Hodge Theory of p-adic analytic varieties

Wiesława Nizioł

CNRS, IMJ-PRG
December 10, 2020

Based on a joint work with Pierre Colmez

Algebraic comparison theorem

Notation: $K-\operatorname{cdvf}$, char $(0, p), \mathscr{G}_{K}=\operatorname{Gal}(\bar{K} / K), C=\widehat{K}$, $K \supset \mathscr{O}_{K} \rightarrow k, k$ - perfect, $F=W(k)$.

Theorem (Algebraic comparison theorem) X / K - algebraic variety. There exists a natural $\mathbf{B}_{\text {st }}$-linear, \mathscr{G}_{K}-equivariant period isomorphism ($r \geq 0$)

$$
\begin{array}{lll}
\alpha_{p s t}: & H_{\mathrm{et}}^{r}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right) \otimes_{\mathbf{Q}_{p}} \mathbf{B}_{\mathrm{st}} \simeq H_{\mathrm{HK}}^{r}\left(X_{\bar{K}}\right) \otimes_{\text {Fn }} \mathbf{B}_{\mathrm{st}}, & \left(\varphi, N, \mathscr{G}_{K}\right), \\
\alpha_{\mathrm{dR}}: & H_{\mathrm{ett}}^{r}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right) \otimes_{\mathbf{Q}_{p}} \mathbf{B}_{\mathrm{dR}} \simeq H_{\mathrm{dR}}^{r}\left(X_{\bar{K}}\right) \otimes_{\bar{K}} \mathbf{B}_{\mathrm{dR}}, & \text { Fil, },
\end{array}
$$

where $\alpha_{\mathrm{dR}}=\alpha_{\rho s t} \otimes \mathbf{B}_{\mathrm{dR}}$.
Here:
(1) $H_{\mathrm{dR}}^{r}\left(X_{\bar{K}}\right)$ - Deligne de Rham cohomology (uses resolution of singularities)
(2) $H_{\mathrm{HK}}^{r}\left(X_{\bar{K}}\right)$ - Beilinson Hyodo-Kato cohomology (uses de Jong's alterations)

Hyodo-Kato theory for algebraic varieties Based on crystalline cohomology: Hyodo-Kato, Beilinson X / K-algebraic variety (sic !)
(i) locally: in h-topology alterations allow

(a) $\quad \mathrm{R} \Gamma_{\mathrm{cr}}\left(\mathscr{U}_{0} / \mathscr{O}_{F_{L}}^{0}\right), \quad H^{*}$ - finite $\operatorname{rank} / F_{L}, \quad(\varphi, N)$,
(b) $\iota \mathrm{HK}: \operatorname{R} \Gamma_{\mathrm{cr}}\left(\mathscr{U}_{0} / \mathscr{O}_{F_{L}}^{0}\right) \otimes_{F_{L}}^{L} L \simeq R \Gamma_{\mathrm{dR}}(U)$.
(ii) globalization: make (i) geometric and glue in h-topology. Get

$$
\begin{aligned}
& \mathrm{R} \Gamma_{\mathrm{HK}}\left(X_{\bar{K}}\right), \quad H^{*} \text { - finite rank } / F^{\mathrm{nr}}, \quad\left(\varphi, N, \mathscr{G}_{K}\right), \\
& \iota_{\mathrm{HK}}: \mathrm{R} \Gamma_{\mathrm{HK}}\left(X_{\bar{K}}\right) \otimes_{\mathrm{Fnr}^{\mathrm{K}}} \simeq \mathrm{R} \Gamma_{\mathrm{dR}}\left(X_{\bar{K}}\right)
\end{aligned}
$$

Restated algebraic comparison theorem

(i) de Rham-to-étale comparison:
$H_{\text {ét }}^{r}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right) \simeq\left(H_{\mathrm{HK}}^{r}\left(X_{\bar{K}}\right) \otimes_{F^{\mathrm{nr}}} \mathbf{B}_{\mathrm{st}}\right)^{\varphi=1, N=0} \cap F^{0}\left(H_{\mathrm{dR}}^{r}(X) \otimes_{K} \mathbf{B}_{\mathrm{dR}}\right), \quad \mathscr{G}_{K}$,
or: we have a bicartesian diagram $(r \geq 0)$

$$
\begin{gathered}
H_{\text {ét }}^{r}\left(X_{\bar{K}}, \mathbf{Q}_{p}(r)\right) \longrightarrow\left(H_{\mathrm{HK}}^{r}\left(X_{\bar{K}}\right) \otimes_{F^{\mathrm{nr}}} \mathbf{B}_{\mathrm{st}}^{+}\right)^{\varphi=p^{r}, N=0} \\
\downarrow \\
F^{r}\left(H_{\mathrm{dR}}^{r}(X) \otimes_{K} \mathbf{B}_{\mathrm{dR}}^{+}\right) \longrightarrow H_{\mathrm{dR}}^{r}(X) \otimes_{K} \mathbf{B}_{\mathrm{dR}}^{+}
\end{gathered}
$$

We will write it as (upper index refers to cohomology degree)

or: there exists an exact sequence

$$
0 \rightarrow H_{\mathrm{ett}, r}^{r} \rightarrow H^{r}\left(F^{r}\right) \oplus \mathrm{HK}_{r}^{r} \rightarrow \mathrm{DR}^{r} \rightarrow 0
$$

(ii) étale-to-de Rham comparison:

$$
\begin{aligned}
& \operatorname{Hom}\left(H_{\mathrm{et}}^{r}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right), \mathbf{B}_{\mathrm{st}}\right)^{\mathscr{G}_{K}-s m} \simeq H_{\mathrm{HK}}^{r}\left(X_{\bar{K}}\right)^{*}, \quad\left(\varphi, N, \mathscr{G}_{K}\right), \\
& \operatorname{Hom}_{\mathscr{G}_{K}}\left(H_{\mathrm{ett}}^{r}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right), \mathbf{B}_{\mathrm{dR}}\right) \simeq H_{\mathrm{dR}}^{r}\left(X_{\bar{K}}\right)^{*}, \quad \text { Fil }
\end{aligned}
$$

Analytic varieties

X / K - smooth rigid analytic variety
Case 1: X proper,
(A) Scholze:
(i) $H_{e ̂ t}^{r}\left(X_{C}, \mathbf{Q}_{p}\right)$ is finite rank over \mathbf{Q}_{p} :

- Artin-Schreier to pass to coherent cohomology
- Cartier-Serre argument for finitness of coherent cohomology
(ii) Hodge-de Rham spectral sequence degenerates
\Rightarrow get de Rham comparison isomorphism:

$$
\alpha_{\mathrm{dR}}: \quad H_{\mathrm{ett}}^{r}\left(X_{C}, \mathbf{Q}_{p}\right) \otimes_{\mathbf{Q}_{p}} \mathbf{B}_{\mathrm{dR}} \simeq H_{\mathrm{dR}}^{r}(X) \otimes_{K} \mathbf{B}_{\mathrm{dR}}, \quad \text { Fil },
$$

(B) Colmez-Nizioł: Algebraic comparison theorem holds
(1) X / K - smooth, proper, rigid analytic
$\alpha_{p s t}: \quad H_{\text {ett }}^{r}\left(X_{C}, \mathbf{Q}_{p}\right) \otimes_{\mathbf{Q}_{p}} \mathbf{B}_{\text {st }} \simeq H_{H K}^{r}\left(X_{C}\right) \otimes_{F^{n r}} \mathbf{B}_{\text {st }}, \quad\left(\varphi, N, \mathscr{G}_{K}\right)$,
$\alpha_{\mathrm{dR}}: \quad H_{\mathrm{et}}^{r}\left(X_{C}, \mathbf{Q}_{p}\right) \otimes_{\mathbf{Q}_{p}} \mathbf{B}_{\mathrm{dR}} \simeq H_{\mathrm{dR}}^{r}(X) \otimes_{K} \mathbf{B}_{\mathrm{dR}}, \quad$ Fil.
(2) X / C - smooth, proper, rigid analytic

$$
\begin{array}{ll}
\alpha_{p s t}: & H_{e \mathrm{et}}^{r}\left(X, \mathbf{Q}_{p}\right) \otimes_{\mathbf{Q}_{p}} \mathbf{B}_{\mathrm{st}} \simeq H_{\mathrm{HK}}^{r}(X) \otimes_{\check{c}} \mathbf{B}_{\mathrm{st}}, \quad(\varphi, N), \\
\alpha_{\mathrm{dR}}: & H_{\mathrm{ett}}^{r}\left(X, \mathbf{Q}_{p}\right) \otimes_{\mathbf{Q}_{p}} \mathbf{B}_{\mathrm{dR}} \simeq H_{\mathrm{dR}}^{r}\left(X / \mathbf{B}_{\mathrm{dR}}^{+}\right), \quad \text { Fil. }
\end{array}
$$

Hyodo-Kato theory for analytic spaces

Grosse-Klönne; X/K -smooth dagger variety
(i) locally: in étale-topology alterations allow

(a) $\mathrm{R} \Gamma_{\text {rig }}\left(\mathscr{U}_{0} / \mathscr{O}_{F_{L}}^{0}\right), \quad H^{*}$ - finite rank $/ F_{L}, \quad(\varphi, N)$,
(b) $\iota_{\mathrm{HK}}: \mathrm{R} \Gamma_{\text {rig }}\left(\mathscr{U}_{0} / \mathscr{O}_{F_{L}}^{0}\right) \otimes_{F_{L}}^{L} L \simeq \mathrm{R} \Gamma_{\text {rig }}(U)$.
(ii) globalization: make (i) geometric and glue in étale-topology.

$$
\mathrm{R} \Gamma_{\mathrm{HK}}\left(X_{C}\right), \quad H^{*} \text { - finite rank } / F^{\mathrm{nr}}, \quad\left(\varphi, N, \mathscr{G}_{K}\right),
$$

$\iota_{\mathrm{HK}}: \mathrm{R} \Gamma_{\mathrm{HK}}\left(X_{C}\right) \otimes_{\mathrm{Fnr}^{n}} \bar{K} \simeq \mathrm{R} \Gamma_{\mathrm{dR}}\left(X_{C}\right)$

Case 2:

X / C Stein, smooth:

1. there exists an admissible covering by affinoids
$\cdots \Subset U_{n} \Subset U_{n+1} \Subset \cdots$
2. $H^{i}(X, \mathscr{F})=0, \mathscr{F}$-coherent, $i>0$
3. $\mathrm{R} \Gamma_{\text {proét }}\left(X, \mathbf{Q}_{p}\right) \simeq \mathrm{R} \lim _{n} \mathrm{R} \Gamma_{\text {ét }}\left(U_{n}, \mathbf{Q}_{p}\right)$
4. $H_{\text {proét }}^{r}$ is infinite dimensional
5. Hodge- de Rham spectral sequence does not degenerate

Theorem (Colmez-Dospinescu-N) X / C Stein smooth rigid space (or a dagger affinoid). There exists a map of exact sequences (all cohomologies are of X)

$$
0 \rightarrow \Omega^{r-1} / \operatorname{ker} d \rightarrow H_{\text {proét }}^{r}\left(\mathbf{Q}_{p}(r)\right) \rightarrow\left(H_{\mathrm{HK}}^{r} \widehat{\otimes}_{C}^{R} \mathbf{B}_{\mathrm{st}}^{+}\right)^{\varphi=p^{r}, N=0} \rightarrow 0
$$

$$
\begin{equation*}
0 \rightarrow \Omega^{r-1} / \operatorname{ker} d \longrightarrow \Omega^{r, d=0} \tag{0}
\end{equation*}
$$

$$
\longrightarrow H_{\mathrm{dR}}^{r}-
$$

Main theorem

Theorem (Colmez-N) X/K smooth dagger variety.
(i) de Rham-to-étale: there exists a bicartesian diagram

$$
\begin{gathered}
\left.H_{\text {proét }}^{r}\left(X_{C}, \mathbf{Q}_{p}(r)\right) \longrightarrow\left(H_{\mathrm{HK}}^{r}\left(X_{C}\right)\right) \widehat{\otimes}_{F^{\mathrm{nr}}}^{R} \mathbf{B}_{\mathrm{st}}^{+}\right)^{\varphi=p^{r}, N=0} \\
\downarrow \\
H^{r}\left(F^{r}\left(\mathrm{R} \Gamma_{\mathrm{dR}}(X) \widehat{\otimes}_{K}^{R} \mathbf{B}_{\mathrm{dR}}^{+}\right)\right) \longrightarrow{ }^{\iota \mathrm{HK} \otimes \iota} \\
H_{\mathrm{dR}}^{r}(X) \widehat{\otimes}_{K}^{R} \mathbf{B}_{\mathrm{dR}}^{+}
\end{gathered}
$$

(ii) étale-to-de Rham: $\left(\left[K: \mathbf{Q}_{p}\right]<\infty\right)$
$\operatorname{Hom}\left(H_{\text {proét }}^{r}\left(X_{C}, \mathbf{Q}_{p}\right), \mathbf{B}_{\text {st }}\right)^{\mathscr{G}_{K}-p r o s m} \simeq H_{\mathrm{HK}}^{r}\left(X_{C}\right)^{*} \quad\left(\varphi, N, \mathscr{G}_{K}\right)$, $\operatorname{Hom}_{\mathscr{G}_{K}}\left(H_{\text {proét }}^{r}\left(X_{C}, \mathbf{Q}_{p}\right), \mathbf{B}_{\mathrm{dR}}\right) \simeq H_{\mathrm{dR}}^{r}(X)^{*}, \quad$ Fil????

Remark (i) holds also for X / C.

Remarks

(1) X is proper then (degeneration of Hodge-de Rham sp. seq.)

$$
H^{r}\left(F^{r}\left(\mathrm{R} \Gamma_{\mathrm{dR}}(X) \widehat{\otimes}_{K}^{R} \mathrm{~B}_{\mathrm{dR}}^{+}\right)\right) \simeq F^{r}\left(H_{\mathrm{dR}}^{r}(X) \widehat{\otimes}_{K}^{R} \mathbf{B}_{\mathrm{dR}}^{+}\right)
$$

and the horizontal arrows are injective
(2) X is Stein or an affinoid then the two horizontal arrows are surjective and their kernels are $\Omega^{r-1}\left(X_{C}\right) /$ ker d.
(3) Topology: We work in the category of locally convex spaces (quasi-abelian).

- Tensor products are projective (commute with limits) and (right) derived.
- Overconvergence implies "good properties":

1. higher derived functors of tensor products vanish,
2. cohomology is "classical".

Digression: Banach-Colmez spaces

$$
H_{\mathrm{ett}}^{n}\left(X_{\bar{K}}, \mathbf{Q}_{p}\right) \simeq\left(H_{\mathrm{HK}}^{n}\left(X_{\bar{K}}\right) \otimes_{K^{n}} \mathbf{B}_{\mathrm{st}}\right)^{\mathrm{N}=0, \varphi=1} \cap F^{0}\left(H_{\mathrm{dR}}^{n}\left(X_{\bar{K}}\right) \otimes_{K} \mathbf{B}_{\mathrm{dR}}\right)
$$

What structure can we put on:

$$
\left(H_{\mathrm{HK}}^{n}\left(X_{\bar{K}}\right) \otimes_{K^{n r}} \mathbf{B}_{\mathrm{st}}^{+}\right)^{\mathrm{N}=0, \varphi=1} \simeq\left(H_{\mathrm{HK}}^{n}\left(X_{\bar{K}}\right) \otimes_{K^{n r}} \mathbf{B}_{\mathrm{cr}}^{+}\right)^{\varphi=1}
$$

Example

- $H_{\mathrm{HK}}^{n}\left(X_{\bar{K}}\right) \simeq K^{n r}\{-1\} \Rightarrow\left(H_{\mathrm{HK}}^{n}\left(X_{\bar{K}}\right) \otimes_{K r} \mathbf{B}_{\mathrm{cr}}^{+}\right)^{\varphi=1} \simeq \mathbf{B}_{\mathrm{cr}}^{+, \varphi=p}$. Have:

$$
0 \rightarrow \mathbf{Q}_{p} t \rightarrow \mathbf{B}_{c r}^{+, \varphi=p} \rightarrow C \rightarrow 0
$$

So $\mathbf{B}_{c r}^{+, \varphi=p} \sim \mathcal{C} \oplus \mathbf{Q}_{p}$.

- More generally, we have $\mathbf{B}_{c r}^{+, \varphi=p^{m}} \sim C^{m} \oplus \mathbf{Q}_{p}$ because:

$$
\left(\text { FES) : } \quad 0 \rightarrow \mathbf{Q}_{\rho} t^{m} \rightarrow \mathbf{B}_{\mathrm{cr}}^{+, \varphi=p^{m}} \rightarrow \mathbf{B}_{\mathrm{dR}}^{+} / t^{m} \mathbf{B}_{\mathrm{dR}}^{+} \rightarrow 0\right.
$$

Digression, cont.

In which reasonable category

$$
\mathbf{B}_{\mathrm{cr}}^{+, \varphi=p^{m}} \sim C^{m} \oplus \mathbf{Q}_{p}
$$

Remark The category of topological vector spaces is not good: $C \oplus \mathbf{Q}_{p} \simeq C!$

Colmez, Fontaine: \exists abelian category $\mathscr{B} \mathscr{C}$ of Banach-Colmez vector spaces \mathbb{W} :

- $\mathbb{W} \simeq C^{n} \pm \mathbf{Q}_{p}^{m}$
- $\operatorname{Dim}(\mathbb{W}):=\left(\operatorname{dim}_{C} \mathbb{W}, \operatorname{dim}_{\mathbf{Q}_{p}} \mathbb{W}\right)$
- $\operatorname{Dim}(\mathbb{W})$ is additive on short exact sequences

Example

1. $\mathbf{B}_{\mathrm{dR}}^{+} / t^{m}$ is \mathbb{B}_{m} with $\operatorname{Dim}\left(\mathbb{B}_{m}\right)=(m, 0)$.
2. $\mathbf{B}_{c r}^{+, \varphi^{a}=p^{b}}$ is $\mathbb{U}_{a, b}$ with $\operatorname{Dim}\left(\mathbb{U}_{a, b}\right)=(b, a)$.
3. C / \mathbf{Q}_{p} has $\operatorname{Dim}=(1,-1)$.

Digression, qBC spaces

qBC space: A Vector Space \mathbb{W} of the form

$$
0 \rightarrow \mathbb{W}_{0} \rightarrow \mathbb{W} \rightarrow \mathbb{W} / \mathbb{W}_{0} \rightarrow 0
$$

such that:

- \mathbb{W}_{0} is a \mathbb{B}_{m}-module, $m \geq 0$,
- $\mathbb{W} / \mathbb{W}_{0}$ is a BC space

Typical example of \mathbb{B}_{m}-module: $\left(\mathrm{R} \Gamma_{\mathrm{dR}}(X) \otimes_{K} \mathbf{B}_{\mathrm{dR}}^{+}\right) / F^{m}$
Everything stated below for $B C$ spaces extends to qBC spaces

Proof of the main theorem

Step 1: equip everything in sight with $B C$ structure Step 2: reduce to X quasi-compact: write

$$
X=\cup_{n} U_{n}, \quad U_{n} \subset U_{n+1}, \quad U_{n} \text {-quasi-compact }
$$

$C(X): \quad 0 \rightarrow H_{\text {proét, } r}^{r}\left(X_{C}\right) \rightarrow H^{r}\left(F^{r}\right)\left(X_{C}\right) \oplus \operatorname{HK}_{r}^{r}\left(X_{C}\right) \rightarrow \operatorname{DR}^{r}\left(X_{C}\right) \rightarrow 0$
Claim Have $C(X)={\underset{\check{n}}{n}}^{\lim _{n}} C\left(U_{n}\right)$: to control $\mathrm{R}^{1}{\underset{\mathrm{l}}{n}}^{m}$ use:
(i) Mittag-Leffler in BC category and
(ii)Mittag-Leffler in loc. conv. top. vs for coh. cohomology

Step 3: Assume X quasi-compact
Lemma Main Theorem is equivalent to the following:

1. The pair $\left(H_{H K}^{r}\left(X_{C}\right), H_{\mathrm{dR}}^{r}\left(X_{C}\right)\right), r \geq 0$, is acyclic.
2. $H_{\text {proét }}^{r}\left(X_{C}, \mathbf{Q}_{p}\right)$ is effective, i.e., has curvature ≥ 0, for all r.
3. For all r,

$$
\operatorname{ht}\left(H_{\text {proét }}^{r}\left(X_{C}, \mathbf{Q}_{p}\right)\right)=\operatorname{dim}_{K} H_{\mathrm{dR}}^{r}(X) .
$$

Acyclicity and curvature

An $\left(M, M_{K}\right)$ - filtered (φ, N)-module is called acyclic if (equivalently):

- the associated vector bundle \mathscr{E} on $X_{F F}$ is acyclic, i.e., $H^{1}\left(X_{F F}, \mathscr{E}\right)=0$
- \mathscr{E} has HN slopes ≥ 0
- $\left(M \otimes \mathbf{B}_{\mathrm{st}}\right)^{\varphi=1, N=0} \rightarrow\left(M \otimes \mathbf{B}_{\mathrm{dR}}\right) / F^{0}$ is surjective

Remark If $\left(M, M_{K}\right)$ is a weakly admissible filtered (φ, N)-module then it is acyclic: all Harder-Narasimhan slopes of \mathscr{E} are 0 .
(1) Curvature $B C \mathbb{W}$ has curvature:

- >0 if $\operatorname{Hom}\left(\mathbb{W}, \mathbb{V}^{1}\right)=0 ; \Leftarrow H^{1}\left(X_{F F}, \mathscr{E}\right), \mathscr{E}$ a vector bundle
- $=0$ if it is affine, i.e., it is a successive extension of \mathbb{V}^{1}; think $H^{0}\left(X_{F F}, \mathscr{F}_{\infty}\right), \mathscr{F}_{\infty}$ coherent sheaf, supported at ∞, torsion
- <0 if it injects into $\mathbf{B}_{\mathrm{dR}}^{d}$; think $H^{0}\left(X_{F F}, \mathscr{E}\right)$.

Example (i) \mathbb{V}^{1} curvature 0 and height 0
(ii) $\mathbb{V}^{1} / \mathbf{Q}_{p}$ curvature >0 and height $-1<0$
(iii) $\mathbb{U}=\left(\mathbf{B}_{\text {cr }}^{+}\right)^{\varphi=p}$ curvature <0 and height 1
(iv) Compare:

- $\mathbb{U} / \mathbf{Q}_{p} t \simeq \mathbb{V}^{1}$ curvature 0 and height 0
- if $x \in \mathbb{U}(C) \backslash \mathbf{Q}_{p} t$ then $\mathbb{U} / \mathbf{Q}_{p} x$ curvature >0 and height 0

Fact: Every $B C$ space \mathbb{W} has a unique filtration

$$
\mathbb{W}_{>0} \subset \mathbb{W}_{\geq 0} \subset \mathbb{W}
$$

such that

- $\mathbb{W}_{>0}$ has curvature >0,
- $\mathbb{W}_{\geq 0} / \mathbb{W}_{>0}$ has curvature 0 ,
- $\mathbb{W} / \mathbb{W}_{\geq 0}$ has curvature <0

Curvature and Harder-Narasimhan filtration

(v) Le Bras: category $\mathscr{B} \mathscr{C}$ is Harder-Narasimhan:

- there is a notion of slope $\mu(\mathbb{W})$ such that $\mu\left(\mathbb{U}_{\lambda}\right)=-1 / \lambda$ (if $\lambda=d / h$ in lowest terms then $\left.\mathbb{U}_{\lambda}:=\mathbb{U}_{h, d}\right)$. Have:

$$
\mathbb{U}_{\lambda}= \begin{cases}\mathbb{H}^{0}\left(X_{\mathrm{FF}}, \mathscr{O}(\lambda)\right), & \text { if } \lambda \geq 0 \\ \mathbb{H}^{1}\left(X_{\mathrm{FF}}, \mathscr{O}(\lambda)\right), & \text { if } \lambda<0\end{cases}
$$

- there is canonical HN filtration; it splits (nocanonically):

$$
\mathbb{W}=\mathbb{U}_{-1 / \lambda_{1}} \oplus \cdots \oplus \mathbb{U}_{-1 / \lambda_{r}} \oplus\left(\oplus_{x} \mathbb{H}^{0}\left(X_{\mathrm{FF}}, \mathscr{F}_{x}\right)\right),
$$

where \mathscr{F}_{x} is a torsion sheaf supported on x (and $\mathbb{H}^{0}\left(X_{F F}, \mathscr{F}_{x}\right)$ is of slope 0$)$.
(vi) Curvature and Harder-Narasimhan filtration :

- $\mathbb{W}_{>0} \simeq\left(\oplus_{\lambda_{i}>0} \mathbb{U}_{-1 / \lambda_{i}}\right) \oplus\left(\oplus_{x \neq \infty} \mathbb{H}^{0}\left(X_{\mathrm{FF}}, \mathscr{F}_{x}\right)\right)$,
- $\mathbb{W}_{\leq 0} \simeq\left(\oplus_{\lambda_{i}<0} \mathbb{U}_{-1 / \lambda_{i}}\right) \oplus \mathbb{H}^{0}\left(X_{F F}, \mathscr{F}_{\infty}\right)$,
- $\mathbb{W}_{<0} \simeq\left(\oplus_{\lambda_{i}<0} \mathbb{U}_{-1 / \lambda_{i}}\right)$,
- $\mathbb{W}_{=0} \simeq \mathbb{H}^{0}\left(X_{F F}, \mathscr{F}_{\infty}\right)$.

Proof of the main theorem

We will prove claim (3) of the lemma: X quasi-compact over K. For all r,

$$
\operatorname{ht}\left(H_{\text {proét }}^{r}\left(X_{C}, \mathbf{Q}_{p}\right)\right)=\operatorname{dim}_{K} H_{\mathrm{dR}}^{r}(X) .
$$

(i) Note that this is true for affinoids.
(ii) We will show that it is true for a union of two affinoids (the general case is similar). So, assume that U_{1}, U_{2} are affinoids, let

$$
U=U_{1} \cup U_{2}, \quad U_{12}=U_{1} \cap U_{2}
$$

Note that

$$
\operatorname{ht}\left(\mathrm{HK}_{r}^{r}\right)=\operatorname{dim}_{K} H_{\mathrm{dR}}^{r}(X)
$$

\Rightarrow it suffices to show that

$$
\operatorname{ht}\left(H_{\text {proét }, r}^{r}\right)=\operatorname{ht}\left(\mathrm{HK}_{r}^{r}\right) .
$$

(iii) Consider the map

$$
g: H_{\text {proét }, r}^{r} \rightarrow \mathrm{HK}_{r}^{r}
$$

and let us pretend that

$$
\text { ht: } B C \text { spaces } \rightarrow \text { an abelian category }
$$

that is exact.
Show that

$$
\operatorname{ht}(g): \operatorname{ht}\left(H_{\text {proét }, r}^{r}\right) \rightarrow \operatorname{ht}\left(\mathrm{HK}_{r}^{r}\right)
$$

is an isomorphism.
It is clear what to do: Mayer-Vietoris yields the following map of exact sequences

$$
\begin{aligned}
& h_{\text {ét }}^{r-1}\left(U_{1} \oplus U_{2}\right) \rightarrow h_{\text {ét }}^{r-1}\left(U_{12}\right) \rightarrow h t_{\text {êt }}^{r}(U) \rightarrow h_{\text {êt }}^{r}\left(U_{1} \oplus U_{2}\right) \rightarrow h_{\text {êt }}^{r}\left(U_{12}\right)
\end{aligned}
$$

$$
\begin{aligned}
& h t_{\mathrm{HK}}^{r-1}\left(U_{1} \oplus U_{2}\right) \rightarrow h t_{\mathrm{HK}}^{r-1}\left(U_{12}\right) \rightarrow \mathrm{ht}_{\mathrm{HK}}^{r}(U) \rightarrow \mathrm{ht}_{\mathrm{HK}}^{r}\left(U_{1} \oplus U_{2}\right) \rightarrow \mathrm{ht}_{\mathrm{HK}}^{r}\left(U_{12}\right)
\end{aligned}
$$

Use five lemma.
(iv) But ht does not have these properties so we consider a partial Categorification of height
Consider $h: B C \rightarrow C\left(\mathbf{B}_{\mathrm{dR}}-\right.$ modules $)$,

$$
\mathbb{W} \mapsto \operatorname{Hom}\left(\mathbb{W}, \mathbf{B}_{\mathrm{dR}}\right) .
$$

Facts:

(1) if \mathbb{W} is effective then

$$
\operatorname{rk}(h(\mathbb{W}))=\operatorname{ht}(\mathbb{W}) ;
$$

in general

$$
\operatorname{rk}(h(\mathbb{W}))=\operatorname{ht}(W)+\operatorname{rk}\left(\operatorname{Ext}\left(\mathbb{W}, \mathbf{B}_{\mathrm{dR}}\right)\right)
$$

(2) h is an exact functor on effective BC's.
(v) It suffices to show that everything in sight is effective:

- we know it for all the affinoids
- it is clear for $\mathrm{HK}_{r}^{r}(U)$
- for $H_{\text {proét }}^{r}\left(U_{C}\right)$ we argue by induction on r using the fact
acyclicity of $\left(H_{\mathrm{HK}}^{r-1}(X), H_{\mathrm{dR}}^{r-1}\left(X_{K}\right)\right) \Rightarrow$ effectiveness of $H_{\text {proét }}^{r}\left(U_{C}\right)$ \Rightarrow acyclicity of $\left(H_{\mathrm{HK}}^{r}(X), H_{\mathrm{dR}}^{r}\left(X_{K}\right)\right)$.

Comparison theorem

Thank you!

