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Arithmetic under the infuena of geometry

The topic of the lectures is as old as mathematics

Come has found a babylonian tablet about 3800

years
old

continuing
the formula

185412 - 127092 = 135002

Diophantuswho lived during the 2nd or
3rdcentury

wrote a book containing similar equations of degree
's

You
have probably heard of Fermat 's last theorem

Theorem C FERMAT ~ 1650

,

W ices
,

. . . .

,
1995 )

Let n

33
V a

,
b

,

c E 2x
an

t bn
= on ⇒ ab a  = o

Snspired by
this result Ever conjectured around

1769 that

Conjecture# er

,
1769 )

Tf N

74µW
+ .

.
.  + XI = XNN

has no solution Can
,

-

, an ) with
ai > o integers

EL KIES ( 1988 )

2682440
"

t 153656394+18 7 967604=206.156734

More generally start with a polynomial
P C Xe

,
- in ) E I Cxn

,

- Xn 7

←
→

solutions over Z
"

solutions ein Rn or an

- Is there
any

?
defines a K variety D

- Ss the number of which con he used to

solutions
finite

or
←

define geometrical

infinite ?
20 thanking cinnamon
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geometry con (genes of a
Riemann surface '

help to answer

these question It
g

=3

Theorem C F ALT INGS )

Gf the solutions over ¢ define a

Riemann surface of gems g 3 2

then the number of solutions 10h is finite

Corollary
Fan > 4

,

The number ofprimitive solutions ( ie

with god Ca
,

b
,

4=1 ) of FERMAT  

equation
is finite .
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①

Arithmetic under the influence of geometry
Feist bet us consider the question :

I Stone to find solutions

Of course

you may
think that nowadays

the answer is trivial with computers
I Naive answer on . computers

Let Pa
,

- ,
Pm E I C X

. ,
-

,

X
n ]

We want to study
SCR ) -

- { Can
,

-

,
x

n ) E 2M Ifi e See
,

-

, my Rican
, >

%)
=  07

Algorithm
1)

BE
O

→ for all Cxe
,

-

, an ) C- IN such that

masc ( Hal
,

-

,
bint ) = B

if it i c- See
,

-

,
m . ) Pi Cx

. ,  
- plus

-

- o

\
I Print Can

,
- pin ) ;

3) B : = B the

j go
back to 2J

This algorithm
will

display all the solutions

of the equations ,
ordered

leg increasing size

of the solution

Gt has
only a tiny drawback : it is based

on on infinite loop and never stops

So
Imagine you

launch it and nothing
appears during

3 or 4 days ,

either

- There is a solution .
but the smallest

solution is gain by very large integers
-

There is no solution .
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Also like
program

can not tell
you

whether

the number of solutions is finite or not
.

In fact , long before computers escorted

it was possible to answer some of these basic

questions

2J Questions

to before
Cake Pr

,
-

,

Pm E Ian
,

- X nil

S CE ) = { can
, ,

In ) EEN IV-ic.de
, ,m7 Ric a

. ,
- pin ) =D

Questions

I Ss SCI ) empty ?

25 Ss SCI ) finite ?

3) Gs it possible to find all solutions ?

4) Home
many

solutions is there with

bounded coordinates ?

•  •  o

As S explained during
the presentation last week

the Babylonians were already
able to provide

big solutions for a simple equation

3) Back to the babylonians

As 9 told
you

this tablet
, according

to the style of writing
is supposed to be 3800

years

old
.

L should stress that the problem with this

kind of tablet is that we have no idea of the

reason for which it me as written
,
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since it contains K mistakes 77 one con imagine
that it was written by a student as an exercise

Anyway it contains numbers
organized

in columns

each column has on header C exactly like on excel

file ) .

9
am

going
to concentrate on

.

the 2nd and

3rd columns
,

which
may

he translated ( for the 1st

lines ) as

short side
diagonal

119 169

3 3 67 4 8 25
*

46 On 6 6 49

12709 A

8541
G S 97

319 481

2291 3541

799 1249

481 769
*

corrected



④

So for each line if you compute
the D of

the
diagonal - the D of the short side

you
obtain the

square of on integer :

16g
-

- 11 92 =

12048252
- 33672 = 34562

6649L - 46 072 = 48002

185412-

127092=135002g 7
'

- G 52 = 722

↳ 812 - 3192 = 3602

35412 - 22912 = 27002

1249
2

- 7- 992 = 9602

7692 - 4812
=

6002

Moreover
you may

notice that each number on the

right hand side
of

the equation is of the form
I 3

b
Sc

Where 2,3 ,
5 are the divisors of 60 which was the

base used in babylonian numeral system
( which we are still

using for measuring
time

or angles )
.

We can not be completely sure of the

method use by
the babylonian to

get
these numbers

,

but

4) Diaphoretics gave
such a method

.
Tn

fact,

Doors te Antos

published
books which were collections of solved

exercises or problems
Problem I .

8

Find rational solutions of XZ t Ya = a
'

( e )

Gf course X
'

eye = a-
defines a aide of radius a

and the equation has an obvious solution

My = C o

,
- a)
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De

•

Me

•

My

drone take a line through My which is not

honjontoe :

D
e

: X -
- tf ta )

Then De n e contains 2 points
Set

us find the coordinates of the intersection

E- C Yt a)
2

+ 42 = at

gives
' t

-

CY tak tf - a ) C Yt a) = o

and ④ta ) C ⇐ tr ) YtCte - 1) a ) = o

thus Y = - a or Y
=

E- - I
- a

C-
 2

t 1

We
get

the 2 points of intersection

, ← ez . a
M

•
= C o

,

- a ) and Me  =DC
, e⇒

So we get a Agi deon

Q u Easy → Ecac ) = { Ge
, y ) EQ4x2ty-=a)

C- 1- Me

YI - Cx
, y )

DC .

Why does it answer the question of finding
all pythagorean triples that is all

integral
solicitous of Xz ex

-
= za

Cake a = 1 and write t  

= ÷ E Q

,
a

,

ve 2

Then Me  = (ZETA ,
is on e : x

2

e- Y 2=1

In other words

@a v )
-

t C us - v )
2

= Current )
-

is a solution of XZ t ya = za



⑨

and
leg taking small numbers for a and re

we

get
all the

pythagorean triples found on

the babylonian tablet
.

U V 2 are U2 - U2 U2 + U
-

12 5 120 119 169

64 27 3456 3367 4825

75 32 4800 4601 6649

125 54 13500 12709 18541

9 4 72 65 97

20 9 360 319 481

54 25 2700 2291 354A .

32 15 960 799 1249

25 12 600 765 481

More precisely let us say
that

Definition
See - A be a commutative

owing we
say

that

Can
, >

am ) E An is primitive if there

esaslts Can
,

-

,
Um ) C- An such that

U
,

a
,

t - - - turn am = A

Remark

Sf A is principal this is equivalent to

god Can
, >

am ) = I
.

Paorosition

Up to sign
and exchanging Xondy

,
the frimitive

solutions of
XZ + Y

2
=z2

in 27 are of the form Czar
,

a- - we
,

citri )

for @a)E Z
'

and
god Cares =L

.
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Note that we obtain the non primitive solutions

by multiplying ,
x

, y ,
z by a same integer

d
.

Proof
Let ⇐y ,

z ) be a primitive pythagorean tuple

We
may assume a 30

, y ? o and 330 .

The reduction modulo 4 of triple Cx
, y ,

Z )

is a furniture solution ( I
, g- , E) of

XZ + 42 = za

in @k.z] .

But in 2%2
,

a square
is O or I

and since the solution is primitive at leastone
of I

, g-,

I is * O
.

We
get

that

z is odd

and one of K

, g
is even and the other odd

Boy exchanging
x and

y
me

may
assume that

x is even and
y

add

Write x = 2 x
'

we

get

③-

y ) ( z t
y

) = 4 x

"

But
3 -

y
and

Z t
y

are even

So
32L × 32¥ =

x'
2

But if d I 322 and d YIK then d Iz and d ly
and ofIx ' 2

⇒ d Ix '

⇒ dlx

which contradicts the hypothesis

god C x
, y , g) =L

So god ( ZI , 3¥ ) = o
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Notation

P set of prime numbers

for me IN
,

n > I movie

n = IT prep
cm )

its prime

decomposition
we

may
extend

it to a by
Up ( as ) = Vp Cd ) - Up ( b ) if a

,

b e e - do >

{
op Cos =  to

End of
the proof

For

anymining

.sc#zj,opHI))--
o

and

Up ( 3¥)tVp( 3-4-2 )
is even

A

Thus Vp ( 3¥ ) and Up ) are even

But 3-21 > o and 3-1-30

So 3-21 and 3¥ are both
squares

!

Write
3-22 =

us and 322=0
get

( x
, g. 3) = Guv

,
uz - ve

,
crews )

Moreover

god cu
,

o ) =L
.

Note that a- - v
-

is add
,

so re and v are

not both odd
.

A
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Let us now consider the general case of a

5 Conics

g
E 21 CX

,
Y

,
Z ] homogeneous

polynomial of degree 2 which defines

a non -

degenerate quadratic form on
0-3

q
C x

,
4

,
E) = a X 't b Y et c 2-2 t d XY t e YZ  t fxz

Remark I

Sf Cx
, g ,

z ) c- 23 is a solution of
( a )

g C X
,

4
,

Z I = o

with z  to
,

then
fee , ¥ ) c- Q2 is a

solution of
(2) a X

2

t b Y
-

+ d XY + f X e d Y t c = o E

So it is

abecedarian

to find the integral
solutions of a ) or the rational solutions

of Css !

( Up to a finite number of solutions )

Assume that we know a solution

M Coco
,

yo
) E Q

'

of G)
De

-
No

Again ,
we

consider
De a line through Mo

De : Y -

go
=

t CX -

xo )

E n De is given by

g ( X
,

t CX - xo ) +

go ,
1 ) E Q Ct

,
X ]

folynom



④

of

degree

2 in the X variable with no as root

and therefore divisible
by X -

x
.

.

The quotient may
be written as

PC t ) X t Q Ct )

with P
,

Q polynoms of degree E 2
.

which
gives
X = - Qpfe Y = t f - 9¥ - no ) t yo

we get again a bijection from
ECQ ) = { C x

, y
) E 0-4 Q Cx

, y ,
11=03

to

IQ - L t E Q I Pct ) = 03 U { as
.

So for a homogeneous equation of degree 2

as soon as one knows a solution
,

one can

easily parametrize
the set of solutions

What can we do in degree 3

5)

DEE
E : Y

2

= X
3

t a X t b

Let as take two points P -

- Go
, yo )

,
Q -

- K
, g.) E E CQ )

and let D be the line through P and Q

D : d X t
p 4 t 8 = 0

with a

,
p

,

6 E Q
,Cx, p ) t Co

,

o )

get
Y =

€8
C or X =

-04--5
)

p a



④

Then E Can ) n D is gain by

fee) ? x
3

+ a X t b

B
which is a polynomial equation of degree

3

with 2 known solutions Xo and x
,

So this
pelynom is divisible by CX - xo ) C X -

xn ) EQCXI

The quotient is
a pdynom of degree I in QC x ]

This
gives

the coordinates of the 3rd intersection

point R

Get R E E ca )

NB
.

Sf P = Q
,

cake for D the tangent at P to E

Cgiven byz
you -

go , = ofx ? + a) CX - x
o )

yget a pelynom divisible
by Cx - x. 5

So we

get a law on Cca )

@,
Q ) t P * Q

Question

Using
this construction

,

can we obtain all the

point on e CQ ) starting from a finite set

of points of
E ca ) ?

Answer (Conjecture of Mo Rose a proven leg W E K )

YES ! We can
.

The proof of
this result is not obvious and is

one the aim of this course
.
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Conjecture CAfter LAN o )

Up to a finite set of points all rational

solutions of polynomial equations might be

obtained
using

methods similar to the 2 we

have
just seen

.

( Ea be made more precise
later on )

Co start with 9 am

going
to study more carefully

the lane *



⑨

I Elliptic curves

1J Projective space
Tn the course of Jean FA see

,
he will define

a particular scheme :
the

projective scheme
,

later

is shall explain the connexion with the next

definition . Right none
,

9 a am interested
'

en

the
points of

the projective space

a) Set definition homogeneous coordinates

Definition
For a C commutative ) field 1k

,
E a Ik vector space

IP C E ) = { vector subspaces

If
dim I in E 3

is the projective space associated to E

In particular Let ME IN =L n
. E 21

,
n > o )

the set of IK -

pants of the
'

projective
space

Pm is the set

Pm Clk ) = L vector subspaces of dim I inlkn
"

)

Sf Coco
,

-

,
and E lkn

"
- to then it defines

a point in the
projective space

[ xo : an : - : xD = Ik CXo
,

-

,
xn )

the line
generated by Go

,
-

,
xn )

Sf P
= Exo : a i.

- : xD we say
that

( Ko
,

- ,
In ) one homogeneous coordinates for P

§ homogeneous coordinates are not

unique
[ Ko : xn :  

- : In ] = C yo : y i.

- : yn ]

iff Ko
,

-

,
xn ) and C

go ,
-

, yn ) are

coeinear



④

So homogeneous coordinates define a bijection
Mm th

- Loy / 1k¥  → Pm CIK )

where Kent '
- Eos I HE is the set of orbits

for the action of lk* on Ik
" '

- Eo 's given by
X ( Xo

,
-

,
X

m ) = ( t Xo
,

-

,

X am )

We are going
to generalize this definition

to a particular class
of rings .

Definition
A principal ideal eerie is a commutative

ring
in which all ideals are generated by

an element

4) A
principal

ideal domain is a principal ideal
ring

which is integral
!

Examples

fields,
I

, Zlmz are all principal ideal rings
( if M is not prime Zim z

is not integral )
.

Definition
Tf A a ring ,

At is the
group of invertible

elements in A

A
't

acts on the set of primitive elements

in An
"

by multiplication of the coordinates

X C do
,

-

,
am ) = ( Kao

,
-

,

X am )

We define
Pm CA ) = { primitive elements in An " ) / At

NB
.

This is compatible with the definition given for fields .
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Remark

This definition is functional :

Sf A
,

B are principal ideal
rings

and 4 : A  → B is a morphism of rings
then if Cao

, >
am ) e An

"
is primitive

there exists Cao
,

-

,
Um ) e An

"
such that

Uo do t -
- . t Um an =L

so 4 Cao) 4 Cao) t - - - t 41dm) Kan ) = Me ) =L

Thus Cao )
, >

4 Can ) ) is primitive

and Q CAN c B
't

Thus Hinduces a map

which we also denote by 4

4 : Pnc A) → IPTB )

Prop
The natural injection

Pn Cz ) → Pnc Qc )

is a bijection .

Proof
First note that

Cao
,

-

,
an ) c- zn -11

is primitive if and only if god Cao
, y an ) = I

• Let Exo :
- : an ] Eph CQ )

write Xi  
= Pgi with Pi E qq.ee

- Eds

Let
g

=  lame Cgi ) lowest common multiple

then
.

q
let  d

.
 = god . Cg xi )



④

then

[ Xo :  
- : xn ] = [ IT Xo :  - : IT xn ]

But
I xo

, → Fan are cofrime integers
and define a point in P

"

Cz )
.

so the
map

Ph C Z ) → 1pm C a ) is surjective .

•
let Coco

,
- pin ) and Igo ,

- syn )

be net - eyles of coprime integers
such that

[ do :  
- :X

n
I = [

go
:

-  '

. Yn ] in Cpn Can)

then there escort X -

- be
EOE

,
with a

,

b ez

and god Ca
,

b) = I such that

(
go c- , yn )

= X C ko
,

-

,
kn )

Thus b C go ,
-

, yn ) = a ( Xo
, > In )

Since god Ca
,

b) = I

we
get

that

at y , for i e do
,

- on
>

But god C
go ,

-

, g n
) = I

and therefore a c- { - a
,

17

similarly me get
b c- S - 1

,
13

and h E 2A

thus Exo :
-

'

. xn 3 =L g.
.

.

- :
yn ] in Pn

.
D

Definition

Bf ME IN - Lois
,

the reduction map

realm : Inca → P
"

Cwm z )

is defined as the
only map making the

pm Ca ) -9M pm C Xena )diagram
←

Inca )
→

commutative
.



①

b)Affine areas

Definition
For

any
commutative

ring
A

,

the

set of A - points of the Affine space
Minis

Itn CA ) = An

Remarks
Cis gives a functor from the

category
of

commutative rings to the
category of sets

Cei) Sf A is a commutative suing
and B

a commutative A - algebra Cowhide is a ring
)

thorn.

C A Exe
,

- Hi)
,

B IItmorphisms of
A

.

algebra mapping
I to L

B
"

C FA SEC 's course )

Construction

Sf A is a principal ideal
ring

and i edge ,
- is

we
may define a natural map

j i
An → PTA )Eko

,
Ke

,  
.

,
Xi . a ,

Kien
,

- Pln ) 1-3 [ Ko
'

.

X
,

-

.  
- : ki

- a

'

.
I '

. Xian :  
-

'

- Xm ]

which is infective .

It 's
image is

{ C Ko :  
- : am ) E Rn CA ) I sci c- At 7

Therefore we get

Proposition

Sf IK is a field
then the projective space

can be covered leg affine spaces

Prak ) = Iyo j
,

Gkn )
.



⑧

TO False for 21
,

true for local

rings
.

Remark

There is also a map

( IP
" - a Clk ) → 1pm C Ik )

[ x1 :  
- : an ) to [ o : ke

'

.
 

- : an ]

We
hypave for a field It

f
des joint union

"

C Ik ) = jo C An Clk ) ) I c ( Cpn
- '

CCK ) )

see we write

Pm = IF
'

I Dn
- '

= 1177 I IA
" '

I .  - -
. I { d- Y

Geometrically we
may

describe it as .

Ipnclk ) = Hanak ) I L directions of lines in HFYIKD

for each direction
of

lines in the offend

space we add one point at a

Terminology
The

points in the image of
Cpn

-  '

Clk ) in PICK )

are called the point at o

'
Z

.

c) Action
of

P Glen Clk )

Definition
For a commutative

ring
A

,

Glen CA ) = Mn CA )
*

= { ME Mn CA ) I del - ( M ) E A
* )

In = ( ) C- o Ln CA I A
*

In C Gln CA )

PG Ln CA ) = 64 CA ) / A
#

In
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The natural action
of Glen Clk ) on Ik

" '

preserves
the dimension of subspaces

Sf IK is a field GL
n

CIK ) acts on
1PM IK )

via

g .

D=
g CD )

The action of 1k¥ In is trivial
,

therefore

this induces an action of Pan C IK ) on Anak )

Example

If n = 2 ( Eba ) E Gl
.

C ite )

( Ibae ) Cx :

y
] -

- [ axe by
: c xtdy ]

( homographic on
P '

Ce ) )
.

Definition
. Gf E is a Ik - vector space ,

a projectile subspace

of IPL E ) is a subset of
the

form P CF ) for
some IK vector subspace F of E

. Bf dim CE ) = nth
,

a jeogeokse frame of

PCE
)

is a

Cnt2)
- tuple of points Po - Pne

,
in BLE ) such

that for any
i c- do

,
-

,
not >

,
Po

,  
- Pi . , ,

Pia
,

-

, Pma

is not contained in a strict projective subspace of
CPL E )

Proposition

Gf (Po
,

-

,
Pne ,

) is a projective frame of PCE )
,

then there exists an isomorphism of vector

spaces
y .

.

Went
'

→ E

such that if Ceo,  
- Te'm ) is the usual basis of Ik

" '

Pi  
= 4 ( Kei ) for i c- So

,  
- my and Pne

,

=D ( Ck (Eoe :))



④

Moreover this 9 is
unique up

to composition by
an homothecy X Id

*
na

.

Proof
Existence f line in E

Choose f-
,

e Pi for i e do
,

-

,
n

,ntBThen ( ft ,
- if ) is not contained En

any
hyperplane see it is a basis

of E

fit
.

= ¥
.

aiff

Sf ai
-

-
o then { Ii

,
- If!

,
bi

. . . ,
- In

,

line
. )

is in contained in the hygefkne Xi  =o

So ai
 to for ie { o

,
-

in
>

and Ca
, FT ,

→ am AT ) is a basis of E

choose I : Hint
'

→ E as the unique linear map

which
maps Ei on aiff .

Unity

Sf 4
,

and k satisfy the conditions

we get
that

42 Ceil= ai 967 ) for iedo
,

- ins

ma '

a .ci
.  

-

- ages
.  

which implies that

ai -
- o for i e do

,
- rig

So 42 = ah .
B



④

2) Algebraic spaces

a) Affine setting

Remark

The idea is to have an

"

elementary
"

definition

of geometric objects defined by polynomial

equations .

There is a little problem to do that

Consider the equation
X

2
+72+1 = 0

This
equation

has no solutions over R

and therefore none over Q
.

Nevertheless 9

wish to consider the
geometric object defined

leg this equation and to
"

think "

of it as

a curve .

Che idea is to use the notion of functor
and consider the solutions with coordinates not

only over ①- but in an arbitrary commutative ring .

Definition
Let A be a commutative

ring and let

Pr
,

-

,
Pm E A EX

a , →
XD

be me polynomials
with coefficients in A

Let I
 = C Pr

,
-

,
Pm ) be the

generated
ideal

Co this family of polynomials we
may

associate

The
functor VI from the

category of
A -

algebras to the
category of Sets given

BY
VI (B) = { ( x

, ,  
- pl µ

) E Bn It PEI
,

Plan
,

- pinko )

We
say

that - V± CB) is the algebraic subset of
BW

defined GI
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Convention Unless otherwise stated

Any algebra
is a

ring ( most of the time commutative

any morphism of algebras map
I to 1

Remark

c i ) Ra define a functor ,
G should also describe

hour it applies to morphisms ;
in the sequel

G shall not do it when it is quite obvious

If 4 : B → c is a morphism between

commutative A - algebras ,
then

VIC 9 )
: VI I B ) → VI Cc )

Ga , → an ) I - Hexi, - flans )
←

Cii )Let me explain the connection

the the theory of
schemes which is

the object of Jean FAS Ec 's lectures :

Construction of
as t category of geometric objects :

the
category ofschemes with

b) t contravariant fully faithful functor
from the

category of
commutative

rings
to the

category of schemes : the spectrum
Gn other words Sf A and B are commutative

rings ,
there is a canonical bijection

Morain
go

( B
,
A) Nor sac Spec CA )

,
Suck))

Terminology

.

Let A be a commutative
ring

A scheme over A ( or A -

scheme) is a scheme X

equipped
with a

"

Etcetera
"

morphism
it : X → Spec A



④

Example

Sf B is a
commutative A - algebra

The natural morphism A  → B induces a

at -5 a1

morphisms Spec (B) → SpedAy and Spec CB )

may
he seen as a scheme over A

Terminology
C continued )

. Lf X and Y are schemes over A
a morphism

of A
-

schemes is amorphism of schemes f : X - H

such that X £ y

↳ £ commutes

Spec CA )

. Tf X is an A - scheme and B a commutative

A - algebra then the B -

points of X

is the set

X CB ) = Mor ( spec CB)
,

X )

This defines a fun#An'Category of commutative A -

algebras
→ Sets

Example

Gf I is an ideal in A Exe
, ,

Xn ]

let Ve = Spec CAC X.
, =

XNT I I )

Chen one con check that
, for any

commutative

A - algebra B
,

there are canonical legations
{ Cx

. ,
-

, kn ) EB I F P EI
,

Pca
. , y Xn ) = 07

te

Mor ( A EX
. ,

-

,
XNT II

,
B )

.

A oeg I

Mor ( Spec CB )
,

VI )
Spec CA )

It

Ve CB )
.
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So what 9 have defined is a forbidden case

of the functor of points associated to a
scheme *

Prop .

Let me give a face properties of these
functors

a) Gf I CT ideals of A [ Kr
, → Xn )

then for any
commutative A algebra

B

Vt CB ) C Vt CA )

b) Sf I
,

T are ideals
of A Cx

, ,
-,Xn7

VIC B) A VIC B) = VI + JCB )

t ideal generated leg
IT

c) With the same notations Lf B is integral
VI CB ) U Vol B) = Vent C B )

§ [ When B is not integral VEB) UVJCB ) is not

necessarily VI ng
CB) ! and VI U Vs is not an algebraic space ]

b) Projective setting

Similarly we can define algebraic subsets

in the projective setting .

Definition
Let A be a

commutative
seeing

Let Pa
,

-

,
Pm be homogeneous polynomials

in A Cx
o

,
- , XNI .

Let J -

- CR
,

-

,
Pm ) c A C Xo

,
-

,
XD

generated ideal

Thom is the set of homogeneous polynomials
in J

Then we

may
consider

The functor from the
category of

commutative A algebras which are frein as zone

ideal
rings to the

category of setsgiven by
Z ( B) = { Exo :  

- :X Dc PNCB) If PET P Coco
, → hi = o )

J horn I

y
does not depend on the choice

of homogeneous coordinates
.



④

We
say

that B ) is the algebraic subset of
1PM CB ) defined

by Pe
,

-

,
Pm( or JJ

.

Remark

Since the P here are home
gorgeous

which means

that there are integers d such that

P CTXO
,

-

,
TX

N ) = Td PC Xo
,

-

,
Xn )

Sf Coco :  - : an ] = Ego :  - :

yn
]

there exists ke B
't

such that

(go , → Yn ) = X Geo
,

-

,
Xm )

and

P (go
, = yn

) -
-

Xd
Pi Geo

,
-

,
Xn )

Therefore
P ( yo ,

-

, Yn ) = o ⇐ P Go
,

-

,
kn )

c) Hit BERT itullstellentatz
Let me first give a quick reminder about

algebraic closed fields
.

.

Definition
t field

Kis
said to be algebraically closed

if it satisfies one of the following equivalent

conditions :

(e) The

irreducible

polynomials in K CT I

are the polynomials of degree I

Cii) Any polynomial P e K CTI of

degree
d > o

may
be written as

P = a III. CX - di ) with 4
, , 4 e K and ae tf

Ciii ) Any polynomial Pe KET ) of

degree d 31 has a root in K



④

Gone important fact is that
any field

has on algebraic closure

Definition
An algebraic

closure of a field K

is an extension I of K such that

Ci ) IT is algebraic over Ik

( ii ) I is algebraically closed
.

Theorem C Reminder )

Sf K is a field
as There exists an algebraic closure IT

of
K

b) Tf Iz and Iz are algebraic closures of K

Chen In and KT are isomorphic as K -

algebra
as Gf II is an algebraic closure of

K

and L on algebraic extension of
,

There exist

a morphism of K - algebras
4 .

.
L → I

Example

Sf we define OT
as the algebraic closure of

IQ in a
,

that is

QT = f a c- QI7- PE QCXT - Loy
,

Pca ) = 07

other OT is an algebraic closure of Q
.

Theorem C HILBERT 's ctiellstellensolz )
Let IT be an algebraically dosed field
Let I be an ideal of IT Cx

. , =
Xm ]

VICE ) = E can
,

- pin ) C- In It PEI
,

Plan
, ,

Info )

Lee - P E Ktxa
, - ,

Xn7 such that

tf Cole
,

- pin ) E VICI )
,

P Cole
,

-

, am to

Then there exists ME IN such that P
m

C- I



④

Corollary
Let Pr

,
-

,
Pm be homogeneous polynomials

in IT C Xo
,

-

, XNT such that the corresponding

algebraic subset

Zf
E) CRN IT) is empty

Then there exists me IN such that

Xin E J -

- C Pa
, ,

Pm ) for all i c- do
,

-

,
NY

proof
iterated leg

Pa
,

-

,
pm

We consider VJ CE ) CIN
- ' A

The hypothesis is equivalent
to V CF ) a E o )

Finest
of IT

" '

defined by T

we

coyly
HILBERT 's Null stellar af

to the X
. e- .

D

Remark

The converse . is also true C but obvious ) : if
Xin E T for all ie do

, ,
NY then

-

for any
non .

zero K -

agdgelera
which is a principal ideal ring

2- f.A ) c ifof Exo : - : XD e- PNC A ) Ix
.

= o )

= ¢ since homogeneous
coordinates are primitive so they car 't all be 0

.

Corollary 2

Set K be a field,
Pn

,
-

,
Pm E Kcxo

,
-

,
XD be homogeneous

polynomials ,
I be an algebraic closure

of K and

A be a K algebra which is a principal ideal ring
Then Z C A) to ⇒ Z CE ) to

J J



④

Remark

We are going
to use that

(a)
To test if an algebraic

set is empty
it is enough to check it over on algebraic
closure

(b) Zoe test a polynomial relation on an algebraic
set it is enough to check it over on algebraic closure

.

9 am

going
lie

prove
Hubert 's Nulls tellers - of

but it requires several step .

Proposition
set A be on integral ring
Let K = Fr CA ) be its fraction field
Let L be a field extension of K and assume

that L is generated by a finite number

of elements as an A -

algebra .

Then

at L is a finite extension of K

b) There exists a e A - Lots such that K = Aca
-

D

Proof
Let S be a finite subset of L which

generates
L as an A - algebra .

We shall proceed leg
induction on # S

.



④

Initials .
alton

Assume that all elements in S are

algebraic over K C true if S = ¢ )

Then L I K is
generated by a finite

member of algebraic element and therefore
[ L

'

. KT is finite
Let C e i ) i ⇐ I

be a basis of L over K
.

the coordinates of the elements
of

S
,

of 1

and of the pockets eiej
in tha lease's

give a finite set of elements in

K = f I , Ca
,
b) E A x A - Coy )

by taking the product of the denominators

of
the element af this set

,
we get

that

they belong to Aca
-

T for some a E A - fo }

The set

{ FEEi Ei
, Cail .

⇐

ECAca
-TF )

is then a subalgebra of
L over A which

contains S
. So it is equal

to L
.

Thus it contains K e
,

Since Cei )
ie ±

is a basis of
L I K we get that

K = A Ca
-

I .

Gndudion

Let us more assume that s c- S is transcendental

overt this means that

A CX I → A

Cs
7 CL

P 1- s Pcs )

is an isomorphism ,
and Acs ] is an integral being



⑤

Let E  =ErC A CST ) .
to an A CST

algebra ,

L is generated by
S - { s 3 so we

may apply
the induction hypothesis : there exist be A Cst - tix

such that E  
= Acs ] C b

-  '

3

But then 3- PEA Cx ] such
.

that b = PCs ]

so E = A CAT [ PCs 5
'

]

Since A Cx ] → ACT is on isomorphism
Q 1-5 Q Cs )

K Cx ) = Er CAC
. xD → E = For CAG

on isomorphism
R Cx )

¥
→

RCI
Q Cs )

We
get

KCX ) = Acts C p Cx )
- I

] c KCXJCPCX57

But the set of irreduciblepolynomials in K Cx s

is infinite C because K is infinite or K is finite
and there are irreducible polynomials of my

degree )

Let Q E KCXJ be on irreducible polynomial
which does not divide P CX )

We get
a

¥
=

Roxy
Pcxjm

for some m c- IN and RCX ) E K Cx I

So QQ ) I P CX )
m

which is absurd
.

D



⑤

Corollary
Let K be a field ,

A a finitely generated
K -

algebra
and M a maximal

.
ideal evi A  

.
Then

a) [ Atm : k ] is finite
b) Let A be an algebraically

closed extension of k

There exists a morphism of k - algebras
9 .

.
A  → s

such that hence ) = m

Proof

By theorem I applied to A -

-
K and L = Atm

[ Atm : K ] is finite ( and therefore algebraic
)

Since r is algebraically
closed there exists

a morphism of k - algebras
T : A the → s

and if we denote by IT : A  → Afm the projection
4 = To I satisfies

b )
.

Corollary 2

Let I be an ideal of K An
,

- An ]

and I on

algebraic
closure of K

Then

V± CE) = ¢ ⇒ I c- I
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Proof
Sf I t Kay

,
-

,
X

n
] then

there exists a maximal ideal M of K Cx
. ,

- An )

containing
I

. By Corollary A there

exists 9 : Kca
,

-

,
Xm ] → I

such that Her CE ) = me

Let Xi = 4 CX e.)

For
any

P EI
,

Plan ,
-

,
sin ) = 4 C P ) =

O since I can = her (9)

So Csu
,

-

, xn ) c- VICE ) and VICE) to .
B

Corollary 3

Let K be a field ,
I on ideal in KCX

, , Xm )

and #bean algebraic closure of K

Gf there exists a non -

zero
K -

algebra
A

such that

v
,

CA ) t 0
Then Ve CE ) # 0

Proof
Sf I E I

,
Ve CA ) =¢ for .

any
non -

zero algebra A
.

D

So
, again ,

to test if an algebraic set is empty
it is

enough to ten
- it -

fort .

Proof of HUBERT 's ehudlstelbnsaty

The result is but if D= o

Otherwise let I be the ideal in K Ca
,

-

,
Xm TI

generated leg
I and 1 - TP

,

"



③

Let Cx
. ,

- pen
,

t ) c- VICE )

then @- PT ) Can
,

-

, an ,
t ) = O

so P Cx
, ,

- pin ) t  =L

So P Cole
,

-

, In ) to

Sina P is o on

VICE
)

nee get Cx
,

,
- pin ) of VICE )

There exists Q C- I such that Qfole
,

- An ) to

This contradicts Csu
,

- pin
,

A) c- VICE )

So VICE ) = ¢

so t e I

So there exist go , yg
,

E K CX . ,
- An ,T ]

and he
,

The EI seed that

1 =

go C 1 - PT ) t
g

,

he t - - -

g ,

he

K Car
,

- in ] CTI Ky - Pt )

is isomorphic to Kan
,

→ XD [ Ip ]
we get

1- = g-a hit - - .  . tgi he

write gj =

apim
with ai c- Kan

,

- in ]

C We
may

bake the some m )

We
get

Pm = he in K Gn
,

- in ?

C- I

B

d) From projective equations to
affine equations and back

Reminder
w

jo A  →

LpnCan
,

- in ) to a :X
.

:  
- : an ]
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Let A be a commutative
ring

Po
, >

Pm E A C Xo
,

-

,
Xw ] be hoimageneoeespolynomials

J = C Po
, →

Pm )
-

B be on A -

algebra which is a
principal ideal

ring2J
CB ) c PNC B) 3 IANCB )

then

↳ C B) A IAN LB ) ItoC B )

where Jo = f PCI
,

Xn
, →

xn )
,

PET I

Conversely
Set  I be on ideal in A EX

,
-

,
Xw ]

We want to defense J a
I

Exo
,  

- in ]

so that for any
B as above

Ci ) VI C B ) = Zsc B) A IAMB )

( ii ) z minimal for that property

so
J has to be masainae

Idea C suggested leg Hilbert 's ctullstellensaty )

IT =L PE Acxo
,

-

, Xp
I 3- me IN

,

Pm C IX. , > Xp ) EI )

Gt is an ideal of A Cfo
,

- ANT

Indeed if P
,

Q EE

Chen there exist m
,

n c- IN such that

Pmc a
,

X.
, ,

Xn )
,

QT a
,

Xi
,

- Hn ) EI

Boy NEWTON 's binomial formula
@tQTntnCr.X .

, →
Xn ) E I

See P t a c- I

And
you

can check that it is stable

leg multiplication by an element of Ako
, >

XD



Fact

ZE C B ) A
.

At NCB) = Ve CB )

Proof
Let C an ,

-

, xn ) E B
"

if Cole
,  

-

,
kn ) E VI CB )

and P E I
, fide me IN such that PMG

,
DEI

then

P C

1,4
-

pen
) = O

so Cl : ai. - ixp c- ZE (B)

Conversely if at x. :  
- : an ] e Z ECB?

and P C Xn
,

-

,
Xn ) c- I

Let d = deg CP ) total degree
and D= Xo

"
PC

,
.

. .

, XI ) e- A Exo
,

-

,
XNT

Then FG
,

Xn
,

-

,
Xn ) = Pcxn

, →
Xn ) c- I

So TEE

Thus Fct
, ay ,

Xm 3=0

and PC oh
,

-
,

In )=c

so Car
, →

x
n

) E VI CB ) T

Terminology
2

In
CB ) - VICB ) are called the

pants
at a of VI .

N
.

B
.

For efficiency sake
, if I  = Cpr

,
-

,
Pm )

we shall use

I = CE
,

-

,
Fm )

although the set we get
is not

necessarily
minimal

.
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Example
Affine equation

42 = X
3

+ a X t b

projective equation .

Y
'

T = X
3

tax
.

Rtbf

joints at - correspond to to

get
X

3
= 0 so X = o

see
there is a unique joint at a

'
Z

[ o : o
-

- 13

T K
x

( which is a triple point as we shall explain )

. . a.

?f
"÷

Principle
t morphism between algebraic spaces is a

natural transformation which is
every

were

defined leg
rational functions ( quotients

of polynomials
)

Let me give an explicit and precise definition
of what 9 mean . by that



④

Definition ( not simple )

Let K be a field ,

IT an algebraic closure of K

Ps
,

-

,
Pm E K

Exo
, →

XD

and Q
. ,

.

,
Q

n
f K CX

o ,
-

, XN} be homogeneous

polynomials
. Let I = C B

,
-

,
Pm )

,
T = ( Q ,-

,
Q n )

A mofhism 4 :

Zn
.

I

→

Znt
is a

1pm PN

natural transformation C ie
for any

K -

algebra B which is a principal ideal
ring

CK - PIR )
¢

,

: Zec B) → Zt CB )

such that for any morphism of K - Pl Rs B → a

2-
±

(B) → Zt ( B )

t
do t

ZIG ) → Z to )

commutes ) defined as follows .

.

There exists

- integers da
,

-

,
da

- homogeneous polynomials of degree di

Ri
,

o ,
-

,
Ri

,
n

E K CX
o

, →
Xml

so that for all [ no

:
- : dm ] E ZI CE )

if wee write Ye.
 = ( Ri

,
o

Ho
, ,

am )
,

-

, Ri
,

n

Cao
, , Dm ))

( i ) The ye . are collinear in Int '

Cii) Not all
g .

. are 0

( ii ) of #
( Coco :  -

ion 3) = HT
ye .

§ Tn general ,
needs several families

( R
i

,
o ,

-

, Ri
,

N
)

.



⑦

Remark

Using HILBERT 's Walls tellers
-city,

the conditions

( is
,

Cii )
may

be expressed using polynomials :

( i ) 7 m E IN such that

( Risk Rj
,

e
- Rise Rj

,

edm EI

Cii ) F m E IN such that

Xin E ( Pn
,

-

,
Pm

,

Ri
,

a ,

1 Ei Er
,

o s k SN )

Definition
An isomorphism is a morphism 9 : ZI → Zt

such that there is a morphism U : Z
t

 → Et

with 4 of = Id
z

,

and 404 = Id
z

,

.

bangle
Assume char Clk ) t 2

Consider the projective curve associated to the

circle

XZ +42=1

which corresponds to the homogeneous equation
$1 X +42 =TZ

We have a morphism
4 : p

'

→ $1

[ u :D 1- [ U 't V
'

: 2 U V : U2 - V ]

St is well defined if the characteristic is 1=2 :

if I U2 to
-

,
Zeev

,

u
?

- u
'

I =  o

then u = o or 0=0 and thus I = ve o

Let us prove that it is an isomorphism
U : $

'
 

→ pi

[ T :X :X] 1-7 C Yet :X ] not defined for fl : oi - if



④

[ T : x : Y ?1- Cx: Y -T not defined for G :O :B

Both expressions coincide on the circle :

( Y TT ) ( Y - T ) = y
2

- T2 = X
2

Thus if char 1kt 2

IF
I

$1

But 9 needed 2 polynomial expressions to

define the inverse map .

NB
.

Lf char Clk ) = 2
,

one has

X
2

t y
2

- T2 = ④+ YTTT

Exercise

Gf
char Uk ) # 2

, g
E IK CT

,
X

,
43 a nondegenerate

isotropic quadratic form
C :

g
CX

,
Y

,

T ) = O

then there exists an isomorphism
IP

'
Is C

.

3) Plane awes
.

a) Definition ,
smoothness

Definition
Let K be a field .

A plane curve is an algebraic subset ofPie
defined leg an homogeneous polynomial

F E K CT
,

X
,

Y ] - 203

The
degree of the curve is the

degree of P
.

We
say

that the curve is geometrically
irreducible

if F is irreducible in ICT
,

XYT
.
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We keep the notation K,
F in the rest of

this paragraph

Definition
Let C be the curve defined by F

Let L be a field extension of K

and let P -

-Ct: a :

y ] e CCL )

•
We

say
that C is smooth at P if

Ctia , y )
, 3¥Cta

, y 33¥
Ct

, x. y ) ) = o

•
In that case the tangent to C at P

is the projective line T defined by
the equation

3¥ C tix, g) Tt 8¥ C tix
, g) X they Ce

,
a

,
g) 4=0

•
We

say
that P is a

singular joint of C

if C is not smooth at P

.
We

say
that C is smooth if C C II )

contains no singular point

Remark

(e) 3¥ , 2¥ and 7¥ are homogeneous

of degree d- I see the condition

( 3¥Usa , y ) , 3¥ Ct
, Ssg )

,IET Ctia , y Ho
does not defend on the choice of

homogeneous coordinates .

Nate also that the enolate on

FC UT
,

U X
,

U i ) = ud F CT
, XY )

implies the relation C by taking the derivative



④

relative to U :

FCT
,

X
,

4) = d ft 3¥ IT
, Xist XII Ctx ;D -148¥ Ctx,

Thus if P = C C-
: x :

y 3

Ct
, x. 93,2¥ Ct,

a
, g )

, IET Chin
, y

) ) -
- o ⇒ P c- CCL )

.

Example C hyper elliptic curve )

Let us consider the projective
curve defined by the affine equation

42
=

PC x )

where P = ad
Xd t - . - t do

with
ad to

,

d 32

Then the projective equation is

y
2

T
d - 2

=

ad
Xd + ad .  ,

Xd
. '

T c- .
.  . + dot

't

Eakerig to we get that C o : o : I )

is the
unique point at • tag

) 00 (
Singular pants

( @- 2) y
-

t
' ' -

3-
 ad

. ,

xd
'

I
. . .  - dao t

't

; add xd 't .
. .  + qtd; 2g

td -4=0

so we get y
= o or e-  

=o

Sf g
= o then t  

¥ o and we may
assume t  

= A

we get P Cx ) =P
'

Cx ) = o

so x is a multiple root of
P

Sf t  

= o then x -

- o and
g

=L

and the condition
gives d

> 4 on D= 2

Be the curve is smooth if and only if

d =3 and P has no multiple root
.
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b) Intersection with a projective line

We keep the notation of the previous force graph
Lemma

Let L be a field extension of K

and let D c PI be a projective
eerie

given leg the equation

att b X e c Y = o

with Ca,

b
,

c ) E he then

D c C

if
and

only if

at t b Xt CY I F

Proof

By
dike dfullstellensalz if DCE ) acct )

then there exist me IN such that

Fm E Ca Ttb Xtc Y )

But sena I
-

CT
,

X
,

Y ] is a unique
factorization domain

,
this eniylies that

a T t b X t c Y I F

Remark

Sf like curve is
of degree

d > z and

geometrically irreducible then this

is not possible : the curve con not

contain a line



④

Lemma

Let PE II CON ] - Lois be an homogeneous

polynomial of degree
d then there exists

or elements cue . :O ;] E IF CHI )
,

pairwise
distends and me

,
-

, me E IN - Lob such

that

P -

- II C ve .

U
- uivjmi

Moreover Mr t - - t Mr =D
.

Proof
PC 41 ) c- I [ u ] splits

we
may

norite

ite
me

.

PCU,
D= ue.IECU -

di ) with a # o

Then
k

P = ufe.LI( u -

niv
)) ud

- m - .  - - -

ma

By taking a d - th root of u we get
the wanted expression . D

Notation

Let us define the abelian
group

of divisors of IPE

Dire C Pff) = z
Cem CE ) )

= { Cnp )
pep

.

IF I # LP Imp to ) is finite }

( Mp )
pep y⇐ ,

is denoted
by pfyp.az

,
Np P

deg :
Div CP - Z

( N
p
) peipykT p€pI*)

N
P

Then we define the divisor off as

din ( F ) = Et mi Cui : Vi ] E Div CPI)



④

N .

B
.

deg ( dive CF ) ) =

deg (F)

RemarksCiboget a morphism of mon aids from
{ homogeneous polynomials ) → Dio CPE )

( ii ) dire is compatible with linear change of variables :

Gf E is a vector
space of dimension 2 I E

F : E  → I a homogeneous polynomial
of deg

d
,

we get
dire CF ) E  Div C P

'

CE ) )

Ciii ) dire CF ) =  dire Co ) ⇒ F X e IFG
= if

.

Definition
Assume that D ¢ c

Then up to an exchange of coordinates

We
may

assume D is given by
a

T t b X t
a Y = o

with a ± o T = - ka x - say
The intersection C n D is given by

Firs CX
,

Y ) .

.
 =

F ( - ka X - Ea Y
,

X
,

Y ) = o

Firs is homogeneous of degree
d = deg Cc )

.

the intersection counted with multiplicitiesWe define
Dnc = dire C E Dio C D )

We write

D A
.

C = I Mp ( Dnc ) P
.

PED CE )

m
p

CD n c ) is called the multiplicity of intersection

of D and C at P
.



④

Remarks

Ci ) take P E D C IPT II )

Then P corresponds to a line in E3

and D= PCB ) for
B a plane in I

3

We choose a basis Ceo
,

ee
,

ee ) of
IT

3

with eo c- P
,

e
.

c- B

Then in the coordinates ( T
,

X
,

Y ) given leg this basis

P = [ 1 : o : 07

and D : Y = o

Then
Mp

C D n C ) = if C FCT
,

X
,

o ) )

= masc f m I Xm I F CT
,

X
,

o ) )

( ii ) if P
e D

Mp C D n c) = o ⇐ P of c

Mp
C D A c ) = I Corresponds to a normal

crossing

-5:
( iii ) m

p
CD A c ) 32

P is a

singular point of C

or D is tangent
to C at P

e
*

Indeed take a basis Ceo
,

er
,

ez )

as above
.

Then

F- Ceo t

Kes
) = F Ceo ) t X d Fe

.

Cea ) t X
-

Q Ct )

m
p

C D n C ) 32 corresponds to F- Ceo ) = o

and d Feo
C en ) =  o

Civ ) Mp C D n c) =3Tf P is not
singular

implies that  C is
tangent

to D and mess the tangent



④

=
Terminology .

Sf Mp
CD AC ) for some line D

,
then

one says
what P is on inflection point

of the curve
.

Lemma

Let D be a line in P2 ( K )

such that there exists Pr
,

-

, Pd . ,

E Peck )

with

deg C dive - Pi ) =L

( all intersection points but I have

coordinates in K )

Then there exists Pd E P' C K )

such that

dire C F

, ,
) = is

,

Pi

Proof
D : a Ttb X t a Y = o with a

,

b
,

c ok

May assume a ± o

Then

Fick ,
Y ) -

- F C -
ka X - Ea Y

,

X
,

Y ) e KTX
,

Y ]

and if we route

Pi  
=

Ei
: sci

, y

?
with ti

, xi
, ye

. E K
for ich

, ,

d.
 D

Then Ferg is divisible by

¥ Cy
,

X - ai Y )
i = A

and the
quotient is a homogeneous polynomial



④

of degree .

I in
.

K Cx
,

Y ] we may

write as

and take
Yd

Y - Xa X

Pd = [ - Ea xd - Ia yd
i xd i

y ,
]

.

B

3) Elliptic curves

Reference
A

.

W
.

KNAPP
,

Elliptic curves
,

Math Notes 40
,

PRINCETON U N I V E RT  y PRESS

a) Definition ,

Wei entrap form

Definition .

ten elliptic curve over a field K
. is a smooth

plane curve of degree
3 equipped with

a point
O E E CK )

.

A morphism of elliptic curves 9: E  → E
'

is a

morphism of algebraic subsets this
gives

a notion of isomorphisms

Theorem ( N A 6 E LL )

Any elliptic curve is isomorphic to

an elliptic curve given by an affine equation
Y

-

+ a
,

X Y t a
,

Y = X
'

t az X
-

t a
↳

X t as

with o =

Co
: o :

13
the

unique . point at 63
.

Gf char C K ) t 3 we
may assume that a

z
= O

Gf char CK ) t 2 we

may
assume that a

,
= as

= o



④

Terminology
Such an elliptic curve is said to be

in WEC
ER STR A B form

Remark

Assume that E is in Wei ER STR AB form
letDolethe line at who

given by F- o

then F
ID

( X
,

Y ) = X3

so 0 is Ininflection point of E

( this means the isomorphism is not simply
a linear change of coordinates

.

We have to

make 0 one of the inflection point)

Proof
1st step

Let Do be the tangent to E at 0

By
the last lemma 9 proved

dire ( Fus ) = 20 t Po with Po EE CK )

2€ Do

O

Tf Po = o then 0 is already on inflection point

assume Po # O

We want to make 0 into an inflection point
We are

going
to use a special transformation

of
the projective plane .

.

The Cremona ttanformahon

CREMONA involution

The map 6 : CT: x : x ] → GI : ¥ : defines



④

aninvolute on on IP
 

4 K ) - { a :  o :  o ]
,

Coin :D
,

Co :O : 133

that is 02 = Id outside X Y T = O

N
.

B
.

Ci ) [ IT : Ip : IT ] = [ x Y
'

. YT : Tx I

s .

o it is indeed defined outside the 3 paint

Cii ) The line T
-

- o is mapped to the point fl : o : 03

- X =
-0 - [ o : a :  o ]

- Y = o - Co :  o : B

T
-

defined outside XYT -

-

o

Tf we choose 3 joints on the phone which

are not

aligned
then we con defined a

similar transform outside these points
The nice thing is that if we take a plane

curve then the restriction of the involute on

to the curve con be extended in an

isomorphism of curves

,
as we shall see

We have to choose the points carefully
Assume that there exists a point Py E E Ck ) - Do

such that the projective line De = ( o Pe ) is not

tangent to E in Pa -

Then Div ( Fip
,

) =
Ot P

,
t Pz with Pe EE Ck )

By a linear charge of coordinates we

may assume

Po = CA : o :  of
,

Pa = Co : 1 :  OT and Dz = Co : o :
I ]

Since Py
,

Be and 0 are aligned and distinct

we
may further assume that 0 = [ O : l : 17

Then Do : X = Y
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drone let us consider the coefficients of E in

that choice of coordinates

FCT
,

X
,

Y ) = a X
'

t b 43 + a T 3rd X
'

y t e X Y
'

t f XZ Tt
g

XTZ t h 42 Tt i YT I j
X YT

Since Po
,

Pa
,

Pz E ECK )
,

we

get
a = b = c

O E E Ck ) give
d te = O and

since Co
, 1133¥ Coin )

,3¥10, ;D ) -

- ffthtj
,

2 die
,

dire )
f x h t j = o

O Po
Pizi

.
.

Let us apply CREMONA involution withthat

choice of coordinates

The equation of TC E ) is given by
FEE

,
¥

, 4- ) = o

But

THY
2

F ( IT , tf , Ly ) = d. XT
'

t

ex
tf 42 Tt

g
Y

-

X

!! x h X
'

T + i MY t j XYT

FTT ,
X

,
Y )

defines an elliptic curve ET OT r Co )

= ①: O : 07



⑤

The tangent
to Erato

-

is given by
d Y + e X = o that is X = Y

.

FTD
.

= Cdte ) X T
'

t ( f thej ) X 'T t (g
ti ) X

3

= fg ti ) x
3

So O -
is on inflection point of Er

.

Remains to extend the morphism to the whole
of E

The equation of E might be written as

F ( T
,

X
,

Y ) = XY C d Xt e Y ) TT G CT
,

X
,

Y )

So on E

[ X Y : Y T : T X ] = CXY ( d Xt et ) : YT Cd Xt e Y ) : TX ( d Xt EY ) ]

= C GET
,

X
,

Y ) : Y Cd Xt ex ) : X Cd X te 4)3

well defined in Co : o : I ] and [ o : a :  o ] .

By exchanging the variables we get a polynomial

expression everywhere .

drone 9 made on hypothesis about the existence

of another point on EC K ) with some

conditions but in
general ,

such a point

may
not exist !

.

Almost general case

Cake a eine D in P
-

C K )
going through 0

Assume it is not

tangent
to E C in particular D t Do )

Then sine O E ECK ) A D

F
, D

is divisible leg a polynomial

of degree
1-

vanishing at O
.

Lee -

Q be the
quotient

,
if it is not

irreducible then we

get
two points Pa and Pz

and we

may apply the previous construction

We none assume Q is irreducible
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After a linear change of variables we
may

assume that

O = [ o : o : 13
-

P o = Co : l : o ]

and D : X = 0

we
may

write Q

as an
42 t b

,
Y T t c

,
T2

.

with a Y
2

t b
,

Y t as oireducible ( and a f- o )
Let L = K [ Y ]ICQa

,
'D ) ( quadratic extension of K )

and let d and I be the two roots ofQUID
in L

dote that it I = -

be
and a I =

Ear
.

a
, 7

Over L we

may
use the CREMONA transform

in the points
Po = Co : l '

 
- 03 P

,
= : o : a 7 and Pz -

- a : o : I ]

which gives the isomorphism freearelooking
for over L

Fact

Gn fact ,
4 is defined over K ( which means

that it is given leg. foeynomials with

coefficients in K )
.

Proof of
the fact

Set

M = ( go § ¥ ) ,

del - CM ) = or - I * o

Sina Q is irreducible
.

m
.

i
.

. ofL o - A



⑤

Then 4 is given the composite map

IM o Ex :  x : z ] toff:¥¥]o M
- 1

where M denotes the action of M on the projective

space .

Let us compete that

C : t.CI: : I

-
- f +1¥

,

:L : a + a- II. I

=⇐:÷÷I : ex : I
⑥- E) Ca - I ) = @tIT - 42 I = bi-ag4a = ÷

- a IT
-

t L I 4T - Y
2

= Q

get

9 : C x : y
.

. Es to [ Iat : If :
EL ]

d r
Q

is defined over K
. D

End of the proof
Are we sure that there exist a leni D

through o not
tangent

to E ?

F
=

at
t

#
t a T

3

+
d X

'

Y +

#
t f x 'T t

g
XT

'

+ h Y
2

T t i YTZ t j X YT = o

with a

,

b
,

c
,

.

-

, j e K

We
may again assume that O = Co : o

'

- 17

and Po = [ o : 1 : 07

which implies

FCO
,

O
,

1 ) = b =  o F Co
,

1
,

o ) =  a  =  o

and 3¥( o
,

O
,

1) = e = O

, 2¥I god ) -

-
k

to
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Sf P = Cl : x :

g
I c- E Ck ) the line

( OP ) is the vertical eerie X =

atSt is tangent to E if
II C a

,
x

, g ) = o

dywhich gives the

{
emotions

d x 2x 2h
y

t i t j x =  o

C t f x
a

t
g

x
-

h
g

? o

given by F Cmx , g ) -

y YET Cn ,
a

, y ) =  o

Sf char Ck ) =z
get

2 possible values for x

( since Do ¢ E
,

d * o )

Sf char Ck ) F2 at most 4 possible values for x

Tf K I Fz and K f- Fz We
may

choose x

outside these values .

Gf K is Fe or Fz one

may
have to apply

two CREMONA involutions
.

9
spare you

the details

-

Final steps

We none assume that

O = C o : o -73 is on inflection point

with D
y

: T
 

= o

wine
again

F
= a X 't

#
t a T

3

+

#
t

#
t f x 'T t

g
XT

'

+ h Y
2

T t i Y T2 t j X YT = o

with a

,

b
,

c
,

.

-

, j e K

F C O
, 0,1 ) = b =  o

F
, D ,

= a X
3

t d X
-

Y t e XYZ ⇒ d = e = o

and a to .

We
may

dive de F
by - a



④

and
, by taking one more change of coordinates

assume that

3¥ C o
,

on ) =
h = I

We
get

the equation
Y

-

T +

j X Y T t i YTZ =X3 - f X 'T - h
.

XT
-

- cis

as wanted

Gf char K t 2

taking
Y

'

= Y +

In
X t T

enables to reduce to
an

= a
3

= 0

a
,

yGf char K ¥3takingX
'

= X t-3
Enables to reduce to

az = o D

Proposition
Let E be an elliptic curve in W Ece Rs TRA B form

Y
2

t
an

X Y t 934=113-192×2 t a
↳

X t a
,

Put

b- = did t 4 da

by = Zac
,

t ar 03

b
g

= 95 t 4 a
,

b
p

= af a
,

t Gaza ,

-

de as dy t d 2932- acid

then E is smooth if and only if
D= - BE b

,
- 8 be? - 27 bit 9 bzba.bg to

Remark

Gf char Ck ) ¢ Ez
,

33 then the equation

might be reduced to

42 = X
3

t a X C- b

and the condition reduces to

27 b 't 4 as to



④

Proof
when char I K ) Cf f 2,39

We have seen that E is smooth

if and only if the roots of
X

3
t a X t b

in II are #
.  

Let us compile

an .
-

as cars .
! !!!!÷ II! :/

= 4 as -127 b-
.

D

b) Group structure

In this paragraph
,

E is an elliptic
curve in Wee ER STRAP form

Y
-

T t an
X Y Tt as Y T

-
= X

3
t azX2TtaqXTZqI3

It

YT ( Y ta
,

X t 93T )

with an = az
=o if char CK ) t z

and A
z

= O if char Ck ) * 3

=Lis the corresponding homogeneous polynomial .

Definition
We

say
3 points P

,
Q

,
R E E CK ) are

aligned if there exists a projective line D

seed that

dire Cfb) =
Pt Q t R



④

Ain

Define a

group
law on FCK ) characterized

leg the 2 conditions

C i ) O is the neutral element

( ii ) P t Q  t R -0 ⇐ P
,

Q
,

R are aligned

Remark

cis with these conditions

P t Q = O ⇒ Pt Q to = o

⇐ B Q
,

O are aligned

But since O = [ o : o :c ]

if P = Cl :xp sgp ] and Q = Ch '

- ka
: Ya ]

P a - Q ⇒ xp = QQ .

Note that
snap - : E  → E

[ T :X : Y ] ← [ T :X
'

.

- Y ta
, Xtdst ]

Defines an involution of E with - 0=0

and P
,

- P
,

O aligned for any
P c- ECK )

.

( Remember that a
,

= as
= o if

chalk
) # 2 )

( ii ) P t Q  t R = o ⇒ R =
- C Pt Q )

.Drawings
Pt Q

O

+tea
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Notation

Gn this paragraph ,
if P

,

Q EE CK )
,

r.vedenote leg
A Q the unique point of ECK )

such that P
,

Q and P # Q are aligned

Theorem C Poi Nc ARE )

+  
: E ( K ) x E C K ) → ECK )

( D
,

Q ) to CCP* Q ) * o )

defines a commutative
group

structure

on E CF ) .

Beginning of the poof

• P + O = * O ) # o ) =P since P
,

O and O x-P
are aligned

• P t ED = O since O
,

P and - P
are aligned

• P t Q = * Q ) # o ) =¢Q*D) * 0 ) = Q t P

So the only difficulty is to
prove

that

the love is associative

Remains to prove :

( ( CP* Q) * o ) * R) to = C P * ¢Q * R ) * o ) * o

or @t a ) * R =
P * C Q t R )

,
a  + n

@t a ) * R
L's

Pt Q⇒
* .

:( Pt Q ) t R ×BQ
* r



⑧

enough
to hone

it P
,

Q
,

R
,

S c- Elk ) &* Q ) * CR * s ) = &* R ) * CQ * s )

implies
P * C Qtr ) = it Q ) * Q ) A CO * CQ * R )) = @P A Q ) * o * ( Q HQ ER ))

We have to consider the
following

mine points on the curve

P
,

Q
,

R
,

S

P * Q
,

P * R

Q * S
,

R € S

@* Q ) * CR * s ) Cp * R ) * CQ *
S )

these 8 first points are all on

- The elliptic curve E

- The union of 3 lines

L
a

= C P Q ) S P # Q

Lz = ( R S ) 3- R * s

L 3 =

⑥
* R ) CQ A s ) )

- The union
'

of 3 lines

(
'

y
= ( p R ) s P * R

U
z

= CQ S ) 7- Q AS

I 's =

XP
* Q )
@

* s))

( P * R ) * CQ AS ) E E C K ) n ( Le U Lz old

11 ?

and
.

C P # Q ) *

CRASH
ECK ) A ( L '

e

U L '

z

UL 's )

Reminder

E A 3 lines
'

contains
, if we count multiplicities

exactly 9 points
So this determines @* R ) * CQ * s ) ( resp .

@A Q ) HR # SD

as the ninth point of intersection
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Gt suffices to shone that these two

intersections are the some

Remark

L
,

U Lz U Lz C
sesh .

L
'

a
UL 's UL 's) is

on algebraic set defined leg the product Fz

( resp . Fz ) of three linear forms
So they are plane

curves
of degree

3

Gm other words
,

we have three
plane curves

of degree
3

going through 8 points .

What

can we

say
about the set of seeds

aeves

Let us consider the equations of plane curves

of degree
3

:

FCT
,

X
,

Y ) = a X 't b 43 t

CT
3

t d Ry te XYZ tf X 2T

+gxfthytiihejx.IT
The algebraic set defined by F does not

change if we multiply F leg a non
zero

. constant

So we get an element
g

che {Ifffn
:b " a

'

-

d : e
'

- f :

g
:
h

.
: i :

j 3€ P Ck )

P
= Ct : x :

y
3 E Ze

CK )

is given by
seat y.3bttsctxeydtxg2e-xtftxt2-g-yfthty.fi t x y

e-
y

= o

( with tpc, y given and a
,

b
,

c
,

. . .

, j as variables )
.

So the set of F of degree 3 such that

ZECK ) contains8 points is

given by the

intersectionof 8fregeaiue hyperplanes
in Peck )



⑧

Lf the equations of these ecighttsggeylanes
age In early independent then

This set is a projective line in P
'

Lk )

Sf this is the case then the equations of
the 3 planes curves above are linearly
defendant; let us denote them by Fi

,
Fe Fs

Since Fr and Fz are linearly independent
( since the sets they define are t )

we con write

Fz =L Fat B Fz

and
ZECK ) A ZECK) a 2¥

K ) A Zp
,

CK )
.

We

getz
C leg estranging Fz and Fs )

F
,

A ZECK ) = Z
fan

Z FI K )

and therefore
&* Q ) # R A s ) = CP A R ) A C Q AS )

Problem

Are the equations of the 8 hyperplanes

linearly independent ?

As written
, false if 2 of the points coincide

.

!

Set
us check that more carefully :

1st case
"

general
case

"

the 8 points are distinct

( ⇒ Among
P

,

Q
,

R
,

s no three are aligned )

Then @
,

Q
,

R
,

S ) is a projective frame of PKK )

Therefore , by a linear change of variable
,

we

may
assume



④

P = [ t :O : 07

Q = Co : 1:03

R = Co : 0:13

S
= [ n : r :c ]

p*Q=[1 :X
,

:O ] with x
,

f- U

PER =a : o : y ] with
y ,

to
1

0*5=4: ka :

13 with xzct Long C otherwise PAR -

- Q # S )
RAS -

-

G
: 1 : with gaff gas ( otherwise P # Q -

- Rts )

Let us none consider
.

the matrix

1-3 X
's

y3 XYT XTZ YTZ

MyXYZ
^ O O o

O O O O P

O l O o
O O O O Q

° O I o
O o O O R

1 l i a 1 l I r s

I

:*.

Fj:*:1 Xz 1
Xz Xz I Xf Xa Q 't S

s I y
3

y I ya Yz 45 Rts
2 2

St is enough to prove
that

this
matrix

is invertible
.

We are

going
to do elementary

transformation on
.

this matrix

1 O O O

* 0

O O O

¥:&
.

÷

:
.

:*
.

:O?
° Yaffa - a )



④

We
get

the 8 linear forms are linearly
independent .

and thus

@t a ) * R =
PFC QTR ) as wonted

.

I shall now give several poof for
the other

cases :

Over Cl

The
map

ECG )
"

→ E Ce )

CB Q
,

R
,

S ) i→ I* Q ) * CR * S )

is continuous as the map

( P
,

Q
,

R
,

s ) t ( PA R ) *CQ # s )

So

F-  
- { ( p

,
Q

,
R ) E E (E)

3

I LP # Q ) * CR * s ) = @A R ) A CQ

ASD
is closed

.

But the set

{ ( P
,

Q
,

R ) E E Cap I # { P
,

Q
,

R
,

S
,

.PK
Q

,

P * R
,

Q * s
,

R * s 7=8 }

is a dense
open set in E CEPcontained in F

Therefore
e cap = F

.

Over a field K of characteristic O

E : Y
'

= X
3

t a X t b

Let Ko = Q Can
, as , az , 94 ,

%) C K

Then E is defined over Ko

Since Ko is a finitely generated
extension

of Q
,there exists a morphism of fields
T : K

o

Ce a

which induces

F : KI - a



④

since the result is line over Q it is true overt

and lay Hilbert 's Ifullstellenoez
,

it is true over I
.

Using algebraic geometry over arbitrary field
E is geometrically irreducible .

Chefs
,

GEXEXEXE

is (geometrically) irreducible

CP
,

Q
,

R
,

s ) E E
4 I @* a) * CR * S ) = C PAR ) HQ

is a closed subset of E-
4

( for Zariski topology )

as is

G = { I P
,

Q ,R , 5) E E
"

I # { P
,

Q
,

R
,

S
,

P * Qi * R
,

QAS
,

RAS ) 8)
and G t E 4

Since EG = F U G and is irreducible

= f ( definition of irreducible )
*

Computations

Gf two of the joints are equal
Let T be the tangent to E at this point S

and let Xi,
La

,
Lz ) be one of the triple

of lines
going through all the points

then

- either one of
the line is T

- or two of the lines
go through the point S

Gn both case if Fa is the product of the

linear forms defining the lines
,

we get

dsfz C I) = o

where T
 

= IP Ct )
.

We
get a new linear

condition on the coefficients of the homogeneous

polynomials of degree
3 (details left as exercise )

.
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[ Let us for example assume P=Q
,

with

# { P
,

Q
,

R
,

S
,

PA Q
,

P * R
,

QAS
,

RAS } = 7

After a lender change of variables
,

me
may

assume

P = Q = [ 1 : o : 03

The tangent to

Eat
P is Y -

-
o

R = C o :
O : I ]

S = [ a :  1:17

PA Q = [ 1 : an :O ] noith x
,

¥0

PER = Er : o :

ya I with g. to

Q * S = [ 1 : Xz : xD with

72450,13R * s -

-

Er
: 1 :

ya ] with get to ,r7

which gives
Thematrix1-3×1-2Y

3

XY T X 'T YTZ ya X Xyz

1 O O O
O O O O P

O 1 o
O

O O O O zp

o O 1 O
O O O O R

1 l 1 1 I 1 r 1 s

I :

÷o.info:1:±:

i Iz 083 af
afIa xp xp axes

1 I 93 Yz I Ya ya off Rts

and then

I O O O O

o a !
°

0 o O

tolog:&
.

:÷⇒¥a¥%a¥
O Ydyil)

By symmetry ,
this works also if P -

-
R or .

Q -

-
S or R -

-
S )



④

@*

9*4*9
CAR

) * Ca * s )

•

p * R

i
.

Pt Q

Ln a

x.
CJ Elliptic curves over a

B
Q * 5

This will be a reminder for those of you
we took a course on Riemann

surfaces

Definition
t tones is a Riemann surface obtained

as a quotient
T = E IN

where A C a is a lattice
,

that is

a subgroup generated leg a basis

of the IR
.  - vector space a

.

Drawing

i:i÷÷÷÷÷÷:

'



⑧

Remark

Zobeing Cen
,

ez ) as a basis we

may
assume

it is denied -

,
that is 7- ez le

, satisfies Tmct ) > o

Then

E In → E/zt Et

E1-Zte ,

isomorphism
,

so we

may
assume that

A= 21 t Ze
,

with Em CT ) so
.

Proposition I Definition
the series

pees
-

- # t.E.a.s.cz#
- ¥

converges uniformly on

any compact subset

of a - A and defines a meromorphic function.

on I which is A - periodic and even

p 'CH=¥nE¥P
The set of poles is A

,

each pole has order 2
.

Proof

t¥
.

-

t.at#E-EEIIiIl--fz2t-Z-/f1z12lHtlZI-zxTz-x5
1412 @H - IH )

S 10 I 2- I
1-

if lzl E R and IN > 2 R
.

I XP



④

•
I ' I and It x t t

g
H = more dal

,
ly I )

define equivalent norms

So

¥5,2
r

¥ S C E m÷m,n, = 8C
§ ÷ Go

( m
,

n ) t Co
, D

The fact that -

p
is meromorphic ,

the formula
for p

' and the description of
the poles

follows from a standard theorem on series

of meromorphic functions .

By definition it is even

and psi is A
- periodic

So for any
k e A A Cz  t x ) - A Cz )

is constant

for X = I ont

psc -

Iz ) = p Cte )

and

PC - Iz ) =p CE )

So p is n periodic . D

Remark

St induces a meromorphic function
µ .

.
T

 
= ¢ ( h → Pt Ca )

with a unique pole of
order 2 al - To

.

Definition
For

any integer j 33
, put

Gj CM = E
1-

te A - soy
Xt



⑧

Remark

Since N =
- n

, Gj C M = o if j is add
.

Proposition

fs CES = # t

qq.sc
2kt ) Gza

+
EM Ek

Proof
Sf t to

¥⇒e= Lira
,

" LET - E -

-E. acknife

and the n - the coefficient of
the Laurent series

af a seem of a series is given by the sum

of the n -
th coefficient of

the terms of
the series

.
D

Theorem

It Z E G - X
, p

' CER = 4ps CEP - 606
,

Cn ) plz ) - 14064M

Proof
Let us look at the foist coefficients of the

LAURENT series of the difference at 0
.

p Cz ) = ¥ + 3 G
↳

CA ) Ed t 5 Gg CD ZZ +
GCZS )

P
' C Z ) = - Zzz + 6 64 ( A ) Z  t 206

,
(A) 2-3 + O ( 2-5 )

p
'

CZK = Liz
- 2466M¥ -

80 Goch ) + 6 CE )

- 4 p CZ )3 = - Ez
- 3664cm - 60 Gg Cn ) + O CE )

So

p
' 2

- Gp3 + 6 O Gy CX ) p t 140 Gg A )

is a A - periodic meromorphic function
with no pole in I - A nor O ( or A) and which



⑤

takes the value O en O
.

Thus it is bounded . entire function ,

and therefore equal to 0
.

B

Conclusion

The
map

z to Cp Cz > p
'

Ct ) )

induces an isomorphism F of
Riemann surfaces

T= Q In I E Ca )

where E is the elliptic awe defined
leg

=

affine e quote on

↳ X s
- G O G

↳
Cd ) X - 1406 .cn)

which maps
T to 0 C the point at 05 )

Remark

pond p
'

are analytic but not algebraic
C not given by polynomials )

Fact

ft is an isomorphism of groups .

Proof
Make Z

, Zo E Cl
.

We have to
prove

that the points
( p CZ  t Zo )

,

- p
'

CZ t Zo )
} ( P ft )

,
P'CFD and ( DC to )

,
P' ft

o ) )

are aligned
So consider the function
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z c- Dez ,

=)
PCZTZD -

P C Zo ) A Cz )
-

pczo
,

g
⇐

-

p
'

Cztzo ) - p
'

czo ) D
'

( z )
- P'tf )

it is meromorphic and n periodic with

possible poles at O and - Zo

Sno the Laurent series starts with

(pCZtZo) - p Ceo ) ) ( pfe ) -

p Ezo ) ) -1 ( pizzat P'Ceo )) ( pit ) - pad)
-

= ⑥'

Cto ) Zttzp'TA) Zet If

P'
"

Czo )

#
xf ¥3 )

+ ( 2 P' Czo ) + P
"

#ZtzP"Ex(¥

- pczo )) +6Gt

-

r
-

=

g- p
' "

C Zo ) - 2 p
' c Zo ) P Cto ) +

GCZ )

But the relation

p
'2= 4ps - 6064cm p - 1406in )

gives

2ps
"

p
'

=
12

p
'

p
'

-
606

,
Ca ) M

'

and 2ps
"

= 12ps I- 6064cal

Thus
p

" '

=
12

p ps
'

we get In O D Cz ) = OCZ )

In - Zo
.

. Cake €= Z t Zo Zo = - Zo

Dz.cz
) =

I
A CZ

'

) - PC Z'
o

) PCE

't
to ) -

pczo
'

3

I
- p CZ

'

) -1ps Z'
o ) Plz 't z G) tP' Cz j )

= D Cz
'

)
26

so Dzo has no poles Dzo = o . D

Natation

Gf A is an abelian
grown

The n -
torsion of A is

Acn ] = E AEA In a -07

the torsion subgroup
. is Aeons = nU←µ

. ↳

AG ]
-



⑦

Corollary
Gf K is a number field and E on elliptic

curve over K
, for any

n > o ECK ) Cns

is isomorphic to a subgroup of

Zan z
X I In z

Proof
choose on embedding

• K → a

it gives E Ck ) as ECC ) I G I n

but if I
 ! Q → an is the projection

Gla Cris = { E c- E In I n E = E )

= IT { z c- Q I n ZE A }

-

- InMln
we

get
@may

~→QlnCC I,
I ) 1- ( a In e- b In ) Dd)Nordell - Weil 's theorem

which is actually a conjecture of No RD E u proven by
Wen

.

Theorem C Moro Ecc
,

WE cu ] for elliptic denies
.

Let K be a number field
,

let

E be on elliptic curve on k
.

Chen

the
group

E CK ) is

finitely generated

Aim

Prove this theorem before the end of the

semester
.
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Remark

By the structure theorem
of finitely generated

abelian
groups,

there exist a unique re CN

and a unique family of integers
2 S da I dzl - -

. I dm

and on isomorphism
ECK ) to 2T X ¥121 Giz

r is called the rank of the elliptic curve

Gn fact there is a deeper theorem

Theorem [ B
.

MAZ OR
,

1978.3

Over Q
,

E CQ ) tons is isomorphic to one

of the following group
:

Kaz for d E { 4 - do ,

72 zxzelzdz ,
for d. E { 1,4343 .

Remark

Generalization leg C. ME Rec ( 1996 )

for any
number field K

,

the number

of possibilities for ECK )
toes is finite !

Gyen froblem
Ss the rank of on elliptic curve over

a given number field bounded ?

Even over Q we orally do not know
.

Current known record

2006 [ N
.

ECKES )
, explicit elliptic curve I a

with rank z 28
. You

con find the



⑦

coefficients on the net
.

We do not get
- have the tools to

prove
MORD Eu

- WEIL theorem
;

but
,before we turn to

other topics
,

9 would like to esglain
the generalization of Morose cc - Wen theorem to

higher dimensions :

e)
Algebraic groups

Remark

Ff E is an elliptic curve over a field K

K '
us ECK

' )

defines a functor from the
category of

extension of K to the
category of group .

Algebraic group generalizes that
.

Definition
An algebraic group

is an algebraic set G

*

( in
fact ,

a scheme )
*

over a commutative

ring
A equipped with morphisms

m : G x G → G the
group

law

e : ft  → G C ie e e G CA ) ) neutral element

( : G → G inverse

such that the following diagrams commutes

C i ) G X 6 x G

¥d
o

6 x 6

Ido xmlv Im

G x G

→m
g

associativity



⑦

Cii) G 6×6

C e

, Idol

gm neutral element

oxo →m

Ciii ) O 6×6

Ct Idol

ITdime
,fgm

inverse
.

6×6 →

It is commutative if the diagram
6×6 G x G

Cio )

my
,

Im
G

commutes

Remark

With these notations for any
commutative

A
- algebra C

,
GCC ) is a

group
we

get
a functor

commutative A algebras -

groups
c c- GCC )

.

Examples
as Additive

grown
Gla=Ftz

with m : Anz x AZ → AZ
C x

, g) a
xty

O € 1171 CED



⑦

c : Az → IF Z
x I -

- x

Note that

①
a

Cos is the additive
group

C

b) Multiplicative group
Gm

,
z defined leg the equation X Y =L

with

⑥
m

, xx
Gm

, #
Gm

,

Z

Cx
, g) ,

Cx
'

, y
'

) to @x
'

, y y
' )

[ x
y

= a and K
'

g
'

=L ⇒ xx
'

y y
'

=L ]

1=4,
1)

E

Gm
,

neutral element

inverse Gm
,

z ,

→ Em
,

re

( X
,

4) I → C Y
,

K )

Note that

C
* I Gm Cc )

x ↳ Cx
,

x-D

Remark

Gn fact , may
take

Gmp,
= spec CU CITY )

sinceI CT
,

T
- i

] I ZCXY ] lay - 1)

as Linear
group

Gln
,

a defined by
T del -

CXij )
. ⇐ e.smfh
a s j En

polynomial
in math variables

multiplication
Gm

,

X Glen
,

z

→

Glen
, -6

(Gents ,
Chi

, sit 'D → CCI.nxisxajl.TT
'

)



⑦

Well
- defined because det C M M

'

) = del - CM) det

in the
arenig ZE Xi

, j ,

i si
, Isn ]

a- ( ( Si
, j

)
,

I ) e 64£21 )

and the inverse

c : G.tn
,

z
→ Gln

,
z ,

woe that
isi ) F) ↳ CT Tom Cxc;D

,
detcxe;D )

Glen
,

z.CC) I GcnCc )

Remark

mtg
,

.
= space cxi.ix-eiisn3.IE

.

.

f) Abelian varieties

Definition
d- n abelian variety is an abelian smooth

projective geometrically irreducible algebraic group

Example

Sf En , -

,
Em are elliptic curves over

a field K
,

Er x - .
. . x Em is an abelian variety

over K

Remark

Later we shall see less obvious examples .



⑦

Theorem C Nor n Ecc - WEIL ) (
general form )

Let A be on abelian variety over a

number field K
.

Than the
group

ACK . ) is finitely generated



⑦

Up to none we have seen home
. to produce .

solutions
;

but have can one proves that there

is no solution ? This will be a short chapter :

I felons to
prove

that there are no solutions ?

I Glorious obstructions

Using the functionality
as Real solutions

Sf V is an

algebraic
set over Q

V CQ ) c VCR )

if V CCR ) to then V Ca ) = 4

Examples

a) XZ + Yet 2-2=0 in IP
2

)

x
-

+
y

- +22  
=  o  ⇒ ⇐, y , z ) = Co

,
o

,
o )

so VCR ) = ¢ once VC a) = of

b) X
2

t Y
2

- T2 = o

{
xz + y

2
- 4 XT

-
GYT

-175=0.

A die cercle de centre O

O TakashimaE-
deroy on 1

.

Remark

It follows from a theorem of TARSKI & Seco EN BE ro

( 1536 ) there is an algorithm to decide wether VCR ) to



⑤

b) Reduction modulo N

as Affine setting
Set Pa

,
-

,
Pm E I C X

a
,

-

,
XN ]

and I = C De
,

- Pm )

Por
any

M 32
, there is a seduction map

VI C 22 ) → VICTIM 2)

so if VICK cm a) =p ,
then Ve He ) = of

eescomfle
Xs - 42 = 2

Reduce

modulo
4

in 21142squares are
o and 1

so

differences
of squares

are 0
,

1
,

3

Remark

Also works for
3 8 25 3 IT - 7661 YR = 36 774

B) Projective setting
Set Pr

,
-

,
Pm E z Go

, →
Xn ] be

homogeneous polynomials and

I  = C oh
,

-

,
Pm )

Reminder

There is a reduction map

Z
,

C Q ) → 2
I

C 2am 2 )

for any integer
M 22

So if there is no primitive solution to

Di C Xo
,  

- AN ) -

- o

for ie See
,

-

,
m > in

Mz )
-0+1



⑧

then

Ze CQ ) =p

Example
We consider the homogeneous equation

X
2

+ 42 - 3 T2 =  o

Let Ca
, y ,

t ) be a primitive solution

Let us look in 211321

we get x
2

t GZ = o

Isf x to or y
to we

get
that - 7 is

a square
in 21132 absurd

So x =

y
= 0

But then let us look
.

in 2dg z

from what we have just seen

-31 x and 5 ly
Thus x

-

=

y
2=0

So 3 Ed = o

Rhus 3 It d there is no primitive solution

in @eggs
So no solutions in Pecos !

So these are the 2 obvious obstructions

to the existence
of a national solution

Remark

Using the conjecture of Were proven leg
D Ece ONE in 1974

,
about the number

of point of algebraic sets over finite fields,

it is possible to prove that there exists
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an explicit Mo such that

2
,

Czecho a) to ⇐ ht M 72
,

2
±

(24nd 't 8
.

So a natural question is wether the converse

is true : if there is a point over IR and over 211mg

for any
M 32

,

is there a national solution
,

that is

a solution over On ? This is called

2) Hasse principle and weak approximation

HASSE principle
An

algebraic set Z in

Pna
is said to satisfy

the HASSE principle if
the following implication

is true

( Z CIR ) to and T M 72
,

ZCZIM 2) to ) ⇒ Z CQ ) to

Theorem CHASSE - MINKOWSKI )

Gt is true for quadrics defined by
non degenerate quadratic forms

Is am not
going to give

the proof but there

is a complete poof quite easy
to read in

Reference

J
.

- P
.

SERRE Cours d
-

asithmelegue . .

One can refine that statement : assume

that we have solution modulo M does

it comes by reduction modulo M from
a solution over Q ? Gf we have a solution

over IR
,

is it a limit of solutions over Q ?



⑨

Weak approximation
Let Z C PI be an algebraic set

We
say

that it satisfies weak approximation

if the following is line :

- For
any

non empty open subset U of Z CIR )

-

any
M 3 N and

anyKoE

nfn.im ft Gym , ,
) → ZCZ

there exists

x c- Z Ca ) A U which reduces to no modulo M
.

Theorem ( ⇐ HASS E - M IN K OW S Ki )

Cure for quadrics defined by non - degenerate

quadratic forms

Galea of the proof C this is only a quick sketch )

If Z CR ) =p or there is M such that

Z Ima ) = of theresult is true

( Sf Z C 2am a) = to for any multiple M
'

of M

2- CZ Hz ) = of )

otherwise we know by HASSE - MINKOWSKI

theorem that Z Cal to

pick P
e 2 CQ ) C P

"

( Q )

p
NCoDgoingThen the projective lines in

through P are in 1 to 1 correspondence with

IP C QIN
"

I p )

and for each such line L

- either L Cz Can

- or L n Z contains exactly one other

points of Z .



⑤

"

we get a function
"

IPN
- '

Ca ) - - - > Z Ca ) not defined everywhere .

U U

Vlad
c

Via
)

where PN
-  '

- U ( resp Z - V )

are smaller algebraic subset ( U and V are

open for Zariski topology )
.

But V CR ) is dense in Z CR )

and V C Op ) - in 2- Clap )

( where Qp = completion of Q for 1. Ip )

We are reduced to
prove

weak approximation

for IPN for which it (follows from the

fact that if W is an open
cone in IR

Mt

and if
h is the translate of a lattice in RN

"

then n n W t
4.)

is an exercise B

But Hasse himself knew this was

not always true !

3) f Counter
- example to HASSE frindjle

d) Seems of 2
squares in Z

Proposition that
you probably already know

Lee -

n = E IT pop
In )

E 21 - Loy

Then n
is⇐The

seem of two squares if
and only if

- E =L

and - ht p e P
, p =-3 C 4T ⇒ op Cm ) is even

.



⑧

Proof
The

seeing
21 Fe ] = It 27 i is euclidean

for N : Ice
.

] → IN

at bits of + b-

Indeed if xty
i e a then x - L xthzj Etz

y - Lg + IS Etz so

NC xty i - Catz , t Lg t
'

⇒ i ) ) E t

so if a
,

b E BEET
,

b to there exists

q E I ti 3 such that N ( be - 9) E I

and thus N ( a - b g) L N Cb )

In particular Ifi ] is a principal ideal domain

Z Ci )
't

a L at bi I a2tb2= I 3

= % - e
,

i
,

- i3 c Z Cif

Now let the set of the seem of two
squares

is S = N Cz cis )

Gn particular it is stable leg multiplication

Lemma

Let
p e P then p e

S ⇐ p
-

-
2 or p ⇐ 1 CGT

Proof

•

Modula 4 a 2x b
'

e { O
,

1,2 )

so if p =3 CGT
,

p at s

gives ⇒

•
Converse

2 = 12+12 2 c- S

Sf p = a [ 43

then C-DPI = I So
- a is a

square
in Fp =Ypz



⑨

Therefore
21 Ci I Icp )

I Z1pz ,
[ T ] ICT '

ta )

is not a field
So

p
is not irreducible in Nci ]

We
may

route

p = 2
,

Zz

with 2n
,

22 I 21 C if

so p
-

= Ncp ) = N ( za ) NCE )

Sorice 21,22 ¢WIT
't

Nl Zn ) t 1 and Nl htt l

We
get

p = NC Zr ) E S D

End of the poof of the proposition

⇐ any square
is in S

So if E = e and Vp EP
,

P =3 CGT ⇒ Vp Cn ) even

n
=

IT @VET )
-

× IT PVP
' n '

⇐ S
.

P =-3 CUT P = A [ 4 ]

or P=z

⇒ Let
p c- P with

p =3 CGT

and me S

Let us prove leg induction on Up Cn )

that Up Cm ) is even

- True if op Cm ) = o

- Assume the result for k cropC n ) and Upon) 71

Since
p =3 CGT C-r ) is not a

square
in #

p

So ZED Icp ,
I Fp [ T ] Etz + e )

is a field

So
p is irreducible in KCET

Write n = N Cz ) = ZE in Ifi ]

p Iz E so plz or p IE ( p
irreducible )



⑧

But if p Iz
,

p IE C and similarly if PIE
,

Pit )

( Z  
= p de⇒ E  = p I )

We
get

that p
-

In

and Mps = NCE ) ES

leg induction Np Cn ) - z is even

Nph ) is even
. TS

b) The counter - example

Consider the surface given leg the
equation

Cr ) 42 t ZZ = ( 3 - XD CX 2- 2)

Does it have a rational point
?

As usual we are going
to make this

equation homogeneous to reduce the problem

to integral solutions .

Showered in that

case if
's take

directly the surface defined
in Ifs by the corresponding equation ,

9

get a surface
which is not smooth

So instead T am going to see

coordinates

Y
,

2- IT
,

U
,

V

td
En fair and the equation

dens (2) 42+2-2=1-43 V2 - U2 ) ( U2 - 2T )

PC GG ) -16 ) which is homogeneous in CT
,

Y
,

Z )

-

if ( Eu , ¥ , E ) is solution of as

then

( Ctrig,#)
,

Lait ) is solution of (2)

and we
may assume first Cair ) Cmultiply t

leg

gcdla.us) and then Ct
, gie ) primitive .



⑧

* Solutions over IR
.

Greer IR a number is the
seem of 2

squares

if and
only if it is positive

equivalent
to x

-

E [ 2,3 ]

( we con
-

e- have x 222 and of > 3 )

* solutions over Espn z ,
for p =/ 2

taking u
-

- re
-

- I we get the Equation

42+22+21-2

=  o

But if P * 2

any quadratic form
in at least 3 reoriobles is isotropic over Ep

We may then left a solution modulo p

to 24 pnz ,

C
using

Hensel 's lemma )
.

* Solutionsover Zllznz
Greer 21182 ,

we
may

take
.

U = o
,

o = I which
gives

yet zz
-

21-2
= o

Which has
a primitive solution (1,1 ,

d ) which

con be lifted to 21 fznzfor n 33

(because an odd number is a square
module

2
"

if and
only if

it is modulo 8
.

* Solutions over 2

Assume we have a solution

( x
, y ,

t )
,

Cures with
god Cx

, y ,

t ) = god Cu
,

ol =L

then

n = E
'

Gor- a) Cut - z v
- ) is the seem of 2 D

which means that

( i ) n > o

( ie ) t p c- P
,

P =3 C 4 ] ⇒ up
C n ) even
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But if these conditions are satisfied for n

They are also satisfied by
③or - u2 ) ( ut - z u

- )

which
,
therefore ,

is also the seem of two
squares

But then this implies that

to E C 2,33 C R condition )

then

3 02
-

U2 I O

and we - 202 7
,

o divides the seem

and
god

C 3 v2
-

ur
,

U2 - 207 I ve

and therefore

god C 3 I
Z

-

u2
,

U2 - 202 ) =

god Caz
,

v2 ) =L

since god cu
,

ol = 1
.

Gf p is a prime number sack that
p =3 Ccc )

then

op
( 302 - U2 ) t Op ( uz -

202 ) = o (2)

but one of them is 0

Thus both of them are even

V
p

E P

,
p =3 (4) ⇒

Up (3-02-62) and Up Luz -202 ) are even

Conclusion

3oz - U2 and u2 - 2 v
-

are both the

seem of two
squares

!

But modulo G a square
is O or I

So the seem of
two

squares is f-
- I modulo 4 .

Let us look at the possible values
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modulo 4

U2 U2 3 v2 - U2 U2 - 2 v2

1 o I101 31 - 2

A A 2 I

So 3 of -
U2 and u2 - 2 v

-

can not be

both the sum of two
squares

!

Therefore

Y
2

t 2
'

= ( 3 - X) ( H - 2 )

has no solutions in Q ?

Remark

In a 970
,

at the International
Congress of

Mathematicians in Nice
,

MAN in

gone
a

method to produce counter - es comptes
to HASSE friniyle and the weak approximation
Gt turned out that all the counter - examples
known at that time could be explained using

this method
.

So it is
quite

natural to ask

whether there exists counter
- examples

which can not be explained that
way

it took

some time to

get
an answer to that

question
D

- HARARI & A
.

S KORO BO GAT OV in 2001

gave
an example which can not be explained

using
MANIN 's method

.
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II Counting the solutions

Sf we consider an

equation like

X 't Y 2=1

there are simple solutions
,

like

( t
,

o ) is solution as well as

(6%3%1.3%7) .

We would like to mean the complexity

of a guion solution ( for example to have

an estimate of the size of the memory
needed

to store it on a computer )

I Exponential heights over a

Set us fisc a norm

II. If : IRN "
→ IR

,  •

Then we

may define a function
H : PNC → IR

so

leg H @ xo : - : xn 73 = It Coco
,

-

,
an No

if Coco
,

-

, an ) is a primitive element in ENT t

Gn deed
,

if

[ do :  
- : xn I = C yo

:  
- : yw ]

with C Xo
,

-

,
01N ) and I go

, y y µ
) C- ZN

't

both primitive
then I be Q such that

( no
, y

d n
)

=
k C

go , T Yn )
norite X as g-

neith a Eze
,

be I - Lois
.

and
god Ca

,

b 1=1

then ( b ko
, y

b ol
n

) = ( ago ,
-

, ayn )

and

µ -
- Hgod Cao

,
-

,
an ) -

. god lb no
,

-

,
bxw ) -

- godCayo
, > agn ) Hal



⑨

Therefore X ← L -

1,19 and

11 Coco
,

-

,
xn ) Ho = Kc go , >

Y n
) My

.

Definition
H : LPN CON → IR

> o
is called

the exponential height associated to the norm It . the

Example

Sf b take It Cao
,

-

,
xn ) Hy = seen

I Kil
0£ is N

then H @ i : o : A I ) = I

whereas H ( [ 60901: 349 : 609003 ) = 60901
.

Remark

By definite on

# { Pe IPNCAI I HC Coco :  
- : an ] ) EB )

& # { Coco
, >

an ) c- UN
"

I H Coco
,

-

, xn ) It
•

E BY

is finite we shall see more preciseestimates
in a moment

.

More generally

Definition
Set V be an algebraic frigidaire set defined IQ

and let

4 : v → cpN

be a morphism of algebraic see

then not
may defense an exponential height

Hy
: V C QI → LR

> o

as Hy = H o Y
.



⑤

Notation

X a set with a map
H : X → IR

> o

we define
X

* s B
= { x c- X I H GD EB )

.

Remark

Gf Of is injective ,

then

VCady
, B

is finite
and we

may
consider its cardinal

# V CON
HEB

'

Natural questions
Stone does the set V Cold

HEB
look like

as B → to ?

This is a domain of active research .

Let me just
consider a simple example

2) Point of bounded height in PNCQ )

Proposition -

# Pnc Q )
µ ⇐ B

=
VolCBkHdo B

" "

t GCB
"

log
Cod)

a
Cn er )

where

By
. " .

Co
,

e ) = Ly c- RN
"

I Ily Ily Ll ) and

Voe is the usual euclidean volume .

Proof
First

,
as we have seen

, any point in IFYQ )

that is
any

I -
dimensional vector

subspace of
cant '

contains exactly 2 freimiliie
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elements in Z
"

Tend the seem of these

2 elements is 0
. Therefore

# Pnc
us Etz # fro. > an seen-49% !!

1st step

For a

very
short while let us forget about

the god condition . how con we estimate

MCB) -

- # {Coco
,

-

,
xn ) c- Z

NH
I Helo

,

-

pen
) Ho EB )

If you
think in terms of RIEMANN integration

it ought to be similar to the volume

of the ball of center O and radius B
.

More frecisely ,

Let

Bo
= [ 0,1 [ Ntc , R

n +2

and
for x E IR

" "
B

, ,
=

Botzthe

ltarslaleafBo@x.EitiEF.E.I

#÷¥¥¥t¥¥±¥÷÷¥i¥¥m*
1-

WITIftp.t.HHE.t.EEB

btw
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BEEB

"
.

, go,
B) ⇒ see

BI
. ,

Yo,
B) ⇒ B.

SBI

. ! B) to

ffgytha.GE#fxezn-ulllxlloEBYEVolCos!hsi?.E..*a

Bac

BT
.

ago,

B )
-

Mais U
-

B
,

C B
y.y.CO ,B ) C U

-

B
"

B.cc By
.

B ) Bon By
.

B) ¥0

But Bo is compact
and therefore

S -

- diam C Bok sup C H Hy ) Lto

-

9g ⇐ Bo
Y

-

y
'

If
Bx

A
Bu

. , do ,
B ) # 0 and

y
c- Bx

then IS B t s
-

and if By a
n -4

- By
. , , do ,

B )) # 0 and
y

c- Bo ,

then 11GHz B - S

We
getthatfor any

B → I

/ # I ocean Eos I Hallo EB ) - B
" "

VolCBI.  

e) I

E VolCBI. "
Con )) C CBtoo )

" '
- @-SJ

"

)

S C B
n

for some C > o
.

Sf we put l = %zEho ,

Hello and

MEB
) = # { KEE nth dayI Hallo EBY

we have
frown

there exists C 70 such that

I

MEB
) - B

" "

Voe

CBI
. "

Con ))KcB
"

.

for any
B 31

But
,

since 5 removed the origin

MEB
) =o if

Bel
so the result is also valid for BEI  :

t BE Rt d

MEB

)
- B

" "

Voe

CBI
. " .co,

D) I ECB ?



④

2nd step
-

Let us none deal with the god condition :

Basic idea

# { Go
,

-

,
xn ) e zn

- in / {
god Ho

,
-

, sin ) =L

11 exo
,  

-

,
an 311£B

}

= # L KE Int '
- dos I Hallo E BY

but then we have to remove those for
which all coordinates are divisible

leg p

- I # face @ad
nth

- Lob I H x Ilo E BY

PEP

But then if all coordinates are divisible leg
the product of

2¥
primes

,

we removed them

twice .

+ E # face CRAZY ed I llxl lot BY

De

,

B e P

Pet Be

• so  so

this leads to a finite alternate seem

,
because

if d > B then

¥8 x e CdIT do 71 Hall
,

EB ) = O
.

Definition
The MOE Be us function : pea. IN - Loy → f - 40,13

Fp Up Cn )

film ) = {
C-h )

if Vp c- P
,

Up Cm ) E I

O otherwise



⑨

Properties
Ci ) St is multiplicative

F a

,
b E IN - Lot

, god
Ca

,
b) =L ⇒

pe
Cab ) = puca) pl b )

( ie ) Gf p

-

es Wine
a

if k=o

pecpk ) = { - a if k = I

- O otherwise

Ciii )

In feeds
=

{
I if n -

- I

0 otherwise

The
only thing we need to prove

is the third

froprty .

9 shall use the following lemma

Lemma

Sf f and

g
are multiplicative functions

then their convolution product

f #

g
Cn ) -

- I

feedgoes
is multiplicative as

naked
.

Proof
Sf god Ca

,
b) =

I then

{ k la Y x { l I b ) → f d I ab )

(k
,

e ) ↳ ke

is bijective ;
its inverse

being gain by
Cgod Cd

,
at

, god
Cd

, D) ← I d

so ft g cab ) =

dfa,
f Cd )

g ( ¥ )

=
s f Chet

g Ea he )
k la

e la



⑦

= E f I k ) fee ) g (Ea ) g
He )

k la

l I b

since fond g
are multiplicative and god Ca

,
b) =L

=

#
.

lock ) yea ) ) # feel g Cte ) )

= f *

g Ca ) f * g
Cb ) . is

Proof of Ciii)

The constant function I is multiplicative
So

, by the lemma 1 *
peas

well

Thees

1¥ peon ) = IT

Pep

1* Mcp Tony

Beet

l # re C ph) = I µ I pl ) = E µ Cpl)
OS esh oses mince

,
k )

=

{
l if k=o

So

0 otherwise

1 # refn )

=§
,

←
{

1 if a -_ A

0 otherwise
.

D

Let
us

go
back to the 2nd stef of the proof :

End of the proof of the end step

# { Coco
, -

,
xn ) E In

" ' I { god Coco
, → in ) =L

Hfxo,
-

,
an ) Hy EB

}

=

§
,

Sa
,

d
IF { No

,
- Mn ) C- In

-4

I {god C no
,

- pin ) = d

d Koco
,

- Philly EB

)



⑧

-

-

¥
.
I

,.mn#fcxo..imc-zi
"

1%9
.

!÷: !

= I Mlk

#
{ Go

,
-

,
01ns ) E 2am

-

I Loy
f

ok I god Coco
,

-
,

xn )

best Helo
,

-

, on Note
B)

=qq.MU#fCkos-,2nlE@2D
" '

- so > I deco
,

- and ↳ E BY

X
'

i
 = Xi

= E ouch) # { Coco I 'm ) c- Z
" '

- toy I
11

Xo ,
- Philly E BE )

k > a

= .

£
, ,

Mlk ) MTF ) ±

If
, #

tech M
* (BE)

None we combine the 2 step

Final step

I

Ees
,

Mlk ) Mt I ft -

£ ,

tea ) Volts
. " .co.th

"  "

I

⇐Faa.ee#Y+c%Ee %)
" "

this series converges
←

- a
.

{
= 6 CB beg

CB) ) if n -
- a 6 ( B

" "

In )

= 6 ( Bn) if n > I

St remains to
compete

⇐.EE#xs..ln-n=&.Ek.uLxeE..fen .

Mlk )
= I -

k a a
@e)

at '

l > r

= &
.

a&mMcm)¥ =L



⑨

So

# BY a) =

VolCBu
. ii. Con ) )

HEB zz¥u ,

B
" '

t {
GCBlog

CBD
ifn.ee

G CBn) if not

as wanted
.

B

T am none

going
to extend the construction

of heights to arbitrary number fields .
In order

to do that
,

S am going to use results of

algebraic number theory .

These results are

frost of the lectures of SARA CHE cool . Therefore

9 am

going
to state than without proofs .3)Number theory in a nutshell

a) Multiplicative structure

References

P
.

SAM VEC
.

Theorie alajelaiquedesnombres .
Hermann God 67 )

S
.

LAN a . frgebraic Number Theory .
SPRINGER (197-0)

Notations

K number field ,

that is a finite field
extension of Q

G
K

the
ring of integers of K

,
that

is the
integral

closure of Z in k

Gk = { de K I 3- P E X Cx ]
,

monic P ( a) =  o )
→

Proposition I

dominant coefficient
?es y

G
k is a DEDE Ki N D domain : which means that

a) St is an integral
domain



⑧

b) integrally closed

↳ noetherian

d) any nonzero prime ideal is maximal

Notations

A fractional ideal of K is a sub Gre - module or

ink such that there exists de Gk
,

doe c Gk
Y Ck ) = set of nonzero fractional ideals

of K

Examples

• Bf x E KY C x ) = Gre x is a fractional
ideal

,
such a fractional ideal is said

to be frincigol

Sf or
,

b e 9 Ck ) the product

oe b which is the Core - module

generated by products xy
with x e oe

and
y

Eb is a fractional ideal .

Notation C continued )

P ( K ) = set of nonzero principal fractional ideals

Val FCK ) = Spec CGk ) - 4033 set of nonzero

prime ideals of 6k

Theorem A-

The product defines a

group
structure on G Ck )

and
any

are SCK )
may

be
uniquely

written as

Or = IT
s

Pe Value ,
A

Tsca ,

where { p e Volplk) I upcasto ) is finite
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Remarks

Gn other words

⑦ I → T Ck )

P E VolfCk )

(
AP )pevq

IT pan

is an isomorphism of group

Pt Vale Ck )

Prop

. Up C ab ) = Up
Coe) t Vp Cfs )

. a c b ⇐ Fp e Val
p

Ck ) VpCb) f VpCa)

which implies
. of Coe n b ) = masc ( Up Cod

, Up Cb ) )

. Vp Ca t b ) = min Cup Ca )
, Vp Cb ) ) .

which generalizes the formula you
know

for the
god

and lc m
.

Remarks

We
may

restrict to principal ideals and we yet

a morphism
For

any p e Valffk )

Up
: K

't
→ z

So that

. C x ) = IT

Macrae par ,

ask.sc ,

. x ly ( i.e . Cy ) c Cx ) ) ⇐ ht
p E Valpfk )

,
Up fatty ly )

. Up Cx
y

) -

- Up Cx ) top Cg )

②y . Up
Cat

y ) z
min I up by

, up
I

y ) )

with = if up
Cx ) t Up Cg ) .



④

Theorem 2

The
group

GCK ) IPC te ) is finite .

St is called the ideal class
group of k

( 9 shall denote it Cl C Gk ) )
.

Notations C continued )

# Mor

fief
K

,
Q ) = C K

'

- QT by Galois theory
and we have an action of I Cz z on this

set vice 6 ↳ I : x es Text

Val Ck ? is the set of orbits inMoffat
,

E )

for this action
.

N
.

B
.

T =F ⇒ OCK ) C IR

which explains the

Terminology
v E Val

•
CK ) is said to be deal

if the cardinal of the orbit is one
,

complex otherwise

Notations C continued )

Val Ck ) = Volf Ck ) I Valo Ck )

is called the set of facesof K

A place re is said to be

- finite C or non - archimedean ) if u e Val
p

Ck )

- infinite C or archimedean ) otherwise

it is then either real or complex .

or
,

is the number of real places
r

,
the number of complex places
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Gone has a
,

t 2
rz =

CK  
'

 
- QT

.

Tf re e ValsK ) is theorbit of r one defines
I . to : K  → IR

> o if v is real

x 1- It I

I. to : K → Rs
,

o if u is complex
x l→ IT GDP

LY
Gn the complex case

lxtylii
'

s belie - ily hi
but we do not have the usual triangular

inequality I
.

We get a morphism

6¥
⇐

IT

RE
pi

' th

)
A E Volo ( K )

× I Clog Mr )
we uol.lk )

fr
.

.

IT IR → IR

v c- Volo Ck )
can www.crtfeuoe.ae'T

L =
Imc

log )

puck ) = { x E K IF n > A
,

an -

- 13 roots of
unity in K

.

Theorem 3

as Her C log ) = peck ) which is a finite group .

b) L is a lattice in Ker C fr )

( which means that it is a subgroup generated
by a basis of the real vector

space
ter Cpr ) )

.

Gf we combine the various theorems
,

we

get
the following conclusion :
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Conclusion ( structure of
k

't )

Come has 2 exact
sequences

1 → 6¥ → Kt ¥5 to 21 → Cl I Ge ) → L

and
B E Volf Ck ) -

^ → Delk ) → 6¥ ¥ L → o

finite

is

2,9 n
tr

z

- I

Exercise

Make this explicit for
K -

- Q Ci
, Q cod )

,

Q Cios )
.

Corollary ( which we are

,
going

to use in the poof

of
Mor DELL - WE cc theorem

Set S C VolfC k ) be a finite set of finite faces

then

Ker ( k
't

he # ¥5 to Zaza )

is finite .

vevolpck ) - s

Proof
St is enough

to
from

it for 5=0 since

o → Ker Ck 4kt -

2

qq.pk
a) → talk

# I # ¥¥ooef¥ Fka
- - -

finite =3 finite finite
Gn the case when S = ¢

We use the structure theorem with gives
the

following exact sequence and we consider

the square maps .

We
get

a diagram
and we do a little diagram chase



④

O

I¥y3 =2¥13
°

a cat)

£23
I t I

-

i → 0¥ → k

!E.¥
! → o

t .

I I
. .¥÷÷÷÷⇒ →

0*70
,
#

'

→ the →

topTYKEµ :

→
x - o

1 I 0

We
get an exact

sequence
1 → 6¥16 Ez

 → test
kHk*→¥aeµ¥zz

) → o

finite

Go remains to check that 6¥ foie is finite
But then we use the other exact

sequence
^

n
de te

o → { try = LIM → O

I I I

r-qc.z-sqi.IE#l → peck ) → 6¥ → L - so

k to t

> INCHpump
→ GEIGER → Ike → o

Isn that case we

may
use the snake lemma

We
get

on exact
sequence

1 → No Ck ) fears → 6£ 1052 →

LI
→ o

¥ faint
so 9¥10 ¥

- is finite .
D



④

b) ten application : the weak MOR DE Lc -
WELL theorem

Let me state this theorem

Theorem

Set E be an elliptic curve over a number

field K
,

then the
grown

ECK ) f z E Ck )

is finite .

Step of the proof
We

may
assume E is in Weierstrass form

E  
i 42 = X3 t a X t b

Remark

Gf we take Y
'

= u3Y and X
'

= let X

we get that E is isomorphic to

y
' 2

= X
' 3

t @4
a ) X

'
+ @b)

Therefore we

may
assume a

,
be 6k

The proof is 3
step

1st step

Tf k
'

I k is a finite extension of field
Her CECK ) 12 E Ck )

→ ECK 'D2 ECK
'

) )

is finite . Therefore we
may

reduce

to the case were X
3-

a X t b is split
E :

42 = CX- 2) C x - B) ( x - y )

with a
,

p ,
T E K



2nd step

Sn the better case we construct

ECK
) 12 E Ck )

€43
)

k'THE
×

KAKA -

3rd step

Sf p a Volf C K ) is such that
up

C D) = o

then E Ck) 12 ECK
.

) → KH KH x k 't 1k¥¥2 Gaf
-

O

then we con apply the previous corollary : Earshot ,⇒
is finite

Let
us start with the 1st step :

Proposition
Let E be an elliptic curve over K

,
chalk ) -0

,

Let K '
I K be a finite extension

then

Her C ECK ) 12 ECK ) → ECK
'

) 12 ECK 'S )

is finite .

Proof

By replacing k by its Galois C or normal )

closure over K
,

we

may
assume that

Kl 1k is
a Galois extension

Then

Gal Lk
'

IK ) acts on E Ck
'

)

via :

tf r e Eyal C K
'
IK ) r ( Ex :

y it ] ) = Cocoa :

rigs : RAD

( In fact it acts on Pn Ck ' ) )



④

Lemmafpmck
, jgadk

'M
=

Rn Ck )

( T mean that it is the
image of Pnc k ) in

pack ' )

Proof of the lemma

.
puck ) c 1pm C K

' )
God # " t )

by definition
of the action

. The freedom is to
prove

the converse .

Let Go :  - : any ← pnc peg
Zoe Ck 's K )

By permuting the coordinates
, of necessary ,

we

may
assume that

xoxo
Since Fro GolfKIK )

,
& Coco) :  - : o can ) ] = Exo :

- : In ]

we
get

to e Gol Ck
'

Ik )
,

tie fr
,

-

,
n ) t{}g

= IT
O

O

or t r E Gallie
'

key titty
,

n > o ) = I

But K
' Goll K'he )

= k

an

So tie See
, - MY 3 E K

C do :  
- : Ans = [ 1:34

,

: -
: dfg ] E 1PM Ck )

.

Proof of the proposition ( continued )

•
Let x E Her ( ECK ) KECK ) → ECK 'D ECK

'

) )

Set P
,

E ECK ) represent x
-

and let QaE ECK ' ) beseech thatBe=2Qx
( since

K¥0
inECK

' ) 12 ECK ' ) )

We
define

Xa
: gal Ck '

Ik ) → ECK ' )

or 1-3 T ( Q
,

) - Q
x .



④

Note that

2

k€0
) =

20 (

Qa
) - 2

Qu
=

r C

Pa
) - P

,
= o

So

X.fr
) c- E ( K

' ) C 23 for any
RE Gal CKYK)

.
Take x

,

I
E ECK ) 12 ECK ) be such that

Xx= Xx
'

Then

F TE fall K' he ) TCQ a
) -Qa=TCQ×, ) - Q

so V-J c- gal C K' Ik ) TCQ
a

-Qx, ) =Qu -QI
Therefore

Qx
-

Qa
, E ECKD

Got # K )
= ECK )

Poc
-

Px
, = 2

Qa
- 2

Qa
,  

=
2 C Q

,

-

Qa
. ) E 2 ECK )

.

Therefore x = x
'

See X = X ,
⇒ x -

- x
'

.

K I

We get goeckllk )

# her CEC kHz ECK )
-3 Elk

'

) keek
' )) S #€23)

[ k¥4
of .

cc )

£ 4
.

B

Remark

Interpretation in terns of Galois cohomology
O → ECE ) [ 23 → ECE ) Es ECE ) → o

is exact this gives a long exact sequence

O → ECK ) → ECK ) ECK ) → HY GalCElk) E

(E)
to )

→ HK gal C Elk )
,

ECE ) ) - -
-

So E Ck ) heck ,
as Htc Yall Elk )

,
ECE ) C 23 )



④

we get a commutative
diagram o

O

+
I

Kerl ECK ) heck ) → ECK
'

heck 'D → Hhclyoelklk} ECK
'

) )
injective

I d

o → ECK ) KECK )
→ th

Clyde
CTalk)

,
E C

E)
Cos )

I t

o → Elk 'Hz ECK
'

) → HK
GolCKTK ' )

, ECE) E 23 )

-

exact by general
results on Galois cohomology

We none teem to the 2nd step .

.

Galea

E Ck )
heck ,

→ E (E)
Iz ECE ) = Loy

Using the computation of the last poof ,
we get

E- Ck ) heck )
as Honcone -

C Gall Elk )
,

ECK ) C 23 )

x 1- Xx
⇐yysz.jo

hypothesis

But Hummer theory shows that

K*/k*2 -7 Hom Clyde C Elk ) Zha )

[ x ] l→ ( its 0cg ) ly ) if x -

-

y
'

ink

So

E ( K ) 12 E Ck ) - Ck4k # 2)
-

9 am

going
to construct it explicitly

We assume
that E is

given leg

E : Y
2

= C X - a ) CX - B) C X - 8)

a

,
p

,

r roots of X 't axtb

Since 6k is integrally closed
,

4
,

B ,
re 6k .



④

we defer're
4 : FCK ) → K

* 1kHz
^

p 1-  s

{
C x -

Akif
P -

-

Fix
:p if y

* o

CL
-

B)Ca
-

8)
K

#

if P = Ce

:L
: 03

k£2
if P=o

4ps
,

Yr are defined similarly leg permitting a
,

Bond 8

Lemma

%
,

4ps
,

Yr are group morphisms

Proof

By definition
4£03= I

Sf P
= EA: g ] Ya C- P) = Ya CD = 4dB

' 1

It remains to prove
that

Put Pet B -

- o ⇒ LCR) 4hPa ) KCB ) =L

Already proven if OE ER
,

Pz
,

BY

We assume that Ri  
= [ 1 : sci : yi ]

1st case Ce : a
.

. 03 I ER
,

R
,

BT

Let Y = p Xt
g

be the equation of the

line through A
,

Be and B

Then

( x - d) Cx - B) Cx - r ) - CpXt95 = ( X - xn ) CX - az ) C x - xD

Caking X = a we
get

( xn
- L ) Coca - a ) CK

z
- L ) = Cpa + g )

2

⇐ K
't

Z
.

That is 4
a

CR ) Clack ) 9dB ) =L
.



④

2nd
case

Pitt:L : o ] ⇒ C tix :D of { Pa
,

BY seria 0€ LB
,

Be
,
B }

( X - d) CX - B) Cx - 8) - C PX -1912 = C X - d) CX - ok ) Cx - xD

⇒ Cx - a ) I @x -19
.

) in k Ex ]

that is Pat 9=0 and P Xt 9 =p CX - a )

So C X - x ) Cx - p ) CX - D - pyx - af = Cx - 2) CX - xD Cx - xD

Dividing by @- a )
,

and taken -

G
X =L we

get

( a -

p ) C x - D = ( L - su ) Ca - XD

ie da Cpa ) a LCR ) Cla CB )
.

D
.

Remark

Ya induces 9T : ECK ) KECK ) → KKK # 2

.

Lemma 2

P = [ A : x :

y ] C- 2 ECK )

⇒ ( x -

DC x - B ) and ( x - 8) E k
2

(might be o )
.

Proof

⇒ follows from lemma I
.

⇐ Assume C x - a )
,

Coc -

p ) and Cx - 8) are B

none

{41.3--7}
Cx - D = of

We wont to fond P
'

such that P -

- 2 P
'

Seina 2P
'

=P to we have P' = A : x
'

:
g

'

] with
y

'
to

.

So we have to fend p , g ,
x

' such that

( x - d.) Cx -

p ) Cx - r ) - Cpxta )2= C x - xxx - xxx - xD

that is Cx - x ) CX - x
' ) Cx - xD + ( pxtg )

'

has roots 2
,

p ,

r



⑨

Using these relations this might be written as

{
Cpatq5= ceca - x 's

-

C P B c- 9)
2

= Cpf C p - K )
2

C p
rt g)

2
= of C 8 - x

' I
-

So we are to solve one of the following
linear systems

{
p at

q
± Cca

sci - ca a ) -

-

o

p Bt 9 ICC
p

x
'

-

Cpp
) =  o

p
r t q I ( Cg x

'
-

Cg 8) =  o

which has a ( unique ) solution if

Ki. :÷
:t.io

"

#
at most one is O

I ( p - d) Cg
I Cx - 8) Cps IA - p ) ca ¥ o

-
- -

to
# o to

Eakes at least 2 distinct values

So We
may find a solution ( p

,
a

,
x

' I

Then taken
y y

'
= - Cp x 't

g ) and P
'

= [ l : x
'

:
y

'

]

P = 2 P
"

.
B

Proposition
9

a XYB '

.
E ( K ) 12 Eck ,

→ k 'T k
* e

x
K MKE

is injective .

Proof
Bake P =D : x :

g
] such that 9ACCPI ) -

- Cfp CCPD -

- I



④

Case I

KILL
,

BY

then x - d and x -

B are
squares

as y2= C x - a) C x - p ) Cx - r )

x - 8 is a
square

as well

By lemma
}

Pe ZECK )

Ease 2 x = a Cx -

- B is similar )

Then @- p ) and @- 8) ( a - B ) are squares

C Remember the definition of Vaca : a ios ) )

See C d - 8 ) is a square as well

By lemma 2 PE ZECK )
. B

3rd step

Proposition
We haveD= Cd -

B )
-

( B - 8548-25

Gf p E Kelp Ck ) satisfies Up CA ) =o

then To
ECKVZECE ,

→ KFK # ¥Zha
,

Proof
So formula for A -

-

Res CBP
'

) follows from the Problem on

resultants
.

Remember : 4
,

Bt c- Gk

so Up Cd - B )
, Upc p - D , 0pct - a ) z o

so we get

of Ca - B ) -
- Up CB - s ) - Up .fr - 25=0

if P = o or P E { [ 1 : a : of [ r :p so ]
,

Cr : 8:03 )

the result is line leg definition of 9,4ps
Assume D= a :

key ] with
geo



④

then let me
put

a = Npcsc - a )
,

b -
- Up ( x - p )

,
a = Up Cx - r )

Since ( so - a) Cx -

p ) Cx - 8) =g3
at b t C = o Cz )

. Gf a < o
,

then

Up Cx -

B ) = Npcsc
- d t a - p ) = Up Cx - d ) =  a

- -

Up s o Up >
,

0

So a -

- b = c and we
get

3 a = o
CZ ) ⇒ a

.  - ⇒ O C 2 .
)Lfa > o then

b -

- Up ( x -

B ) = o once C = Vp ( x - 8) =o

So Az O (2)

•
Otherwise a = O

In
any

case a -=oC2 ) ( similarly b = o GD B

End of the poof of the theorem

•
Her C ECK ) 12 ECK )

→ CK4k¥27 ) = Loy

.
Imc ECK ) 12 ⇐ c. ⇒

→ t.ie#Ik*?P)ckerKkHkEfczfp%f7okz5)

¥.y
So E- L k ) k ECK ) is finite .

D corollary

c) Absolute values

Definition
Let K be a field .

An absolute value on K Is a map

I . I : K → R
> o

such that



④

( i ) Vacek . I xl=o ⇐ x =  o

Cei ) Ha
, get lay I = lxl ly I

Ciii ) Vx
, Yet lxtgl I lxltlyl

This absolute value is said to be ultra metric

or non archimedean if it soleifies
Ciii

'

)
'

t
'

si
, get ,

bet
y

I E mask 154
, ly I )

Examples

a) Any field : the trivial absolute value

I xl =

{
o if x -

- o

A- otherwise

b) If I . I is an absolute value and KI

I - It is also an absolute melee

( since acts at is concave

at 3 Sc for Koco
,

So ⇐⇒
'

effy )
t

> I for x. ye
R

, o

which implies

Geoff s ate
y

'
.

)

y Gf K 1k is a field extension

and I . I
an absolute value on K

then I
. I

, a
is on

absolute value on k

d) Greer IQ :

I selfsap Cx
,

- x ) usual absolute value

is archimedean
.

If p E P fiumenumber

help =

{
p

- VP " ⇒

if x # o

o if D= o

ultra
- metric absolute value



⑨

es Cover a number field K

v e Val C K )

- Gf re E Val
•

Ck ) defined leg r : k → a

xtslrcxsl is an absolute realise ( which depends only
on re )

.

Sf re =p E Val
p

Ck ) for any
c > I

x us

§
- % " '

if at o

O if I =  o

defines an ultra
. metric absolute melee on K

Gn fact this optics to
any

Dedekind ring :

f) P irreducible polynomial
in ACTS

ACT ) → IR
>  o

F -

- Ny ↳

{COUP

CD - UP CN )

if f  * o

if F  

= o

is on absolute redline as is

F-F ↳ {
C

deg ( N ) - deg CD )

0 if F=o

Definition
An absolute value I - I

defines a topology on K

via the distance

dcx.gs = I x -

y I

Proposition

Absolute values I
. le et I . Iz define

the same

topology of
K if and only if

there exist X ER
> o

such that

tf seeK
,

txt
,

= lock



④

Definition
Trece absolute values are said to be

equivalent if and
only if they define

the same topology
t place of K is an equivalence class

of absolute values

Theorem [ Ostrowski ]

Any non - trivial absolute value on Q

is equivalent either to the usual absolute

value I .

I
or one of the p-adic values I. Ip .

Corollary
Ang non - trivial absolute value on a

number field K is isomorphic to one

defined in example es .

Remark

Gn other words
,

Val CK ) could be defined
as the set of non - trivial places of K

( or non - discrete topologies defined

leg
absolute values on k )

Definition

Sf v E
Val Ck )

,

K
o

is the completion

of K for the
topology defined by

u
.



⑤

Remark

Cake I . I representing re

;
Ko

may
be constructed as

the quotient of the
ring of Cauchy sequences

with values in K
by

the ideal of sequences converging
to 0

.

Examples

Tf K = Q
,

we have canonical isomorphisms

.
Q

•
= R completion for I - to =L - I

• Qp = Qu if v is defined by p
EP

( crate that I Flp Is%)

Normalization
Let K be a number field ,

and ve Val Ck ) then

- if re is real ( reminder ) defined by r : k → IR

I - he =
I orca > I

- if re is complex defined leg or : K → a

I -

he = Incest

- if v is non - archimedean defined leg
non zero freire ideal µ

I x I = N Cos )
-

box )

v

where Ncm = # Ep where Ep is the finite field
Fp = Gk Ip .

Remarks

12µs
Sf ne is complex

,

I .lu is not on absolute

value but I - Tut is



④

b) bn all cases the
corresponding topology

is

generated leg the balls

Bfa ,
as = Loc e K I be - at

a
L r )

CS I to extends to Ku leg continuity

Definition
Gf v is ultra metric

Go =L
ye Kr I I ghosts

is a

subring of Ku called the
ring of integers

in Kv
.

Proposition

Go is a
local

seeing,
its maximal ideal is

Mr = {
yeKal ly to s 13

and the residue field
For = Got my is

canonically isomorphic

to the finite quotient Ep = G
* Ip ,

where

p is the prime ideal corresponding to v

More
generally the canonical morphism of rings

Ok Ipn
→ Gelman

is an isomorphism once Gv is isomorphic
to

lying
6

* 1pm C see the problem given
in

exercise session for the case of Ep )
.

Remark

•
The isomorphism comes from the

maps

Gv → Go Imi E- Gp 1pm

.

St is an isomorphism of topological rings



④

Notation

Sf KY k
is a finite field extension

no a place of k
'

,
v a place of

K

I. I
'

on absolute value in w

We
say

that retro if I - I
'

, k
defines u

.

( We also
soy

that u is the restriction of us

to K )

Bor

If K
'

IK is a finite field extension
,

we Val Ck )
,

no c- Val CKD such that v1 w

then

t
ye

K
'

w , ly to = IN
know ! g) Iv

.

Proposition (

Readied
- formula ]

Let K be a number field
tf x e K

*
IT Ixlo = I

1 DEVI Ck )

This
formula justify

the choice of normalizations
G have made

.

Proof C sketch )

- When K = Q
, any

number x e OE

may
be written as

Epttp
POP

" "
with Eef -113

then

Tue
I " to =

Ipp P
" " "

x

pet lip
.

pray
.

= PIP
PVP

" "

xiptp
p

- UP
=

1



④

Censor product
Let E and F be two vector .

spaces over

a field K
,

then E ④ F is a K vector

space
with a bilinear map

E- XF  → E ④ F

( x
, y ) to x Oxy

which is universal : for any
K vector

space

Gond
any

bilinear map

4 : E x f  → G

there exists a unique
K linear

map

IT : E ④ f - s G

such that Ex F Is G commutes

↳ to
E ⑤ F

If Cei )
, ⇒

is a basis of E

F£nCbg7j⇐,

a
basis of F

Cei ④ bike
, g) a I #

is a basis of
E ④ F

.

Gf R is a commutative K algebra
and A is

a k - algebra then

R④*A is an
R

algebra
in which the product is defined leg

( X ④ a) Cpe ⑤ b ) = on ④ a b)

Example
R ④ An Ck ) I Mm CRI

.



④

-
In

general , for a number field K

if v e Val Ca )
,

one
may prove

that as a

Q
v algebra

K ④
a

Qu I IT Kw

no to
- -

extension of scalars product of algebras
to Qu

But if A is a finite deniensionae algebra
over a field k and a c- A

N Ca ) =Thet( ma ) mu
: A → A

We get

A ' k x to ax

Axe K

,

N
k ,

C a )
=3 Nkw

, oh
) in Qu

Zakeiny norms we get

INK
,

CoD to = IN
Kw ,

Hu

=D talusIthtchoia
of normalizations

So

noetvaeae
,

' " he =

Ivana
,

"
w

-

- Fun 1M¥ . she t rs

t seria

we have
proven the result for Q

.



④

4) ft eights over a number field

Definition
Let V a projective algebraic set

and let ol : v → PE be a morphism
For

any
ve Vall K )

,
we fisc

H -

Ho : Knott  → IR
> o

such that
Nen

Ct ) tf x E Kv
,

HK the = o ⇐ x = o

( ii ) I Xe Ku
,

t  x c- Kun
"

H x x Ha = I the the the

Ciii ) as If v is ultra metric

tix
, y

e Kunti
, Katy Ho S masc Cll all

u
, Ily Hu )

b) Sf v is real

t x
, y

c- Kun
"

llxty Has Hallo t Hythe

as Sf v is complex
it x

, y
c- Kun

"

Hat

yllnkEllxliuktllylloY2@0es-aythae-ll.l

he is a re -
adic noun on KY

"

)
.

Moreover we assume that for all - a Val Ck )

except in a finite set

11 Glo
,

-

, xn ) Hv = IEEE n
I Kil

r
.

Then for any
x a V Ck )

,

its
exponential height

is given by
H Cx ) = IT 11 Cao

,
-

,
xn ) Hr

if
VE Val Ck )

¢ Cx ) = Exo :  
- : xn7 with Gio

,
-

, an ) E kN
+1

The
corresponding logarithmic height is given by

h Cx ) =

log
C HC xD

.



④

Remark

a) Well defined :

* outside a finite set of places
11 Coco

,
- pin ) the =

zzq.sa.cn @ai In )
and if x i

 

t o

,

so c- Valek ) I lxilu # 13 is finite
so f v E Val Ck ) I 11 Coco

,
-

, an ) Hu €13 is finite .

* if to Cx ) = C go :  - :

yn
]

there exists t E K
't

,
such that ( go ,

-

, yn
) = X Coco

, > xn
)

Then

Ie
rack ,

" ( Yo
.

-

I Y NN r
=

track
,

H t Geo
,

-

, kn ) the

= fetaI 't ) Iaea
,

" " Grand !

= IT

By the product formedI
uevaeck ,

" "
o

'
-

-
' '

n Nv

BS Tf K = a and

11 Coco
,

-

, xn ) Hp = more ( tail
p

) for any
PEP

then
OE  is N

Geo
,

-

,
an ) is a primitive element in IN

't

which
gives god Cao

, -1
an ) =L

H Go
,  

-

,
Xn ) Hp = masc ( I Kit

p
)

OE iEN
So

= p

-

TEEN @pace . ) )
=

y

H ( Exo :  
- : an I ) -

-

ultra ⇐ ,

11 Go
, >

Who =
It Geo

,
- Philly .

So the definition for
number fields does

generalize
the one given for rational numbers

.

A height depends on the choice of
the

norms

but how much ?
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Proposition

If H and H
'

are heights on V associated

to a morphism d : V → Pff then there

escisds constants o a a c Cz such that

F P e V Ck )
,

C.HCP ) f H' Cp ) E Cz HCP )

In other words
,

I hcx ) - h
'

GDI is bounded
.

Lemma

For
any

we Val Ck ) the projective space

Pnc Ku ) is compact

Proof
•

St is separated .

•
Take k Coco

,
- Pln ) Ho >

tone?En
tail

u

Then if P = Coco :  - : an ] E Pnc Kv )

take to such that Hi
.

I
=

nozq.fm kilo

P -

- C 3¥ :  
- : '÷i .

with HH÷ . → E.)hitGn other words

{ y
e Kun

"

I
Hythe

-

- 17 → lpnckv )

is surjective ,

it is also continuous as restriction

of continuous function
But {

y
c- Kun

"
I 11

y the -

- I 's
gone

,

{ ye
ki

"

I

llylhef
17

But

ee
!YE

Kun
"

I by the 13 = { ye Kelly lose y
" t

{ YE Ku I lying , y = §
[ 913 if visual

{ z c- El Klee } f re is complex

Gv if vis ultra metric



④

closed

Gf v is ultra - metric Gv I

tem 6k 1pm CHI pn D

Henbane
Fonyaa -

compact by Tycho  no ee 's them
.

Proof of the proposition

Say that H is defined leg
a family ④. Hu) uevaeae ,

and fi '

by C 4 . Nu )
see vaeax ,

Then for any place v of K
,

we

may define

"j! : Pnc Kv ) → IR
, o

[
go

:  
- : yn ] 1- HCbo,=Yn

" (go
,

-

, yn Nu

since the quotient does not defend on the choice

of homogeneous coordinates
.

This function is continuous since the composite

IKI
'

- Eos → McKee ) → R
> o

is
. Therefore it admits a maximum and

a minimum Wich gives Oscars Can such that

t
y

Elk !
" gully Hvs Hyuka

,
o Ily he

but h . the -

-

H . Hu for all u outside a finite set

so we

may
take

Cen .

= Cz
,

,

=L outside this

finite set and put

Cn =

rfetuoeae
,

Cr
,

v
and Cz = IIe ye

30
i B

Gf course it also
depends on the choice of the

morphism to and this leads to heights the

quotients of which are Not bounded
.

9 am

going
to describe a particular case



④

Proposition
Let f :

Prem
→

PI
be a morphism defined

by
f (Exo :  

- : x m2 ) = (Po Cao
,  -

, am ) i - : Pm Coco
,

- id m
) ]

where Po
,

-

,
Pn E K Exo

,  
- ,

Xm ] are homogeneous

polynomials of degree de
;

let lo : v → PTA

me a morphism of ol
algebraic

sets
,

let ④' Hu )
veneer ,

( resp
( H . U 're ) ) be a family of U - adic moms

ve Voe Ck )

for km
"

C rosy . Kmt
' ) and let H and H

'

be the

corresponding heights then there escort constants OCGCE

such that
H' C x )

t x c- VCK )
G SEdSG

Proof

By
the last proposition we

may
assume that

H C go ,
-

, Ym ) Hu = more I ye
Kiam

tu
and u @or , Ym ) Yu =  

TEEN
I Yih

Gf P = few man I
't

C- Kcxo
, > Xm I

we

write
-

UP It
•

= masc

Note that
I c- am

I A
'

to
H Mlu S1 for almost all ve Val Ck )

( which means outside a finite set )
.

Since Piishomogeneous of degree d

Pi  

= I Aa

Igi  =D
-

II Xii

and thus f I if v archimedean
d

I Pe.

Cyo
,  

-

if
m

) to

Ecd
,

m
,

roll
PHU norias:L

Hila
)

E Cd
,

m ,

all
Phullcyo ,  

-
,Ym ) Hd

so we get H' Cx ) s
am

!!
Phu ) Hla )

"
-



⑤

Let us none prove
the lower bound

Since the Pi is define a morphism
,

we have

that

tf x = Exo :  
- : am ] E Pmc Fe )

,
( Po Cao

,
- Plm )

,
-

,
Pablo

, -7cm )) to

By Hubert 's ctullstellensay ,
this implies that

there exists N such that

Xin E Do
,

-

,
Pn ) for all e- E do

, y
m )

So we

may
route

X ! =

Qi
,

o

Po t - -
- - t Qi

,
n

Dm for ie E o
,

-

,
m }

By nailing
each

Qi
, j

 as a seem of homogeneous

polynomials ,
we see that -

we

may
assume

that Qe
,j

is homogeneous of degree N - d
.

So if we take ( yo , → ym ) e Kvm

and put Zi
= Pi Cyo ,  y Ym ) for i c- do

,  
- MY

we get ← A if re

finitely
it ! E

Cmm
,

omon
'll Qi

,

H mooch silo5%2%12 .lu )
OE GEN

it
osism

See

11 Cyo
,  

-

, ym ) lldusCu Khoo
, → 3rd he

for all v E Val Ck ) with Cv = 1 for almost
- I

all me Val CK )
.

Take a = IT Cre
.

D

VE Uae Ck )

5) Finiteness theorem

Notation

Set Pe an CE ) write P -

- [ go :  
- :

y n
]

Then Q C P ) = Q [ Yilyj ,
Os ist En

, yj
to ]

is called the field of definition of P
.



The
degree of

P is

deg CPS = [ QCD : a ]

and we defense

Hnnom Cp ) = H C
pythons : as

N

where Hn: Pnc QC PD → IR
, o

is the usual height
with KC

yo , > Yall u
=

nonages
 

nlyilu for all places u .

Remark

Sn fact if Yi .

to QCD = QC 'ty÷ , > YE?

Theorem C NORTH COTT ]

Let d E CN and B e IR
> o ; the set

{ Pe PEED I deg CP ) =D &

Hn
CP) EB )

is finite .

I over Otp )

Remark

SCH A NU Ec provides an explicit estimate

for
# { p ⇐

An
Ck ) I

Hn
CP) E BY

for any
number field Ky but the result

of NORTHCOTT is hinges ,

seria we are

considering
all the points in all number

fields of degree
d over Q2

Sketch of the poof
We wont to reduce to the case of

the

projective spree
over at

, for which the result

is known C and

easy
to prove

)
.

Tf K c Ta

g *

=

god
COT Ik ) = Aut.ae/TQ

)



④

Stone can we characterize the points in PYATT

such that deg CP ) is d ? T remind
you

that

there is on action

Ga acts on Pm

via T ( Exo :  
- : an ] ) = co ) :  

- : T C xn ) )

Gf P = Coco :  
- : an ] E Pm Ck ) for a # field K

,

( which implies QCD C K )

then Gk acts trivially on P

and therefore the cardinal of the orbit

# Ga
.

P I [ ga
-

- eyed = Ck : as

Conversely if P E Pnc E)

Let
Gp be the stabilizer of P in Ga

Then or c- Gp ⇒ a P =P ⇒ of cp ,
=

Id
acp ,

Thus Gp = Gaps -

deg CD = [ QGI : Q I = [Ga
: G If # Go .

P

So we meant to find the orbits ein IP mate )

which are of cardinal d
.

To describe that

let us consider the set of subsets of lpnof conceived

which we meant to describe as on algebraic
set More precisely
The

symmetric grown
Td acts on ④Dd

leg permuting the components
sdlpn = ④Td 18£

corresponds to d - ryles in which we forget
the

ordering

&mg£nshieIeonof quotients C ideas

tffene case X = Spec CA ) with an action of



④

a finite group
6

,
G a A

A function on the quotient
X 16 ⇐ Ann

T
/

x

corresponds to a function on X which is

G equivariant :

F r E G f Cr
-

Ya )) = f C x ,

So the 1st idea to construct the quotient
is

× go = Spec ( AG )

( b) Gf
Sd p

"

is defined as an algebraic
set

,

we have

( Sd pm CE ) )G a
= Sd pnc

then if se c- CP
' CE ) has an orbit

of cardinal d ( # Jae .

x =  d )

then this orbit is on element of

( Sd IpaCOED
Go

= Sd Pnc

We are reduced to
prove

the finiteness

for points of bounded height in Sd IPT Ca )

I
Bc ample

51107=1107x PT I @ a

4-
Ip

-

{ cue : rifeUzis } 1- [ ur Uz : U
, Vat 2h42 : Ve Oz ]

F-

homogeneous of degree
I

in Ca
,

red and Cue
, Va )

symmetric @a ,
In ) ⇒ Cuz

,
Va )



④

So we

may define
52 P1 as P2

using
the above map

Sf K la is a quadratic extension

God Kla ) =L Edie
,

r }

Sf Ca : a ] E Pt Ck ) Pta

{Cu : 03
,

Coca ) : Mrs ] } t [ circus .

.

urine) t orcas : orcas )
11

Niehaus Toye
,

raisins .

Proof C continued )

•
let us construct a morphism

④
njd

→ PN

for some N e CN
.

which is invariant

lender 8D and give
an

injective map

④VEY )gz as p NCE )

Take coordinates Xi
,j , osjsn for the ith

component of the product and define

II. Cjoxi ,
Ya ) -

-

E II. Xi
,

Xii
Gin

,
-

,
ja ) E { o

, ;n3
"

= EE
.

.ca#aQa....anCXesi)IIoYjki

Y Jd → Ipn

( cxi
,

.

:  - : see;D ) l→ (

Qhfkisi
) )

!qoki=d

* This is well defined

- Qk
.

,
-

,
km Cxisj ) is homogeneous of degree

I

in each set of variables

- if Q
a

Cole
; j

) -
- o for

all be

then III C §oxi.si Yr) in K Cto
, >

in )

which is an integral ring ,

thees one of
the terms
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has to be o

F i E Lind 's
, j€ Ki

, pYj=o

that is ( X
i

,
o , → Xe

,
n

) =o & absurd

since C
Xiao ,

-

, Xi
,

n
) are homogeneous

Coordinates

* invariant under the permutation of

components in ④Dd
.

so it induces a map

UT ( IP
n

CED
"

Igo,
→ PN CE )

* This
map is

erijcdeveiGfNTCCxisjD-TC@i.jDS.o

there esaslt I C- K * suck that

iii. Ego Kini Yi ) = III. Eg.  
⇒

Yi
,
.jYj)

Since OT C To
,

- in ] is factorial ,
there esa's G

re Td and are , -

,
to ) E ¥

d
such that

FE airY
j

 
= di CIF.

Y j Yi ) for i e See
,

- ed }

thus C Xi
,

o
:  -

'

- Xi
,

n
] =

Eggers
,

o

'

.
 

- :

foci , n

] for i Edt - in

and [ sci
, j

I = Eye.

,j
I in In CEM Hd

* Let us assume that p E P
"

CE )

such that # ga .
P d

let CP ] be the point of 4pm d defined

by the subset G on
.

P = { TCP } re ga 3

then for any g
E Ga

S ( go . P ) = gap

therefore
s ④C CPT ) ) =NTCp )

We
get

that

rt Ccp ] ) ⇐ pin (E)
GQ

-
- PNC )

.



④

Now let us describe the height .

Assume sci
, y

E K
,

for any
C je ,

-

, jd ) e to ,
- in

yd
,

and
any

v c- Vol Ck )

III.Kisii 1£II Hexi
,

o ,  
- exe;nNv

So we get

H¥T(
crisis ) ) E CIII

.

Hpyffxi
,

.

:  - : xi.is )

But if re ga and Coco :  - : an ] c- P
"

Cot )

H
mom

C Coco :  
- i. an ] ) = tf

norm

( T [ Xo :  
- : kn ] )

( Reminder Hnom ( Coco :  
- : xn 3) = Hn ( Coco :  

- ix

" G "

)

So Ifdeg CP ) =D and Kris the galois closure of QCD
norm

HIT
CCPT ) ) = HNCVTCEPI) ) = Hk C Fap ] ) )¥ . as

E c
'

( II. H C p ) )
as

K

E C
'

Hk Cp ,
Etta

& C
'

Ha
, p ,

C P )

We can none conclude the proof

# Ep ECP
"

(E) I deg CP ) =D & H ( P) EB 3

Ed# { Q E lP%⇒ I Hn CQ)I C
' B ) L t b

.

B



④

I Nordell - Weil theorem

Set us now apply this to elliptic curves

y
Naive height on elliptic curve

Wai 've height
Let K be a number field
and let

E : Y
'

= X
3

t a X t b

be an elliptic curve over K

We define amorphism
¢

,

e E Ck ) → IPL
[ t : x :

y
] t > [ t : x 3 if P t Co : o : 17

[ t : x :

g
Its Coat at

'

: y
2- be ] where this is defined

well - defined since t(y2- b t
'

) = x ( x
-

+ a
E )

we define Hx as
the height defined by lose

and u Cx
,

e) the nose ( IxIn
,

IH
u ) for re c- Val C K )

.

ha = beg o H
x

Theorem

The map

C C K ) x Cc K ) → IR

( P

,

Q ) to h
.

Cpt Q ) the CP - Q ) - 2h
,

Cp) - 2h.ca)

is bounded
.

Remark

This should remind
you of the parallelogram

equality
Sn a euclidean space

11 It FIT t Hei - F IR - 2 Tulf- 24 Elf =o



④

A

B Act BDI 2 AfBlt Bc
'

)

D

c

0

-Proof
c , a × Eh →MECan : oil Cuz : 027 ) A ca

. Uz :UNIV, uz : Vibe

claim

HMO
CP

,
Q )) I Ho .

C D H
.

CQ ) is bounded

and thus

that
CP ,

ah
- he CD thx CQ ) I is bounded

Proof
-

H Col CP
,

Q ) ) E CHA ) Hca ) by definition
-

Let us from the converse

route
yo

= U
,

92
, y ,

= Ur Vat Vr Us
, Ya = Vik

then

uiaz = Ue Ue Yo

U TVE = Ur Vz yr
- N1 Vz Yo

vie UP =

Vicky y

- Ur 4283

VIVE = Vg Nz Yes

so

mesclun ,hmu )
'

more Clue ↳Yal a )
'

= nose C laid aihe
, Miao

,

I with In
,

I Vivi he )

s Cv mad I
go hity , fly.lu) more C I Unlv

,

I Velu ) mac Clair
,

Hal )
← 1 if u finite

which implies
C

'

H Cp ) H CQ ) f H Clo CP
,

Q ) )
.
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Gm the other hand we have a morphism

Y : CXC → Cxc

C P
,

Q ) 1-7 Cpt Q
,

P - Q )

Let
us none consider the diagram

U
Cx c - Cxc

d. ex t dxxdx

¢;
: xD

,
Cfa : x P1 PT xp

'

I It#ItC tats: tixztx
.

tix p
-

-
-

:
- → Ipa

Let us construct IT

• Sf P = [ I : ou :

y ,

3
,

Q =

a
: oh :

ya ]

Pt Q =
Fl

: 313 ? y ,
]

,
Q = [ 9 : 24 : Ga ?

and assume P -4 Q and P I - a ( PQ ) : Y =p Xx q

p =

82-82
X

z
= P2 - X

,
- 312Similarly- an

3

Pu
= %I Xc

.

= PE -

kn
- Xa

x
s

t Kc
,

=

PstPc? - 2 @a
the )

=

'

z Yit9z2_CXz→GJpqtx#
Ckz

- xn )
2

=

zxitxz
+ a C Ketola ) t2b - Gee xD Girish)

( Xa -

xp⇒⑦rt XD C at In XD-12 b

⑦it
2

- 4 04 Xz

This is given by symmetric polynomials



⑨

Similarly
Xz Kc

,
= @32 - 74

- as ) ( p f - x
,

-

Xz )

=
@ftp.CK-xdfxa-xaf/-4yiyE-

( Xi - Xz ) 4

=

( XP exist

acxrtxdtzb-cxitxajcxn-xzff-lfxft-ax.is

) (

xitaxztb
)

( x
,

- xz )
4

=
( Xn

-

Xz )
4€

-XD ( Kat XI - 2174+363644223

tablet
K ) -12

b)
t ki

txixetxzta
)

2

)

( xn -

Ke ) 4

=

KixE-2aoqxa-4b+fCoin -

He )
-

=
foroh - at- G b Csu toss

-

( Ketola )
2

- 4 X
, oh

Gn define't done

he : PE→PI

[ so :S ?

sBl-GE4szsoi2ECaSotSft4bsoi@easoEabs.s

homogeneous of degree 2
.

Well defined
a

Tf Sid - 4 Sz So = Se C a

Sot
Salt2b So = @

z

- a so )
-

- Le b SoSz=oGf So = o then 92=52--0

therefore So  = S
,

= See =  o

otherwise feet x -

-sees
.

then

x
a

= ÷ leg the first equation
and

Cxa
- a )

'

- 8 b x =  o and 4 ( x
'

t a xtb ) = o



④

so god {
X

"
- 2

a X
'

- Pbx tag XB tax t b )

¥1
god

- 3 a X

-

- 9 b X t a
-

,
X Ia X t b ) f- L

R C - 3 a X
2

- g b X t a
-

,

X 3-1 a Xt b ) = o

I

:÷÷÷÷÷÷÷ii÷÷÷÷÷÷i

=

142g:} Is:b;7%21--16
as + 729b

't
- e

08AM
1-

108ftC- 1080352 t 108 a
3 b

'

= &a 3+27 b )
-

t o !

By the previous computation we have a

commutate 've

diagramU
Cx c - Cxc

c p
, a) I → C Pt 9 P - Q )

I ¢
,

x 4
x4.

 aol.tv
v

IP
'
Nph IP

'
x Ipl

St Is

pz IPZ

( still line if OE de B Q
,

Pt Q
,

P - Q }

also follows from like fad .

- that
.

-

Cxc is irreducible )

and
, by the proposition ,

seen last time

I k GF Cp ) ) - 2h CPH is bounded

But ht a)EPYK 32 1h CSCBQ ) ) - hcp ) - heel

is bounded as well C of . proof of Northcott theorem )

So

I

HEP
to ) t

h€p
- Q ) - 2

HEP
) - 2h

!
ODI

is bounded IT



④

Remark

In particular
1h

.
C 2 P ) - 4 h

. .
CPH

is bounded

2) NE row
- TATE height

Definition
Let E be an elliptic curve over a number field

K

For
any

P E ECK } the
sequence h.de?nP)- converges

and the N Eron - TATE height of P is defined as

hut C P ) = bin ha Cz n

p )

n → to 4T

Proof
if

up
, g e W and p Eg

theyre
-

h.cz:7/EaEi1hxEEPsIa.k.ak#/
9 - n

E E c-

frereiousremffh
k =P 4kt

Ekes
h

. .

Gap
,

⇐ ECF - ÷ )

Y
is a CAUCHY

sequence
and

converges .

D

Proposition I
f

really equals !

F B Q EE Ck ) hw
,

Cpt Q ) thntcp -

Q ) = 2 ( hntcp) thatQD

Proof
By the previous proposition .

there exists a constant C

1h.ec Pta ) th
,

( P - Q ) - 2 @. th
.
CQD Icc



④

we apply to 2
"

P and In Q we get
1h

,

GYPtabth.cczncp-o-D-zch.GM-h.dznad Kc
and so

I h.ca?yntaD-+hxG-?fP-eD--zfiIY-nDthI7nIDkEn

Taking
the limit as n → to gives the wonted

formula .
B

Proposition 2

The
snap

CCK ) x Cck ) → IR
, o

C P
,

Q ) ↳ < p
,

Q >
n ,

=

hat ( Pt Q ) - hntfp) - hnfQ )

is symmetric & 21 - bilinear
.

2

Proof
St is symmetric .

flame to compute , for B Q
,

R EE Ck )2KP
,

Q -1 RS - sp
,

Q > - sp
,

R > )

=
hat C Pt QTR ) -

¥
) - hat Cat R )

- hut C Pt Q ) t

h#
t h NTCQ )

- hat C Pt k ) + h NTCP) - htt Coe )

=

Ich
put

CP to  t R ) t hour C Pt Q - R ) - 2hm C Pta ) - 2hm.

CR )

- hint C Pt a - R
. ) - Ant CP - Q - R )

-12 hat ( P - R )

-12hm
-

CQ )

+ hour C P - Q - R ) thatCP t QTR ) -2hm
Car ) - 2h

at

A )

-
2h Ntc Pt R ) - 2 hint C P - R ) + k hut C P) the hour CRD

= O . D



④

Remarks
a) Let E be a normed vector space

the norm a . It on E is euclidean

if and only if it satisfies the forollebegrom
equality :

KITTY
'

t Ilie
'

- I tf
- 2 Hutt -24 FIR = o

for any
ie

,
I EE .

b) this implies that hat defines a bilinear

symmetric form
on the real vector

space

ECK )
, ,z

= ECK ) ④
z

IR

Prof 3

For
any

real number B EIR

ECK
)hn

,
⇐ B

=L PEE Ck ) I hntcp ) EBY

is finite :

Gemma

thx - hav .

I is bounded

Proof of the lemma

Recall that there exists C such that

lh.cc2B - G he
.

CBI cc

£

1h
.

-

h.EE#fsa.Ei/h.d2:I-h.k.::D/

E C £! ÷ C to - B



④

Proof of the proposition
See -

C be such that

t PEE CK ) I h.cc - halal E C

then for any B ER

{ PEE CK ) I hntcp ) EB } C { P E- ECK ) th .dDE Btc )

Bat if BQ c- ECK ) satisfy 4×01=4,10-1
then QE { - P

,
PT

.

{ PE ECK ) 1h NCP) s BY S2 # { PEP
'

Ck ) 1h E Btc }

< to By Northcott theorem D

Prop 4

PE ECK )
ears

⇐ hour CP) =o

Proof
By proposition 2

,

hat C NP ) = N
-

hntcp )

⇒ ) If PEE Ck )
toss

Then { NP
,

NEIN ) is finite
⇒ { NZHNTCP)

,
New Y is

'

finite
⇒ hat CPJ = O .

⇒ if hntcpto
Then t New hard Np ) -0

So { NP
,

NEW ) c { PE ECE ) that CP ) -03

which is finite leg poyosicioi 4

so
PEE C K )

tons

Corollary
ECE )

toes
is finite



④

Proof
to we have finest seen

E CK )
toy

I { P E ECHL h
Nt

(D) =D is finite .
D

Remark ( Reminder )

Choosing a morphism r : K → a

E C K )
e- as

CEC
tons

and therefore there exist Cdn
,

da ) c- IN
,

did z

beech that

E- Ck ) -5 2%42 X 2%124 .
D

3) Proof of Moro Ecc -
W Ell theorem for elliptic curves

Theorem C Reminder )

Sf E is an elliptic curve over a number field K

then ECK ) is finitely generated

Proof

Already seen :

ECK ) be is finite
Let Pr

,
-

,
Pm EE Ck ) be such that their classes

&
R 3

,
-

,
[ Pm ] ) = E Ck ) 12

and let B = masc

We put
is e. ⇐ m

h
Nt

C Pi )

S = I P E E CK ) I lent CP) I BY

it is a finite set

Gt is enough to prove that S
generates

Eckl
.

Let us assume that it is not the case

and let P be on element of E Ck ) - < s > of minimal height



④

( it exists since F BER { PEECK ) I knit ) EBY is

finite ) .

By definition of the Pi
,

there exist ie Le
, any

such that

[ PERI in ECKXZ

Then P - Pi E 2 ECK ) and Pt Pi C- ZECK )

write @- Pi ) = 2 Q and @+ Pi ) =D R

we have hnt C P -

Pi ) th
Nt

C Pt Pi ) = 2h CP) t 2h ( Pi)

( Since P of as z
p ¢ s y

<

4h03
But 2h CQ ) -12 her ) L 4 hcp )

So free ) < HCA or
her ) Chc P )

So Q Ess > or RE CD

But P = Pi -12 Q =
- Pi  t ZR

So PECS > contradiction § .

B

LD NERON 's theorem

Notations

Let E be an elliptic anne over

a number field
K.in

Wee es STR A B form
Let hut be the NERON

- TATE height on ECK )

t Int  = escp oh
NT

or -

- ok Ck ) ) =
dein

*
( FCK )

,R )
To = # ECK )

ears

D= det ( Sti
, Rj >

out
) where the

⇐ , ⇐ a

is a basis of the Wmo dull ECKJIECK)
too



④

Remark

We have seen that
, by MOR DE  cc -

Weil 's theorem

E Ck ) I
21/4,2×2%122 ,

XZT

with d
,

Ida
and

w = da de
.

Theorem C NE Ron )

*

ok
no

# ECK ) ~ - -

H Nts B B - Sto r ⇐* Y of
log (B)

%

Remark

Remember that for the projective space

# M CMHers ¥ . k{B!fn⇒ B
" '

See there are much less points on a elliptic

awe
.

This can be explained by the exponential

growth of the heights of points
Hn

,

C N P ) = Hntcpjt
Let me now prove the theorem

.

Note that

we have to prove
that DFO Cthe form is non -

degenerate
)

Lemma

There exists a unique
bilinear form L

,
>

on ECK )
uz

such that

L P ④ A ,Q④t > = LP
,

Q >
Nt

for any
B Q EE Ck ) and this form

is a scalar product C definite positive )

Proof
We have already seen

that

L
,

>
Nt

is symmetric and Z - bilinear on ECK )



④

Existence

Gf P EE Ck ) and QEECK ) tons

then let N > I be such that NQ=o

we get
< P

,
Q > = IN LP

,
N 05=0

So the torsion point are in the kernel
of

the bilinear form which means it factors

through the quotient

gives L
,

> :@Ck ) # Ck)tos% R

IS

zr

This extends to ECK ) ①z
R = IR

'

with

L P ④ X
,

Q ④ µ > = Xp LBQ >

Uni city
The P ④ I for PE ECK ) generates

the

vector space ECK )
,r

.

positivity
We none that

Y B E IR
,

ECK )

hints B
isfinite

and

hw
,

C NP ) = NZ

hat
Cp )

So tf P E ECK ) hut CP ) 30

any
element in ECK )①zQ might be

norite en as f- ( P ④ t ) with PE E CK ) and b E Elis

so tf x E ECK )
,

< x
,

x > 30

Since ECK )
←

is dense in E Ck )
we get

that

the bilinear form is positive .



④

definite C which is the tricky point )

Let x = §
a

Vi ④ ki be such that Cape > = o

then
.

L x et
g , xtbg > = 2 tea

, g > t t
'

Sy , y
>

if cx.gs to this takes negate make wolves

for small values of t
.

So x is in the kernel
of the bilinear form .

Let IT ECK )*→ECK ) R / Roc
be the projection

Then L
,

> factors through

sp
< x

, y > =

LIGHT
Cg ) >

But { PEECK) I Pole Rx ) c f PE ECK ) I hntcp) = o )

is finite

so E Ck ) I Ect ,
row

→ E
IR

. ftp.c
P c- IT C P ④ t )

is injective
,

its image is a Z module of rank r

> dim C Eckler I R ,)=r. t
;

it is dense !

But

hw
=

⇐
( p ⑤ 1)

ICP
I ) >

We
get { PEECK) I An

,
CP ) E 13 is infinite & .

D

Remark

Gn particular A # O .

End of the proof
So put A = { P ④ I

,
PEECK ) ) lattice in ECK )

R

ECK ) Hn
,

s B
= no # {PEN I Lp

,

P >slag
CB) Y

IEofoeBEnY-w@gc.s'T .
.



④

5) Upper bound for the rank in a particular case

Let us assume that

E : 42T  
= CX- aTIX - BT ) Cx -

8T ) with
qp ,

Jez
D= Ca - BIP-Her - 25

Day the poof of the weak Moro Ecc
- Wee L theorem

2- +2£# ECM I # kerf a
→ Ig 24225

IS

{ I 1) xptQ.pk/22
Conclusion Endive upper

bound )

k S2# { PEP I p I @- B) Cp - 8) Ct - MY

Notation
Let a

,
be the number of pep dividing exactly

one of @- p )
,

@- r )
,

Cr - L )

U2 be the number of pep dividing all three of them

Theorem

ok
s art

2
az

- I

Proof
We

may
assume a a p If

E CQ ) k → { I 15 X

pit 412215

a. a. SEE
0*10*2

If [ I : x : y ] E E CoD

x - a > x - B > x - 8

C x - d) Ca -

p ) C x - 8) is a
square ;
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so x - 230 so
Sgm o Ya

=L

If p divides only one of a -

p
,

p - D8
- a

,

say x-p ;
then if

KEI@
By

Op Cx - d) t Vpcx
- B ) tVpcx

- r ) is even

Sf Vp Cx - as co 3 Up Cx - L ) Is even ⇒ Up
Cx - x )

.

is

Ff Npcsc
- x ) > o then Up Cx -

B ) > o

and Npcsc
- t ) -

-
o

and Up Cx - a ) t Up Ix - p ) is even

Sf up la - a) =o then Ap ( x -

p )=o

and Up Ix a) triply - B ) is even

off a =L
,

Np(9a(
P ) ) = Up - B) Ca - t ) ) = vpcx - p )

in all cases
= Up (Yp Cp ) )

↳ Cbcp ) )
, OPHIR ) E 2%611 ) D

Example

Y
'

Te XCX - Datt )

A =
22

a
,

= A
,

92 = 0

So a f l - I  =o

Thus

E- Cod is finite .

Remark

This upper
bound is far from optimal !



⑨

VI Picard
group

and Jacobins

1) Function field of curves

Definition
Let K be a field and let C be an algebraic

curve in PIE defined by an irreducible

homogeneous polynomial
F E K CT

,
x

,
Y ] with T tf

Then the function field of C is the field
KCC ) = Fr

CK
EX

,
43

ICF
a

,
X

,
Y

D)
For this definition to make sense ,

we have to check that

Fll
,X,Y ) is irreducible , Tf F -

- T we
may permute the variables

Reminder

If P E k Cx
,

43
deg C D=  d

F -

- T
"

PCE
,

It ) homogeneous of degree
d

Note that TQ
=

5 E

Remarksas Sf deg CFa
,

X
,

Y ) ) a deg CF ) then T I F

and this contradicts the fact that deg (F) 32 and

F is irreducible

b) F Cl
,

X
,

Y ) is irreducible as well

otherwise we

may
route

F H
,

X
,

4 ) = Q C X
,

Y ) R C X
,

Y ) with

de

CF
Cl

,
X

,
4 ) ) = deg Cott deg IRj

q
-

- deg 131,r=deg CR ) > I

Thus ER = I I F CT
,

x
,

y )

contradicts the face - that P is irreducible

Therefore KCXID

IF
Cb X. Y ) is integral



③

c) If deg
,

Cece

,
X

,
xD > o

Then

Fa
,

X
,

Y ) is irreducible in K CX ) CY ]

and

Kcc ) is isomorphic to

KCXJCYIKF

xD

d) We could do the same with the zeoreubles

X or Y C if X t Fond Y tf )

Er CKIT

,X3/c*
,

×
,

n , ,
) I Er Ck CAY ] /

Cece
, x. xD )

T 1- Ly
x i - ¥

PCT
,

X
,

1)I - PCF , Ey ,
1) = Iya PG

,
X

,
Y ) -

- o

e) The transcendence degree of Kcc ) over

K is one by the remark c) C we
may

have to

exchange
X and Y if necessary

to apply it )
.

f)

We
keep the notations of the definition

Let 4 c- Moe Cc
,

Pfe ) be such that

4 is not the constant morphism with value a = Co : 13

Then 4 is defined by pairs C Di
,

Ni

!  ⇐
of homogeneous

polynomials of deg do in K CT
, A YI and D

it 0

for all i E he
,

-

,
a 3 .

Moreover for any
i

, j e d 1
, T

D

F I Di Nj
- Ni Dj

therefore -

N =NiHe in Kcc ) = Er ( KG 'D

IF
a,x ,

xD
Dice ,

X
,

x ) Dj Ca
,

X
,

Y )

Gf 2 morphisms 9 and 9
' have the same image

We
get

FU
,

x
,

y ) IN:C444 )DjCITY ) - D ! C BX
,

4) Nj Ctx,
Y )

and therefore ,
as before

F IN ! Dj - D
'

i Nj
,



④

So [ Di
'

C t
,

x
, y ) : Ni ( tix , g

) ] = [ Dj Ct
, x. g) i

. No Ctpsyt ]

whenever these point are defined .

In other words 4=4
'

-

Conversely if f -

-

Nix
E k Ce )

CX
,

Y )
then let D= masc ( deg CM , Eeg

CD ) )

We
may

consider DCT,
x

,
43 = Td NCE, ¥ ) ACT

, x.
' D= Td

DCF
,
¥)

and the
map

[ e-  

: a : yes → [ Dct
,

x
, g

) : NC tix
, y ) ]

defined where CDCt
,

x
, y )

,
NC tix , g

) ) t €03

Come con ashore that this extends to C

and defines a morphism
Q : C → life

Conclusion

One com see K Cc ) as the set Mos Cc
,

Me ) - Eos

where a denotes the constant morphism C → Pfe
.

Ct :  x : g) 1- > [ Oil ]

There are

very strong analogies between

number fields and function fields of curves
.

Remark

Sf N
,

D E K [ DX ,
Y ] are homogeneous

of some degree
de

,

with D to
j then

the quotient
NCT ,

X
,

Y )
-

-

defines
Dain"Bement

in Kcc ) (namely NC )
D Ce

,
X

,
'D

Examplesa)For PII projective
line in PZ

C :  a Ttb Xt a Y =  o with Cb
,

c ) # 10,4
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If c to

gives For @CAY 3 /
ca  + b * ay , ) Is Ee Ck

CXI
) I KC Y )

b)
For a conic

Crvith
a rate

-

once point
seen as exercise

KCT ) I K Cc )

c) For an elliptic curve E

Kcc ) I Er ( K Cx ) I ( ya - Xss - ax - b ) )

quadratic extension of KC X )
.

Remark

Thinkingof f c- K Cc ) as a morphism f : C - s P'
k

means that for any field extension L
of K

f defines a map

f : CCL ) → L U { as

2) Analogy with number fields

Convention

Fn the rest of
this chapter ,

we assume that

K is algebraically closed in KCC ) C that is

any
element in Kcc ) which is algebraic over

K comes from K )

NB
.

We can

always
reduce to that case by refacing

K
by

its algebraic closure in K Cc )
.
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Definition
Val Ck Cc ) Ik ) is the set of non - trivial places

in Kcc ) with a trivial restriction to K

Example

Cake C = P1 ( given by Y = O in PE )

Then K Cc ) I KCX) field of
rational functions

in one variable
.

We have seen that

Any monic irreducible polynomial

Pin
kcx 3

defines a place by

INDI
p

= exp C Vp CD ) -

Up
CN ) ) if N to

{
o otherwise

and there is a place at u 'T
given by

I Ng )
; {

exp C deg CN) - deg CD) ) if N to

° otherwise

all places in Val C K CHIK ) is the class of exactly
one of theres

.

Indeed I
. I c- Val CK CHI k ) is ultra - metric :

txt y in = 1£
.

( nai)xkgm
- k

I

f

na
Moe C lxl

, ly I In
So lat

y I s
In" m

max Cbd
, lyl) and m

" m
-

- exp C looming )m⇒¥

Gf HI > I then if P = Is ai Xi with ad to

test
.

ai Xi I = lxld

and we

get
1%1=41×1%0

) - dead "

if N
-

- o I
. I u I . to

0 otherwise



1570

otherwise I N E I

and K EXT C { Q E k CX ) I lat s t }

let p = {

PEK
Cx ] I I P KEY

p t Co ) otherwise I . I is the trivial absolute value .

Indeed if
I Q1 =L for Q C- KUT - Loy

,

let = A for FE KHE
.

and
p is a prime ideal to there exists a unique

P
e 9k such that p = CP)

,
and I . I N I . I

p .

since
any

F C- KC
*

may
be written as

F  
= UIT p

Up CF )

p ES
k

where Tk is the set
of

monic irreducible

polynomials
in K CT ]

Reference about basic properties of
absolute values

LANG Algebra ,
Sp Reno ER Verlag .

Prop

Gf K -

-
E is algebraically closed and C is smooth over

I
then there is a unique bijection

Val

CKIt)cat)

such that
if I . I corresponds to the point P eat )

{ f E Ecc) I Ifk 13 corresponds to the morphisms
4 : C → Pfa such that 4 Cp ) = [ 1:03

.

Sketch
of proof

-

-

•
Since K Cc ) is a finite extension of KCT )

any
absolute value is ultra metric



⑧

•
At least one of

the
following is true

Ci ) IF 1st and 1¥ It 1 where these quotients are seen in Kk)

⇐IE let and THE t

Ciii ) IE,
let and Kyle t

( Smoked if 1¥ I > t and 1¥I > a then IF I et and I ¥121 )

By permuting
the coordinates

,
we

may
assume that

KENJI pie
, xp , ,

a 6 -

- E f E Kcc )
,

I f I E I y

P = { f e K Cx is

safe
,

×
,

y , ,
I Ifl

CAT
mime ideal t Co )

• HILBERT 's Nelllstellensalz ( or rather one of the

statements I used in its proof )

there exists x
, g

E K with Pcl
,

a
, y

) =  o such that

ps c C XI
,

YT ) = me maximal ideal

P -

- Cl : x : y
] e CCK )

. By a theorem of
commutative algebra about dimensions

any non
zero prime ideal is maximal

M =p and { f E E Cc ) I Ifl Lt 3 =L f EE cc ) I fcp ) = a :o)

. Conversely if PECK )

G -

- L f e K Cd I f CP ) t x ) is a subring
with maximal ideal Me = { fee K Cc ) I f CP ) =  OY

Up to a permutation of the coordinates we
may

assume

P -
- [ a : x :

y
]

; m = (XI , Fy )

Since C is smooth at P
,

XI or YT generates

the k vector
space

M Im
-

( the equation of the tangent belongs to m2 )

We get that me = 6 it

By a result of
commutative algebra this implies

that the map no : A - Eos → IN
givin by

V ( f ) = masc L n e IN I f c- Mn )

extends in a valuation of K which defines



⑨

an absolute value 1.1 on K
.

Drawing

BERNOULLI 's lemniscate

t
singular corresponds to 2 absolute

T values

A
pie

:&
3 absolute values

Definition
Sf C is a smooth plane curve in PZK

then the set of closed point of C is

C
co ,

=
Val C K Cc ) I k )

For
any

Pe Ceo
,

there exists a unique surjective valuation

V : K Cc )
"

→ 21

such that P Pisthe class of the absolute value defined byvp
Let Gp = L f e K Cd I Up (f) 303

and
Mp = { f E K Cc ) I

Vp I f ) 703

then the residue field at p is

KC p ) = Gp IM
p

It is a finite extension of K and
deg

( p ) = C KCP ) : k ]

Remark

from the point of view of schemes

A closed points of a scheme X is a point such that -

{ PJ is closed
.
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Example

For C = life
,

if

P is the class of lily then KC P ) = K deg Cp ) =L

if P is
deferred

leg BE 9k then KCP ) = Keske )
and

deg
CP ) -

-

deg
C E )

.

* Sf K -

-
I

KCP ) -

-
K and deg

CP) -

- I for any
P

* In
general

{ P E Cco ,
I

deg
Cp ) = 13 ⇐ CCK )

* Exercise Gf K is perfect

Cco
, corresponds to the orbits of Gal C Elk )

in CCE ) and the degree is the cardinal of the orbit
.

Normalization of the absolute value

Sf P E Go
, ,

I flp= exp C - deg (P) Op I f ) ) if f to

{
o otherwise

Product formula

V
f e KEE pet

.

If Ip =L

The
proof is

quite
similar to the number

field case

Idea of
the proof C without the details )

* Gf C = PI ,
K Cd = KCT )

write f E Kcc # as a IT pop
(b)

PE 9k

then
deg Cf ) =

p&g
,

Up (f) deg CP )

the

I fly = exp ( Spg
. g.

Vp If ) veg
CPD

and
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pttg
, .

I Pl
= exp C - ⇐ grip

(f) deg Cp) )

( see the proof for a )

* Gn general Kcc ) is a finite extension of KCT )

and
using

the norm N
Kcc , µ

we reduce to

the previous case
.

Gt her expression

Taking the logarithm this formula might be

rosettes as

tf EK Cot
, Epeqo

,

op ( f ) deg
CP) = o

.

*

Remark

BERKOVICH 's
space : the points are absolute

values on a

ring
A

.

←

3) Divisors
,

Picard
group

Remember

Gf K -

-

I and C = Pfe
,

9 introduced the
group

Dire C Pfe ) =
ZC PEED

with a degree map deg
.

.
Did life ) → 2

We are

going
to

generalize this

Definition
For a smooth irreducible plane curve

C in IRK

( with K algebraically closed in KCC ) )
,

The divisor

group of C is defined as

( c
dosed points of C

Dire Cc ) = Z

An element of Dio co is denoted
by p%↳npP



④

The degree morphism
deg i Dine Cos → z

Emp P 1-

Snp deg CP )

PE Ceo , PE Go ,

and the division map

dire : Kcc )
*

→ Z

ftp.go?pCf)P
The Picard

group of C is the quotient
Pic Cc ) -

-

DivColin Cowie )

By the product formula ,
the degree map

induces a morphism of groups

deg : Poe Cc ) → Z

We define
Paco Cc ) = Her Coleg )

Bangles

a) Pfc
,

comics

Since we have that
any

REKCTE

may

uniquely be written as

R = UIT p
Vp Cf )

PES K
we

get on exact sequence

o → k
't

 → tea )
't

→ Dire CRI ) ¥2 → o

U

21 to ⑦ Z

PEG
kTherefore

deg : Die C Pfe ) → Z

is on isomorphism,
andPicchu ) -

-
do 's

.



④

b) Elliptic curves in WEIRS TRASS 's form
./K=

IT

We define a map

4 .

.

E C II ) →

Pic
C E )

P t [ P ] - - C 03

Reminder O is the unique point af intersection

of
E with the line to

•
Let B Q

,
R be three aligned pants on ECE )

and let a X t BY t at le the equation

of the corresponding leni
.

Chen

axe BY tot

T
C- Kcc )

and

dei (
a X t bye at

f- ) = Pt Q t R - 3 O

=
Pt Ot Q - o t R - 0

So 4 C p ) the Ca ) tec Rko

Moreover 9C D= o

So 0 is a morphism of group
-

• Let D E Deco C E )

We
may

norite D= p§ea⇒np&] with
§⇐a⇒np

= 0

Thus

D= I n
p ( CPT - Eos ) c- Im (e)

DE EAT )

So Eis surjective .

• If P is in the kernel of 6
,

then

[ PT - co ] = dire ( f )

for some f e IT CE ) = KC X ) I - R - ax - b )

= K Cx ) t KCXIF

Gf f -

- ND
,

then dire (f) = §Cnp CPI tC- PD with Epnp =  o



④

Sf f -

-

R
,

Cx ) t

Rex
, I with Fz to

= R Cx ) C Nicht Nd NY ) with god C Na
,

Nz) =L

we
may assume F  =L

then

{
Y =

-Nfx)INIx )

Y
'

= XZ tax tb

we find Nfx) ?-CostaXt b)NEXT
= iii. CX - di )

so dire (f) = E C Pi ] - d Co ] with d 33
i  

=L

where Pi  
= [ l : ai : Nf%, ]

Gn policed as f-he set 9 Pi
,

r si Ed Y

Contains no pairs { P
,

- P ) unless di is

a root of Mta Xt b
.

But in that case

,
we would have

CX-

hi )
-

INICX- di ) IN
,

and CX - fi ) I Nz

which contradicts god CNN
,

Nz ) =L
. . D

Conclusion

For an elliptic curve E 1k -

- E we get an

isomorphism E CE ) -9 Did CE )

So we have a description of
the Pico CE ) as

a an

algebraic space .

We wish to
generalize

that to arbitrary curves . Tn order to do that

we have to
study more precisely de divisor map

Prop
Gn general we have exact

sequences1 → KA → Kc
*

→ Dio Cc ) → Pic Cc ) → o

and

O → Pic Occ ) → Pic COEY z → o



④

Proof
The only thing to check is that

K
't

 
= Ker Caire )

But if f E KC c)
*

- K
* then f is transcendent I K

C by hypothesis ,
it is not algebraic )

So K Cf ) I KCT ) and we

may
take I . ↳ on KCT )

K CC ) fkct ) is a finite extension

we

may
extend I .

I to Kcc ) and If I > I
.

B

4) Space of sections

We keep the notations for the curve C
.

Definition
t divisor D= Snp P is

said
to be effective

if np > o for

oingo
'

Pe Go
,

.

We write D 3 o
.

Lf D c- Deir CC ) we define the space of section

of D as

Ho CC
,

GED
)) = { f e K ca

't I dire

If
)

TD
> o }

Remark

a) Gf D=
⇐

 
amp

P let us write Dt =

sp.gg
,

masc Camp ) P

and D
-

=

pqq.jmaoc.CO,

-

np ) P then D
+

once D- are

effective and D =
D

+
- D

-

b) Hok
,

GCD ) ) is a K - vector
space of finite

dimension
.

Indeed we

may
see

Kcc ) as  a finite
extension of K CT ) C by choosing any f e Kcc ) - K )

Let G be the integral closure of KET ] in Kcc )
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it is a free KEI module of finite rank and a

Dedekind ring .

Write D=

§
app,

and Dt =

Ep ntp P

Sf { PE Ceo
,

I Play coincides with Spec CG ) - Ho ) )

Let Bo E pity pm
Pt

( ideal of G )let
f c- HES odds ) then A  = Bo f e G

we then consider the condition for P to
.

£
-

Op C Bo f)

=p,§
-

op C Bo f ) deg Cos ) f Spy
CBolt Nf) deg CD

so Bo f belongs da a K subspace of G of finite dimension
.

D

Prop

Sf CD ] I @
'

] then

Ho CC
,

Go CD) ) and Ho Cs Gc Cos
' ) )

are isomorphic

Proof
Let f E K Ccs beseech that

D - D
'

= dire C f )

Then

HIS GED ) ) → Hoc
,

Cocco ) )

g
c- gf

cleric g)
xD so dire

Cg f) t D
'

-

- dire
Cg ) xD 7 0 B

Notation

ho C C
,

Gdb ) ) = dein ( Ho Cs Gcc DD

depends only on CD ] E Pick ) .

we also route

ho ( CD 3) = hog GID ) )



Eo explain the
terminology

"

space of section
"

,
s

need to introduce another point of view

5) The line bundles

Notation

We denote by It the affaire line At 're

equipped with

+ I x I → IL

( a
,

b)
↳ at

b

and the product
X : ex I → It@

,
b) tab

The points 9 I C- It Ck )

and the opposite
- I → He

a ↳
- a

All these maps are morphisms of Caffeine ) algebraic sets

and define a

"

ring
scheme

"

all the properties of

rings corresponding to commutative diagrams

Definition which 9 should have given earlier

.
t quasi - projective algebraic space

is a functor of the form

von -

- { exo :
- :X mean ask :!: alga

a:)
for any

PER A



⑧

Example

Since AE → link with image Xo to

any affine space is quasi - frojediie

Definition
.

A vector bundle E over a quasi
- projective space X

is a quasi projective space
E with a morphism

I : E  → x

and morphisms above X

+ E x #
→ E

X Ix E  → E

O X → E

- E
 → E

such that all diagrams defining allmodule

commute and there is a

covering Of X

by open
sets Ui

,
a c- IN

,
and isomorphisms

Ewe.

I
It

x Ve .

compatible with t
,

X
,

O
,

-

. r is called the rank of E

. a line bundle is a vector bundle of rank 1

Explanations

as Ex
×

E CA ) = { Cy
, g

'

) EE CAR I Tcg )
=

a- C
y

' ) }

b) morphism above X means that the

map commutes with the natural morphisms to X

eg
t : E xx E  → E commutes

⇒

fax



④

Examples

as For
any

X : K XX
,

with IT =

prz
: It xx → X

trivial line bundle ( also denoted
by Gx )

b) Cover PI :

Copy
.

G ) a P ? x ATI
' '

given by Xiyj - Xj Yi  
= o

( [ Xo :  - i xD
,

CYo
,  

-

,
Yn ))

this corresponds to the fairs ED
, y ) e Pine x III

"

such that
y

c- D C Remember that an element

in PM Ck ) is a subspace of fkn
-4

of dimension 1)
.

c) More generally over PE : let KE Z Grp
?

( k )

given leg
. k

- k

6p.lk) c PE x HTT Xi Yj
 -

Xj Yi =o if k

Lo
Gopnik ) CPI x PITI'

{

Xik
Yj

-

Xjhyi
= o if k

30
(

Yo
,

-

,
Y

n ) t Co
, →

0
)

Let
us check that is locally trivial

Ui  : Xi  to CPI

mic.
:

" IiE' 'Ii
.it?xhu;e*.is-.tcxnii7k 30 Ui xtankIs 6

pm
C k )

( Go :  
- : xD

,
T ) 1- (Exo :  

- :  xns
,

CT Xi! Xo?  
- :

Xnk ]

Nate that the charge of
charts are given by

UinUjxa7f-sUjnUixittLforanykl@xoi-ixi.i.n

:X
,

 : MT ) - ¢¥j.

. . . .  

,
.

 
.

M¥1 ,
T Xi

. he

)
d) If E  → X and F  → X are vector bundles

then E ⑦F = E xx
F is a vector bundle

of rank rk CE ) trekCF )

Remark

St is possible to defense a vector bundle E ④ F as well
.



④

es if E  → Y is a vector bundle

and f

:X
→ Y is a morphism

then E X

,

X with
free

: E xxx → X

is a vector bundle called the pull - leads

of E to X and denotedby f
't

CE )
.

Definition
* If E is a vector -

bundle over X
,

L an extension

of K and see XC c) then x
't

CE
) is a L vector

space ,

called the fibre of E at x and denoted

by Ese .

* Sf E is a vector bundle then the space

of action of a C that is the set of morphisms
s : X → E seeds that to s =Id× ) is a K - vector

space
denoted T CX

,
E ) .

Example

as The sections s E r CX
,

Ox ) are the morphisms

f : X → It ! Cathal is the functions

from X to K which are locally given

leg polynomials )
.

bs Let us consider X -
- Pak .

Watt that

Gp ! 1)
x

= K

Let
us look for the sections of G Ch )

On the charts they are given by
Ve. → the
TS

An polynomial

Si E K Ho
,

-

,
Xi

. i ,
Xie

, , →
Xn ]

K



①

The description for the charge of

draft

gives

Sj ¥. ,

-7¥
. ¥i¥ ,  

- ixsxi ,
- Any.

) -

- X-p se .Go ,
-

,
Xi

. . ,
Xiu

,
- An )

In KC Xo
,  

-

, Xm ) let us route

5g. = xjk 59¥ ,
- ¥÷ stiff ,  

- HE. )
Then ST -

- 5g .

So We
get

an element S c- KC Xo
,

-

,
Xm )

homogeneous of degree
k

But S ( Xn
,  → Xi

. ,
,

I
, Xia , →

Xn ) E Kf Xo
,

-

,
Xi

.

,
,

Xi
- in ,

-An)

for all i e Ser ,
-

, my
, therefore S E K Go

,  -9ns

Therefore
k z o or S = O

Conclusion

r CPI
,

o
. :c .kD={%EFaE%

ofautomateFaso
{ 03 otherwise

So what is the connection with the Picard
group

?

Definition
Let L be a line bundle over a smooth projective

curve C such that - K is algebraically dosed in Kcc )

Since C is covered by gene
subsets on which

L is trivial There exists S cc finite
and sectionss : U → L distinct from O

, u
.

at each point P E Go
,

true
may

choose a

trivialization of L defined on a

open
see

-

containing P

see s induces
Sp

E K Cc ) and Op ( Ip ) does not

depend on the trivialization
dire ( s ) = S

Peg ,

Vp Gp ) P



⑦

Proof

Sf we have 2 trivializations
L

I u
,

I thx It and L
, ↳

I Oz X It

at P then P E Ur due

↳Usn
Nz

= ↳ nun

js

and 4 : Vi n U2 X I I Uz n Ur x It

defines an application

f : Un n Uz → It

Q 1- fr I 4 CQ
,

17 )

which has no zeroes
C otherwise it is not on isomorphism)

and Sf = f s "p in U n Un n Vz

f extends in fo Gpt c K Cc )

gives Up ( Sf ) = Ot Up ( If )
.

B

Prop
[ dire Cs ) ] E Pic Cd does not

defend on

the choice of s .

This is called the Chem class

of
L and denoted by q

CL )
.

Proof
Sf snored Sz are 2 sections on U

,
A Uz

then salsa : Us Nz → PI

P 1- > fu :o) such that -Vk ID =us
,

CP)

extends to f :
C → IP?

and dire ( se ) = dire (b) t dire Csa ) .
B
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Remark

Tn fact , for smooth curves
,

a gives a legation

Goonsclasses of line bundles Pic Cc )

( see HARTSHORNE chapter I
.

6 )

6) The
tangent line bundle

9 have to be quite careful to define
the

tangent
line bundle

•

TI
Construction

In the affine setting
T Clan at ¥

C C A IFR
k

X FAK

FoC x
,

4) =Foch ,
X

,

Y )

six . aunt¥:!
a. → ⇒

3

= fuss .
a.

off
'

II!? Itza
,

" you -7
We have to understand the change of variables

Voc Pfe given by T # O

to On Clife - X to

4 Uo A Un → Uy A Vo

a : x : y ] l→ ft : I
'¥ ]

The differential is given by
Mae -

Cd4
.

,

D= (III. %)



⑦

T Uo C IPI x AI

given by

{
Fcl

,
x

,
Y ) =  o

3¥14 'D U
t GET ① x. x ) V -

- o

as is TV
,

C IF

{
FCT

,
1

,

Y )

II CTM
,

Y ) v t y CT
,

1
,

Y ) V
-

- o

The charge of charts is gain by
T 9 C Cr :X : 43,6 ,

u ) ) = C I :L : ¥ ]
,

C- I .
U

,

- ¥. u t I V )

and indeed using T IFF t X ET t YET = F and F C 1
,

X
,

Y ) =  o

IF Cz
,

'
,

¥ ) u ) t Ey CE
,

I ,¥)t¥ .

ut In

= IIa ,xiN¥ . . ) +3¥ Gx .
x ) C Y¥.

-Y¥ . ) t 3*4×414*1=0

N.B.

For TUO we take

④D= (

FE
,

axis ,
-

FIG
, x. x )

as section
.

C as the curve is srmooth it has

neither
zero

nor pole )

charging

chafes
this gives

can
'

) -

.
- ¥. ( ¥,

a. x.xD ,
- ¥ .ftp.x.xs- ifFIG 'sxD

= f Xd -3

(FIE,,¥Y ,
xd -3FEE, 1¥ ) )

= TB
- d

EZE
,

CT 's 1yd
,

ft
( t 's 1,4

'

) )
Remember that  the intersection of c

with like projective line T = o contains

d points counted with multiplicities



Aso

Conclusion

The
tangent

line bundle TC on a curve C

is isomorphic to 9¥ 3 - d)
ya

and

deg Ctc ) =  des- d)

Definition
The

genus of the curve is

g
Ccs = 2-deg

2

Remark

This
gives , for plane curves

da - 3d + z

g
Cd = 2-{C3 =

a-
=Cd-DC

z

crate that this means thatfor a smooth algebraic
curve in PE the value of the

genus
is constrained

This does not mean that all genii are not

possible .

This means that not all algebraic curve

are isomorphic to a smooth curve C c PI .

Example
For an elliptic curve E we get deg

Ctc ) -

- O

( and
g

Cc ) = I )

Gn that case we have an isomorphism
C-

p
i

E  → e

Q I → Pta

for any point
P

.

Ttp : TE → TE

induces on isomorphism from TOE to TpE



⑦

Some
get on isomorphism

To E X E  → TE

@,
P ) ↳ ItpCa ) )

So TE  I GE .
which explains for which reason

the degree has to be O
.

Definition
K = -

a CTC ) c- Pic CC )
.

is called the

the canonical class

7) RIEMANN - Roc it theorem

which 9
am

going
to stole without proof .

Theorem

Set
be a smooth awe of genus g

then

hoc D ) - hoc K - D ) = deg CD ) -11 -

of for any
D e Pick )

See Hartshorne chapter II. 1 for the
proof

Prop

If deg CD ) < o then h°( D ) = o

Proof
If f E to ( C

,
GCD ) ) - day

direct ) t D 3 o

Taking the
degree we get

deg CD ) > o
.

Ts
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Corollary
Tf deg CD ) s 2

g
- 2 then

hocc
,

6 CDS ) = deg CD ) th -

g .

Proof

deg C K ) = 2g - 2

so deg CK - D) =

2g - 2 -

deg CD) Lo if deg CD) > 2g - 2
.

B

8) Construction of
the Jacobian

T am going
to skip some technical points .

Reminder

Sf we define
Sk PI as the quotient ④1)48k

then we have a natural map of functors
skip : → PI

( Exo :  - : XD ) I - Coefficient of ¥oC&
o

Xo Yi )

which is injective .

The image
is defined by polynomials

( property of freezer morphism in
algebraic geometry )

and thus we
may

see Sk PI as an algebraic space

Gf C is a curve C a PI

then we
get

Skc

ask
PI c IPF

Example

Gf C = Pk f vector space of homogeneous

Skiff Is P C KC U
,

V ] =D
) polynomials of degree d

( Cui: oil )
,  i eats it

.

Cui u tou

Gndeed over IT
any polynomial

in K CO
,

Dad

decomposes into a product of linear forms
which is unique up

to permutation

So Sk IP
'

e p
k

K K



⑦

Notation

PickCc ) = { a c- Pwc Cc ) I
deg Ca) -

-

k)

N
.

B
.

Tf Richest ¢ then for any
a E Pick )

Pic
°

Cc ) → Pick Ccs is bijective
B tr at B

Example

Tf C is a conic such that CCK ) = of

one con shone that

Pic has to ⇒ he is even

Construction

There is a natural
map

s s
-

C → pick )

Inpass toEEPi3
Set D e Dire Ccs

, deg
CD ) = e

•
let Cpr

,
-

,
Pa ) E Src

Sf E. C Pi ]=D]

then there exists f E KEE such that

direct ) = EE
,

Pi - D

Gn forties or

dif (b) xD 30

and GE Ho Cc
, QCD ) )

.

• Conversely if f E HOG
,GID) )

then dire (f) xD > o

and
deg Caniff ) t D) =  deg (D) = r

so dire (b ) t D c- Im Csr )

.
Note that if dire (b) xD = dire (g) TD



④

Then dire (big ) = o

which implies that fly E K
*

Therefore

Sj
'EDD= IP C Ho CS be CD ) )

which is empty if Ho CS Gd DD = Lois
.

• If se > 2g
- z

, leg the corollary to

RIEMANN - Ro etc theorem

HTC
, GID ) ) = or th -

g
> o

Conclusion

Gf ee > 2g
- z

See : S
'

C → Re. c- Cc )

is a fibration in projective spaces ,
where the

fiberover CDT is
given by PCHOCS Go CD ) ) ) which is a

projective space of dimension or -

of
.

And Sr C has an algebraic structure . We

want to
get

an algebraic structure on Pic ra )

from that description

Remarks
We know hoc D ) if deg CD) I [ 0,2g

- z ]

a) Gf deg
CD ) = O

Sf f E Ho Cc
,

Go CD ) ) - do }

dire ( f ) t D 70

But deg C dire ( f ) t D ) =  o

Therefore dire (f) t D = o

and [ D ] = O

So if deg CD ) =  o
,

hoc CDT ) so  ⇐ CDT =  o
.



⑧

b) Sf DEDiv C c ) and P E CC k )

Ho CC
, QCD ) ) c Ho CC

, Gc Cost P ) ) by definition
then there exists an exact

sequence

o → Ho ( C
, GED ) ) → Hok ,6dDtP )) → { fake # top 3

- k - '

%fc.me#1op1fjzfy
where k is the multiplicity of Pin D Is

K

so

h° ( C
, Go CD ) ) Eh %

,
GccDtm ) E hoc

,
Go CD ) ) th

of if
D = Pet -

- t

Ps
and P t LP

, -

,

Ps3
,

,

then f E Ho Cc
,

Greco ) ) belongs to Ho cc
,

Go CD - P ) )

if and only if f CP ) = o

So hole
, Go CD )) = hoc

,

GCD - P ) )

⇐ Pe! fi ) where f. ,
- f

,
.

, ⇐ as ,

is a basis of Hokie'D

Gf hoc
,

GCD ) ) So it is a finite subset of C
.

Proposition
as There is a nonempty open

subset U in

SEseeds that

U Ck )
-

- { Deskstho C CDT ) --13

b) Let Do e S
a

-8C C K)

Then the
map

(
Do

U → Pic
'

Cc
)

D 1- [ D ]tCDo ]

is injective

c) Over IT

Pick ) =

Less.ge#jDolUCk ))



⑧

Sketch of the proof
at if DE

SOC
hoc CDI ) - hoc K - CDT ) = 1

so hoc DJ =
tho Ck - CDT ) 7,1

with equality iff hock - CDT ) =o

Using the last remark

Gn an
open

set of SOC

hock - CDD = hock ) -

g

= @g - D -11 -

g
tho CGK ) -

g
= O

So hoc CDT ) = 1 on that
open

set
.

b) CD ] t CDo ] = CD
'

It Cbo ]

⇐ CD
'

I
- CD ] =  dire Cf )

⇒ f EHTC
, 6dB ) of dim I

⇒ CD
'

3=93 .

c) By the above discussion

Src → Pier CoD

is seujcdeve

End of the construction

.
For fixed Do e Sr

-

g C

Ss
- '

C
Lpo ( U ) ) Ck ) is an

open set in S
'

C

( those D e Src such that

[ D ] = [ Do It [ D
'

] D
'

E SOC

with hoc CDT ) -

- I

⇐ HEED] - C Do ] ! =L )
.

Choose

De
,

-

,

Dm
c-5-8 such that

Src = 0
s

' -  '

C c
%

Cul )

then
Pick

= I
.

.

c

g.
CU ) and use the lip

,



④

as charts on Pic
"

CC ) to define a scheme

structure On Pic Kc )
.

The statement maybe summarized as follows :

Theorem

There escisls an abelian variety J I K

and a morphism of functor
Pico cc ) → J

such that for any LIK such that CCC ) # 0

Ric
°

Cc ) CL ) → JCC )

is on isomorphism of group
.

T is called the Jacobian of C and denoted

by
Tac Cc ) .

NB
.

dim C Jac Cc ) ) =

gcc
)

.

Remark

Gf K -

- a there is an exact
sequence

O → zit Z → a
Et at → I

Which gives a

long
exact

sequence

O → zit 21 → a e
*

may prove
that

I
H

'
CX

,
2 it 2) → HKX

,
a ) → HK X

,
e

*
) → H2 C

Xyz
eez )

Is

2in deg
pic CX ) → 2 it 21

So Pico Cx ) I H' CX
,

e)

/Hi2 )

lattice in HMX
,

a )

gives a structure of torus on Rice x ) .



⑤

9J Fund -

aridity

Notation

Let Cl .

.

E
'

→ c be a non - constant

morphism between smooth
projective

curves over K
.

St induces

,

a morphism of fields
4¥ : X Cc ) → K C C

'

)

given by f t
fo 4

gets pi

C
' Tff )

to
any morphism of fields

this morphism
is injective and

We

may
see K Cc

'

) as a finite extension

of Kcc ) .

The
degree of 9 is

deg (9) = [ KCC
' ) : Kcc ) ]

The restriction of absolute

values induces a map which 9 also

denote leg 4 : C
'

co ,

→ Go
,

Q t

Qlkccs
Definition

Gf

QE
Go ,

the ramification index of 4

at Q is the
unique integer e

a
> I such

that
v

Q

KCC
' ) → z

T T

ea
v

Kcc )

¥
z



⑧

commutes
. ( Remember that Up and Veep ,

are

surjective ) .

One
says

that Pis ramified at Q and of a

branch joint if e > I and that Q is eenromified
otherwise

Q

Formula

For
any

PE Cco ,
degree

deg (9) = I
ea [ Kca ) : HCP ) ]

Q EY
- I

Cp )

Proof
Let Kcc )

p
be the completion of K cc ) at -

p

then K Cc )
p

-5 KCPJCCT) ) ( SERRE 's
Corps

because )

with 0pct ) = I

KCCDO
,

IKCQJCCTIKQD[ K Cola : Kcop ] =
e

a

C Kca ) : KCB ]

and

KC ④
* a ,

Kcop I IT KCC
.

B

Q C- 4-
 '

Cp)

Def
yet .

. Dire ( c) → Dire Cc
' )

P l→ I e Q

NB

QE
9-

 a

CP
)

The diagrams am

Kcc
'

) →

Djocc
's Derico )

!
a

The't

die
9

't
and

Ty
A Tdegle)

K Cc ) → De 're Cc ) Dire Cc ,

#
Z

commute



⑨

Dif From these diagrams we get morphisms

4
*

.

.

Pic Cc ) → Pic Cc
- )

and

4
*

: Pico Cc ) → Pico C c
' )

and

thereforeamorphism of algebraic groups
Jac Cc ) → Jac Cc ' )

.

Def
We

say
that 4 is separable if

the extension

KCC
' )/k Cc )

is separable

Example

Gf char CK ) =p 9 : Eh - s Me

[ x : GT to EXP : y
P

]

is purely inseparable since the corresponded
estenson is

KC T %) I K CT )

Remark

In the inseparable case the tangent map is 0 !

Def
Gf 4 is

separable
T 4 : T C

'
→ Tc

induces a map T C
'

→ I
*

CTC )

and therefore a section
sq of 4

*

CTC ) ④ Tc
'

V

The ramification divisor is



⑧

Ry = dire C se )
.

Prop

Sf char Ck )

tea
then the order

of Ry at Q is

ea
- I

.

Proof
let P= 4 Ca )

Pick I E Kcc ) with Up C IT 3=1

and it
'

C- K Cc
'

) with
Va Ct

'

) = 1

then it o 4 = u @
 '

f
"

with Vac us = O

Differentiating formally we

get

dtpodda = e
a

⇐
' TQ"

a dit '

t IT
'

e
"

da D

*
-

O Zero of order ea
- L

Corollary
Sf char Ck ) -

- o

R = I
&

Q c- c
,

€ - 2) Q

Hurwitz formula
Kc ,

= f Tko ) t CR I in Ric Cc )

This follows from the construction

corollary
2g cc

' ) - 2 =  deg
(8) Gg Cc ) - 2) t deg

CR)

N
.

B
.

In particular deg
CR ) is even .



⑤

Remark

Gf K Cc
' ) 1K Cc ) is purely inseparable

,

one con show that 4 is a composition

of
Frobenius isomorphisms corresponding

to

elevating coordinates to the pen power .

and
g

Cc ) =

g
CC ' ) C Gn fact C and C

'

are isomorphic as schemes )
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VII Main steps of the poof of Fact i Nos theorem

Reference G .

CORNELL & T
.

H
.

SILVERMAN

,
Arithmetic

Geometry C Springer Verlag )
.

1) generalization to higher

demensions

Several of the cons hideous 9 explained for
curves might be extended to higher dimensions

"

Definitions
" ( See C HARTSHORNE 's I

.
TJ )

Let V be a smooth
, frojedeve ,

irreducible

and
geometrically irreducible algebraic variety

( geometrically irreducible means that V is

irreducible IF )

Sts function field is

K Cv ) =
U M C U

,
Go ) -

-

U More # u
,

A ! )
UCV Ucv

open open

The set V ' "

is the set of strict irreducible algebraic
subsets of V which are maximal for these properties

( in other words of codeine Ct ) )

Dire C V ) = z
Can )

and there is a divisor map

din : KC VF → Dire cu )

The Record
group of V

Pic cu ) = Dire CV ) I im Colin )

The Ricard
grown might be

equipped
with

an

algebraic structure and

Picked ) is the connected component of O

and the NERON - Seu Eri
group

is the quotient
N S cu ) =

Rez CV ) Dicko )

For
any

line bundle L IV one
may

define a Cb c- Pic C U )



⑨

Examples
a) For a curve C

deg i N SCU ) Is 21

isomorphism
b) For A on abelian variety ,

The dual abelian reoriely is given leg
AV C L ) = Pico CA ) CL )

It comes with the Poincare line bundle

÷
A x AV

such that ht a E Rico CA ) CL
} c

A , gang
) = a

.

4.
Gf f N

V - Pk
is a morphism L -

- f
*

( Gam
CM ) is a line bundle

on V
,

and for i e O
,

-

,
N we have a section se

.

of
L givenwtf p ! L

• Conversely if
L is a line bundle on

V

andCso ,  
-

,
s

n) is a basis of M CX
,

L ) seeds that

A f x E V I s
i

Cxtocx ) ) is empty
IELO,  

-

,
N 3

V → PN
K

x 1- [ to :  
- : in ] such that Xisjlx ) -

- kg. six )

defines a morphism V → PE

Gf this
map

induces an isomorphism from V

to its image ,
one

says
that L C or c. CL ) e Did UD

is
very ample So morphisms to

projective spaces

are classified leg
line bundles



⑨

LE Pic C V ) is said to beample if there is

m > 1 such that med is
very ample

2JPolarization

Definition
Set A and B be abelian varieties

on isogamy from A to B is a morphism
4 : A  → B which is surjective overt and

has finite kernel

Example
A non - constant morphism between elliptic curves

is an

iseegeny .

Theorem of the
square

For
any

de Ric CA ) and
any

a
,

be ACK )

tats(a) t a = t E (d) t tf Ca)

Corollary
Sf d E Ric CA ) the map

I : A  → AV

a to EEG ) - a

is a morphism .

Definition
t polarization of on abelian variety A is

an

isogamy
X : A  → AV of the

form Cfa

for some ample de Ric CA )
.



④

Notation

Let C be a smooth projective geometrically
irreducible curve I K such that CC K ) to

and let J = Jac CC ) = Rico cos

then for PE CCK )
,

we

may
consider

58
. '

C → J

D vs CD ] - Cg- e ) P

The image defines a hypersurface ① ein J

( Smoked its dimension is

g
- I and it is

irreducible since SO
- ^

c is irreducible )

Theorem

The map Cfo
,

.

.

J → JV where ta : T → T

a les t - ⑦ a ↳ atx

is an isomorphism of abelian varieties

called the canonical polarization of Jacco )

Remark

By the theorem of
the

square
it does not

defend on the choice of P
.

3) Corelli 's theorem

Theorem [ TORELLI ]

Let C and C
'

be curves of genus g 32

over a perfect field K
if their polarized

abelian varieties C Jac Cc )
,

4
o ) and C Jacco )

,
4£ )

are isomorphic then C is isomorphic to C
'

.



⑤

Galea of the proof
For as g

- a

D 1-

CDI
-

rip
]

⇐ Cs J put
W

"

= im C Sr )
Sr

Is a

5C
'

J
'

W' r
-

-
im C so )

D I - CDT - r Ep ]

• if re
g

- I I a E J
'

such that

d C ① dI at
c

. ( uses that a

is compatible north polarizations )

• Compute intersections

Sf x
,

x
'

E W
't

,
x ex

' -

( W
8

- '

→ c)n @g
- '

- xD = W 9
- 2

U ( K xxxx
'

- WE)
and

WE
A { w

0 - 1

- a

,
a e

W
8-2

)

So
may

reconstruct W1 from
W 91

and Sy : C I W
't

.
D

3) SIE OE  c moduli
space ,

modular heights

Example
An elliptic curve

E .

.

T2 = X3t A X TB

is classified
,

up to isomorphism
, by its

j invariant

j CE ) = 1728C4AP_ c- pick ) - •

- 16 C 4 A 3+275 )

Notation

Ag
,

d
,

n

Ck ) set of isomorphism classes of abelian

varieties of dimension
y equipped with a polarization



④

of degree 42 and an isomorphism

Cena ) 28 I Acn ]

Theorem

The fund
-

or Ag
,

din is representable

leg a scheme
tyg,

n
over Zain ]

kg =

tgqyclassif.es
abelian varieties

Cover a

Fong =L

IH = { 2E a I Im Cz ) > o Y

r = S Lz C 21 ) acts on IH by

( 91 ) . z  
=

aztb
Cz  t d

N lattice in a

A = It 21T with Im Ct ) > o

I t IT  
= Z + t

'

⇒ I re Slack ) I TE
=

t
'

.

We wont to consider At In

Fundamental domain :

D= { 2 E Q
,

Re CE ) E3 -1,13
,

Iz I 31 and Pete ) so if Hk )

; n

-



④

For a lattice A ca Where exists a

unique
ee D

such that A- Z t ZE
.

( see Serre '

s Cours drorithmelique )

For higher g

Symplectic group

SpzgM={ re Mag CR )
)

'

r fIgto ) r -

- fIg:))
U

Tf Cn ) = { 8 E Spzgcz) I 8 = Izg ( mod n ) )

Hg = { r c- Mg Ca ) I D= 's and Im Is )

is positive . definite 7

Spy ( R ) G It
g

via ( AaBo ) .
A = CARTB )

.

CCR TDs
- it

Again

CD
is a disjoint union of copies

of My in )

MyGn particular

tg I ng Gilly

Problem

tg is not projective

Falling 's heights
St is possible to construct a compactification toy

and to define heights tg Ck ) → IR
, o



④

4) Sketch of the proof

Let Clkbe a smooth curve of genus g 72

We wont to prove that CCE ) is finite

as Enough to shame that for some K
'

1k finite
CCK

'

) is finite
Construct K

'
1k and 4

:C
'

→ C of degree m > 2 over K
'

such that C
'

→ C is eenromified
C Idea it 1C C ) is not trivial )

use

Theorem
[ HERMITE - M IN rows K I ]

For
a number field K

,

S C Val Ck ) finite
there are only a finite number of field

extensions K
'

Ik of fixed degree cenromified
outside S

.

So there es ask tu I K
' such that for any

x c- XCKD

4-
'
C x ) contains m points defined over Kz

Let D = of -1 Cx ) - I 3 for some
ye

4-
 '

Cx )

and construct a
Ymoyhism

c'
a

→ c
'

ramified exactly over D with lead reduction

( ie the curve defined over Fo = Go Im
,

is

not smooth ) in anexplicit set S Cdepending

only on 4)
.



④

Using the fact that if g
Cc ) 72 the set

Mor
Cc 's C )

is finite we are reduced to
prove

Theorem

There are only finitely many isomorphism classes

of smooth curves of genus g
7,2 with

good reduction Outside S

b) Using To Recce 's theorem
,

likes reduces to

Theorem ( S HAE A Rich Conjecture # ACTIN o s )

Set S be a finite set of places of K
,

d > o

then there are only finitely many isomorphism
closes of abelian moieties I K of dimension

g

and polarization of degree
d with

good
reduction

outside S
.

Tested
a> There is a finite number

ofisageny
dosses

of abelian novelties which satisfy the condiedition

( uses techniques coming from representation

of legal C Elk ) : if e is a prime number

TECAK
Reign AT en ] CI ) Ze module

VECA ) -

- Te CA ) ④
ye

Qe Qe vector space of dimension 2g
or

Gal CE he ) gives a representation of God CKTK )

of dimension
2g over Qe )



④

b) In each eiageny class
,

the Fatten o 's height

Is bounded

⇒ finite set
.

D
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Exercises, September 19, 2022

Arithmetics under the influence of geometry

Exercise 1

In this exercise, we consider the plane curve C defined by the equation

(1) Y 2 = X3 +X2.

Mt

Figure 1. Singular cubic

1. Let Dt be the line going through the origin (0, 0) of slope t. Proves that,
if t 62 {�1, 1}, Dt meets the curve C in one other point Mt. Compute the
coordinates of Mt.

2. Prove that there is a bijection from Q {�1, 1} to C (Q) {(0, 0)}.
3. Prove that Y 2 �X3 �X2 is irreducible in Q(X)[Y ].
4. Prove that the quotient Q(X)[Y ]/(Y 2 � X3 � X2) is a field isomorphic to

the field of rational functions in one variable Q(T ).

Exercise 2

In this exercise, we consider the plane curve L defined by the equation

(2) (X2 + Y 2)2 �X2 + Y 2 = 0.



( t2 ,
t

2 )

Mt

Figure 2. Bernoulli’s lemniscate

1. Let Ct be the circle with center ( t
2
, t
2
) going through (0, 0).

(a) Write the equation of the circle Ct.
(b) If t 6= 0, proves that the intersection of L and Ct contains exactly two

points: (0, 0) and another point Mt and compute the coordinates of
Mt.

2. Proves that there is a bijection from Q∗ to the set L (Q) {(0, 0)} of rational
solutions of the equation (2).

3. Prove that (X2 + Y 2)2 �X2 + Y 2 = 0 is irreducible in Q(X)[Y ]
4. Prove that the field Q(X)[Y ]/((X2 + Y 2)2 �X2 + Y 2) is isomorphic to the

field of rational functions in one variable Q(T ).

Exercise 3

In this exercise(1) we consider an elliptic curve given by the affine equations

Y 2 = X(X � ↵)(X � �)

where ]{1,↵, �} = 3. We assume that there exist rational functions f = P
Q

and

g = R
S

in Q(T ), with gcd(P,Q) = gcd(R, S) = 1 such that

f 2 = g(g � ↵)(g � �).

1. Show that S3|Q2|S3.
2. Show that four non-collinear linear combinations of R and S in C[T ] (that

is polynomials of the form �R + µS, for four pairwise non-collinear vectors
(�, µ) 2 C2) are squares.

(1)Inspired by M. Reid

2



3. (a) Prove that if R and S in C[T ] are coprime polynomials, not both
constant, and if R, S, R � S and R � �S with � 62 {0, 1} are all
squares, then there exist coprime polynomials U and V with 0 <
max(deg(U), deg(V )) < max(deg(R), deg(S)) and four non-collinear
linear combinations of U and V are squares.

(b) Show that we may assume that these linear combinations are U , V ,
U � V and U � �V for some � 6= 1.

4. Show that f and g are constant polynomials.
5. Show that there is no morphism from the field

Q(X)[Y ]/(Y 2 �X(X � ↵)(X � �))

to the field Q(T ).

Exercise 4

In this exercise, we consider the surface S defined by the equation

(3) Y 2 + Z2 = 2X(X2 � 3)

1. Check that the point P0 = (�1, 0, 2) belongs to the surface. Find the equa-
tion of the tangent plane of the surface at the point P0.

2. Let D be a line through P0 not contained in the plane X = �1. Prove that
the intersection of D with S contains two points: P0 and another point and
compute the coordinates of that point.

3. Using a rational parametrization of the circle, construct a map ' from Q2

to S (Q).
4. Is this map injective ? Prove that for a well-chosen ', ]'−1(P ) 6 2 for any

P 2 S (Q).
5. Prove that there is a number a 2 Q such that for any (x, y) 2 Q2, the first

coordinate of '(x, y) is bigger or equal to a.

3



6. Prove that there are infinitely many points of S (Q) which are not in the
image of '.

7. (a) Prove that Y 2 + Z2 � 2X(X2 � 3) is irreducible in R(X, Y )[Z].
(b) Prove that the field Q(X, Y )[Z]/(Y 2+Z2�2X(X2�3)) is isomorphic

to a subfield of the field Q(U, V ) of rational functions in two variables.
8. (a) Prove that S (R) has at least two connected compenents.

(b∗) Deduce from the previous question that the R-algebra

R(X, Y )[Z]/(Y 2 + Z2 � 2X(X2 � 3))

is not isomorphic to the R-algebra R(U, V ).
(c∗) Deduce from the previous question that the field

Q(X, Y )[Z]/(Y 2 + Z2 � 2X(X2 � 3))

is not isomorphic to the field Q(U, V ).
(d) Prove that the field Q(i)(X, Y )[Z]/(Y 2+Z2� 2X(X2� 3)) is isomor-

phic to the field Q(i)(U, V ).

Problem

The aim of this problem is a proof of Lüroth’s theorem.
In this problem K is a commutative field and T,X, Y are indeterminates.

Part I

Automorphisms of K(T )

Let F 2 K(T ) � K. Let us write F (T ) = N(T )/D(T ) with N,D 2 K[T ]
coprime. We then consider h(F ) = sup(degN, degD) and L = K(F ) ⇢ K(T ).

1. (a) Prove that the polynomial N(X)� FD(X) 2 L[X] is not zero. What
is its degree?

(b) Prove that the element T of K(T ) is algebraic over L.
(c) Prove that F is transcendental over K.

2. (a) Prove that the polynomial N(X) � FD(X) 2 L[X] is irreducible.
(One may first prove that N(X) � Y D(X) is irreducible in K[X, Y ]
and therefore in K(Y )[X].)

(b) Prove that [K(T ) : L] = h(F ).
3. (a) Find all F in K(T ) such that K(T ) = K(F ).

(b) Let Aut(K(T )/K) be the group of automorphisms of the K-algebra
K(T ) . Let PGL2(K) be the quotient group GL2(K)/(K∗ I2) where I2
denotes the unit matrix. Prove that there is a group isomorphism

 : PGL2(K) ! Aut(K(T )/K)

4



given by

 

✓✓
a b
c d

◆�◆
(T ) =

aT + c

bT + d

where [( a b
c d )] is the class of the matrix ( a b

c d ) 2 GL2(K).

Part II

Subfields of K(T )

Let L be a subfield of K(T ) containing K and not equal to K.

1. Prove that K(T ) is algebraic over L.
2. Let P (X) = IrrT

L
(X) be the unitary minimal polynomial of T over L and

write P =
Pd

i=0 aiX
i with ai 2 L and ad 6= 0.

(a) Prove that there exist an integer i 2 {0, . . . , d} such that ai 62 K.
In the sequel i0 denotes an integer such that ai0 62 K and we put F = ai0.
As in the first part, we write F = N/D with N,D 2 K[T ] coprime. Let

m = h(F ) and n = [K(T ) : L].
(b) Compare n and the degree of P . Prove that n | m and that n = m if

and only if L = K(F )
(c) Prove that P (X) | D(X)� FN(X) in L[X].

3. (a) Prove that the element P of K(T )[X] may be written as P (X) =
A(T,X)/B(T ) with A(T,X) primitive in K[T ][X] (that is the gcd of
its coefficients is one) and B an element of K[T ].

(b) Prove that there exists a polynomial Q(T,X) of K[T,X] such that

N(T )D(X)�D(T )N(X) = A(T,X)Q(T,X).

(c) Prove that degT A(T,X) > m and that Q(T,X) 2 K[X].
(d) Prove that Q 2 K. (One may first prove that N(T )D(X)�D(T )N(X)

is primitive in K[T ][X].)
(e) Prove that L = K(F ).

4. (a) Let F 2 L�K. Prove that L = K(F ) if and only if h(F ) is minimal.
(b) Prove that there exists an isomorphism

K(Y ) e�! L.

5
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Sheet I

Exercise I

19 De : Y = EX

De
.

he is given by
EX

-

= X' Cx th )

the solution X = o corresponds to the
origin

the othe solution is

Me = C Ed - 1
,

E3 - t )
which is different from too ) if and only if

C- Ef f - 1,17

2) The map

IQ - L - I
,

ly → E Ca ) - { co
,

oh

C- 1- ( t2 - 1
,

t 3- t )

is bijective with on erivan given by
E Cox ) - Lego D → IQ - f - 1,17

( a
, y ) 1- Mx

3 ] Ye - X Cx - a ) Cx Ft ) E ① - CX ] CT ]

we

may apply Eisenstein 's irreducibility

criterion with A  

= Q - Ex ] and p = X

Prom [ El SENS TE , N )

Let A be a principal domain

Set
p E A be an vireduagle element

Lee - P =

.

ai Xi c- A Cx ]

Set IK = For CA ) fraction field of A

Assume that

Ci ) p I
ai for i ELI

,
- in 3

( ii ) P X an



②

( iii ) p I ao but p
-

tao

then P is irreducible in IK Cx ]
.

so P is irreducible
.

49 0 - Cx ) cos I C ya - x. 3-
x

'

)
is a a field by 39

At us consider the
morphism of Q

-

algebras
Yo QC X

,
Y ] → a CT )

X 1- T2 - I

Y 1-3 T
3

- T

Then since
,

if Pe KEN
,

~

deg C P CTZ - T ) ) = 2 deg
Cp )

↳
la q ,

is ingrain
Thus To extends to

U : Q Cx ) → ACT )
with Y ,

C 42 - X
3

- Xz ) I¥
- T )

2

- If
'

-

1)
3

-

CTEif#Hot3¥¥4
- T -

ft
-

- O

( which also follows from the fact that
any

a E Q is a 0
of

the polynomial
which

thus has who
many

Os ! )

We
get

a morphism of fields
U : IQ CX ) AT Kye - ×3 - µ )

→ QCT )

which has to be
injective C as

any morphism

of fields )

Since Y C 41×3 = T the morphism
is surjective .



③

Exercise 2
.

.

no as Cx - Etta - IEEE
which is equivalent to

X 2+-12 - t C Xt Y ) = o

b) Et A L is gain leg

CX 't 472 - X Et ya

{ x
-

+42 = text Y ) C * * I

ttxty )
-

- x at ya

{
xztyz = E CX TY )

E- C Xt 432 - C Xxxxx - Y) = o

{ × see ya = fcxex )

C Xt 4) ( ⑤-DX + Een ) Y ) = o

{ X2ty2
= t CX TY )

The solution X t Y =  o

gives
X 742 =o and therefore the origin

So we are reduced te

{
Y = III. x

x
-

at 5) -
- c- fit ) x

itgain
X = o corresponds to the origin ,

see we

get a unique point

Me = -

-

( a tea I )
Let us consider the map2 ]

y .

.
④

*
→ Lcac , - do

,
o ) )

t 1- > Me



④

and c # * ) gives
the inverse

map

Lca ) - Lego ) ) → ¥

( a
, g ) ↳ x2

xty

⇒

€2t y
2f -

Xz + y2 = Y 4+42

(2×2+9)
t IT CX 2- 1)

The
polynomial 2×2+1 is erieduable in act

by reducing modulo 21141
,

we
get

the polynomial
74 t24 =y4+

GtM E QC in ] C y ]
4

z Cirat is a euclidean domain for I I I

fat in b I
=

a- - 2b -

since (E)
'

+¥=ZL1L①?k
and HID is irreducible in Zaire )

by applying
Eisenstein criterium to A  = Zaire

and
p

= it iF

we

get
that Y

"

t
Z

,

is irreducible in a Civic 'D

and
therefore

C X # 2)
2

- X
? tf is ineducibe

in Q - Cx )
.

[ ( XZ +425- Xz t y
2

= @
2

tXI Iz)2 - 2×2 - If ]

Reduction modulo X - 2
gives

D= 44

+
ye 9 t 4×3

We then
apply Eisenstein 's criterion

with p
=3

Thus F is
irreducible

Thus P is

irreducible



⑤

45 We consider the map

IQCX ] - s d- CT )

T Catt )

X l→

Y ↳ T CA - T2 )

since
any f E Q CT ) is transcendent over Q

,

( see question A of problem )
.

as before it induces a morphism of fields
④ ( X ) [ 431×2 x-p ) - X

2
t ya

 → OCT )

which is injective and
surjective .

Question

What is the connection between the parametrization

of a curve and field

isomorphisms
?

Let C be a curve given by anaffineequation
P CX

,
Y ) = o

with P e Q Cx
,

y ]

irreducible
and

elegy
( P) > o

and assume there exists an isomorphism
4 : Q1 CX ) C YIK p ,

I Q CT )

Then the map

Q → C ca )

t ↳ ( 4 Cx ) Ctl
,

KY ) ft ) )

is defined outside a finite set of points

( namely
the roots of the denominators

of Q Cx ) and 4 CY ) )
.

and its
image is the complement of a finite set

of points in COS with an inverse given by
Ca

, y
) 1- > H

'

'

CT ) C a
, g)



⑥

Exercise 3

19 As f -
- % one

g
= Rz ,

the
equation

might be written as

S3 p2 = Q2 RC R - as ) ( R -

B S )

as god CQ,

P ) = I
,

Q
-

153

as god CR
,

5) = I we get god CR - as
,

S ) = god (R - BS
,

5) =L

and god C53 RCR - as ) CR - PS) ) -

- I

Therefore
S3 I Q

-

29 Let a = Q E Q

we get
the relation

P
-

= a RCR - as ) CR - BS )

since god C R
,

53=1
,

the polynomial
R

, @- as )
,

C R -

Pss ) are pairwise aguirre

Sf we denote Bike ,
the set af unitary

irreducible
polynomials

in IK CT ]

we

may
norite like prime decomposition of Q Effects

as Q =

ult
pop

C Q )

Pt Directs

than for any fs E Tact
,UpC R ) top

CR - as ) t Up CR ta S ) is even

and 2
of them are 0

So R
,

R - a S and R - PS are
squares

in ECT )

Gn the other hard 53 is a square
So S has Also to be a square
So R

,

S
,

R - es and R - BS are all
squares

.

3° a) Write R -

-

Ue
,

S = V
'

we have geol Cy D= I

then R
- S

= U2
- V

'

and R - 4S = U2 - 42 V2



⑦

let 8 be a square root of X
.

we get
U2 - V 2=6- V ) Cut V )

But U - V and Ut V are coprime so
, again

both are squares

Similarly U2 - > V2 -
- Cu - TV ) ( Otr V )

and both @- TV ) and @t 8D are
squares

b) Write the four linear combinations as

ai Ut bi V

with Eli :bi ] a P
'

Ce )
.

The
group

PGL
,

Ce ) acts 3
transitively

on IP
'

Ca ) i

Since Cai : bi ] E P
'

Ca ) are 4 different points
me

may find g= ( 9£ ) E Glace ) seed that

g
. Can : be ) = Cc : 07

g . Caz : bid = Co : 17

g
. Caz : boss = [ tit]

and
g

. Cag : bae 3 = C e : - t ]

Cake U
'

Id
U - c V ) lad - be

V
'

-

- fbU t a V) lad -
be

then U = a U '
t c V

'

and V = b U 't d V
'

and ai Ut bi V = @ai  t b bi ) U
'

t Ce ai  xd bi) V
'

we get that

O
'

,

V
'

U
'

- V '
and U '

- XV
'

are all
squares

39 Sf Rond S

'

are not constant by taking
in question

2° polynomial R and S of minimal degree
we get a contradiction

So Rond S are constant
,

so is Q and therefore P
.



⑧

we
get that fond

g
are constant in a CT ]

and therefore in acts
.

5J Otherwise we would have

4 : Q Cx
,

Y I → acts

such that
g

= 9

CX
) and f =p I Y )

satisfy
fry gcg

- 2) Cg
- B )

and
g

not constant
.

Garcia 4

NJ 22 -

- G = 2x C - r ) CEV
'

- 3)

done C - 2
,

o

,
2) E Scot )

lepton tangent at Cx
, g , g ) e Sca )

est donne for
e

'

equation

2g

CY
-

g)
t 2g

⇐
-

z
) = ③xz

- 3)

I
- x )

Ce qui donne your Do :4€- 2) = o

done Z  = 2
.

29 h -

intersection dee far avec S est donnie
ya

Z  = 2

{ yet 4=2 XR- 3)

soit Z  = 2

{ ya = 243-3×-2 )
soit

f I ex - ins Cx - 2 )

I
-

equation d- one droit parent for
Po dens le plan

est donnie m Y =
t CX -11 )

Si on intersect avec . S on obtect



{ EIEx
.

in
C-

2

C Xen )2=€x t if ( X - 2)

Done en de hors de P

{
Z -

- z

I
Ela dome

X = 2 +
I

Z

Y -
-

3 e-  +
t3

Z

⇒

Gn fait toomer la paramehisalton trounce

auteur de l
'

osce de revolution
,

l
-

axeoleo x

onion

:w⇒e÷÷÷÷÷÷¥t÷÷÷I
Cela donne eerie application

Q2 → Sca )


