# Mathématiques outils pour les sciences et l'ingénierie 1 

Cahier d'exercices B

NOM :

Prénom :

Numéro d'étudiant :

Parcours :

Édouard Oudet (polycopié rédigé par Bozhidar Velichkov)
Laboratoire Jean Kuntzmann, Université Grenoble Alpes edouard.oudet@univ-grenoble-alpes.fr

## 4 Fonctions d'une variable réelle

### 4.1 Fonctions continues

Exercice 91 (TD). Déterminer les valeurs du paramètre b pour lesquelles la fonction $f: \mathbb{R} \rightarrow \mathbb{R}$ est continue.
$f(x)=2 x+b$, si $x \geq 1 ; \quad f(x)=x^{2}-b x+3$, si $x<1$.
$f(x)=b x^{2}-x+1$, si $x>1 ; \quad-b x^{2}+3 x+1$, si $x \leq 1$.
$f(x)=\frac{\sqrt{x+1}-1}{x}$, si $x>0 ; \quad x+b$, si $x \leq 0$.
$f(x)=\frac{\sqrt{3 x-2}-2}{x-2}$, si $x>2 ; \quad f(x)=x^{2}-x+b$, si $x \leq 2$.
$f(x)=\frac{\sqrt{x+1}-2}{\sqrt{x-2}-1}$, si $x>3 ; \quad f(x)=b$, si $x \leq 3$.

Exercice $92(\mathbf{E})$. Déterminer les valeurs de b pour lesquelles la fonction $f: \mathbb{R} \rightarrow \mathbb{R}$ est continue.
$f(x)=b x+1$, si $x \geq 1 ; \quad f(x)=b x^{3}+2 x-3$, si $x<1$.

$$
f(x)=-\frac{x^{2}}{2}+x+b, \text { si } x \geq 1 ; \quad \frac{x^{2}}{2}-x-2 b, \text { si } x<1
$$

$$
f(x)=\frac{\sqrt{x+2}-2}{x-2}, \text { si } x>2 ; \quad f(x)=b x+\frac{1}{2}, \text { si } x \leq 2
$$

$f(x)=\frac{\sqrt{x+4}-2}{x}$, si $x>0 ; \quad f(x)=b-\frac{1}{x-1}$, si $x \leq 0$.

Exercice 93 (TD). Déterminer, en fonction du paramètre $a>0$, si $f$ admet une extension continue sur $\mathbb{R}$.
$f(x)=\frac{x^{2}-1}{x^{4}-1}$, si $x<1 ; \quad f(x)=\frac{\sqrt{a x}-1}{a x-1}$, si $x>1$.
$f(x)=\frac{\sqrt{2 x^{2}+1}-\sqrt{x^{2}+1}}{x^{2}}$, si $x<0 ; \quad f(x)=\frac{\sqrt{a x+1}-\sqrt{x+1}}{x}$, si $x>0$.
$f(x)=\frac{(1+a x)^{2}-1}{(1+x)^{2}-1}$, si $x>0 ; \quad f(x)=\frac{\sqrt{1-2 x}-1}{\sqrt{1-x}-1}$, si $x<0$.

### 4.2 Comportement à l'infini

Exercice 94 (TD). Calculer les limites suivantes

$$
\lim _{x \rightarrow+\infty}(\sqrt{2 x+3}-\sqrt{2 x-1})=
$$

$$
\lim _{x \rightarrow+\infty} \sqrt{x}(\sqrt{x+1}-\sqrt{x})=
$$


$\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x+1}-\sqrt{x}}{\sqrt{x+1}}=$
$\qquad$
$\lim _{x \rightarrow+\infty} \frac{1}{\sqrt{x^{2}+x}-\sqrt{x^{2}+1}}=$
$\qquad$
$\lim _{x \rightarrow+\infty} \frac{x}{\sqrt{2 x^{2}+x}-\sqrt{x^{2}+1}}=$

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty}(2 x+5)=\quad \lim _{x \rightarrow+\infty}\left(x^{2}-5 x-2\right)=\quad \lim _{x \rightarrow+\infty} \frac{1}{x^{3}-x^{2}+1}= \\
& \lim _{x \rightarrow+\infty}(x-\sqrt{x+1})= \\
& \lim _{x \rightarrow+\infty}\left(x-\sqrt{x^{3}+1}\right)= \\
& \lim _{x \rightarrow+\infty} \frac{x+3}{x^{2}+x+6}= \\
& \lim _{x \rightarrow+\infty} \frac{x^{2}+1}{x^{2}-x+1}= \\
& \lim _{x \rightarrow+\infty} \frac{(2 x+1)(x-1)}{x^{2}+2}= \\
& \lim _{x \rightarrow+\infty}(\sqrt{x+1}-\sqrt{x})=
\end{aligned}
$$

Exercice 95 (TD). Trouver l'asymptote $y(x)=a x+b$ de la fonction $f$ à l'infinie.
$f(x)=\frac{x^{2}-3}{x+1}$
$f(x)=\frac{x^{2}+x+1}{x-1}$
$f(x)=\frac{2 x^{3}-x}{x^{2}+1}$
$f(x)=\sqrt{x^{2}+3 x}$
$f(x)=\sqrt{4 x^{2}+x}$
$f(x)=\frac{\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}$

### 4.3 Fonctions dérivables

Exercice 96 (TD). Trouver l'équation cartésienne de la droite tangente au graphe de la fonction $f: \mathbb{R} \rightarrow \mathbb{R}$ en $\left(x_{0}, f\left(x_{0}\right)\right) \in \mathbb{R}^{2}$.
$f(x)=x^{2}, x_{0}=1$.

$$
f(x)=x^{2}-3 x, x_{0}=0 .
$$

$$
f(x)=(x-1)(x-3), x_{0}=2 .
$$

$f(x)=-x(x-1)(x-3), x_{0}=2$.

Exercice 97 (TD). Déterminer les points $x_{0} \in \mathbb{R}$ pour lesquelles la droite tangente au graphe de la fonction $f: \mathbb{R} \rightarrow \mathbb{R}$ en $\left(x_{0}, f\left(x_{0}\right)\right) \in \mathbb{R}^{2}$ est orthogonale à la droite $D$.

$$
f(x)=x^{2}-x, D=\left\{(x, y) \in \mathbb{R}^{2}: x+y=0\right\} .
$$

$f(x)=\frac{1}{3} x^{3}-x^{2}+1, D=\left\{(x, y) \in \mathbb{R}^{2}: x+y=7\right\}$.

Exercice 98 (A). Soit $f(x)=x^{2018}-17 x^{6}+7 x^{3}-1$. Soit $D$ une droite dans $\mathbb{R}^{2}$ avec vecteur directeur $\vec{v}=(a, b)$ tel que a $a \neq 0$. Démontrer qu'il existe un point $x_{0} \in \mathbb{R}$ tel que la droite, tangente au graphe de la fonction $f: \mathbb{R} \rightarrow \mathbb{R}$ en $x_{0} \in \mathbb{R}$, est orthogonale à la droite $D$.

Exercice 99 (TD). Déterminer les valeurs des paramètres a et b pour lesquelles la fonction $f: \mathbb{R} \rightarrow \mathbb{R}$ est dérivable.
$f(x)=x^{2}+2 x+1$, si $x<1 ; \quad f(x)=a x+b$, si $x \geq 1$.
$f(x)=x^{2}-x+3$, si $x<2 ; \quad f(x)=a x+b$, si $x \geq 2$.
$f(x)=x^{2}-x+1$, si $x<1 ; \quad f(x)=-x^{2}+a x+b$, si $x \geq 1$.
$f(x)=-x^{2}+a x+b$, si $x \leq 1 ; \quad f(x)=x^{2}+2 x-1$, si $x>1$.
$f(x)=a x+b$, si $x \leq 1 ; \quad f(x)=\sqrt{3 x+1}$, si $x>1$.
$f(x)=\frac{a}{2-x}+b$, si $x \leq 1 ; \quad f(x)=\sqrt{5 x-1}$, si $x>1$.
$f(x)=\frac{a}{3-2 x}+b$, si $x \leq 1 ; \quad f(x)=\sqrt{2 x^{2}-1}$, si $x>1$.

### 4.4 Les dérivées des fonctions rationnelles

Exercice 100 (E). Calculer les dérivées suivantes
$(3 x+5)^{\prime}=\quad\left(3 x^{2}-4 x+5\right)^{\prime}=\quad\left(x^{n}-n x\right)^{\prime}=$
$\left(\frac{1}{3 x+2}\right)^{\prime}=$
$\left(\frac{1}{x^{2}+1}\right)^{\prime}=$
$\left(\frac{x-2}{2 x+3}\right)^{\prime}=$
$\left(\frac{1-x}{x+3}\right)^{\prime}=$
$\left(\frac{x}{x^{2}+3 x+1}\right)^{\prime}=$

Exercice 101 (A). Calculer les dérivées des fonctions $f$ et $g$. Trouver les valeurs des paramètres $a \in \mathbb{R}$ et $b \in \mathbb{R}$ pour lesquelles la fonction $F:]-1,+\infty\left[\rightarrow \mathbb{R}\right.$ est dérivable, oé $F(x)= \begin{cases}f(x), & \text { si }-1<x \leq 0, \\ g(x), & \text { si } x>0 .\end{cases}$ $f(x)=\frac{x^{2}}{x^{3}+1} \quad$ et $\quad g(x)=\frac{x(x+a)}{x+1}$
$f(x)=\frac{x}{x+\sqrt{x+1}} \quad$ et $g(x)=\frac{x^{2}+a x+b}{\sqrt{x}+1}$

Exercice 102 (A). Trouver une formule explicite, en fonction de $X$ et $n$, pour les sommes suivantes :
(a) $\sum_{k=1}^{n} k X^{k-1}$
(b) $\sum_{k=1}^{n} k X^{k}$
(c) $\sum_{k=1}^{n} k^{2} X^{k}$.

Exercice 103 (E). Calculer les dérivées suivantes
$(\sqrt{3 x+4})^{\prime}=\quad\left(\sqrt{x^{2}-4 x}\right)^{\prime}=$

$$
\begin{array}{lr}
\left(\sqrt{x^{2}-4 x}\right)^{\prime}= & \left(\sqrt{x^{n}+1}\right)^{\prime}= \\
\left.--------------------------------------1)^{1 / 3}\right)^{\prime}= & \left((2 x+1)^{1 / 7}\right)^{\prime}=
\end{array}
$$

$$
\left.\left.\left(\frac{1}{\sqrt{x^{2}+1}}\right)^{\prime}=\mathrm{( } \frac{1}{x+1}\right)^{3}\right)^{\prime}=
$$

$$
(\sqrt{1+\sqrt{1+x}})^{\prime}=
$$

$$
(\sqrt{x+\sqrt{3 x}})^{\prime}=
$$

$$
\left(\sqrt{3 x+\sqrt{2+x^{2}}}\right)^{\prime}=
$$

$\frac{\partial}{\partial x}\left(\sqrt{x^{2}+y^{2}}\right)=$
$\frac{\partial}{\partial y}\left(\frac{1}{x^{2}+y^{2}}\right)=$
$\frac{\partial}{\partial x}\left(\frac{x+y}{x^{2}+y^{2}}\right)=$

$$
\frac{\partial}{\partial y}\left(\frac{x y}{x+y}\right)=
$$

Exercice 104 (A). Soit $\vec{v}=\left(v_{x}, v_{y}\right) \in \mathbb{R}^{2}$ un vecteur non nul. Calculer, en fonction de $x_{0}, y_{0}, v_{x}$ et $v_{y}$, la dérivée par rapport é $t$ de la fonction $f(t)=F\left(x_{0}+t v_{x}, y_{0}+t v_{y}\right)$. Trouver $\vec{v}$ tel que $f^{\prime}(0)=0$. Dessiner l'ensemble $\left\{(x, y) \in \mathbb{R}^{2}: F(x, y)=F\left(x_{0}, y_{0}\right)\right\}$ dans le plan et donner une interpretation géométrique de la droite $D$ déterminée par le point $\left(x_{0}, y_{0}\right)$ et le vecteur directeur $\vec{v}$.
(a) $F(x, y)=x^{2}+y^{2}, \quad x_{0}=1, y_{0}=1$;
(b) $F(x, y)=x^{2}+2 y^{2}, \quad x_{0}=2, y_{0}=1$;
(c) $F(x, y)=3 x^{2}+y^{2}, \quad x_{0}=-1, y_{0}=1$;
(d) $F(x, y)=x^{2}+y^{4}, \quad x_{0}=1, y_{0}=1$;
(e) $F(x, y)=\frac{1}{x^{2}+2 y^{2}}, \quad x_{0}=2, y_{0}=1$.

Comparer les résultats de (a) et (d), et (b) et (e).

### 4.5 Les dérivées des fonctions trigonométriques et l'exponentielle

Exercice 105 (E). Calculer les dérivées suivantes :
$(x \sin x)^{\prime}=$
$\left(\frac{1}{\cos x}\right)^{\prime}=\quad\left(\frac{1}{\sin x}\right)^{\prime}=$
$\left(\frac{\sin x}{\cos x}\right)^{\prime}=$
$(x \tan x)^{\prime}=$
$(\sqrt{1+\cos x})^{\prime}=$

$\left(\frac{1}{1+\cos ^{2} x}\right)^{\prime}=$
$(\sin (3 x))^{\prime}=\quad(\cos (6 x))^{\prime}=$
$(\sin (3 x)+2 \cos (3 x))^{\prime}=$
$(\cos (2 x)-\sin (2 x))^{\prime}=$
$(\sin (2 x))^{\prime \prime}=$
$(\cos (3 x))^{\prime \prime}=$
$\left(\cos \left(x^{n}\right)\right)^{\prime}=\quad(\sin \sqrt{x})^{\prime}=$
$\frac{\partial}{\partial x}\left[\frac{\partial}{\partial y} \cos (x y)\right]=$

Exercice 106 (TD). Trouver les valeurs du paramètre $a \in \mathbb{R}$ pour lesquelles :
(1) la fonction $f(x)=\cos (a x)$ est solution de l'équation différentielle $f^{\prime \prime}(x)+4 f(x)=0$.
(2) la fonction $f(x)=\sin (a x)$ est solution de l'équation différentielle $f^{\prime \prime}(x)+9 f(x)=0$.
(3) la fonction $f(x)=2 \sin (a x)+3 \cos (a x)$ est solution de l'équation différentielle $f^{\prime \prime}(x)+f(x)=0$.

Exercice 107 (E). Calculer les dérivées suivantes :
$\left(\frac{1}{e^{x}+3}\right)^{\prime}=\quad\left(\sqrt{e^{x}+1}\right)^{\prime}=$ $\left(e^{3 x}\right)^{\prime}=\quad\left(e^{-7 x}\right)^{\prime}=$

| --- - |  |
| :--- | ---: |
| $\left(e^{x^{2}}\right)^{\prime}=$ | $\left(e^{\sqrt{x}}\right)^{\prime}=$ |

$\left(e^{\cos x}\right)^{\prime}=\quad\left(e^{\sin x}\right)^{\prime}=$
$\left(\frac{e^{2 x}}{e^{3 x}+1}\right)^{\prime}=$
$\left(\frac{e^{-x}}{e^{2 x}+1}\right)^{\prime}=$
$\left(e^{x} \sin (x)\right)^{\prime}=$
$\left(e^{2 x} \cos (3 x)\right)^{\prime}=$
$\left(\left(x^{2}+x+1\right) e^{x}\right)^{\prime}=$

Exercice 108 (TD). Trouver les valeurs des paramètres $a \in \mathbb{R}$ et $b \in \mathbb{R}$ pour lesquelles :
(1) la fonction $f(x)=e^{a x}$ est solution de l'équation différentielle $f^{\prime \prime}(x)-4 f(x)=0$.
(2) la fonction $f(x)=e^{a x}$ est solution de l'équation différentielle $f^{\prime \prime}(x)+3 f^{\prime}(x)+2 f(x)=0$.
(3) la fonction $f(x)=e^{a x}$ est solution de l'équation différentielle $f^{\prime \prime}(x)-f^{\prime}(x)-2 f(x)=0$.
(4) la fonction $f(x)=x e^{a x}$ est solution de l'équation différentielle $f^{\prime \prime}(x)-4 f^{\prime}(x)+4 f(x)=0$.
$(5)^{F}$ la fonction $f(x)=e^{a x} \cos (b x)$ est solution de l'équation différentielle $f^{\prime \prime}(x)-2 f^{\prime}(x)+2 f(x)=0$.
$(6)^{F}$ la fonction $f(x)=e^{a x} \sin (b x)$ est solution de l'équation différentielle $f^{\prime \prime}(x)-2 f^{\prime}(x)+2 f(x)=0$.

### 4.6 Les dérivées des fonctions réciproques : ln, arcsin, arccos, arctan

Exercice 109 (E). Calculer les dérivées suivantes
$(x \ln x-1)^{\prime}=$
$\left(e^{1+\ln x}\right)^{\prime}=\quad(\sin (\ln x))^{\prime}=$
$\left(\frac{x}{\ln x}\right)^{\prime}=$
$\left(\ln \left(e^{2 x}-e^{x}+1\right)\right)^{\prime}=$
$\left(\ln \left(x^{2}\right)\right)^{\prime}=\quad(\ln (\cos x))^{\prime}=$
$(\ln (\ln x))^{\prime}=$
$\left(\ln \left(1+\sin \left(x^{2}\right)\right)\right)^{\prime}=$

Exercice 110 (TD). Trouver la fonction réciproque de $f$ et calculer sa dérivée.
$f: \mathbb{R} \rightarrow] 1,+\infty\left[, f(x)=e^{x}+1\right.$
$f: \mathbb{R} \rightarrow] 3,+\infty\left[, f(x)=e^{2 x}+3\right.$
$f: \mathbb{R} \rightarrow] 1,+\infty\left[, f(x)=e^{-7 x}+1\right.$

Exercice 111 (TD). Démontrer que la fonction $f:] 0,+\infty[\rightarrow] 1,+\infty\left[, f(x)=\frac{e^{x}+e^{-x}}{2}\right.$, admet une fonction réciproque et calculer sa dérivée.

Exercice 112 (E). Calculer les dérivées suivantes
$\left(x^{x}\right)^{\prime}=$

$\left((1+x)^{2 x}\right)^{\prime}=$

 $\left(x^{1+x}\right)^{\prime}=$


$\left(x^{\ln x}\right)^{\prime}=$
$\left((\sin x)^{\cos x}\right)^{\prime}=$

Exercice 113 (E). Calculer les dérivées suivantes :

$(\arcsin (\sqrt{1+2 x}))^{\prime}=$
$(\arctan x)^{\prime}=$
$(\arctan (3 x))^{\prime}=$
$(\arctan (2 x+1))^{\prime}=$
$(\arctan (\sqrt{x}))^{\prime}=$
$\left(x \arctan x-\frac{1}{2} \log \left(1+x^{2}\right)\right)^{\prime}=$

Exercice 114 (TD). Trouver la fonction réciproque de $f$ et calculer sa dérivée.
$f:] 0, \frac{\pi}{2}[\rightarrow] 1,+\infty\left[, f(x)=\frac{1}{\sin x}\right.$
$f:] 0, \frac{\pi}{2}[\rightarrow] \frac{1}{2},+\infty\left[, f(x)=\frac{1}{1+\cos (2 x)}\right.$

### 4.7 La régle de l'Hôpital

Exercice 115 (TD). Calculer les limites suivantes
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=$

$\lim _{x \rightarrow 0} \frac{\tan x}{x+\sin x}=$
$\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}=$

$\lim _{x \rightarrow 0} \frac{x \cos x}{\sin x}=$
$\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x-3 x^{2}}=$

-     -         -             -                 -                     -                         -                             -                                 -                                     -                                         -                                             -                                                 -                                                     -                                                         -                                                             -                                                                 -                                                                     -                                                                         -                                                                             -                                                                                 -                                                                                     -                                                                                         -                                                                                             -                                                                                                 -                                                                                                     -                                                                                                         -                                                                                                             -                                                                                                                 -                                                                                                                     -                                                                                                                         -                                                                                                                             -                                                                                                                                 -                                                                                                                                     -                                                                                                                                         -                                                                                                                                             -                                                                                                                                                 -                                                                                                                                                     -                                                                                                                                                         - 



$\lim _{x \rightarrow 0} \frac{\ln (1+a x)}{x+a x^{3}}=$


$\lim _{x \rightarrow 0} \frac{\ln (1+x)-x e^{x}}{x^{2}}=$
$\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{x^{2}}=$

## Exercice 116 (TD). Calculer les limites suivantes

$\lim _{x \rightarrow 0} \frac{\exp \left(x^{2}\right)-\cos x}{x^{2}}=$
$\lim _{x \rightarrow 0} \frac{\arctan x}{\sin x}=$
$\lim _{x \rightarrow 0} \frac{\arcsin (3 x)}{x^{2}+x}=$

$\lim _{x \rightarrow 0} \frac{\arctan (2 x)}{1-\sqrt{1-x}}=$

$\lim _{x \rightarrow 0} \frac{\arctan \left(e^{x}-1\right)}{\sqrt{x+1}-1}=$

-     -         -             -                 -                     -                         -                             -                                 -                                     -                                         -                                             -                                                 -                                                     -                                                         -                                                             -                                                                 -                                                                     -                                                                         -                                                                             -                                                                                 -                                                                                     -                                                                                         -                                                                                             -                                                                                                 -                                                                                                     -                                                                                                         -                                                                                                             -                                                                                                                 -                                                                                                                     -                                                                                                                         -                                                                                                                             -                                                                                                                                 -                                                                                                                                     -                                                                                                                                         -                                                                                                                                             -                                                                                                                                                 -                                                                                                                                                     -                                                                                                                                                         -                                                                                                                                                             -                                                                                                                                                                 -                                                                                                                                                                     - 

$$
\lim _{x \rightarrow+\infty} \frac{e^{2 x}}{x+7}=
$$

$$
\lim _{x \rightarrow+\infty} \frac{e^{x}}{x^{3}+1}=
$$

$$
\lim _{x \rightarrow+\infty} \frac{\ln x}{\sqrt{x}}=
$$

$$
\lim _{x \rightarrow+\infty} \frac{e^{\sqrt{x}}}{x}=
$$

$$
\begin{aligned}
& \text { - } \sqrt{x+1}-1
\end{aligned}
$$

### 4.8 Sommes et produits de fonctions

Exercice 117 (PEF). Calculer les limites
$\lim _{x \rightarrow 0}\left(\prod_{k=2}^{9} \frac{\sin (k x)}{\tan ((k-1) x)}\right)=$

-     -         -             -                 -                     -                         -                             -                                 -                                     -                                         -                                             -                                                 -                                                     -                                                         -                                                             -                                                                 -                                                                     -                                                                         -                                                                             -                                                                                 -                                                                                     -                                                                                         -                                                                                             -                                                                                                 -                                                                                                     -                                                                                                         -                                                                                                             -                                                                                                                 -                                                                                                                     -                                                                                                                         -                                                                                                                             -                                                                                                                                 -                                                                                                                                     -                                                                                                                                         -                                                                                                                                             -                                                                                                                                                 -                                                                                                                                                     -                                                                                                                                                         -                                                                                                                                                             -                                                                                                                                                                 -                                                                                                                                                                     -                                                                                                                                                                         -                                                                                                                                                                             - 


$\lim _{x \rightarrow 0}\left(\prod_{k=1}^{12} \frac{\arcsin ((k+1) x)}{e^{k x}-1}\right)=$



$\lim _{x \rightarrow 0}\left(\prod_{k=2}^{100} \frac{\sin ((k-1) x)}{\sqrt{k x+1}-1}\right)=$



$\lim _{x \rightarrow 0}\left(\sum_{k=1}^{8} \frac{\arctan (k x)}{e^{2 x}-1}\right)=$

Exercice 118 (PEF). Exprimer en fonction de $n \in \mathbb{N}$ le produit $\lim _{x \rightarrow 0}\left(\prod_{k=1}^{n} \frac{\ln \left(\frac{x}{2}+\sqrt{1+\sin (k x)}\right)}{\sin (k x)}\right)$, et calculer le résultat pour $n=7$.

Exercice 119 (PEF). Calculer les limites
$\lim _{x \rightarrow 0}\left(\prod_{k=2}^{9} \frac{\ln (1+k x) \sin x}{x\left(e^{k x}-x-1\right)}\right)=$


$\lim _{x \rightarrow 0}\left(\prod_{k=2}^{8} \frac{\sin ((k-1) x) \sin (2 x)}{x\left(e^{k x}-1\right)}\right)=$
$\lim _{x \rightarrow 0}\left(\sum_{k=1}^{8} \frac{x \arcsin (k x)}{\sin ((k-1) x)\left(e^{2 x}-1\right)}\right)=$



Exercice 120 (PEF). Calculer les limites

$$
\lim _{x \rightarrow+\infty} \operatorname{det}\left(\begin{array}{cc}
\sqrt{x^{2}+1} & \sqrt{4 x^{2}-1} \\
x & 2 x
\end{array}\right)=
$$

## 5 Primitives et intégrales indéfinies

### 5.1 Intégration par changement de variable

Exercice 121 (TD). Soit $y(x)$ une fonction donnée. Calculer les primitives suivantes.
$\int y^{\prime}(x) y(x) d x=\int y^{\prime}(x) y(x) d x=\int y d y=\frac{y^{2}}{2}+C=\frac{y(x)^{2}}{2}+C$
$\int \frac{y^{\prime}(x)}{y(x)^{2}} d x=$
$\int \frac{y^{\prime}(x)}{\sqrt{y(x)}} d x=$
$\int \frac{y^{\prime}(x)}{y(x)} d x=$
$\int y^{\prime}(x) e^{y(x)} d x=$
$\int y^{\prime}(x) \sin y(x) d x=$
$\int y^{\prime}(x) \cos y(x) d x=$
$\int y^{\prime}(x)\left(1+\tan ^{2} y(x)\right) d x=$
$\int \frac{y^{\prime}(x)}{\sqrt{1-y(x)^{2}}} d x=$
$\int-\frac{y^{\prime}(x)}{\sqrt{1-y(x)^{2}}} d x=$
$\int \frac{y(x)^{\prime}}{1+y(x)^{2}} d x=$
$\int y(x)^{\prime} y(x) \cos \left(y(x)^{2}\right) d x=$
$\int y^{\prime}(x) e^{y(x)} \cos \left(e^{y(x)}\right) d x=$
$\int \frac{y^{\prime}(x)}{y(x)} \cos (\ln y(x)) d x=$

Exercice 122 (TD). Calculer les primitives suivantes.
$\int\left(x^{4}-3 x+1\right) d x=$
$\int(x+1)^{2} d x=$
$\int(x-1)^{3} d x=$
$\int \sqrt{x+2} d x=$
$\int \sqrt[3]{x+1} d x=$
$\int \frac{1}{\sqrt{3 x+1}} d x=$
$\int \frac{1}{(2 x+1)^{2}} d x=$
$\int \sin (2 x) d x=$
$\int \sin (1-x) d x=$
$\int \sin (3 x-2) d x=$
$\int \cos (5 x+1) d x=$
$\int e^{2 x} d x=$
$\int e^{7 x+3} d x=$
$\int x e^{x^{2}} d x=$
$\int x^{2} e^{x^{3}+1} d x=$
$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x=$

Exercice 123 (TD, Changement de variable). Calculer les primitives suivantes.
$\int \frac{d x}{1+x^{2}}=$
$\int \frac{d x}{1+4 x^{2}}=$
$\int \frac{d x}{3+27 x^{2}}=$
$\int \frac{d x}{4+x^{2}}=$

$\int \cos x e^{\sin x} d x=$
$\int \sin ^{3} x \cos x d x=$
$\int x\left(x^{2}+1\right)^{3} d x=$
$\int \frac{x}{\sqrt{x^{2}+1}} d x=$
$\int \frac{d x}{x+1} d x=$
$\int \frac{d x}{2 x+3} d x=$
$\int \frac{\ln x}{x} d x=$
$\int \frac{d x}{x(\ln x)^{2}}=$
$\int \frac{d x}{x(\ln x+1)}=$

### 5.2 Intégration de fonctions rationnelles

Exercice 124 (TD). Calculer les primitives suivantes.
$\int \frac{d x}{x(x+1)}=$

$\int \frac{d x}{x^{2}-1}=$

$$
\int \frac{d x}{x^{2}-3 x+2}=
$$

$$
\int \frac{d x}{x^{2}-2 x+1}=
$$

$$
\int \frac{x-3}{x^{2}-6 x+9} d x=
$$

$$
\int \frac{(x-3)+4}{x^{2}-6 x+9} d x=
$$

$$
\int \frac{x+2}{x^{2}+2 x+1} d x=
$$

Exercice 125 (TD). Calculer les primitives suivantes.
$\int \frac{2 x}{x^{2}+1} d x=$
$\int \frac{x+3}{x^{2}+1} d x=$
$\int \frac{x+5}{x^{2}+2 x+2} d x=$
$\int \frac{2-x}{x^{2}-2 x+2} d x=$
$\int \frac{3 x+1}{9 x^{2}+6 x+2} d x=$
$\int \frac{x^{2}+3 x+4}{x^{2}+1} d x=$

$\int \frac{x^{2}+2 x}{x^{2}-1} d x=$



$\qquad$

Exercice 126 (TD, Intégration de fonctions trigonométriques). Calculer les primitives suivantes.
$\int \sin x \cos x d x=$
$\int \frac{\cos x}{\sin x} d x=$
$\int \frac{1+\tan ^{2} x}{\tan ^{2} x} d x=$
$\int \frac{\sin x}{2+\cos x} d x=$
$\int \sin ^{3} x d x=$

$\int \frac{1}{\cos x} d x=$



$\int \cos (7 x) \cos (2 x) d x=$

$\int \sin (2 x) \cos (5 x) d x=$

### 5.3 Intégration par parties

Exercice 127 (TD). Calculer les primitives suivantes.
$\int x e^{x} d x=$
$\int x \sin x d x=$
$\int \ln x d x=$
$\int \arctan x d x=$

$\int \ln ^{2} x d x=$
$\int \frac{\ln x}{x^{2}} d x=$
$\int x \ln x d x=$




### 5.4 Exercices récapitulatifs

Exercice 128 (TD). Calculer les primitives suivantes.
$\int \frac{e^{\tan x}}{\cos ^{2} x} d x=$
$\int \frac{\ln x}{x} \cos \left(1+\ln ^{2} x\right) d x=$
$\int \cos ^{3} x d x=$

-     - ー - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
$\int \frac{1}{\sin x} d x=$

$\int x \cos (3 x) d x=$
$\int \ln \left(x^{2}+1\right) d x=$
-     -         -             -                 -                     -                         -                             -                                 -                                     -                                         -                                             -                                                 -                                                     -                                                         -                                                             -                                                                 -                                                                     -                                                                         -                                                                             -                                                                                 -                                                                                     -                                                                                         -                                                                                             -                                                                                                 -                                                                                                     -                                                                                                         -                                                                                                             -                                                                                                                 -                                                                                                                     -                                                                                                                         -                                                                                                                             -                                                                                                                                 -                                                                                                                                     - 

$\int \frac{\sin x}{\cos x} d x=$


$\int x^{2} \arctan x d x=$

