p-adic Tate conjectures and abeloid varieties

Christian Liedtke

(TU München)

Bibliography

Oliver Gregory, Christian Liedtke:

p-adic Tate conjectures and abeloid varieties,

Doc. Math. 24 (2019), 1879 - 1934.

Table of contents

- 1. Introduction
- 2. A semi-linear translation of Raskind's p-adic Tate conjecture
- 3. Raskind's conjecture for abelian varieties

I. Introduction

- 1. The classical Tate conjecture
 - a. motivation and statement
 - b. evidence
- 2. Raskind's p-adic Tate conjecture
 - a. statement
 - b. why these assumptions?
 - c. evidence

The classical Tate conjecture

X smooth and proper variety over a field F

$$G_F := \operatorname{Gal}(\overline{F}/F)$$
 absolute Galois group

$$\ell \neq p := \operatorname{char}(F)$$

cycle class map

$$NS(X) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell} \longrightarrow H^2_{\acute{e}t} \left(X_{\overline{F}}, \mathbb{Q}_{\ell}(1) \right)^{G_F}$$

Question: is this map surjective?

The classical Tate conjecture

<u>Conjecture (Tate)</u>: If F is finitely generated over its prime field, then

$$NS(X) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell} \longrightarrow H^2_{\acute{e}t} \left(X_{\overline{F}}, \mathbb{Q}_{\ell}(1) \right)^{G_F}$$

is surjective.

The classical Tate conjecture

Known for:

<u>abelian varieties</u>: André, Faltings, Tate, Tankeev, Zarhin

<u>hyperkähler varieties in characteristic zero</u>: André, Tankeev

K3 surfaces: Charles, Kim, Madapusi-Pera, Maulik, Nygaard, Ogus

surfaces with $p_g = 1$ in characteristic zero Moonen and with sufficiently non-trivial VHS:

Question: is there a Tate conjecture for p-adic fields, that is, if F is a finite extension of \mathbb{Q}_p ?

Conjecture (Raskind): If F is a p-adic field, if $\ell=p$, and if X has totally degenerate reduction, then

$$NS(X) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell} \longrightarrow H^2_{\acute{e}t} \left(X_{\overline{F}}, \mathbb{Q}_{\ell}(1) \right)^{G_F}$$

is surjective.

Why $\ell = p$?

if $\ell
eq p$ and X has good reduction with special fibre \mathcal{X}_0 , then

$$H^n_{\acute{e}t}(X_{\overline{F}}, \mathbb{Q}_{\ell}(i))^{G_F} \cong H^n_{\acute{e}t}(\mathcal{X}_{0,\overline{k}}, \mathbb{Q}_{\ell}(i))^{G_k}$$

which computes invariants of \mathcal{X}_0

if X has semi-stable reduction: conjectures of Consani

Why totally degenerate reduction?

examples of Lubin-Tate and Oort of elliptic curves with good reduction, where

$$\operatorname{End}(E) \otimes \mathbb{Q}_p \longrightarrow \operatorname{End}(V_p(E))$$

is not surjective. Then, $E \times E$ would be a counter-example to a more general Raskind's conjecture.

see also Appendix A of our article for more examples

Known cases of Raskind's conjectures:

<u>products of Tate elliptic curves</u>: Raskind-Xarles, Gregory-L.

varieties that are uniformised by Drinfeld's upper half plane:

Evidence is rather thin, but a p-adic approach to the classical Tate conjecture via Raskind's Tate conjecture would be very interesting!

II. Translating Raskind's conjecture into semi-linear algebra

- 1. A semi-linear algebra translation
- 2. Rational structures (on log-crystalline cohomology)
- 3. Application to Raskind's conjecture
- 4. A theorem of Berthelot, Ogus, and Yamashita
- 5. Raskind-admissibility
- 6. A reformulation of Raskind's conjecture

A semi-linear algebra translation

K p-adic field

X smooth and proper over K

 $\mathcal{X} \to \operatorname{Spec} \mathcal{O}_K$ proper and semi-stable model

p-adic Hodge theory gives an isomorphism

$$H^n_{\acute{e}t}(X_{\overline{K}},\mathbb{Q}_p(m))^{G_K}$$

$$\cong H_{log-cris}^{n}(\mathcal{X}_{0}/K_{0})^{\varphi=p^{m},N=0} \cap \operatorname{Fil}^{m}H_{dR}^{n}(X/K)$$

A semi-linear algebra translation

relevant for Raskind's conjecture:

$$H^2_{\acute{e}t}(X_{\overline{K}},\mathbb{Q}_p(1))^{G_K}$$

which is isomorphic to

$$H^2_{log-cris}(\mathcal{X}_0/K_0)^{\varphi=p,N=0} \cap \operatorname{Fil}^1 H^2_{dR}(X/K)$$

assume that special fibre is SNCD:

$$\mathcal{X}_0 = \bigcup_i Y_i$$

A semi-linear algebra translation

$$\mathcal{X}_0 = igcup_i Y_i$$
 SNCD $Y^{[m]} := \coprod igcap_{ ext{m-fold intersections}} Y_i$

Steenbrink - Rapoport-Zink - Mokrane - Nakkajima spectral sequence

$$E_1^{-k,h+k} = \bigoplus_{j \ge \max\{-k,0\}} H_{cris}^{h-2j-k} (Y^{[2j+k]}/K_0)(-j-k)$$

$$\Rightarrow H_{log-cris}^h(\mathcal{X}_0/K_0)$$

total degeneration:

$$H_{cris}^{n}(Y^{[m]}/K_{0}) = \begin{cases} \text{zero} & \text{if } n \text{ is odd} \\ \text{spanned by algebraic cycles} & \text{if } n \text{ is even} \end{cases}$$

then, we obtain an explicit description of $H^2_{log-cris}(\mathcal{X}_0/K_0)$ as follows:

rational structure

$$V = A \oplus B_0 \oplus B_1 \oplus C$$

a direct sum of $\,\mathbb{Q}\,$ - vector spaces and two linear operators

$$\varphi_V : \text{id} \quad \text{on } A
p \cdot \text{id} \quad \text{on } B_0 \oplus B_1
p^2 \cdot \text{id} \quad \text{on } C$$

$$N_V$$
: zero on $A \oplus B_1$
 $C \cong N(C) = B_0$
 $B_0 \cong N(B_0) = A$

given such a decomposition and operators

$$V = A \oplus B_0 \oplus B_1 \oplus C, \quad \varphi_V, \quad N_V$$

get an associated (φ, N) -module over K_0

$$(V \otimes_{\mathbb{Q}} K_0, \quad \varphi_V \otimes \sigma, \quad N_V \otimes \mathrm{id})$$

where σ is the Frobenius on K_0

given X with total degenerate special fibre \mathcal{X}_0

the SRZMN-spectral sequence plus the cycle class maps of the $Y^{[m]}$ equip

$$H^2_{log-cris}(\mathcal{X}_0/K_0)$$

with a rational structure

$$V = A \oplus B_0 \oplus B_1 \oplus C, \quad \varphi_V, \quad N_V$$

want to understand

$$H^2_{log-cris}(\mathcal{X}_0/K_0)^{\varphi=p,N=0} \cap \operatorname{Fil}^1 H^2_{dR}(X/K)$$

use the rational structure

$$V = A \oplus B_0 \oplus B_1 \oplus C, \quad \varphi_V, \quad N_V$$

and find

$$H^2_{log-cris}(\mathcal{X}_0/K_0)^{\varphi=p,N=0} \cong B_1 \otimes_{\mathbb{Q}} \mathbb{Q}_p$$

$$H^2_{log-cris}(\mathcal{X}_0/K_0)^{\varphi=p,N=0} \cong B_1 \otimes_{\mathbb{Q}} \mathbb{Q}_p$$

first (logarithmic) Chern class map induces

$$\operatorname{Pic}(\mathcal{X}_0) \otimes F \longrightarrow \operatorname{Pic}^{log}(\mathcal{X}_0) \otimes F \longrightarrow H^2_{log-cris}(\mathcal{X}_0/K_0)^{\varphi=p,N=0}$$

Proposition:

if
$$F = \mathbb{Q}$$
, then the image is B_1 if $F = \mathbb{Q}_p$, then the map is surjective

$$H^{2}_{\acute{e}t}(X_{\overline{K}}, \mathbb{Q}_{p}(1))^{G_{K}} \cong \underbrace{H^{2}_{log-cris}(\mathcal{X}_{0}/K_{0})^{\varphi=p, N=0}}_{\operatorname{Pic}^{log}(\mathcal{X}_{0}) \otimes \mathbb{Q}_{p}} \cap \operatorname{Fil}^{1}H^{2}_{dR}(X/K)$$

Conjecture (equivalent to Raskind's conjecture): a class in

$$\operatorname{Pic}^{log}(\mathcal{X}_0)\otimes \mathbb{Q}_p$$
 lifts to $\operatorname{Pic}(X)\otimes \mathbb{Q}_p$

if and only if its first crystalline Chern class lies in

$$\operatorname{Fil}^1 H^2_{dR}(X/K)$$

upshot: Raskind's conjecture is (equivalent to) a sort of variational log-Tate conjecture

<u>Theorem (Berthelot-Ogus, Yamashita):</u>

a class in

$$\operatorname{Pic}^{log}(\mathcal{X}_0)\otimes \mathbb{Q}$$
 lifts to $\operatorname{Pic}(X)\otimes \mathbb{Q}$

if and only if its first crystalline Chern class lies in

$$\operatorname{Fil}^1 H^2_{dR}(X/K)$$

A theorem of Berthelot, Ogus, and Yamashita

Theorem (Berthelot-Ogus, Yamashita):

a class in

$$\operatorname{Pic}^{log}(\mathcal{X}_0)\otimes \mathbb{Q}$$
 lifts to $\operatorname{Pic}(X)\otimes \mathbb{Q}$

if and only if its first crystalline Chern class lies in

$$\operatorname{Fil}^1 H^2_{dR}(X/K)$$

Raskind - admissibility

given a rational structure $V = A \oplus B_0 \oplus B_1 \oplus C$, φ_V , N_V

have an associated (φ, N) -module over K_0

$$(V \otimes_{\mathbb{Q}} K_0, \quad \varphi_V \otimes \sigma, \quad N_V \otimes \mathrm{id})$$

<u>Definition:</u> a filtration Fil^* on $V \otimes_{\mathbb{Q}} K$ is called Raskind-admissible if the natural inclusion

$$(\operatorname{Fil}^1 \cap B_1) \otimes_{\mathbb{Q}} \mathbb{Q}_p \subseteq \operatorname{Fil}^1 \cap (B_1 \otimes_{\mathbb{Q}} \mathbb{Q}_p)$$

is an equality

A reformulation of Raskind's conjecture

<u>Theorem</u>: Given X over K with totally degenerate reduction, the following are equivalent:

1) Raskind's conjecture holds true, that is,

$$NS(X) \rightarrow H^2_{\acute{e}t}(X_{\overline{K}}, \mathbb{Q}_p(1))^{G_K}$$

is surjective

2) the Hodge filtration $\operatorname{Fil}^*(X/K)$ is Raskind-admissible with respect to the natural rational structure on $H^2_{log-cris}(\mathcal{X}_0/K_0)$

III. Raskind's conjecture for abelian varieties

- 1. Abeloid varieties
- 2. Homomorphisms between abeloid varieties and their p-adic Tate modules
- 3. Raskind's conjecture for abeloid varieties
- 4. Counter-examples

goal: establish/disprove Raskind's conjecture for abelian varieties

K p-adic field with valuation $\nu_p:K^{\times}\to\mathbb{Q}$

period matrix

$$Q = (q_{i,j}) \in \operatorname{Mat}_{g \times g}(K)$$

such that

$$\nu_p(q_{i,j}) > 0 \quad \forall i, j$$

$$\operatorname{ord}_p(Q) := (\nu_p(q_{i,j})) \in \operatorname{GL}_g(\mathbb{Q})$$

given a period matrix

$$Q = (q_{i,j}) \in \operatorname{Mat}_{g \times g}(K)$$

there is a lattice (generated by the columns of Q)

$$\Lambda \quad \subset \quad (K^{\times})^g$$

there is a proper rigid variety over K, an <u>abeloid variety</u>

$$(K^{\times})^g / \Lambda$$

Example:

If g = 1, then the abeloid variety

$$K^{\times} / q^{\mathbb{Z}}$$

is the Tate elliptic curve.

Remarks:

- 1) In general and if $g \ge 2$, then an abeloid variety is not algebraisable.
- 2) The special fibre of its Néron model is a split torus (totally degenerate reduction).

Iwasawa's p-adic logarithm $\log_p:K^{\times}\to\mathbb{C}_p$

Definition:

$$\mathcal{L}_Q := \operatorname{ord}_p(Q)^{-1} \cdot \log_p(Q) \in \operatorname{Mat}_{g \times g}(K)$$

Remark: this generalises the classical invariant

$$\mathcal{L}(q) = \frac{\log_p(q)}{\operatorname{ord}_p(q)}$$

for the Tate elliptic curve $K^{\times}/q^{\mathbb{Z}}$

Given two abeloid varieties A, B of dimensions g, h

associated to period matrices Q_A , Q_B

want to understand/describe homomorphisms between

- 1) the two abeloid varieties A, B
- 3) their p-adic Tate modules $T_p(A)$, $T_p(B)$

(rational) homomorphisms between the varieties

$$\operatorname{Hom}(A,B)\otimes \mathbb{Q}$$

$$\cong \operatorname{Hom}(A_{\overline{K}}, B_{\overline{K}}) \otimes \mathbb{Q}$$

$$\cong \{M \in \operatorname{Mat}_{q \times h}(\mathbb{Q}) \mid \mathcal{L}(Q_A) \cdot M = M \cdot \mathcal{L}(Q_B)\}$$

(rational) homomorphisms between their p-adic Tate modules

$$\operatorname{Hom}(T_p(A), T_p(B)) \otimes \mathbb{Q}$$

$$\cong \operatorname{Hom}(T_p(A_{\overline{K}}), T_p(B_{\overline{K}})) \otimes \mathbb{Q}$$

$$\cong \{M \in \operatorname{Mat}_{g \times h}(\mathbb{Q}_p) \mid \mathcal{L}(Q_A) \cdot M = M \cdot \mathcal{L}(Q_B)\}$$

Raskind's conjecture for abeloid varieties

<u>Theorem:</u> Given an abeloid variety A over K, the following are equivalent:

1) Raskind's conjecture holds true, that is,

$$NS(A) \rightarrow H^2_{\acute{e}t}(A_{\overline{K}}, \mathbb{Q}_p(1))^{G_K}$$

is surjective.

2) the natural inclusion

$$\operatorname{End}(A) \otimes \mathbb{Q}_p \longrightarrow \operatorname{End}(T_p(A_{\overline{K}}) \otimes \mathbb{Q})^{G_K}$$

is surjective (the ``other" Tate conjecture).

Raskind's conjecture for abeloid varieties

if Q is a period matrix for A,

then Raskind's conjecture for A is equivalent to the surjectivity of

$$\{M \in \operatorname{Mat}_{g \times g}(\mathbb{Q}) \,|\, \mathcal{L}(Q) \cdot M = M \cdot \mathcal{L}(Q)\} \otimes \mathbb{Q}_p$$

$$\to \{M \in \operatorname{Mat}_{g \times g}(\mathbb{Q}_p) \,|\, \mathcal{L}(Q) \cdot M = M \cdot \mathcal{L}(Q)\}$$

Remark: again, an interplay between \mathbb{Q} and \mathbb{Q}_p !

Counter-examples to Raskind's conjecture

Theorem:

There exists an algebraisable abeloid surface over \mathbb{Q}_p with $p \geq 5$, $p \equiv 1 \mod 3$, for which Raskind's conjecture is false.

idea of the counter-examples:

choose period matrix

$$Q := S^{-1} \odot \left(\begin{array}{cc} p & 1 \\ 1 & \varepsilon \cdot p \end{array} \right) \odot S$$

where $\varepsilon \in 1 + p\mathbb{Z}_p$ is a non-trivial p-adic unit and

where S is a "well-chosen" symmetric matrix