Bornological $\widehat{\mathcal{D}}$ -modules on rigid analytic spaces

A. Bode

UMPA ENS Lyon

Outline

- Introduction
- 2 Coadmissible $\widehat{\mathcal{D}}$ -modules
- ${\color{red} {\mathfrak G}}$ Bornological $\widehat{\mathcal D}$ -modules
- \bigcirc C-complexes

 $\mathcal{D}\text{-modules}$ are $\mathcal{O}\text{-modules}$ with a compatible action of the tangent sheaf.

They arise in various contexts, e.g.

- complex varieties, complex manifolds
- arithmetic *D*-modules on char *p* schemes or formal schemes (Berthelot)
- $\widehat{\mathcal{D}}$ -modules on p-adic rigid analytic varieties (Ardakov, Wadsley)

Key features in the complex world:

Can be used to study representations geometrically.

Theorem (BB-Localization)

Let G be a semisimple algebraic group over \mathbb{C} , and let X = G/B be its flag variety. Then there is an equivalence

$$\{coherent \, \mathcal{D}_X \text{-modules}\} \cong \{f. \, g. \, \textit{U}(\mathfrak{g})_0 \text{-modules}\}$$

 $\mathcal{M} \mapsto \mathcal{M}(X)$

- On $D^b(\mathcal{D}\text{-mod})$, can define six functors: f_+ , f^+ , f_1 , $f^!$, $\otimes^L_{\mathcal{O}}$, \mathbb{D} .
- 3 notions of finiteness:

$$\{\text{coh.} \ / \ \mathcal{O}\} \subset \{\text{holonomic}\} \subset \{\text{coh.} \ / \ \mathcal{D}\},$$

and $D_{hol}^b(\mathcal{D}\text{-mod})$ is stable under the six functors above.

 \implies great for geometric constructions/manipulations of representations!

From now on, fix

- K a finite extension of \mathbb{Q}_p
- R the valuation ring of K
- $\pi \in R$ a uniformizer.

Ardakov–Wadsley introduced coadmissible $\widehat{\mathcal{D}}$ -modules on smooth rigid analytic K-varieties and proved an analogue of BB Localization.

In this talk, we give an analogue of the second point: a derived category with all six functors.

If $X = \mathbb{A}^1_{\mathbb{C}}$, we have

$$\mathcal{D}(X) = \mathbb{C}[x; \partial] = \left\{ \sum a_{ij} x^i \partial^j : a_{ij} \in \mathbb{C} \right\} \subset \operatorname{End}_{\mathbb{C}}(\mathbb{C}[x]),$$

where $\partial = \frac{d}{dx}$ satisfies $\partial \cdot x = x\partial + 1$ (product rule). Think: functions on the cotangent space $X \times \mathbb{A}^1$.

Now let

$$K\langle x\rangle = \left\{\sum_{i=0}^{\infty} a_i x^i : a_i \in K, a_i \to 0\right\}$$

be the ring of analytic functions on the closed disk X of radius 1. Then

$$\widehat{\mathcal{D}}(X) = \varprojlim \mathcal{D}_n(X) = \varprojlim K\langle x; \pi^n \partial \rangle.$$

Think: functions on the cotangent space $X \times \mathbb{A}^{1,an}$.

Definition

A K-algebra A is called Fréchet-Stein if

$$A \cong \varprojlim A_n$$

for A_n Noetherian Banach K-algebras, with each transition map $A_{n+1} \rightarrow A_n$ flat with dense image.

An A-module M is called coadmissible if

$$M\cong \varprojlim M_n$$

for M_n a finitely generated A_n -module, s.t. the natural morphism $A_n \otimes_{A_{n+1}} M_{n+1} \to M_n$ is an isomorphism.

The category C_A of coadmissible A-modules is abelian.

Theorem (Ardakov-Wadsley, B.)

Let X be a smooth affinoid K-variety. Then $\widehat{\mathcal{D}}(X)$ is a Fréchet–Stein algebra, and the functor

$$\widehat{\mathcal{D}}(U)\widehat{\otimes}_{\widehat{\mathcal{D}}(X)} - : \mathcal{C}_{\widehat{\mathcal{D}}(X)} \to \mathcal{C}_{\widehat{\mathcal{D}}(U)}$$

is exact for $U \subset X$ an affinoid subdomain.

 \implies can form the category of coadmissible $\widehat{\mathcal{D}}_X$ -modules completely analogously to coherent \mathcal{O}_X -modules.

Definition

A (convex) **bornology** on a K-v.s. V is a collection $\mathcal B$ of subsets of V such that

- $\{v\} \in \mathcal{B}$ for all $v \in V$.
- B is closed under finite unions.
- if $B \in \mathcal{B}$, then $R \cdot B \in \mathcal{B}$.
- if $B \in \mathcal{B}$, $\lambda \in K$, then $\lambda B \in \mathcal{B}$
- if $B \in \mathcal{B}$ and $B' \subset B$, then $B' \in \mathcal{B}$.

If $B \subset V$ such that $B \in \mathcal{B}$, we say that B is bounded.

A K-linear map between bornological vector spaces is bounded if it sends bounded subsets to bounded subsets.

Example:

Let V be a locally convex topological K-vector space, whose topology is given by a family of seminorms q_i . Then the rule

$$B \in \mathcal{B} \iff q_i(B) \subset K \text{ is bounded } \forall i$$

defines a bornology on V.

Proposition

The category $\widehat{\mathcal{B}}c_K$ of complete bornological K-vector spaces is a complete, cocomplete, quasi-abelian category with enough projectives. Its 'abelian envelope' (left heart) has enough projectives and enough injectives.

The completed tensor product $\widehat{\otimes}_K$ gives $\widehat{\mathcal{B}}c_K$ the structure of a closed symmetric monoidal category.

Theorem (B., 2020)

Let X be a smooth rigid analytic K-variety. Then $\widehat{\mathcal{D}}_X$ is a sheaf of K-algebras in $\widehat{\mathcal{B}}_{\mathsf{C}_K}$.

The category $\widehat{\mathcal{B}}c(\widehat{\mathcal{D}}_X)$ of complete bornological $\widehat{\mathcal{D}}_X$ -modules is a complete, cocomplete, quasi-abelian category admitting flat resolutions. Its left heart has enough injectives.

 \Longrightarrow can form the derived category $D(\widehat{\mathcal{D}}_X)$, and define f_+ , f^+ , $f_!$, $\widehat{\otimes}^L_{\mathcal{O}}$, $\mathbb D$ as in the complex algebraic case.

Theorem (B., 2020)

Let X be a smooth rigid analytic K-variety. There is an exact fully faithful functor

$$\{coadmissible\ \widehat{\mathcal{D}}_X ext{-modules}\} o \widehat{\mathcal{B}}c(\widehat{\mathcal{D}}_X).$$

Can now define an analogue of $D^b_{coh}(\mathcal{D})$.

Definition

Let $M \in D(\widehat{\mathcal{D}}_X)$ for X affinoid. We say M is a \mathcal{C} -complex if

- $M_n := \mathcal{D}_n \widehat{\otimes}_{\widehat{\mathcal{D}}_X}^L M \in \mathrm{D}^b_{\mathrm{coh}}(\mathcal{D}_n)$ for all n,
- $H^{i}(M) \rightarrow \varprojlim H^{i}(M_{n})$ is an isomorphism.

We denote the full subcategory of C-complexes by $D_{\mathcal{C}}(\widehat{\mathcal{D}}_X)$.

Theorem

- $D_{\mathcal{C}}(\widehat{\mathcal{D}}_X)$ is a triangulated subcategory.
- If $M \in D_{\mathcal{C}}(\widehat{\mathcal{D}}_X)$, then $H^i(M)$ is coadmissible.
- If M is a complete bornological $\widehat{\mathcal{D}}_X$ -module, then M is coadmissible if and only if $M \in D_{\mathcal{C}}(\widehat{\mathcal{D}}_X)$ when viewed as a complex concentrated in one degree.

Theorem

Let $f: X \to Y$ be a morphism between smooth rigid analytic K-varieties.

- If f is smooth, then f^+ sends $D_{\mathcal{C}}(\widehat{\mathcal{D}}_Y)$ to $D_{\mathcal{C}}(\widehat{\mathcal{D}}_X)$.
- If f is projective, then f_+ sends $D_c(\widehat{\mathcal{D}}_X)$ to $D_c(\widehat{\mathcal{D}}_Y)$.