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Main Goal

Extend the setting of the theory of differential
tropical equations as introduced in [1] and [2]
to encompass the non-trivially valued case, in-
troduce a differential tropicalization functor and
prove an inverse limit theorem in a similar fashion
to [3] and [5] .

Basic definitions

•A pre-differential semiring is a pair (S , d) where
S is an idempotent semiring and d : S → S is a
linear map satisfying tropical Leibniz rule, i.e.
d(xy) + d(x)y = d(xy) + xd(y) = d(x)y + xd(y)
•A differential semiring (S , d, w) is a
pre-differential semiring (S , d) equipped with a
valuation w : Z→ S (as in [4]). Let us denote the
category of differential semirings as DSR. A
subset X of S is a differential primitive set if
d(xy) = (dx)y + x(dy) and d(xn) = w(n)xn−1dx
for all x, y ∈ X , x 6= y such that they generate a
multiplicative monoid free of rank 2;
•A differential F1-module is a pair (M, dM)
whereM is a pointed set and dM :M→M is a
map of pointed sets. Let us denote the category
of differential F1-modules as DF1-Mod.

Given a differential ring (R, dR) we define the func-
tor:

R{−} : DF1-Mod → DR-Alg
M 7→ (R[F (M)], d)

where F (M) is the free monoid with zero generated
byM and the differential d : R{M} → R{M} is
given as the unique linear and Leibniz extension of
dM extending dR.
Given a differential semiring (S , d, w) we define the
functor:

S{−}w : DF1-Mod → DS-Alg
M 7→ (S [F (M)], dw)

where the differential dw : S{M} → S{M} is
given as the unique linear and (classic) Leibniz ex-
tension of dM extending dS , such that dw(xnm) =
w(n)d(xn−1

m ) for all m ∈M.

The category of pairs

Let Pairs be the category with objects semiring
homomorphisms Φ : S → T , S a pre-differential
semiring, and morphisms of the form f = (f1, f2) :
Φ → Φ′ where f1 is a map of differential semirings
and f2 is a map of semirings such that the following
diagram commutes:

S S ′

T T ′

f1

Φ Φ′

f2

Given an object Φ : S → T in Pairs we can as-
sociate to it its reduction Φr : Sr → T , where
Sr := S/∼ with ∼ the largest differential congru-
ence contained in kerΦ. A pair Φ such that Φ = Φr

is said reduced.
Denoting by RedPairs the full subcategory of
Pairs of reduced pairs:

Reduction

Reduction is a functor:
(−)r : Pairs→ RedPairs

Differential enhancements and
tropicalization

Let us fix a valued differential ring of characteristic
0 v : (R, d) → T and a differential enhancement
of it, i.e. a reduced pair Φ : S → T , together with
a differential map w : R → S making the triangle
commute, and such that w(R) ⊂ S is a differential
primitive set with respect to the composition w :
Z → R → S (which makes S into a differential
semiring):

R

T S

v ω

Φ

A solution (in the sense of Grigoriev) to a differential
polynomial P ∈ S{X1, . . . , Xn} is an n-tuple S ∈
Sn such that Φ(P |

X
(j)
i =djSi

) is attained at least twice
in T .

Given a finitely generated differential R-algebra A,
let C be the category whose objects are differential
F1-modulesM together with a surjective
differential homomorphisms R{M}� A.
Given an element f ∈ T [F (M)] and m ∈ F (M),
let fm̂ be the result of deleting the m-term from f .
For an ideal I ⊂ T [F (M)], let B(I) be the
semiring congruence generated by (see [4], 5.1.1):

{f ∼ fm̂ : f ∈ I,m ∈ supp(f )}
Given an object ψ ∈ C, we define its differential
tropicalization as the reduced pair:
Tropd(ψ) : S{M}w/∼Φ◦π −→ T [F (M)]/B(v(kerψ))
i.e. the reduction of the composition:

S{M}w→ T [F (M)] � T [F (M)]/B(v(kerψ))
of coefficientwise Φ and the quotient map π.

Tropicalization

Differential tropicalization is a functor:
Tropd(−) : C → RedPairs

Given a pair ϕ over Φ and a presentation
ψ : R{M}� A of A, solutions for its
tropicalization over ϕ, are morphisms from
Tropd(ψ) to ϕ.

The colimit theorem

Let DM : DR-Alg → DF1-Mod be the for-
getful functor sending a differential R-algebra to
the corresponding differential F1-module, this func-
tor is adjoint to R{−}. In analogy with the non-
differential case treated in [5], let’s now consider
Ã := R{DM(A)}. It gives an element of C, namely:

ev : Ã � A
xa 7→ a

as the differential on Ã is defined as d(xa) = xd(a).
Let Caff be the subcategory of C whose objects are of
the formM = ∧

nN for some n (∧ denotes the smash
product of pointed sets), thus giving presentations
R{M} = R{X1, . . . , Xn}� A. Then:

Colimit theorem

colim−−−→
ϕ∈Caff

Tropd(ϕ) = Tropd(ev)

This result can be looked at as a differential version
of the inverse limit theorem of [3], as stated in [5],
Theorem 4.1.1.
Furthermore, in analogy to [5], Theorem 3.3.6, we
can look at the universal tropicalization as
parametrising the differential enhancement of the
differential algebra A compatible with the fixed one
on v : (R, d)→ T in a suitable way.
The differential enhancement:

A

T [F (DM(A))]/B(v(kerev)) S{DM(A)}w/∼

vuniv wuniv

Φuniv

of A given by Tropd(ev) is called the universal
differential enhancement of A compatible with the
fixed one on R, where both vuniv and wuniv send
a ∈ A to xa and Φuniv is the map Φ : S → T
applied coefficientwise. There is a bijection:Differential enhancements of A compatible

with the fixed one on R


Morphisms of pairs Φuniv→ ϕ

over Φ


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