

Main Goal

Extend the setting of the theory of differential tropical equations as introduced in [1] and [2]to encompass the non-trivially valued case, introduce a differential tropicalization functor and prove an inverse limit theorem in a similar fashion to [3] and [5].

Basic definitions

- A pre-differential semiring is a pair (\mathcal{S}, d) where \mathcal{S} is an idempotent semiring and $d: \mathcal{S} \to \mathcal{S}$ is a linear map satisfying tropical Leibniz rule, i.e.
- d(xy) + d(x)y = d(xy) + xd(y) = d(x)y + xd(y)
- A differential semiring (S, d, w) is a pre-differential semiring (\mathcal{S}, d) equipped with a valuation $w : \mathbb{Z} \to \mathcal{S}$ (as in [4]). Let us denote the category of differential semirings as **DSR**. A subset X of \mathcal{S} is a differential primitive set if $d(xy) = (dx)y + x(dy) \text{ and } d(x^n) = w(n)x^{n-1}dx$ for all $x, y \in X, x \neq y$ such that they generate a multiplicative monoid free of rank 2;
- A differential \mathbb{F}_1 -module is a pair $(\mathcal{M}, d_{\mathcal{M}})$ where \mathcal{M} is a pointed set and $d_{\mathcal{M}} : \mathcal{M} \to \mathcal{M}$ is a map of pointed sets. Let us denote the category of differential \mathbb{F}_1 -modules as \mathbf{DF}_1 -Mod.

Given a differential ring (R, d_R) we define the functor:

$$R\{-\}: \mathbf{D}\mathbb{F}_1\text{-}\mathbf{Mod} \to \mathbf{D}R\text{-}\mathbf{Alg}$$
$$\mathcal{M} \mapsto (R[F(\mathcal{M})], d)$$

where $F(\mathcal{M})$ is the free monoid with zero generated by \mathcal{M} and the differential $d: R\{\mathcal{M}\} \to R\{\mathcal{M}\}$ is given as the unique linear and Leibniz extension of $d_{\mathcal{M}}$ extending d_R .

Given a differential semiring (\mathcal{S}, d, w) we define the functor:

$$\mathcal{S}\{-\}_w : \mathbf{D}\mathbb{F}_1 \operatorname{-} \mathbf{Mod} \to \mathbf{D}\mathcal{S} \operatorname{-} \mathbf{Alg} \\ \mathcal{M} \mapsto (\mathcal{S}[F(\mathcal{M})], d_w)$$

where the differential $d_w : \mathcal{S}{\mathcal{M}} \to \mathcal{S}{\mathcal{M}}$ is given as the unique linear and (classic) Leibniz extension of $d_{\mathcal{M}}$ extending $d_{\mathcal{S}}$, such that $d_w(x_m^n) =$ $w(n)d(x_m^{n-1})$ for all $m \in \mathcal{M}$.

A colimit theorem in tropical differential algebra

Jeffrey H. Giansiracusa, Stefano Mereta

Department of Mathematics, Swansea University

The category of pairs

Let **Pairs** be the category with objects semiring homomorphisms $\Phi : S \to T, S$ a pre-differential semiring, and morphisms of the form $f = (f_1, f_2)$: $\Phi \to \Phi'$ where f_1 is a map of differential semirings and f_2 is a map of semirings such that the following diagram commutes:

Given an object $\Phi: S \to T$ in **Pairs** we can associate to it its reduction $\Phi^r : S^r \to T$, where $S^r := S/_{\sim}$ with ~ the largest differential congruence contained in ker Φ . A pair Φ such that $\Phi = \Phi^r$ is said reduced.

Denoting by **RedPairs** the full subcategory of **Pairs** of reduced pairs:

Reduction

Reduction is a functor:

 $: \mathbf{Pairs} \to \mathbf{RedPairs}$ $(-)^{T}$

Differential enhancements and tropicalization

Let us fix a valued differential ring of characteristic $0 v : (R, d) \to \mathcal{T}$ and a differential enhancement of it, i.e. a reduced pair $\Phi : \mathcal{S} \to \mathcal{T}$, together with a differential map $w: R \to \mathcal{S}$ making the triangle commute, and such that $w(R) \subset \mathcal{S}$ is a differential primitive set with respect to the composition \mathfrak{w} : $\mathbb{Z} \to R \to \mathcal{S}$ (which makes \mathcal{S} into a differential semiring):

A solution (in the sense of Grigoriev) to a differential polynomial $P \in \mathcal{S}\{X_1, \ldots, X_n\}$ is an n-tuple $S \in$ \mathcal{S}^n such that $\Phi(P|_{X_i^{(j)}=d^jS_i})$ is attained at least twice in \mathcal{T} .

Given a finitely generated differential R-algebra A, let \mathcal{C} be the category whose objects are differential \mathbb{F}_1 -modules \mathcal{M} together with a surjective differential homomorphisms $R\{\mathcal{M}\} \twoheadrightarrow A$. Given an element $f \in \mathcal{T}[F(\mathcal{M})]$ and $m \in F(\mathcal{M})$, let $f_{\hat{m}}$ be the result of deleting the *m*-term from f. For an ideal $I \subset \mathcal{T}[F(\mathcal{M})]$, let $\mathcal{B}(I)$ be the semiring congruence generated by (see [4], 5.1.1):

 $\{f \sim f_{\hat{m}} : f \in I, m \in supp(f)\}$ $\mathcal{S}{\mathcal{M}}_{\mathfrak{w}} \to \mathcal{T}[F(\mathcal{M})] \twoheadrightarrow \mathcal{T}[F(\mathcal{M})]/\mathcal{B}(v(\ker\psi))$

Given an object $\psi \in \mathcal{C}$, we define its differential tropicalization as the reduced pair: $\mathcal{T}rop^{d}(\psi) : \mathcal{S}\{\mathcal{M}\}_{\mathfrak{w}}/_{\sim_{\Phi\circ\pi}} \longrightarrow \mathcal{T}[F(\mathcal{M})]/\mathcal{B}(v(\ker\psi))$ i.e. the reduction of the composition: of coefficientwise Φ and the quotient map π .

Given a pair φ over Φ and a presentation $\psi: R\{\mathcal{M}\} \twoheadrightarrow A \text{ of } A, \text{ solutions for its}$ tropicalization over φ , are morphisms from $Trop^{d}(\psi)$ to φ .

Let DM : \mathbf{DR} -Alg $\rightarrow \mathbf{DF}_1$ -Mod be the forgetful functor sending a differential R-algebra to the corresponding differential \mathbb{F}_1 -module, this functor is adjoint to $R\{-\}$. In analogy with the nondifferential case treated in [5], let's now consider $\tilde{A} := R\{DM(A)\}$. It gives an element of \mathcal{C} , namely:

Institut Fourier, Université Grenoble Alpes

Tropicalization

Differential tropicalization is a functor: $Trop^{d}(-): \mathcal{C} \to \mathbf{RedPairs}$

The colimit theorem

$$ev: \widetilde{A} \twoheadrightarrow A$$
$$x_a \mapsto a$$

as the differential on \hat{A} is defined as $d(x_a) = x_{d(a)}$. Let \mathcal{C}_{aff} be the subcategory of \mathcal{C} whose objects are of the form $\mathcal{M} = \bigwedge_n \overline{\mathbb{N}}$ for some n (\land denotes the smash product of pointed sets), thus giving presentations $R\{\mathcal{M}\} = R\{X_1, \ldots, X_n\} \twoheadrightarrow A.$ Then:

 $\mathcal{T}[F(DM(A))]/\mathcal{B}$

Colimit theorem

 $\underbrace{\operatorname{colim}}_{\varphi \in \mathcal{C}_{aff}} \operatorname{Trop}^{d}(\varphi) = \operatorname{Trop}^{d}(\operatorname{ev})$

This result can be looked at as a differential version of the inverse limit theorem of [3], as stated in [5], Theorem 4.1.1.

Furthermore, in analogy to [5], Theorem 3.3.6, we can look at the universal tropicalization as

parametrising the differential enhancement of the differential algebra A compatible with the fixed one on $v: (R, d) \to \mathcal{T}$ in a suitable way.

The differential enhancement:

$$\begin{array}{c} & A \\ & & & \\ & & & \\ & & & \\ \mathcal{B}(v(\ker ev)) \leftarrow & & \\ & & \Phi_{\text{univ}} \end{array} \xrightarrow{} \mathcal{S}\{DM(A)\}_{\mathfrak{w}/\sim} \end{array}$$

of A given by $Trop^{d}(ev)$ is called the universal differential enhancement of A compatible with the fixed one on R, where both v_{univ} and w_{univ} send $a \in A$ to x_a and Φ_{univ} is the map $\Phi : S \to T$ applied coefficientwise. There is a bijection:

Differential enhancements of A compatible with the fixed one on R

> $\int \text{Morphisms of pairs } \Phi_{\text{univ}} \to \varphi$ over Φ

References

[1] D. Grigoriev. Tropical differential equations. Advances in Applied Mathematics, 82:120–128, 2017.

[2] F. Aroca, C. Garay, Z. Toghani. The fundamental theorem of tropical differential algebraic geometry. Pacific Journal of Mathematics, 283(2):257-270, 2016.

[3] S. Payne. Analytification is the limit of all tropicalizations. arXiv preprint arXiv:0805.1916, 2008.

[4] J. H. Giansiracusa and N. Giansiracusa. Equations of tropical varieties. Duke Mathematical Journal, 165(18):3379-3433, 2016.

[5] J. H. Giansiracusa and N. Giansiracusa. The universal tropicalization and the berkovich analytification. arXivpreprint arXiv:1410.4348, 2014.