
commutes

Si

ρS
i,j
��

fi // Ti

ρT
i,j
��

Sj
fj // Tj

(3)

An inverse system (Si , ρ
S
i,j) is nothing but a functor from the

category (I,≤) to the category R −Mod and a morphism
f : S → T is just a morphism of functors.
Similarly, we can define the category of inverse systems of sets
as functors from I to the category of sets.
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Let R −Mod I be the category of inverse systems indexed on I.

Every operation in R −Mod transports into the same operation in
R −Mod I . We have the notions of Kernels, coKernels, Images,
coImages, direct sums, products, . . . .In particular R −Mod I is
an abelian category.
In particular an exact sequence of inverse systems is a

collection (0→ Ai
gi−→ Bi

hi−→ Ci → 0)i∈I of exact sequences such
that for every i ≥ j we have commutative diagram

0 // Ai
gi //

ρA
i,j
��

Bi
hi //

ρB
i,j
��

Ci

ρC
i,j
��

// 0

0 // Aj
gj // Bj

hj // Cj // 0
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Andrea Pulita (Université Grenoble Alpes) Uncountable Mittag-Leffler and LC Spaces Oxford, 10th of March 2020 7 / 33



The inverse limit of a system (Si , ρ
S
i,j) is the subset of the product∏

i∈I Si formed by the vectors (xi)i∈I that are compatible, in the
sense that, for all i ≥ j , one has

ρS
i,j(xi) = xj .

We denote the limit by

lim←−
i∈I

Si ⊆
∏
i∈I

Si

For every i ≥ j we have commutative triangles

lim←−i∈I
Si //

""

Si

ρS
i,j
��

Sj

For every morphism of inverse systems S → T we have a
morphism lim←−i∈I

Si → lim←−i∈I
Ti .
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Andrea Pulita (Université Grenoble Alpes) Uncountable Mittag-Leffler and LC Spaces Oxford, 10th of March 2020 8 / 33



The inverse limit of a system (Si , ρ
S
i,j) is the subset of the product∏

i∈I Si formed by the vectors (xi)i∈I that are compatible, in the
sense that, for all i ≥ j , one has

ρS
i,j(xi) = xj .

We denote the limit by

lim←−
i∈I

Si ⊆
∏
i∈I

Si

For every i ≥ j we have commutative triangles

lim←−i∈I
Si //

""

Si

ρS
i,j
��

Sj

For every morphism of inverse systems S → T we have a
morphism lim←−i∈I

Si → lim←−i∈I
Ti .
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The inverse limit is a functor

lim←−
i∈I

: R −Mod I −−−→ R −Mod

If
0→ (Ai)→ (Bi)→ (Ci)→ 0

is an exact sequence of inverse systems in R −Mod I , then

0→ lim←−
i∈I

Ai → lim←−
i∈I

Bi → lim←−
i∈I

Ci

is exact in R −Mod .
In other words, the functor lim←−i∈I

is left exact.
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Andrea Pulita (Université Grenoble Alpes) Uncountable Mittag-Leffler and LC Spaces Oxford, 10th of March 2020 9 / 33



The functor lim←−i∈I
: R −Mod I → R −Mod can be derived. We call

lim←−
i∈I

(n) : R −Mod I → R −Mod

the n-th derived functors.

For every short exact sequence 0→ (Ai)→ (Bi)→ (Ci)→ 0 of
systems in R−Mod I we have a long exact sequence in R−Mod

0 → lim←−
i∈I

Ai → lim←−
i∈I

Bi → lim←−
i∈I

Ci
δ1→

δ1→ lim←−
i∈I

(1)Ai → lim←−
i∈I

(1)Bi → lim←−
i∈I

(1)Ci
δ2→

δ2→ lim←−
i∈I

(2)Ai → lim←−
i∈I

(2)Bi → lim←−
i∈I

(2)Ci
δ3→ · · ·
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Theorem 1. (Classical Mittag-Leffler)

Let I be a directed poset. Let 0→ (Ai)→ (Bi)→ (Ci)→ 0 be an exact
sequence of inverse systems in R −Mod . Assume that

1 There exists a cofinal subset of I which is at most countable ;
2 For all i ∈ I, there exists j ≥ i such that for all r ≥ j one has

ρA
j,i(Aj) = ρA

r ,i(Ar ) . (4)

Then, the first derived functor lim←−
(1)
i∈I

of lim←−i∈I
vanishes at (Ai)i :

lim←−
(1)
i∈I

Ai = 0 .

In particular, the short sequence of limits

0 −→ lim←−i∈I
Ai −→ lim←−i∈I

Bi −→ lim←−i∈I
Ci −→ 0

is exact.

Aim : we want to relax the countability assumption (1).
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First considerations

Condition 2 is called Mittag-Leffler condition.

It is not a necessary
and sufficient condition for the vanishing of lim(1)

i∈I Ai .

Assumption 1 says that there exists a map τ : N→ I of posets
whose image is a cofinal subset of I. This is a strong condition
because, by a result of Mitchell (cf. [Mit73, Theorem B]), it implies
that for all inverse systems (Qi)i∈I of R-modules and for all n ≥ 0,
we have a canonical isomorphism

lim←−
i∈I

(n)Qi
∼= lim←−

i∈N

(n)Qi

Hence, from a cohomological point of view, inverse systems over
I are indistinguishable from those over N.

In particular, the claim implies lim←−
(n)
i∈I

Ai = 0, for all integer n ≥ 0,
because this is true for I = N.
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Where is condition 1 used in the proof ?

Let A,B,C be the limits. For all i ≥ j we have a diagram

0 // A

πA
i
��

g // B

πB
i
��

h // C

πC
i
��

0 // Ai
gi //

ρA
i,j
��

Bi
hi //

ρB
i,j
��

Ci

ρC
i,j
��

// 0

0 // Aj
gj // Bj

hj // Cj // 0

Let c = (ci)i∈I ∈ C, ci ∈ Ci be a compatible sequence.
The inverse images Si := h−1

i (ci) are stable by the map ρB
i,j and

form an inverse system of non empty sets and we have

h−1(c) = lim←−
i

Si

h is surjective if, and only if, for every c ∈ C this limit is not empty.
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Is lim←−i
Si empty ?

If bi ∈ Si , then
Si = bi + Ai

and for every j ≤ i the map ρB
i,j : Si → Sj can be identified

(composing with the addition of bi ) with ρA
i,j : Ai → Aj . We will see

that, in the language of sheaves, this is a LOCAL isomorphism of
systems.
In particular, the system (Si)i satisfies Mittag-Leffler condition.
For every i ∈ I let

S′i :=
⋂
j≥i

ρB
k ,i(Sk ).

This is another inverse system with surjective maps and s.t.

lim←−
i

Si = lim←−
i

S′i .

At this point, an induction on τ(N) ⊂ I permits to construct step
by step a sequence in limi S′i .

More precisely, Mittag-Leffler condition implies that (S′i )i is
isomorphic to an inverse system indexed on N with surjective
maps for which the limit is trivially not empty.
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Further developments

Assume I does not have a countable subset.

In this case, it is known that there are inverse systems of sets
indexed on I, with surjective maps whose limit is empty.
So the last part of the proof is highly jeopardized.

However, Bourbaki was able to suppress the countability
assumption, at the price of reinforcing the Mittag-Leffler
condition on the maps of the system. The resulting claim is quite
technical and we do not reproduce it here. It applies to

1 inverse systems of finite sets ;
2 inverse systems of compact topological spaces ;
3 inverse systems of artinian R-modules.

These are strong condition on the objects of the system.

The limit lim(1)
i∈I Ai may not vanish, even if the system has surjective

maps.
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Cohomological dimension of a directed poset

For any ring R there exists an (enormous) directed poset I and an
inverse system (Ai)i∈I such that for all n ≥ 0 one has (cf. [Jen72])

lim←−
i∈I

(n)Ai 6= 0 .

If ℵk is the smallest ordinal of a cofinal directed subset of I, then
we have

lim←−
i∈I

(n)Ai = 0

for all inverse systems (Ai)i∈I and all n ≥ k + 2 (cf.
[Mit73, Roo61, Gob70, Jen72]).
Several other specific criteria exists under the assumption that R
is Noetherian and the modules Ai satisfy specific conditions ...

Andrea Pulita (Université Grenoble Alpes) Uncountable Mittag-Leffler and LC Spaces Oxford, 10th of March 2020 16 / 33



Cohomological dimension of a directed poset

For any ring R there exists an (enormous) directed poset I and an
inverse system (Ai)i∈I such that for all n ≥ 0 one has (cf. [Jen72])

lim←−
i∈I

(n)Ai 6= 0 .

If ℵk is the smallest ordinal of a cofinal directed subset of I, then
we have

lim←−
i∈I

(n)Ai = 0

for all inverse systems (Ai)i∈I and all n ≥ k + 2 (cf.
[Mit73, Roo61, Gob70, Jen72]).

Several other specific criteria exists under the assumption that R
is Noetherian and the modules Ai satisfy specific conditions ...
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In particular, this little panorama shows that for the vanishing of
lim(1)

i∈I Ai in Theorem 1, some finiteness condition is needed either on
the set I, or on the objects, or on the transition maps.

For instance,
the countability condition i) in Theorem 1 can be seen as a
finiteness assumption on the set I
and Mittag-Leffler condition is a finiteness condition on the
transition maps.
On the other hand, the quoted statements of Bourbaki, or their
consequence for Artinian R-modules, can be considered as
finiteness condition on the nature of the objects Ai .

Surprisingly enough, if I does not contain any cofinal countable subset
and if no condition about on R and the modules Ai are made, then in
our knowledge no statement ensuring the vanishing of lim←−

(1)
i∈I

Ai
exists in literature.
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Nevertheless, in this general context, there are interesting cases of
inverse systems behaving very similarly to Mittag-Leffler ones just
because much part of the restriction maps ρA

i,j are isomorphisms and
their limit is then “controlled” by some countable subset of maps.

Situations of this type show up for instance in sheaf theory as pull-back
of some sheaf on a stain space which actually inspired our approach
to this problem. Another interesting example is provided by the theory
of ultrametric locally convex topological vector spaces as we will see in
the last part of this talk.

In this situation, any a direct set-theoretical attempt of the proof of
Mittag-Leffler theorem based on the lifting non vanishing of the system
(Si)i∈I is unhelpful, as one can easily see.

We provide here two generalizations of Theorem 1 to the case of an
uncountable I without countable cofinal subsets that only involve a
finiteness condition on the transition maps of the system (Ai)i∈I
and no conditions on I nor on the objects.
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Theorem 2. (pull-back)

Let (ρA
i,j : Ai → Aj)i,j∈I be an inverse systems of left R-modules indexed

on I. Assume that there exists another directed partially ordered set
(J,≤) and an inverse system of R-modules (ρS

i,j : Si → Sj)i,j∈J s.t.
1 There exist cofinal directed subsets I′ ⊆ I and J ′ ⊆ J and a

surjective map p : I′ → J ′ preserving the order relation ;
2 There exists a system of R-linear isomorphisms

(ψi : Ai
∼→ Sp(i))i∈I′ such that for all i , j ∈ I′ with i ≥ j one has a

commutative diagram
Ai

	ρA
i,j
��

ψi
∼
// Sp(i)

ρS
p(i),p(j)
��

Aj ∼
ψj // Sp(j)

Then, for all integer n ≥ 0, we have a canonical isomorphism
lim←−i∈I

(n)Ai
∼−−→ lim←−j∈J

(n)Sj .

In particular, if J and (Sj)j∈J satisfy Theorem 1, then lim←−
(n)
i∈I

Ai = 0 for all
n ≥ 1.
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Theorem 2 implies Theorem 1. Indeed, if I′ ⊆ I is a countable
cofinal directed subset in Theorem 1, then I′ = J, S = A, ψ = id
satisfies the assumptions of Theorem 2.

In Theorem 2, I is allowed to be arbitrarily large, while in Theorem
1, I is artificially forced to be small.

It easy to show that lim←−i∈I
Ai = lim←−j∈J

Sj . However, it seems

complicate to prove that lim←−i∈I
(n)Ai = lim←−j∈J

(n)Sj with the
techniques of Bourbaki. This is due to the following facts :

1 inverse limits of sets indexed on an uncountable poset may be
empty even with surjective transition maps ;

2 the proof of Bourbaki provides only a LOCAL isomorphism of the
systems of sets, which actually does not preserve the non
vanishing of the limit.
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Theorem 3. (Push-forward)

Let (ρA
i,j : Ai → Aj)i,j∈I be an inverse systems of left R-modules indexed

on I.
Assume that there exists a directed partially ordered set (J,≤) together
with an inverse system of R-modules (ρT

i,j : Ti → Tj)i,j∈J such that

(i) There exists cofinal directed subset I′ ⊆ I and J ′ ⊆ J and a map
q : J ′ → I′ preserving the order relation such that for all i ∈ I′, the
set

Ui := {j ∈ J ′,q(j) ≤ i},
endowed with the partial order induced by J ′, satisfies at least one
of the following conditions

1 Ui is empty ;
2 Ui has a unique maximal element r(i) ;
3 Ui is directed, it has countable cofinal directed poset J ′

i and the
system (ρT

j,k : Tj → Tk )j,k∈J′
i

satisfies Mittag-Leffler Theorem.
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(ii) For all i ∈ I′ there exists an R-linear isomorphisms
φi : Ai

∼→ lim←−j∈Ui
Tj such that for all k ∈ I′ with k ≥ i one has a

commutative diagram

Ak

	ρA
k,i

��

φi
∼

// lim←−j∈Uk
Tj

αk,i

��
Ai ∼

φj // lim←−j∈Ui
Tj

where the right hand vertical arrow αk ,i is deduced by the
universal properties of the limits as Ui ⊂ Uk .

Then, for all integer n ≥ 0, we have a canonical isomorphism

lim←−
i∈I

(n)Ai
∼−−→ lim←−

j∈J

(n)Tj . (5)

In particular, if J and (Tj)j∈J satisfy Theorem 1, then lim←−
(n)
i∈I

Ai = 0 for all
n ≥ 1.
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Theorem 1 implies Theorem 3. Indeed, if I′ ⊆ I is a countable
cofinal directed subset in Theorem 1, then I′ = J, T = A, φ = id
satisfies the assumptions of Theorem 3.

Again in Theorem 3, I is allowed to be arbitrarily large, while in
Theorem 1 I is artificially forced to be small.

If J = N, and T satisfies Mittag-Leffler, then conditions 1, 2, 3 on
Ui are automatic.

Moreover, if J = N and if we impose that the image of J in I is
never contained in some Λ(i) for all i ∈ I, then 3 is impossible,
while 1 and 2 are automatically verified.

Again, it is possible to prove that lim←−i∈I
Ai = lim←−j∈J

Tj , but the proof

of Bourbaki doesn’t permit to prove the equality of lim←−
(n)
i∈I

for n ≥ 1.
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Idea of the proof

The idea of the proof is based on a (well known) coincidence of
theories :

{Inverse systems of R-modules over I}
∼=

{Sheaves of R-modules over X (I)}

In this correspondence lim←−i∈I
(−) corresponds to the global

section functor Γ(X (I),−) and lim←−i∈I
(n)(−) correspond to the

cohomology groups Hn(X (I),−).
The above Theorems relate the cohomology of a sheaf on X (J)
with that of its pull-back and its push-forward on X (I).
These results do not have an analogous for general topological
spaces as we use properties that are specific of posets.
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Inverse systems and sheaves
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Topological space associated to a poset

Let I be a poset.
Remind : for all i ∈ I we set

Λ(i) = {j ∈ I, j ≤ i} ,

(6)
V (i) = {j ∈ I, j ≥ i} . (7)

The family {Λ(i)}i∈I is a basis for a topology on the set I.
Let X (I) be this topological space :

points of X (I) =points of I ;
A subset U ⊆ I is open if, and only if, for all i ∈ U we have
Λ(i) ⊆ U ;
A subset C ⊆ I is closed if, and only if, for all i ∈ C we have
V (i) ⊆ C ;

Arbitrary intersections of opens are opens ;
Arbitrary unions of closed are closed ;
Λ(i) =smallest open containing i ;
V (i) =smallest closed containing i .
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Andrea Pulita (Université Grenoble Alpes) Uncountable Mittag-Leffler and LC Spaces Oxford, 10th of March 2020 26 / 33



Topological space associated to a poset

Let I be a poset.
Remind : for all i ∈ I we set

Λ(i) = {j ∈ I, j ≤ i} , (6)
V (i) = {j ∈ I, j ≥ i} . (7)

The family {Λ(i)}i∈I is a basis for a topology on the set I.
Let X (I) be this topological space :

points of X (I) =points of I ;
A subset U ⊆ I is open if, and only if, for all i ∈ U we have
Λ(i) ⊆ U ;
A subset C ⊆ I is closed if, and only if, for all i ∈ C we have
V (i) ⊆ C ;

Arbitrary intersections of opens are opens ;
Arbitrary unions of closed are closed ;
Λ(i) =smallest open containing i ;
V (i) =smallest closed containing i .
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An example of sheaf

Let p : Y → X be a continuous function between topological spaces.

A section of p is a continuous function s : X → Y such that p ◦s = IdX .
For every open U ⊆ X we have

S(U) := sections of p−1(U)→ U.

For every U ⊂ V we have a restriction

ρV ,U : S(V )→ S(U).

The collection S := (S(U), ρU,V )U,V is an example of sheaf.
We have the following properties :

We have ρU,U = IdU ;
For all U ⊂ U ′ ⊂ U ′′ we have ρU′,U ◦ ρU′′,U′ = ρU′′,U ;
If (Ui)i is a covering of an open U, then

If s, t ∈ S(U) are such that ρU,Ui (s) = ρU,Ui (t), ∀i , then s = t ;
If we have a family of sections si ∈ S(Ui ) such that for all i , j we
have si = sj on Ui ∩ Uj , then they glue and there exists s ∈ S(U)
such that s = si on Ui .
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Andrea Pulita (Université Grenoble Alpes) Uncountable Mittag-Leffler and LC Spaces Oxford, 10th of March 2020 27 / 33



An example of sheaf

Let p : Y → X be a continuous function between topological spaces.
A section of p is a continuous function s : X → Y such that p ◦s = IdX .
For every open U ⊆ X we have

S(U) := sections of p−1(U)→ U.

For every U ⊂ V we have a restriction

ρV ,U : S(V )→ S(U).

The collection S := (S(U), ρU,V )U,V is an example of sheaf.
We have the following properties :

We have ρU,U = IdU ;
For all U ⊂ U ′ ⊂ U ′′ we have ρU′,U ◦ ρU′′,U′ = ρU′′,U ;

If (Ui)i is a covering of an open U, then
If s, t ∈ S(U) are such that ρU,Ui (s) = ρU,Ui (t), ∀i , then s = t ;
If we have a family of sections si ∈ S(Ui ) such that for all i , j we
have si = sj on Ui ∩ Uj , then they glue and there exists s ∈ S(U)
such that s = si on Ui .
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Sheaves

Definition.(Sheaf)
A sheaf of R-modules on a topological space X is a functor from the
category of sets to R −Mod (this means that S(U) is an R-module and
ρU,V is an R-linear map)

satisfying moreover the last 2 properties of
the above example for every covering (Ui)i of an open U.

Fact :
If I is a poset, then a sheaf on X (I) is the same datum as an inverse
system indexed on I.

If S is a sheaf on X (I), then ( ρΛ(i),Λ(j) : S(Λ(i))→ S(Λ(j)) )i≥j,i,j∈I
is an inverse system ;
If (ρi,j : Si → Sj)i≥j∈I is an inverse system, then

U 7→ S(U) := lim←−i∈U
Si

defines a sheaf on X (I).

From now on inverse system on I = sheaf on X (I)
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Cohomology of sheaves

X=topological space

S= sheaf of R-modules on X

Γ(X ,S) = S(X ) this is a notation for the global section functor ;
For any short exact sequence of sheaves
0→ S′ → S′′ → S′′′ → 0 we have a long exact sequence

0 → S′(X )→ S′′(X )→ S′′′(X )
δ1−→ (8)

δ1−→ Hn(X ,S′)→ H1(X ,S′′)→ H1(S′′′,X )
δ2−→ · · · (9)

Andrea Pulita (Université Grenoble Alpes) Uncountable Mittag-Leffler and LC Spaces Oxford, 10th of March 2020 29 / 33



Cohomology of sheaves

X=topological space
S= sheaf of R-modules on X

Γ(X ,S) = S(X ) this is a notation for the global section functor ;
For any short exact sequence of sheaves
0→ S′ → S′′ → S′′′ → 0 we have a long exact sequence

0 → S′(X )→ S′′(X )→ S′′′(X )
δ1−→ (8)

δ1−→ Hn(X ,S′)→ H1(X ,S′′)→ H1(S′′′,X )
δ2−→ · · · (9)
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Andrea Pulita (Université Grenoble Alpes) Uncountable Mittag-Leffler and LC Spaces Oxford, 10th of March 2020 29 / 33



How to compute Hn(X ,S) ?

A is an acyclic sheaf if it has the property that Hn(X ,A) = 0 for all
n ≥ 1 ;

If A is injective, then it is acyclic ;
If A is flabby, then it is acyclic.Flabby means that for every U ⊂ V
opens, the restriction A(V )→ A(U) is surjective.

If 0→ S → F1 → F2 → · · · is a long exact sequence where Fk is
flabby/injective/acyclic, then we have a long sequence

0→ S(X )
f1−→ F1(X )

f2−→ F2(X )→ · · ·

and we can compute the cohomology groups by the formula

Hn(X ,S) = Ker(fn+1)/Im(fn) .

Such an exact sequence always exists (it is called
flabby/injective/acyclic resolution). This is also a possible way to
define Hn(X ,S).
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Pull-back

Sheaves have pull-back and push-forward operations. We explain
them in the context of inverse systems.

Let f : I1 → I2 be a map of posets. The map f : X (I1)→ X (I2) is
continuous if, and only if, it preserves the order relation (i.e. it is
non decreasing).
Let Sh(X (I1)) and Sh(X (I2)) be the categories of sheaves.
For a inverse system S := (ρS

i,j : Si → Sj) on I2 we define a system
f ∗S as

(f ∗S)i := Sf (i)

and ρf∗S
i,j = ρS

f (i),f (j).

f ∗ : Sh(X (I2))→ Sh(X (I1)) is a functor.
It is EXACT ;
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Andrea Pulita (Université Grenoble Alpes) Uncountable Mittag-Leffler and LC Spaces Oxford, 10th of March 2020 31 / 33



Pull-back

Sheaves have pull-back and push-forward operations. We explain
them in the context of inverse systems.

Let f : I1 → I2 be a map of posets. The map f : X (I1)→ X (I2) is
continuous if, and only if, it preserves the order relation (i.e. it is
non decreasing).
Let Sh(X (I1)) and Sh(X (I2)) be the categories of sheaves.
For a inverse system S := (ρS

i,j : Si → Sj) on I2 we define a system
f ∗S as

(f ∗S)i := Sf (i)

and ρf∗S
i,j = ρS

f (i),f (j).

f ∗ : Sh(X (I2))→ Sh(X (I1)) is a functor.
It is EXACT ;
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Proof of Theorem 2

For general topological spaces f ∗ does not sent any kind resolution
into a nice resolution and it cannot be used to compute cohomology.
But in our context this is possible

Theorem 2
If I → J is surjective, then for every sheaf S ∈ Sh(X (J)) one has for all
n ≥ 0

Hn(X (J),S) = Hn(X (I), f ∗S)

f surjective, then f ∗S(X (I)) = S(X (J)) ;
There is a class of sheaves called weakly flabby that are acyclic
and f ∗ preserves weakly flabby resolutions. END of PROOF
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applications en théorie des modules., vol. 254, Springer,
Cham, 1972 (French).

[Mit73] Barry Mitchell, The cohomological dimension of a directed
set., Can. J. Math. 25 (1973), 233–238 (English).

[Roo61] Jan-Erik Roos, Sur les foncteurs dérivés de lim. Applications.,
C. R. Acad. Sci., Paris 252 (1961), 3702–3704 (French).
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