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Introduction

Suppose Λ is a complete regular local ring with fraction field K . Can
we expect that there is a “reasonable” cohomology theory H ·(X ,Λ) with
its values in Λ-modules for separated schemes of finite type over a field k?
Of course this depends on what “reasonable” means but for most
definitions the answer is “yes” unless k and the residue field of Λ have the
same positive characteristic. One of the basic requirements of
“reasonable” should be that the Hn(X ,Λ) should be finitely generated
Λ-modules and vanish for sufficiently large n.

This is the case for example when ` 6= p = char(k) and the theory is
`-adic étale cohomology H ·(X ,Z`). When ` = p these requirements are
met if X/k is proper, but not otherwise. But even in the proper case
p-adic étale cohomology does not satisfy a more stringent version what
“reasonable” should mean for a cohomology theory H ·(X ) with
Λ-coefficients, namely that
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H ·(X )⊗Λ K ' H ·rig (X )

for X/k separated and of finite type. Of course this is not to say that the
H ·et(X ,Zp), or more generally the H ·et,c(X ,Zp) are without interest.

When k is perfect and X/k is smooth Davis, Langer and Zink have
defined an overconvergent version of the de Rham-Witt complex
W †Ω·X/W (k) and showed that that

H ·(X ,W †Ω·X/W (k))⊗Q ' H ·rig (X )

when X is quasiprojective. One might entertain the faint hope that the
H ·(X ,W †Ω·X/W (k)) are finitely generated W (k)-modules. We will see that
this is never true if X is a smooth affine curve. Davis, Langer and Zink
make the more reasonable conjecture that the image of
H ·(X ,W †Ω·X/W (k)) in H ·rig (X ) is finitely generated as a W (k)-module,
but but Ertl and Shiho have produced counterexamples to this assertion as
well.
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One should also keep in mind the original motivation for crystalline
cohomology: the study of p-torsion phenomena. Killing all p-torsion
seriously reduces the interest of any proposed theory.

The folk wisdom is that there is no “reasonable integral p-adic
cohomology theory” for separated schemes of finite type of a field of
characteristic p > 0. The theory I wish to explain today makes the
prospect of this rather unlikely, though it does not completely exclude it.
This is joint work with Tomoyuki Abe.
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Globally Perfect Models

For the rest of this talk Λ is a complete local ring with residue field k
and fraction field K . As usual Dperf (Λ) is the triangulated category of
perfect complexes of Λ-modules, which since Λ is local means that an
object of Dperf (Λ) is quasi-isomorphic to a bounded complex of free
Λ-modules.

The following requirements could be viewed as “reasonable”
requirements on a cohomology theory H ·(X ):

H ·(X ) can be used to compute rigid cohomology (or rigid cohomology
with compact supports) via a suitable comparison theorem.

H ·(X ) may be computed as the cohomology of an object of Dperf (Λ);

The H ·(X ) are compatible with finite étale descent, in a sense to be
explained in a moment.

When Λ is regular the second requirement reduces to the condition
that the Hn(X ) be finitely generated Λ-modules, and vanish for n� 0.
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To explain the last condition we use the finite étale site whose
definition we now recall. If X is a scheme the site Fet(X ) is the category
of finite étale morphisms Y → X , and the coverings are surjective
morphisms. The associated topos will be written Xfet . A morphism
π : Y → X induces a morphism πfet : Yfet → Xfet of topoi, whence
functors π∗ and Rπ∗. There is also a projection α : Xet → Xfet compatible
with the morphisms πfet and πet : Yet → Xet .

Definition

A object M of D(Xfet ,Λ) is globally perfect if

M has finite Tor-dimension, and

for every π : Y → X in Fet(X ), RΓ(Y , π∗M) is in Dperf (Λ).

Suppose for example that X/k is proper and smooth and V is a
Cohen ring for k . If OX/V is the structure sheaf of the crystalline-étale
topos of X and u : (X/V )crys−et → (X/V )et is the usual projection,
R(αu)∗OX/V is a globally perfect object of Xfet .
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If X/k is separated and of finite type one can show that there is a
globally perfect object M of Dperf (Xfet ,Zp) such that

H ·(π∗M) ' H ·c(Y ,Zp)

for all π : Y → X in Fet(X ).
Let H · be a functor from Fet(X ) to the category Mod·K of N-graded

K -vector spaces (e.g. the restriction to Fet(X ) of your favorite K -valued
cohomology theory).

Definition

A globally perfect model of H · is a globally perfect M in Dperf (Xfet ,Λ) and
a functorial isomorphism

H ·(Y )
∼−→ H ·(RΓ(Y , π∗M))⊗Λ K

for all Y → X in Fet(X ).
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The requirement that H · have a globally perfect model is slightly
stronger than what was earlier described as reasonable since we now
require that M have finite Tor-dimension. If Λ is regular this is not too
serious.

The key technical result is

Theorem

Suppose Λ is noetherian and X is affine. If M is a globally perfect object
of D(Xfet ,Λ) and π : Y → X is finite étale Galois with group G then
RΓ(Y , π∗M) is a perfect complex of Λ[G ]-modules.

The sense of the assertion is that there is an object in Dperf (Λ[G ])
whose image in Dperf (Λ) computes RΓ(Y , π∗M) together with the action
of G .

We will need some technical business about cohomological dimension.
Recall that if R is a ring and X is a topos, the R-cohomological dimension
of X , i.e. the smallest integer d such that Hn(X ,F ) = 0 for all n > d and
every R-module F in X .
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Lemma

Suppose k has characteristic p > 0 and X is a k-scheme of finite type.

The Z-cohomological dimension of Xet is finite.

If X is affine the Z(p)-cohomological dimension of Xfet is finite.

Proof (sketch): The first assertion is actually a theorem of Gabber.
For the second we begin with a result of Abbes-Gros-Tsuji asserting that
when X is affine the topos Xfet is equivalent to the classifying topos
Bπ1(X ). It therefore suffices to show that Hn(π1(X ),F ) = 0 for n� 0 and
all continuous π1(X )-modules F .
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Back in the day Serre showed that Hn(π1(X ),F ) is torsion for n > 0,
so if F is a Q-module, Hn(π1(X ),F ) = 0 for n > 0. Again by
Abbes-Gros-Tsuji Xfet is a coherent topos and thus Hn(π1(X ), )
commutes with inductive limits. A simple devissage using the exact
sequence

0→ Ftor → F → F ⊗Q→ F ⊗ (Q/Z)→ 0

reduces to the case when F is p-torsion. But in this case Achinger showed
that there are isomorphisms

H ·(Xet ,F ) ' H ·(π1(X ),F )

and the assertion follows from the étale case.
In what follows we will use the symbol Λ to denote the sheafification

in Fet(X ) of the constant presheaf with value Λ.
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Lemma

For any π : Y → X in Fet(X ) and M in D+(Xfet ,Λ) there is a functorial
isomorphism

Rπ∗π
∗(M)

∼−→ M ⊗L
Λ Rπ∗Λ.

Proof: The adjunction π∗Rπ∗(Λ)→ Λ yields morphisms

π∗(M ⊗L
Λ Rπ∗(Λ)) ' π∗(M)⊗L

Λ π
∗Rπ∗(Λ)

→ π∗(M)⊗L
Λ Λ ' π∗(M)

and applying the adjunction to this yields the morphism in the lemma. It
will be an isomorphism if it is after pulling it back by a covering morphism
g : W → X in Fet(X ). I claim g∗ and Rπ∗ commute: in fact
Abbes-Gros-Tsuji have shown that g∗ has an exact right adjoint, so g∗

sends injectives to injectives, which proves the claim. Since g∗ and Rπ∗
commute we can replace π by its base change W ×X Y →W . Now there
is a finite étale g : W → X such that W ×X Y is a disjoint sum of copies
of W , and in this case the proof is easy.
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Proof of the theorem: we must show that

RΓ(Y , π∗(M)) ' RΓ(X ,Rπ∗π
∗(M))

is a perfect complex of Λ[G ]-modules. The Λ[G ]-module
Rπ∗π

∗(Λ) ' Rπ∗Λ, which I will denote by G is a flat by the argument of
the previous lemma. The lemma then yields an isomorphism

Rπ∗π
∗(M)

∼−→ M ⊗L
Λ G.

Since G is Λ[G ]-flat and M is in Dftd(Λ), Rπ∗π
∗(M) is in Dftd(Λ[G ]) and

it follows that RΓ(Xfet ,Rπ∗π
∗(M)) is also in Dftd(Λ[G ]).

Since X is affine the lemma on cohomological dimension shows that

RΓ(Yfet , π
∗(M)) ' RΓ(Xfet ,Rπ∗π

∗(M))

lies in Db(Λ[G ]); since the Hn(Yfet , π
∗(M)) are finitely generated

Λ-modules they are finitely generated Λ[G ]-modules. Since Λ is noetherian
RΓ(Yfet , π

∗(M)) is a perfect complex of Λ[G ]-modules.

Richard CrewThe University of Florida Integral p-adic cohomology theories Imperial College of London, December 2020 12 / 17



The Main Theorem

Denote by K0 the fraction field of a Cohen ring of k , and recall that
K is the fraction field of Λ, which we can make into an extension field of
K0. In what follows rigid cohomology has coefficients in K0.

Theorem

Suppose k is a field of characteristic p > 0, X is a smooth affine curve
over k and Λ is a complete noetherian local ring with residue field k and
fraction field K . The functors

H ·rig ( )⊗K0 K , H
·
rig ,c( )⊗K0 K : Fet(X )→ Mod·K

do not have a globally perfect model.

Proof: Any smooth affine curve X has an Artin-Schreier cover
π : Y → X that ramifies at infinity. So it suffices to invoke the following
lemma:
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Lemma

Suppose

X is an smooth affine curve over a field k of characteristic p > 0;

π : Y → X is a finite étale Galois cover whose group G is a p-group;

M is a globally perfect model of the functor
H ·rig ( )⊗K0 K : Fet(X )→ Mod·K or of
H ·rig ,c( )⊗K0 K : Fet(X )→ Mod·K .

Then π : Y → X extends to a finite étale morphism π̄ : Ȳ → X̄ of smooth
projective curves.

Proof: Denote by

χ(Z ) =
∑
i

(−1)i dimK0 H
i
rig (Z )

the rigid Euler characteristic of a separated k-scheme Z of finite type.
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If Z/k is smooth,

χ(Z ) =
∑
i

(−1)i dimK0 H
i
rig ,c(Z )

by duality, so the third hypothesis says that

χ(Y ) =
∑
i

(−1)i dimK H i (Y )

for all Y → X in Fet(X ). The isomorphism

Hn(RΓ(π∗M ⊗Λ K )) ' Hn
rig ,c(Y )⊗K0 K

is functorial, so by the previous theorem there is a perfect complex M ·Y of
Λ[G ]-modules such that

Hn(M ·Y ⊗Λ K ) ' Hn
rig ,c(Y )⊗K0 K
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and then
Hn(M ·Y )G ' Hn

rig ,c(X )⊗K0 K

since π : Y → X is finite étale.
Since G is a p-group, the group ring Λ[G ] is local, so a finitely

generated projective Λ[G ]-module is free. Therefore these last
isomorphisms imply that

χ(X ) = |G |χ(Y ).

Comparing this with the Grothendieck-Ogg-Shafarevich formula, we see
that the ramification of π : Y → X is tame at infinity. But since G is a
p-group, π must totally wild at infinity if it is ramified at all. It is therefore
unramified at infinity, which is the conclusion of the lemma.

Richard CrewThe University of Florida Integral p-adic cohomology theories Imperial College of London, December 2020 16 / 17



An Example

Suppose k is perfect and consider the functors

Hn(X ) = Hn(X ,W †Ω·X/W )

where W = W (k) and W †Ω·X/W is the overconvergent de Rham-Witt

complex of Davis, Langer and Zink. One can show that if the Hn(X ) are
finitely generated W -modules for all X and n ≥ 0 then RΓ(X ,W †Ω·X/W )

would be a globally perfect model of H ·rig ( ) : Fet(X )→ Mod·K . The
theorem says that this is false for every smooth affine curve X . In fact Ertl
and Shiho have constructed smooth affine curves for which
H1(X ,W †Ω·X/W ) is not finitely generated modulo torsion.

Thank you.
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