Connections and Symmetric Differential Forms

Hélène Esnault, work in progress with Michael Groechenig

London, December 08, 2020

over $\mathbb C$

 $X \in x$ sm proj var over \mathbb{C} , $\pi_1^{\mathrm{top}}(X,x)$ top fund gr, $r \in \mathbb{N}_{>0}$

over $\mathbb C$

 $X \in x$ sm proj var over \mathbb{C} , $\pi_1^{\mathrm{top}}(X,x)$ top fund gr, $r \in \mathbb{N}_{>0}$

- Simpson: $M_B(X,r) \leftrightsquigarrow^{\mathrm{top}} M_{dR}(X,r) \leftrightsquigarrow^{\mathrm{top}} M_{\mathrm{Dol}}(X,r)$
- $M_B(X,r)$ affine
- $M_{\mathrm{Dol}}(X,r) \xrightarrow{\mathrm{Hitchin}} \mathbb{A}^N, N = \oplus_{i=1}^r h^0(X, \mathrm{Sym}^i \Omega^1)$ proper
- Van: $h^0(X, \operatorname{Sym}^i\Omega^1) = 0 \ \forall i \in \mathbb{N}_{>0}$
- \Longrightarrow Arapura: **Van** \Rightarrow **Fin** with **Fin**: $[M_B(X,r) \text{ 0-dim'l}]$
- Fin ⇒ all complex local systems are rigid.

Theorem (BKT '13) in answer to a question I posed

Theorem

 $Van \Rightarrow$ monodromy of all complex local systems is finite.

Theorem (BKT '13) in answer to a question I posed

Theorem

 $Van \Rightarrow$ monodromy of all complex local systems is finite.

Proof relies on > 0ty in \mathbb{C} -geom

- Simpson: loc. syst. is a C-VHS
- Katzarkov-Zuo: **Van** \Rightarrow is in fact a \mathbb{Z} -factor of a \mathbb{Z} -VHS
- Zuo: Ω^1 of image of period map big.

Theorem (BKT '13) in answer to a question I posed

Theorem

 $Van \Rightarrow$ monodromy of all complex local systems is finite.

Proof relies on > 0ty in \mathbb{C} -geom

- Simpson: loc. syst. is a C-VHS
- Katzarkov-Zuo: **Van** \Rightarrow is in fact a $\overline{\mathbb{Z}}$ -factor of a \mathbb{Z} -VHS
- Zuo: Ω^1 of image of period map big.

$Fin \Rightarrow Van, Fin \Rightarrow Thm$

Margulis superrigidity: Shimura var of $rk \ge 2$: has **Fin** but by far not **Van** and has inftly many loc syst with infinite monodromy.

Theorem $(\mathsf{EG'}18)$ in (partial) answer to Simpson's integrality conjecture

Fin (in a given rank r) \Rightarrow

- (rank r) complex loc syst are integral.
- $(E, \nabla)_W \otimes_W K$ are isoc with a Frobenius structure

Theorem $(\mathsf{EG'}18)$ in (partial) answer to Simpson's integrality conjecture

Fin (in a given rank r) \Rightarrow

- (rank r) complex loc syst are integral.
- $(E, \nabla)_W \otimes_W K$ are isoc with a Frobenius structure

So **Fin** (in a given rank r) \Rightarrow (rank r) $\bar{\mathbb{Z}}$ -factor of a \mathbb{Z} - VHS.

Theorem (EG'18) in (partial) answer to Simpson's integrality conjecture

Fin (in a given rank r) \Rightarrow

- (rank r) complex loc syst are <u>integral</u>.
- $(E, \nabla)_W \otimes_W K$ are isoc with a Frobenius structure

So **Fin** (in a given rank r) \Rightarrow (rank r) $\bar{\mathbb{Z}}$ -factor of a \mathbb{Z} - VHS.

Proof purely algebraic, relies on the existence of companions.

Theorem $(\mathsf{EG'}18)$ in (partial) answer to Simpson's integrality conjecture

Fin (in a given rank r) \Rightarrow

- (rank r) complex loc syst are integral.
- $(E, \nabla)_W \otimes_W K$ are isoc with a Frobenius structure

So **Fin** (in a given rank r) \Rightarrow (rank r) $\bar{\mathbb{Z}}$ -factor of a \mathbb{Z} - VHS.

Proof purely algebraic, relies on the existence of companions.

So: BKT \Leftrightarrow unitary mon \Leftrightarrow Higgs field = 0, seen in char. p > 0.

Problems addressed

- Van is a purely algebraic condition
- having finite monodromy is a purely algebraic property
- algebraically? : isocrystals and mod p connections?

Problems addressed

- Van is a purely algebraic condition
- having finite monodromy is a purely algebraic property
- algebraically? : isocrystals and mod p connections?

toy r = 1: analytically

Fin
$$\Rightarrow M_{dR}(X,1) = \operatorname{Pic}^{\nabla}(X) = (\text{Hodge Theory})$$

 $\operatorname{Pic}^{\tau}(X) = NS(X)[\text{torsion}].$

Problems addressed

- Van is a purely algebraic condition
- having finite monodromy is a purely algebraic property
- algebraically? : isocrystals and mod p connections?

toy r = 1: analytically

Fin
$$\Rightarrow M_{dR}(X,1) = \operatorname{Pic}^{\nabla}(X) = (\text{Hodge Theory})$$

 $\operatorname{Pic}^{\tau}(X) = NS(X)[\text{torsion}].$

toy r = 1: algebraically

 \mathcal{L} connection of rank 1; **Fin** \Rightarrow $\{\mathcal{L}^n\}_{n\in\mathbb{Z}}$ finite \Rightarrow $\mathcal{L}^m\cong\mathcal{L}^n$ for some $m\neq n\in\mathbb{N}$ (preperiodicity) \Rightarrow $\mathcal{L}^{n-m}=1$ $(m-n)\neq 0$ so \mathcal{L} torsion.

Isocrystals

Proposition (EG'20)

$$X = X_W \otimes_W k, k = \bar{k} \text{ sm proj, } Van/K \Rightarrow$$

- 1) all ℓ -adic loc. syst have fin mon
- 2) if $k = \overline{\mathbb{F}}_p \ \exists h : Y \to X$ fin ét trivializing conv isoc

Isocrystals

Proposition (EG'20)

$$X = X_W \otimes_W k, k = \bar{k} \text{ sm proj, } Van/K \Rightarrow$$

- 1) all ℓ -adic loc. syst have fin mon
- 2) if $k = \overline{\mathbb{F}}_p \ \exists h : Y \to X$ fin ét trivializing conv isoc

Proof

- 1): $\pi_1^{\text{\'et}}(X_{\mathbb{C}}) \twoheadrightarrow \pi_1^{\text{\'et}}(X_k) + \mathsf{BKT}$
- $(E_K, \nabla_K) = (E_W, \nabla_W) \otimes_W K, (E_W, \nabla_W) \otimes_W k$, nilp *p*-curv
- F acts on isoc, **Fin** \Rightarrow preperiodicity F-orbit of any isoc
- \Rightarrow given (E_K, ∇_K) (not nec conv), $\exists N, (F^N)^*(E_K, \nabla_K)$ F-str
- \Rightarrow (Abe-E +K) $\exists \ell$ -adic companion so 1) $\Rightarrow \exists h: Y \to X$ st $h^*(F^N)^*(E_K, \nabla_K)$ trivial
- conv \Rightarrow 2): $h^*(E_K, \nabla_K)$ trivial as well.

Problem on isocrystals

Problems

- $X/k, k = \bar{k}$ sm proj, $\operatorname{Van}/k \Rightarrow$? all $\bar{\mathbb{Q}}_{\ell}$ loc syst have fin mon
- $k = \bar{\mathbb{F}}_p \operatorname{Van}/k \Rightarrow$? all conv isoc are étale trivializable

Problem on isocrystals

Problems

- $X/k, k = \bar{k}$ sm proj, $\operatorname{Van}/k \Rightarrow$? all $\bar{\mathbb{Q}}_{\ell}$ loc syst have fin mon
- $k = \bar{\mathbb{F}}_p \operatorname{Van}/k \Rightarrow$? all conv isoc are étale trivializable

Remark

X/k lifts to X_W : Proposition \Rightarrow both problems have a > 0 answer

Theorem (EG'20)

 $X=X_{W_2(\mathbb{F}_q)}\otimes \mathbb{F}_q$ sm proj, $\operatorname{Van}/\mathbb{F}_q\Rightarrow \operatorname{rk} 2$ loc free ss deg 0 (E,∇) are étally trivializable.

Theorem (EG'20)

 $X=X_{W_2(\mathbb{F}_q)}\otimes \mathbb{F}_q$ sm proj, $\operatorname{Van}/\mathbb{F}_q\Rightarrow \operatorname{rk} 2$ loc free ss deg 0 (E,∇) are étally trivializable.

Proof

- Van \Rightarrow Hitchin base= $\{0\} \Rightarrow p$ -curv nilpotent
- preperiodic Higgs-dR flow (OV corr, Lan-Sheng-Zuo)
- assume periodic period 1 (for talk): then
- ullet either $(E,
 abla) = (F^*E,
 abla_{\operatorname{can}}) \Rightarrow (\mathsf{Lang} \ \mathsf{torsor}) \ \mathsf{\acute{e}t} \ \mathsf{triv}$, or
- $0 \to (F^*L^{<0}, \operatorname{can}) \to (E, \nabla) \to (F^*L^{>0}, \operatorname{can}) \to 0$ (p-curv nil)
- $0 \rightarrow L^{>0} \rightarrow E \rightarrow L^{<0} \rightarrow 0 \ (F\text{-Filt})$
- $\leadsto KS: L^{>0} \otimes (L^{<0})^{-1} \hookrightarrow \Omega^1, (L^{<0})^{p-1} \hookrightarrow \mathcal{O} \hookrightarrow (L^{>0})^{p-1}$
- $\rightsquigarrow \mathcal{O}_X \hookrightarrow \operatorname{Sym}^{p-1}\Omega^1 \perp \text{ to Van.}$