# Twisted local Simpson correspondence and crystals on the $q$-crystalline and prismatic sites 

Michel Gros (CNRS \& Université de Rennes I) (joint work in progress with A. Quirós and B. Le Stum)

Imperial College of London, December 8-10, 2020

Tropical Geometry, Berkovich Spaces, Arithmetic $\mathscr{D}$-Modules and p-adic Local Systems

## I. Untwisted model : Simpson correspondence in characteristic $p>0$ and its generalizations

1. The result
$S$ a $\mathbb{Z} / p \mathbb{Z}$-scheme, $\mathrm{F}_{S}$ its absolute Frobenius, $X$ a smooth $S$-scheme, , $X^{\prime}:=X \times_{S, \mathrm{~F}_{S}} S, \mathrm{~F}: X \rightarrow X^{\prime}$ the relative Frobenius.
$\widetilde{S}$ a flat $\mathbb{Z} / p^{2} \mathbb{Z}$-scheme and a smooth lift over $\widetilde{S}$ of the previous data :


Theorem (Berthelot, Ogus-Vologodsky) To such lift over $\mathbb{Z} / p^{2} \mathbb{Z}$ is canonically associated :
(i) an equivalence of categories

$$
[\widetilde{\mathrm{F}}]: \mathscr{O}_{X^{\prime}}-\mathrm{HIG}^{\mathrm{an}} \rightarrow \mathscr{O}_{X}-\mathrm{MCI}^{\mathrm{an}}
$$

between the one of $\mathscr{O}_{X^{\prime}}$-Higgs modules $(\mathscr{F}, \theta)\left(\theta: \mathscr{F} \rightarrow \mathscr{F} \otimes_{\mathscr{O}_{X^{\prime}}} \Omega_{X^{\prime} / S}^{1}\right.$ a $\mathscr{O}_{X^{\prime}}$-linear morphism such that $\theta \wedge \theta=0$ ) with quasi-nilpotent Higgs field and the one of $\mathscr{O}_{X}$-modules with quasi-nilpotent integrable connection $(\mathscr{E}, \nabla)$.
(ii) a quasi-isomorphism between the Higgs complex of $(\mathscr{F}, \theta)$ and the direct image by F of the de Rham complex of $(\mathscr{E}, \nabla)$

$$
\left(\mathscr{F} \xrightarrow{\theta} \mathscr{F} \otimes_{\mathscr{O}_{X^{\prime}}} \Omega_{X^{\prime} / S}^{1} \xrightarrow{\theta \wedge-} \mathscr{F} \otimes_{\mathscr{O}_{X^{\prime}}} \Omega_{X^{\prime} / S}^{2} \rightarrow \ldots\right] \stackrel{\approx}{\rightarrow} \mathrm{F}_{*} \mathrm{DR}^{\bullet}(\mathscr{E}, \nabla)
$$

## 2. Elements of Berthelot's proof

$\mathscr{D}_{X}:=\mathscr{D}_{X / S}$ : the algebra of crystalline (or level 0 in Berthelot's terminology) differentiel operators (generated locally over $\mathscr{O}_{X}$ by the derivations $\partial$ ) ;
$\mathrm{T}_{X^{\prime}}:=\mathrm{T}_{X^{\prime} / S}$ : the tangent sheaf of $X^{\prime} ; \mathrm{S}\left(\mathrm{T}_{X^{\prime}}\right)$ its symmetric algebra which is also the center $\mathrm{Z}_{\mathscr{D}_{X}}\left(\mathscr{D}_{X}\right)$ of $\mathscr{D}_{X}$;
$\mathscr{K}_{X}:=\mathrm{Z}_{\mathscr{D}_{X}}\left(\mathscr{O}_{X}\right):$ the centralizer of $\mathscr{O}_{X}$ in $\mathscr{D}_{X}$;
$\widehat{\mathscr{D}}_{X}:=\underset{n \geq 0}{\lim } \mathscr{D}_{X} / \mathscr{K}_{X}^{n} ; \overline{\mathrm{S}\left(\mathrm{T}_{X^{\prime}}\right)}:=\underset{n \geq 0}{\lim } \mathrm{~S}\left(\mathrm{~T}_{X^{\prime}}\right) /\left(\mathscr{K}_{X}^{n} \cap \mathrm{~S}\left(\mathrm{~T}_{X^{\prime}}\right)\right)$ the corresponding completions.
Theorem (Berthelot) To each lift $\left(\widetilde{S}, \widetilde{X}, \widetilde{X}^{\prime}, \widetilde{F}\right)$ over $\mathbb{Z} / p^{2} \mathbb{Z}$ as before is canonically associated an isomorphism of $\overline{\mathrm{S}\left(\mathrm{T}_{X^{\prime}}\right) \text {-algebras : }}$

$$
\widehat{\mathscr{D}}_{X} \xrightarrow{\sim} \mathscr{E} n d_{\widehat{\mathbf{S}\left(\mathrm{T}_{X^{\prime}}\right)}}\left(\mathscr{O}_{X} \otimes_{\mathscr{O}_{X^{\prime}}} \overline{\mathrm{S}\left(\mathrm{~T}_{X^{\prime}}\right)}\right) .
$$

$\mathscr{I} \subset \mathscr{O}_{X \times_{S} X}$ the ideal of the diagonal, $\mathscr{P}_{X,(0)}$ the PD-enveloppe of $\mathscr{I}, \overline{\mathscr{I}} \subset \mathscr{P}_{X,(0)}$ the PD-ideal generated by $\mathscr{I}$. Sheaf of principal parts (of level 0) and order $n$ :

$$
\begin{gathered}
\mathscr{P}_{X,(0)}^{n}=\mathscr{P}_{X,(0)} / \overline{\mathscr{I}}^{[n+1]} \\
\mathscr{D}_{X, n}^{(0)}:=\mathscr{H}_{\operatorname{om}_{\mathscr{O}_{X}}\left(\mathscr{P}_{X,(0)}^{n}, \mathscr{O}_{X}\right) ; \mathscr{D}_{X}=\lim _{n \in \mathbb{N}} \mathscr{D}_{X, n}^{(0)} .} .
\end{gathered}
$$

It exists a well-defined application (divided Frobenius)

$$
\left.\frac{1}{p!}\left(\widetilde{F}^{*} \times \widetilde{F}^{*}\right): \tilde{\mathscr{I}}^{\prime} \rightarrow p \mathscr{P}_{\widetilde{X},(0)} \underset{\cdot p!}{\stackrel{\sim}{\sim}} \mathscr{P}_{\widetilde{X},(0)} / p \mathscr{P}_{\widetilde{X},(0)}\right)
$$

coming from the study of $(\widetilde{F} \times \widetilde{F})^{*}: \widetilde{\mathscr{I}^{\prime}} \rightarrow \tilde{\mathscr{I}}$ :
Take $x \in \mathscr{O}_{X}, x^{\prime}:=1 \otimes x \in \mathscr{O}_{X^{\prime}}$ with liftings $\tilde{x} \in \mathscr{O}_{\tilde{X}}, \tilde{x}^{\prime} \in \mathscr{O}_{\tilde{X}^{\prime}}, \widetilde{\mathbf{F}}^{*}\left(\tilde{x}^{\prime}\right)=\tilde{x}^{p}+p y$.
Let $\tilde{\xi}:=1 \otimes \tilde{x}-\tilde{x} \otimes 1, \tilde{\xi}^{\prime}:=1 \otimes \tilde{x^{\prime}}-\tilde{x^{\prime}} \otimes 1$, then

$$
\begin{aligned}
(\widetilde{F} \times \widetilde{F})^{*}\left(\tilde{\xi}^{\prime}\right) & =1 \otimes \tilde{x}^{p}-\tilde{x}^{p} \otimes 1+p \cdot(1 \otimes y-y \otimes 1) \\
& =\widetilde{\xi}^{p}+\sum_{i=1}^{p-1}\binom{p}{i}\left(\tilde{x}^{p-i} \otimes 1\right) \tilde{\xi}^{i}+p(1 \otimes y-y \otimes 1) \\
& \equiv \widetilde{\xi}^{p} \bmod p \tilde{\mathscr{I}}
\end{aligned}
$$

Now, going to $\mathscr{P}_{\widetilde{X},(0)}$,

$$
(\widetilde{F} \times \widetilde{F})^{*}\left(\widetilde{\xi}^{\prime}\right)=p!. \tilde{\xi}^{[p]}+p \zeta \in \mathscr{P}_{\widetilde{X},(0)}
$$

with $\zeta \in \tilde{\mathscr{I}}$.
Divide by $p!$, factorize by $\Omega_{X^{\prime} / S}^{1}$ and finally extend to an isomorphism

$$
\sigma_{\tilde{F}}: \mathscr{O}_{x_{X^{\prime}} X} \otimes_{\mathscr{O}_{X^{\prime}}} \Gamma\left(\Omega_{X^{\prime} / S}^{1}\right) \stackrel{\sim}{\rightarrow} \mathscr{P}_{X,(0)} .
$$

## 3. Generalization and Topos reinterpretation

Suppose now that $\widetilde{X}, \widetilde{X}^{\prime} \rightarrow \widetilde{S}$ smooth morphisms of formal schemes over $\mathbb{Z}_{p}$.
$\mathscr{O}_{\widetilde{X}}$-modules $\mathscr{E}$ endowed with a $p^{m}$-integrable connection ( $m \geq 0$ ) :

$$
\nabla(f e)=f \nabla(e)+p^{m} e \otimes d f ; f \in \mathscr{O}_{\widetilde{X}}, e \in \mathscr{E}
$$

form a category $\mathscr{O}_{\widetilde{X}_{n}}-\mathrm{MCI}^{(-m)}$.
Theorem (Shiho) For $m=1, \widetilde{\mathrm{~F}}^{*}$ induces, for every $n \in \mathbb{N}$, an equivalence of categories

$$
[\widetilde{F}]: \mathscr{O}_{\widetilde{X}_{n}^{\prime}}-\mathrm{MCI}^{(-1), \mathrm{qn}} \rightarrow \mathscr{O}_{\widetilde{X}_{n}}-\mathrm{MCI}^{\mathrm{an}} .
$$

Dilatation (" $\xi \mapsto \xi / p^{m "}$ ) on principal parts allows to construct a $\mathscr{O}_{\widetilde{X}}$-algebra $\mathscr{D}_{\widetilde{X}}^{(-m)}$ of differential operators (of level $-m$ ). Locally a basis over $\mathscr{O}_{\widetilde{X}}$ given by the $\left(\partial^{<l>-m}\right)_{l \geq 0}$ 's acting on $f \in \mathscr{O}_{\widetilde{X}}$ by $\partial^{<l>-m}(f)=l!p^{m l} \partial^{[l]}(f)$, e.g. $\partial^{<1>-1} x-x \partial^{<1>-1}=p$ (" $\partial^{<1>-1}=p \partial^{\prime}$ ). Former computation on principal parts as before gives the result.

Let $W$ the ring of Witt vectors over a perfect field of characteristic $p>0, \widetilde{S}:=\operatorname{Spf}(W)$. It exists two ringed topos $\left(\widetilde{\mathscr{E}}, \mathscr{O}_{\mathscr{E}}\right)$, ( $\left(\underline{\tilde{E}^{2}}, \mathscr{O}_{\underline{\mathscr{E}}}\right)$ and
Theorem (Oyama ( $n=1$ ), Xu) Shiho's equivalence sits into a commutative diagram :


C* induced by a morphism between sites (Cartier's transform).

## II. Twisted Simpson correspondence

$R$ : ring, $q \in R^{\times}, R[t]$ endowed with $\sigma$ s.t. $\sigma(t)=q t, f: R[t] \rightarrow A$ étale, , $A$ endowed with an automorphism $\sigma$ s.t. $\sigma(x)=q x$ for $x:=f(t)$. For $n \in \mathbb{N},(n)_{q}=1+q+q^{2}+\ldots+q^{n-1}$.

1. Twisted differential operators of level $-m, m \geq 0$

Example. If $A=R[t], \mathrm{D}_{A, q}:=\mathrm{D}_{A, q}^{(0)}$ is $R\left[t, \partial_{q}\right]_{\mathrm{nc}} /\left\langle\partial_{q} t-q t \partial_{q}=1\right\rangle$.
$\mathrm{D}_{A, q}^{(-1)}$ is the subalgebra of $\mathrm{D}_{A, q}$ generated by $\partial_{q}^{<1>-1}:=(p)_{q} \partial_{q}$. One has $\partial_{q}^{<1>-1} t-q t \partial_{q}^{\langle 1>-1}=(p)_{q}$.
Let $y:=(1-q) x$ and $A\langle\xi\rangle_{q, y}$ the free $A$-module with generators $\xi^{[n]_{q, y}}$ (or simply $\xi^{[n]}$ ), $n \in \mathbb{N}$ endowed with the structure of unitary commutative $A$-algebra given by

$$
\xi^{[n]} \cdot \xi^{[m]}=\sum_{i=0}^{\min (m, n)}(-1)^{i} q^{\frac{i(i-1)}{2}}\binom{m+n-i}{m}_{q}\binom{m}{i}_{q} y^{i} \xi^{[m+n-i]}
$$

(the $(n)_{q}!\xi^{[n]}=\prod_{i=0}^{n-1}\left(\xi+(i)_{q} y\right)=: \xi^{(n)}$ form a basis of $A[\xi]$.)
Let $I^{[n+1]_{q, y}}$ be the free $A$-submodule generated by the $\xi^{[k]_{q, y}}$ with $k>n$,

$$
\mathrm{P}_{A, q, n}:=\mathrm{P}_{A / R, q, n}^{(0)}=A\langle\xi\rangle_{q, y} / I^{[n+1]_{q, y}} ; \mathrm{P}_{A, q}=\underset{\underset{n \in \mathrm{~N}}{ }}{\lim } \mathrm{P}_{A, q, n} .
$$

One has a twisted Taylor application :

$$
\mathscr{T}: A \rightarrow \mathrm{P}_{A, q} ; \quad \mathscr{T}(z)=\sum_{k=0}^{+\infty} \partial_{q}^{k}(z) \xi^{[k]}
$$

allowing for $M$ a left $A$-module to define $\mathrm{P}_{A, q, n} \otimes_{A}^{\prime} M$ with $\xi^{[k]} \otimes^{\prime} z s=\mathscr{T}(z) \xi^{[k]} \otimes^{\prime} s$.

Finally,

$$
\mathrm{D}_{A, q, n}=\operatorname{Hom}_{R}\left(\mathrm{P}_{A, q, n} \otimes_{A}^{\prime} A, A\right) ; \mathrm{D}_{A, q}=\bigcup_{n \geq 0} \mathrm{D}_{A, q, n}
$$

with ring structure coming from the coproduct $\mathrm{P}_{A, q} \rightarrow \mathrm{P}_{A, q} \otimes_{A}^{\prime} \mathrm{P}_{A, q} ; \xi^{[n]} \mapsto \sum_{i=0}^{n} \xi^{[n-i]} \otimes^{\prime} \xi^{[i]}$.

For $m \geq 0$, let $A\langle\omega\rangle_{q(-m)}:=A\langle\omega\rangle_{q^{p^{m}}, y} ; \omega^{\{n\}_{q}}:=\omega^{[n]_{q p^{m}}, y}$ (Morally $: \omega=\frac{\xi}{\left(p^{m}\right)_{q}} ; \omega^{\{n\}_{q}}=\frac{\xi^{[n]} q_{p^{m}}}{\left(p^{m}\right)_{q}^{n}}$ ) with algebra structure

$$
\omega^{\{n\}_{q}} \cdot \omega^{\{m\}_{q}}=\sum_{i=0}^{\min (m, n)}(-1)^{i} q^{\frac{p^{m}}{} \frac{m_{i(i-1)}}{2}}\binom{m+n-i}{m}_{q^{p^{m}}}\binom{m}{i}_{q^{p^{m}}} y^{i} \omega^{\{m+n-i\}_{q}}
$$

Along the same lines as for $m=0$, one define a ring $\mathrm{D}_{A, q}^{(-m)}$ which is essentially the $A$-subalgebra of $\mathrm{D}_{A, q^{p^{m}}}$ generated by $\partial_{q}^{<1>-m}:=\left(p^{m}\right)_{q} \partial_{q}^{p^{m}}$ (at least if $A$ has no $(p)_{q}$-torsion).

Modules over $\mathrm{D}_{A, q}^{(-m)}$ are the same as $A$-modules endowed with a twisted connection of level $-m$, i.e. $R$-linear application $\nabla_{q}: M \rightarrow M \otimes \Omega_{A, q^{m}}\left(\Omega_{A, \sigma}=I / I \sigma(I)\right)$ s.t.

$$
\nabla_{q}(f s)=\left(p^{m}\right)_{q} s \otimes \mathrm{~d}_{q^{p^{m}}} f+\sigma^{p^{m}}(f) \nabla_{q}(s)
$$

## 3. Divided Frobenius

$\tilde{\mathrm{F}}_{R}: R \rightarrow R$ lifting of the absolute Frobenius of $R / p$ s.t. $\tilde{\mathrm{F}}_{R}(q)=q^{p}$;
$\tilde{\mathrm{F}}_{A}: A \rightarrow A$ lifting of the absolute Frobenius of $A / p$ s.t. $\tilde{\mathrm{F}}_{A}(x)=x^{p} ;$
$\tilde{F}_{A[\xi]}: \xi \mapsto(\xi+x)^{p}-x^{p} ;$
Let $A^{\prime}=A \otimes_{R, \widetilde{F}_{R}} R ; y^{\prime}:=y \otimes 1$.
Theorem The relative Frobenius $\tilde{F}: A^{\prime}[\xi] \rightarrow A[\xi]\left(\xi \mapsto(\xi+x)^{p}-x^{p}\right)$ canonically defines a divided Frobenius morphism

$$
[\tilde{\boldsymbol{F}}]_{q}: A^{\prime}\langle\omega\rangle_{q(-1)} \rightarrow A\langle\xi\rangle_{q}
$$

explicitly given by :

$$
\omega^{\{n\}} \mapsto \sum_{i=n}^{p n} \mathrm{~b}_{n, i}(q) x^{p n-i} \xi^{[i]}
$$

with $\mathrm{a}_{n, i}(u):=\sum_{j=0}^{n}(-1)^{n-j} u^{\frac{p(n-j)(n-j-1)}{2}}\binom{n}{j}_{u^{p}}\binom{p j}{i}_{u} \in \mathbb{Z}[u], \mathrm{b}_{n, i}(u):=\frac{(i)_{q}!}{(n)_{\left.q^{\prime}!(p)\right)_{q}^{n}}} \mathrm{a}_{n, i}(u) \in \mathbb{Z}[u]$.

## 4. Consequences : twisted local Simpson correspondence

Theorem The divided Frobenius morphism [ $\tilde{F}]_{q}$ induces an equivalence of categories between the category $A^{\prime}-\mathrm{MCI}_{q}^{(-1), \mathrm{qn}}$ of $A^{\prime}$-modules of finite presentation endowed with a twisted connection of level -1 topologically quasi-nilpotent and the one $A-\mathrm{MCI}_{q}^{\mathrm{qn}}$ of $A$-modules of finite presentation endowed with a twisted connection (of level 0) topologically quasi-nilpotent.

For $q=1$ ("undeformed case"), it's Shiho equivalence.
Pour $q=\zeta \neq 1, \zeta^{p}=1$, one can show that, along the same lines as in characteristic $p>0$, the completion of $\mathrm{D}_{A, q}$ is a matrix algebra. In particular:

Corollary One has an isomorphism

$$
C_{q}: \mathrm{H}^{i}(q-\mathrm{DR}(A)) \xrightarrow{\sim} \Omega_{A^{\prime}}^{i}
$$

for all $i \geq 0$.

## V. Twisted Simpson correspondance and $q$-crystalline and prismatic sites

1. $(p)_{q}$-Prisms, $q$-PD-pairs
$\delta$-ring : $(R, \delta: R \rightarrow R)$ with $R$ a $\mathbb{Z}_{(p)}$-algebra and $\delta: R \rightarrow R$ s.t. :
$\delta(0)=\delta(1)=0 ; \quad \delta(x y)=x^{p} \delta(y)+y^{p} \delta(x)+p \delta(x) \delta(y) \quad ; \quad \delta(x+y)=\delta(x)+\delta(y)+\frac{x^{p}+y^{p}-(x+y)^{p}}{p}$

Ensure that $\phi(x):=x^{p}+p \delta(x)$ is a lifting of the absolute Frobenius of $R / p$.
$\delta$-pair $(R, I):$ a $\delta$-structure on $R$ and $I \subset R$ an ideal.

Assume moreover from now that $R$ is a $\mathbb{Z}[q]_{(p, q-1)}$-algebra (always endowed with the $(p, q-1)$ topology for a fixed $q \in R$ s.t. $\delta(q)=0$ ).
(bounded) $(p)_{q}$-prism over $\left(R,(p)_{q}\right)$ : $\delta$-pair of the form $\left(B,(p)_{q}\right)$ with $B$ a complete $R$-algebra without $(p)_{q}$-torsion ( + some "technical" conditions)

Example: $\left(\mathbb{Z}_{p}[[q-1]],(p)_{q}\right)$.
$q$-PD-pair : $(B, \mathfrak{b})$ with $B$ a complete $\delta$ - $R$-algebra without $(p)_{q}$-torsion s.t. $\phi(f)-(p)_{q} \delta(f) \in(p)_{q} \mathfrak{b}$ (+ some "technical" conditions) and also s.t. $\left(B,(p)_{q}\right)$ is a (bounded) prism over $\left(R,(p)_{q}\right)$ : ( $B \rightarrow \bar{B}:=B / \mathfrak{b}$ will be called a $q$-PD-thickening).

Example: $\left(\mathbb{Z}_{p}[[q-1]],(q-1)\right)$.
2. $q$-crystalline site

Fix $(R, \mathfrak{r}) \rightarrow(A, \mathfrak{a})$ a morphism of $q$-PD-pairs, $\mathscr{X}:=\operatorname{Spf}(\bar{A})(\bar{A}:=A / \mathfrak{a})$.
$q-\operatorname{CRIS}(\mathscr{X} / R):$ morphism $(R, \mathfrak{r}) \rightarrow(B, \mathfrak{b})$ to a $q$-PD-pair (bounded and complete) and morphism $\mathscr{X} \rightarrow \operatorname{Spf}(\bar{B})$ of $\bar{R}$-formal schemes ;
$\left.\mathscr{O}_{q-\operatorname{CRIS}(\mathscr{X} / R)}:[(R, \mathfrak{r}) \rightarrow(B, \mathfrak{b}), \mathscr{X} \rightarrow \operatorname{Spf}(\bar{B}))\right] \mapsto B ;$
$\mathscr{O}_{q-\operatorname{CRIS}(\mathscr{X} / R)}$-module $=$ family of $B$-modules $E_{B}$ with compatible family of linear applications $B^{\prime} \otimes_{B} E_{B} \rightarrow E_{B^{\prime}}$;
$q$-crystal : compatible family made of bijective arrows.
Theorem If $A$ is endowed with a topological coordinate $x$ s.t. $\delta(x)=0$, it exists a functor $E \mapsto E_{A}$ from the category of $q$-crystals of finite presentation on $\bar{A} / R$ to the one of quasinilpotents $\mathrm{D}_{A, q^{-}}$-modules topologically of finite type.
Proposition For $A$ as in the theorem, $\left(A\langle\xi\rangle_{q, y}, I^{[1]_{q, y}}\right)$ identifies with the $q$-PD-enveloppe of the $\delta$-pair $(A[\xi],(\xi))$ with* $\delta(\xi)=\sum_{i=1, \ldots, p-1} \frac{1}{p}\binom{p}{i} x^{p-i} \xi^{i}$ (i.e. is the universal $q$-PD-pair solution of the problem of unique extension to a $q$-PD-pair of a morphism $(A[\xi],(\xi)) \rightarrow\left(B,\left((p)_{q}\right)\right)$ with $\left(B,\left((p)_{q}\right)\right)$ a $q$ - $P D$-pair s.t. $B$ has no $(p)_{q}$-torsion)).
*Remember that $\tilde{\mathrm{F}}_{A[\xi]}: \xi \mapsto(\xi+x)^{p}-x^{p}$.

## 3. Prismatic site

$R$ as before and s.t. $\left(R,(p)_{q}\right)$ is a bounded $\operatorname{prism}\left(R,(p)_{q}\right), \mathscr{X}$ a $p$-adic $R /(p)_{q}$-formal scheme $(p)_{q}-\operatorname{PRIS}(\mathscr{X} / R)$ : opposite category to the one of $(p)_{q}$-prisms $B$ on $R$ endowed with a morphism $\left.\left.\operatorname{Spf}\left(B /(p)_{q}\right)\right) \rightarrow R /(p)_{q}\right)$;
$\mathcal{O}_{\left.(p)_{q}-\operatorname{PRIS}(X) R\right)}:\left[B \rightarrow B /(p)_{q} \leftarrow A /\left((p)_{q}\right)\right] \mapsto B$
Theorem If $A$ is endowed with a topological coordinate $x$ s.t. $\delta(x)=0$ and $\bar{A}:=A /(p)_{q}$, it exists a functor $E \mapsto E_{A}$ from the category of prismatic crystals of finite presentation on $\bar{A} / R$ to the one of quasi-nilpotents $\mathrm{D}_{A, q}^{(-1)}$-modules topologically of finite type.

Proposition For $A$ as in the theorem, $\left.\left(A\left\langle\frac{\xi}{(p)_{q}}\right\rangle_{q^{p}, y},\left((p)_{q}\right)\right)\right)$ identifies with the prismatic enveloppe of the $\delta$-pair $\left(A[\xi],(\xi)\right.$ ) (i.e. is the universal $(p)_{q}$-prism solution of the problem of unique extension to a $(p)_{q}$-prism of a morphism $(A[\xi],(\xi)) \rightarrow\left(B,\left((p)_{q}\right)\right)$ to a $(p)_{q}$-prism $\left(B,\left((p)_{q}\right)\right)$ ( $B$ without ( $p)_{q}$-torsion)).

## 4. Prismatic Cartier transform

$(R, \mathfrak{r}) \rightarrow(A, \mathfrak{a})$ morphism of $q$-PD-pairs ; $\phi: \mathfrak{r} \rightarrow\left((p)_{q}\right)$ induces $\bar{\phi}: R / \mathfrak{r} \rightarrow R /(p)_{q} ; A^{\prime}=A \widehat{\otimes}_{R, \phi} R$
$\mathscr{X}:=\operatorname{Spf}(A / \mathfrak{a}) ; \mathscr{X}^{\prime}:=\mathscr{X} \widehat{\otimes}_{R / \mathfrak{r}, \bar{\phi}} R /(p)_{q}=\operatorname{Spf}\left(A^{\prime} /(p)_{q} A^{\prime}\right)$

$$
\mathrm{C}_{q}: q-\operatorname{CRIS}\left(\mathscr{X}^{\prime} / R\right) \rightarrow(p)_{q}-\operatorname{PRIS}(\mathscr{X} / R)
$$

induced by :

$$
\begin{aligned}
&(B, \mathfrak{b}) \mapsto\left(B,(p)_{q}\right) \\
&(\operatorname{Spf}(B / \mathfrak{b}) \rightarrow \mathscr{X}) \mapsto \\
&\left(\operatorname{Spf}\left(B /(p)_{q}\right) \rightarrow \mathscr{X}^{\prime}\right)
\end{aligned}
$$

of the composite $\left.\operatorname{Spf}\left(B /(p)_{q}\right) \rightarrow \operatorname{Spf}(B / \mathfrak{b}) \rightarrow \mathscr{X}\right)$
Theorem If $A$ is endowed with a topological coordinate $x$ s.t. $\delta(x)=0, \bar{A}:=A / \mathfrak{a}, \bar{A}^{\prime}:=A^{\prime} /(p)_{q}$, twisted Simpson correspondence sits into the commutative diagram


Remarks. (i) Adding flat topologies on the sites should (in preparation) turn the four maps into equivalences.
(ii) Recent related works : A. Chatzistamatiou, M. Morrow-T. Tsuji.

