Fourier-Mukai transform for formal schemes

Florian Viguier
Université de Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France

Objectives

In 1981, Mukai constructed the Fourier-Mukai transform for abelian varieties over an algebraically
closed field (4), which gives an equivalence of categories between quasi-coherent sheaves over A and
the ones over AV, its dual variety. Laumon generalized these results for abelian varieties over a locally
noetherian basis (2).

One can then ask the following question: can these results be generalized even more? What about
formal abelian varieties? And abelian rigid analytic varieties?

The generalization of the Fourier-Mukai transform’s construction is based on a simple idea: make the
classical construction commute with (derived) inverse limit. Even if the idea seems simple, it implies
to clearly understand quasi-coherent sheaves and functors defined over formal varieties.

When the formal Fourier-Mukai transtorm is constructed and its fundamental results has been proved,

one can then obtain these results over its generic fiber.

Classical Fourier-Mukai transform

Given an abelian variety A over S locally noetherian, one can define the following functor from the
category of S-schemes to the one of abelian groups:

Pic’(A x o/8) : T — Pic (A x T/T),
where Pic’(X/T) is the abelian group of invertible O x-modules £ such that
m*L >~ pi L & pyL,
with m, p1, po : X X7 X — X the multiplication and the canonical projections.

The functor Pic’(A x e/e) is representable by an abelian variety AV, called the dual variety of A. The
representability of this functor also gives a universal element P € Pic’(A x AY/AV), called the Poincaré

sheatf.

D

Using these notations, the Fourier-Mukai transform is the functor F : D° . (O4) — D° (O 4v) defined

gcoh gcoh
by
L
F(E)=Rp'(P®pE).

The dual Fourier-Mukai transform F : D} ;(Oav) = D)., (O4) is defined in the same way.
The three following properties of Fourier-Mukai transform are the most important ones, and the ones we

want to preserve when generalizing the construction:

Theorem (Mukai)

Preserves coherence: If £ € D, (Oy), then F(E) € D’ (O4v).
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Fquivalence of categories: F : Dgcah((’) A) — Dgwh(() 4v) is an equivalence of categories.

Involutivity: FY o F ~ (—1)" @ [—d], with (—1) : A — A the inverse morphism and d = dim(A).

First approach

Let V' be a discrete valuation ring, 7 its uniformizer, V; = V/ﬂ_iv and S; = Spec(V;). Given (A;) a direct
system of abelian varieties over the schemes S;, one can obtain a formal abelian variety A = hg A; over
S=Spf(V).

The dual abelian variety of A is then A" = h_IQA;/ and the Poincaré sheaf associated is P = limP;,
where P; is the Poincaré sheaf over A; x AY.

The only thing missing to extend the construction of the Fourier-Mukai is a "good notion" of quasi-coherent
sheaves over A, and the inverse and direct image functors associated.

Formal quasi-coherent sheaves

L
Let £ € D(O4) be a bounded complex of O 4-module and & = Oy @4 &
£ is said quasi-coherent (or more precisely, £ € D° . (04)) if & € D ,(O4,) and £ ~ Rlm&;.
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We also have the following characterization proved by Berthelot (1):

: b
E € chah

L
(O4) © & € Dy (Oa,) and Vi, Oy, @0, &y > &
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Remark that the definition of formal quasi-coherent sheaves is more rigid than the classical one, hence, it
isn’t clear that the usual direct and inverse images preserve quasi-coherence of formal sheaves. Actually,
there are examples of quasi-coherent sheaves £ and (flat) morphisms f : X — ) such that Ox ® 10, €
isn’t quasi-coherent, so this cannot be a good definition of inverse image.

The idea is to define the (derived) inverse image in the following way:
f'& = Rlim L€,
where f; 1 X; — Y; is the reduction modulo 7’ of f : X — Y. With this definition, the inverse image of

a quasi-coherent sheaf is a quasi-coherent sheatf.
For the direct image however, there isn’'t any problem.

Formal Fourier-Mukai transform

With the previous definitions, one can easily generalize the definition of Fourier-Mukai transform in the
following way:

VE € DY
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(0.), F(E) = Rp!(P & p'€").

Given the particular form of the definition of p', one obtain the following result:
F(&) = Rlm F(&)),

where JF; is the Fourier-Mukai transform over A;. In other words, Fourier-Mukai transform commutes
with inverse limit.

Thanks to this result and Berthelot’s characterization of formal quasi-coherent sheaves, the main proper-
ties of Fourier-Makai transforms can be proven in the formal case:

Theorem (V.)

F is an equivalence of categories between D’ (O 4) and D (O 4v) that preserves coherence and
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which is involutive.

The rigid analytic case

Let K be the fraction field of V', A be the generic fiber of the formal abelian variety A and sp : Ax — A
be the specialization morphism.

Note that sp induces a group scheme structure over Ay, coming from the one over A.

We will define Fourier-Mukai transform for coherent sheaves over Ay . This is the first step of a potential
construction of Fourier-Mukai transform over an abeloid rigid analytic variety:.

As explained in (3), the dual variety of A is isomorphic to the generic fiber of AY. It will be denoted
by IV in the following. Moreover, if sp¥ : A} — AY is the specialization morphism of A", then
sp = sp x sp’ is the one of A x AY and the Poincaré sheaf over Ax x A} is Px ~ sp*P. By
construction, the following diagram is commutative:

Ag—2 A

PK p
Pr—Ax x AL A x A —P

Pi p"

AL A

Rigid analytic Fourier-Mukai transform

One can define Fourier-Mukai transform over Ay in the following way: given £& € D’ (0y4,), the
Fourier-Mukai transform of £ is

Fr(E) = Rpy,(Pr ® pi€).

Then, we have the following isomorphism of functors from D’ , (O 4,.) to D° (O v g):
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sp) o Fi =~ F o sp,.

In other words, Fourier-Mukai transform commutes with the specialization.
With this result, it is possible to obtain the mains properties of Fourier-Mukai transforms in the rigid
analytic case.

Theorem (V.)

Fr is an equivalence of categories between D, (Oy4,) and D’ ,(O4v). Moreover, it is involutive.
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