
Introduction

Brief History of the Subject

One can roughly divide the history of mixed Hodge theory in four periods; the
period up to 1967, the period 1967–1977, the period 1977–1987, the period
after 1987.

The first period could be named classical. The “prehistory” consists of
work by Abel, Jacobi, Gauss, Legendre and Weierstrass on the periods of inte-
grals of rational one-forms. It culminates in Poincaré’s and Lefschetz’s work,
reported on in Lefschetz’s classic monograph [Lef]. The second landmark in
the classical era proper is Hodge’s decomposition theorem for the cohomology
of a compact Kähler manifold [Ho47]. To explain the statement, we begin
by noting that a complex manifold always admits a hermitian metric. As
in differential geometry one wants to normalise it by choosing holomorphic
coordinates in which the metric osculates to second order to the constant
hermitian metric. This turns out not be always possible and one reserves for
such a special metric the name Kähler metric. The existence of such a met-
ric implies that the decomposition of complex-valued differential forms into
type persists on the level of cohomology classes. We recall here that a com-
plex form α has type (p, q), if in any local system of holomorphic coordinates
(z1, . . . , zn), the form α is a linear combinations of forms of the form (differen-
tiable function)·(dzi1 ∧ · · ·∧ dzip ∧ dzj1 ∧ · · ·∧ dzjq ). Indeed, Hodge’s theorem
(See Theorem 1.8) states that this induces a decomposition

Hm(X; C) =
⊕

p+q=m

Hp,q(X), (HD)

where the term on the right denotes cohomology classes representable by
closed forms of type (p, q). The space Hp,q(X) is the complex conjugate of
Hq,p, where the complex conjugation is taken with respect to the real structure
given by Hm(X; C) = Hm(X; R)⊗RC. A decomposition (HD) with this reality
constraint by definition is the prototype of a weight m Hodge structure.
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The Hodge decomposition fails in general, as demonstration by the Hopf
manifolds, complex m-dimensional manifolds homeomorphic to S1 × S2m−1.
Indeed H1 being one-dimensional for these manifolds, one can never have
a splitting H1 = H1,0 ⊕ H0,1 with the second subspace the complex con-
jugate of the first. It follows that complex manifolds do not always admit
Kähler metrics. A complex manifold which does admit such a metric is called
a Kähler manifold. Important examples are the complex projective manifolds:
the Fubini-Study metric (Examples 1.5.2) on projective space is Kähler and
restricts to a Kähler metric on every submanifold.

It is not hard to see that the fundamental class of a complex submani-
fold of a Kähler manifold is of pure type (c, c), where c is the codimension
(Prop. 1.14). This applies in particular to submanifolds of complex projec-
tive manifolds. By the GAGA-principle these are precisely the algebraic sub-
manifolds. Also singular codimension c subvarieties can be shown to have a
fundamental class of type (c, c), and by linearity, so do cycles: finite formal lin-
ear combinations of subvarieties with integral or rational coefficients. Hodge’s
famous conjecture states that, conversely, any rational class of type (c, c) is
the fundamental class of a rational cycle of codimension c. This conjecture,
stated in [Ho50], is one of the millennium one-million dollar conjectures of the
Clay-foundation and is still largely open.

The second period starts in the late 1960’s with the work of Griffiths
[Grif68, Grif69] which can be considered as neo-classical in that this work
goes back to Poincaré and Lefschetz. In the monograph [Lef], only weight
one Hodge structures depending on parameters are studied. In Griffiths’s ter-
minology these are weight one variations of Hodge structure. Indeed, in the
cited work of Griffiths this notion is developed for any weight and it is shown
that there are remarkable differences with the classical weight one case. For
instance, although the ordinary Jacobian is a polarized abelian variety, their
higher weights equivalents, the intermediate Jacobians, need not be polarized.
Abel-Jacobi maps generalize in this set-up (see § 7.1.2) and Griffiths uses these
in [Grif69] to explain that higher codimension cycles behave fundamentally
different than divisors.

All these developments concern smooth projective varieties and cycles on
them. For a not necessarily smooth and/or compact complex algebraic variety
the cohomology groups cannot be expected to have a Hodge decomposition.
For instance H1 can have odd rank. Deligne realized that one could generalize
the notion of a Hodge structure to that of a mixed Hodge structure. There
should be an increasing filtration, the weight filtration, so that m-th graded
quotient has a pure Hodge structure of weight m. This fundamental insight
has been worked out in [Del71, Del74].

Instead of looking at the cohomology of a fixed variety, one can look at a
family of varieties. If the family is smooth and projective all fibres are complex
projective and the cohomology groups of a fixed rank m assemble to give the
prototype of a variation of weight m Hodge structure. An important observa-
tion at this point is that giving a Hodge decomposition (HD) is equivalent to
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giving a Hodge filtration

F pHm(X; C) :=
⊕

r≥p

Hr,s(X), F p ⊕ F
m−p+1 = Hm(X; C), (HF)

where the last equality is the defining property of a Hodge filtration. The
point here is that the Hodge filtration varies holomorphically with X while
the subbundles Hp,q(X) in general don’t.

If the family acquires singularities, one may try to see how the Hodge
structure near a singular fibre degenerates. So one is led to a one-parameter
degeneration X → ∆ over the disk ∆, where the family is smooth over the
punctured disk ∆∗ = ∆ − {0}. So for t ∈ ∆∗ cohomology group Hm(Xt; C)
has a classical weight m Hodge structure. In order to capture the degenera-
tion Hodge theoretically this classical structure has to be replaced by a mixed
Hodge structure, the so-called limit mixed Hodge structure. Griffiths conjec-
tured in [Grif70] that the monodromy action defines a weight filtration which
together with a certain limiting Hodge filtration should give the correct mixed
Hodge structure. Moreover, this mixed Hodge structure should reveal restric-
tions on the monodromy action, and notably should imply a local invariant
cycle theorem: all cohomology classes in a fibre which are invariant under mon-
odromy are restriction from classes on the total space. In the algebraic setting
this was indeed proved by Steenbrink in [Ste76]. Clemens [Clem77] treated the
Kähler setting, while Schmid [Sch73] considered abstract variations of Hodge
structure over the punctured disk. We should also mention Varchenko’s ap-
proach [Var80] using asymptotic expansions of period integrals, and which
goes back to Malgrange [Malg74].

The third period, is a period of on the one hand consolidation, and
on the other hand widening the scope of application of Hodge theory. We
mention for instance the extension of Schmid’s work to the several variables
[C-K-S86] which led to an important application to the Hodge conjecture
[C-D-K]. In another direction, instead of varying Hodge structures one could
try to enlarge the definition of a variation of Hodge structure by postulating a
second filtration, the weight filtration which together with the Hodge filtration
(HF) on every stalk induces a mixed Hodge structure. Indeed, this leads to
what is called a variation of mixed Hodge structure. On the geometric side, the
fibre cohomology of families of possible singular algebraic varieties should give
such a variation, which for obvious reasons is called “geometric”. These last
variations enjoy strong extra properties, subsumed in the adjective admissible.
Their study has been started by Steenbrink and Zucker [St-Z, Zuc85], and
pursued by Kashiwara [Kash86].

On the abstract side we have Carlson’s theory [Car79, Car85b, Car87] of
the extension classes in mixed Hodge theory, and the related work by Beilin-
son on absolute Hodge cohomology [Beil86]. Important are also the Deligne-
Beilinson cohomology groups; these can be considered as extensions in the
category of pure Hodge complexes and play a central role in unifying the clas-
sical class map and the Abel-Jacobi map. For a nice overview see [Es-V88].
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Continuing our discussion of the foundational aspects, we mention the alter-
native approach [G-N-P-P] to mixed Hodge theory on the cohomology of a
singular algebraic variety. It is based on cubical varieties instead of simplicial
varieties used in [Del74]. See also [Car85a].

In this period a start has been made to put mixed Hodge structures on
other geometric objects, in the first place on homotopy groups for which Mor-
gan found the first foundational results [Mor]. He not only put a mixed Hodge
structure on the higher homotopy groups of complex algebraic manifolds, but
showed that the minimal model of the Sullivan algebra for each stage of the ra-
tional Postnikov tower has a mixed Hodge structure. The fundamental group
being non-abelian a priori presents a difficulty and has to be replaced by a
suitably abelianized object, the De Rham fundamental group. Morgan relates
it to the 1-minimal model of the Sullivan algebra which also is shown to have
a mixed Hodge structure. In [Del-G-M-S] one finds a striking application to
the formality of the cohomology algebra of Kähler manifolds. For a further
geometric application see [C-C-M]. Navarro Aznar extended Morgan’s result
to possibly singular complex algebraic varieties [Nav87]. Alternatively, there
is Hain’s approach [Hain87, Hain87b] based on Chen’s iterated integrals. At
this point we should mention that the Hurewicz maps, which are natural
maps from homotopy to homology, turn out to be morphisms of mixed Hodge
structure.

A second important development concerns intersection homology and coho-
mology which is a Poincaré-duality homology theory for singular varieties. The
result is that for any compact algebraic variety X the intersection cohomology
group IHk(X; Q) carries a weight k pure Hodge structure compatible with the
pure Hodge structure on Hk(X̃; Q) for any desingularization π : X̃ → X in
the sense that π∗ makes IHk(X; Q) a direct factor of IHk(X̃; Q) = Hk(X̃; Q).

There are two approaches. The first, which still belongs to this period uses
L2-cohomology and degenerating Hodge structures is employed in [C-K-S87]
and [Kash-Ka87b]. The drawback of this method is that the Hodge filtration
is not explicitly realized on the level of sheaves as in the classical and Deligne’s
approach. The second method remedies this, but belongs to the next period,
since it uses D-modules.

We now come to this last period, the post D-modules period. Let us
explain how D-modules enter the subject. A variation of Hodge structure with
base a smooth complex manifold X in particular consists of an underlying
local system V over X. The associated vector bundle V = V ⊗ OX thus has
a canonical flat connection. So one has directional derivatives and hence an
action of the sheaf DX of germs of holomorphic differential operators on X.
In other words, V is a a DX -module.

At this point we have a pair (V, V) consisting of a DX -module and a
local system which correspond to each other. A Hodge module as defined
by Saito incorporates a third ingredient, a so called “good” filtration on the
DX -module. In our case this is the Hodge filtration F• which for historical
reasons is written as as increasing filtration, i.e. one puts Fk = F−k. The
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axiom of Griffiths tranversality just means that this filtration is good in the
technical sense. The resulting triple (V,F•, V) indeed gives an example of a
Hodge module of weight n. It is called a smooth Hodge module. 1

Saito has developed the basic theory of Hodge modules in [Sa87, Sa88,
Sa90]. The actual definition of a Hodge module is complicated, since it is
by induction on the dimension of the support. To have a good functorial
theory of Hodge modules, one should restrict to polarized variations of Hodge
structure and their generalizations the polarized Hodge modules. If we are
“going mixed”, any polarized admissible variation of mixed Hodge structure
over a smooth algebraic base is the prototype of a mixed Hodge module. But,
again, the definition of a mixed Hodge module is complex and hard to grasp.
Among the successes of this theory we mention the existence of a natural
pure Hodge structure on intersection cohomology groups, the unification of
the proofs of vanishing theorems, and a nice coherent theory of fundamental
classes.

A second important development that took place in this period is the
emergence of non-abelian Hodge theory. Classical Hodge theory treats har-
monic theory for maps to the abelian group C∗ which governs line bundles: in
contrast, non-abelian Hodge theory deals with harmonic maps to non-abelian
groups like GL(n), n ≥ 2. This point of view leads to so-called Higgs bundles
which are weaker versions of variations of Hodge structure that come up when
one deforms variations of Hodge structure. It has been developed mainly by
Simpson, [Si92, Si94, Si95], with contributions of Corlette [Cor]. This work
leads to striking limitations on the kind of fundamental group a compact
Kähler manifold can have. A similar approach for the mixed situation is still
largely missing.

There are many other important developments of which we only mention
two. The first concerns the relation of Hodge theory to the logarithmic struc-
tures invented by Fontaine, Kato and Illusie, which was studied in [Ste95].
A second topic is mixed Hodge structures on Lawson homology, a subject
whose study started in [F-M], but which has not yet been properly pursued
afterwards.

Contents of the Book

The book is divided in four parts which we now discuss briefly. The first part,
entitled basic Hodge theory comprises the first three chapters.

In Chapter 1 in order to motivate the concept of a Hodge structure we give
the statement of the Hodge decomposition theorem. Likewise, polarizations
are motivated by the Lefschetz decomposition theorem. It has a surprising
1 If you want such a triple to behave well under various duality operators it turns

out to be better to replace V by a complex placed in degree −n = − dim X so
that it becomes a perverse sheaf. See Chapter 13 for details.
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topological consequence: the Leray spectral sequence for smooth projective
families degenerates at the E2-term. In particular, a theorem alluded to in the
Historical Part holds in this particular situation: the invariant cycle theorem
(cycles invariant under monodromy are restrictions of global cycles).

Chapter 2 explains the basics about pure Hodge theory. In particular the
crucial notions of a Hodge complex of weight m and a Hodge complex of
sheaves of weight m are introduced. The latter makes Hodge theory local in
the sense that if a cohomology group can be written as the hypercohomology
groups of a Hodge complex of sheaves, such a group inherit a Hodge structure.
This is what happens in the classical situation, but it requires some work
to explain it. In the course of this Chapter we are led to make an explicit
choice for a Hodge complex of sheaves on a given compact Kähler manifold,
the Hodge-De Rham complex of sheaves ZHdg

X . Incorporated in this structure
are the Godement resolutions which we favour since they behave well with
respect to filtrations and with respect to direct images. The definition and
fundamental properties are explained in Appendix B.

These abstract considerations enable us to show that the cohomology
groups of X can have pure Hodge structure even if X itself is not a com-
pact Kähler manifold, but only bimeromorphic to such a manifold. In another
direction, we show that the cohomology of a possibly singular V -manifold
posses a pure Hodge structure.

The foundations for mixed Hodge theory are laid down in Chapter 3. The
notions of Hodge complexes and Hodge complexes of sheaves are widened to
mixed Hodge complexes and mixed Hodge complexes of sheaves. The idea is
as in the pure case: the construction of a mixed Hodge structure on cohomo-
logical objects can be reduced to a local study. Crucial here is the technique of
spectral sequences which works well because the axioms imply that the Hodge
filtration induces only one filtration on the successive steps in the spectral
sequence (Deligne’s comparison of three filtrations). Next, the important con-
struction of the cone in the category of mixed Hodge complexes of sheaves is
explained. Since relative cohomology can be viewed as a cone this paves the
way for mixed Hodge structures on relative cohomology, on cohomology with
compact support, and on local cohomology. The chapter concludes with Carl-
son’s theory of extensions of mixed Hodge structures and Beilinson’s theory
of absolute Hodge cohomology.

The second part of the book deals with mixed Hodge structures on coho-
mology groups and starts with Chapter 4 on smooth algebraic varieties. The
classical treatment of the weight filtration due to Deligne is complemented
by a more modern approach using logarithmic structures. This is needed in
Chapter 11 which deals with variations of Hodge structure.

Chapter 5 treats the cohomology of singular varieties. Instead of Deligne’s
simplicial approach we explain the cubical treatment proposed by Guillén,
Navarro Aznar, Pascual-Gainza and F. Puerta.

The results from Chapter 5 are further extended in Chapter 6 where Ara-
pura’s work on the Leray spectral sequence is explained, followed by a treat-
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ment of cup and cap products and duality. This chapter ends with an applica-
tion to the cohomology of two geometric objects, halfway between an algebraic
and a purely topological structure: deleted neighbourhoods and links of closed
subvarieties of a complex algebraic variety.

In Chapter 7 we give applications of the theory which we developed so
far. First we explain the Hodge conjecture as generalized by Grothendieck,
secondly we briefly discuss Deligne cohomology and the relation to algebraic
cycles. Finally we introduce Du Bois’s filtered de Rham complex and give
applications to singularities.

The third part is entitled mixed Hodge structures on homotopy groups. We
first give the basics from homotopy theory enabling to make the transition
from homotopy groups to Hopf algebras. Next, we explain Chen’s homotopy
de Rham theorem and Hain’s bar construction on Hopf algebras. These two
ingredients are necessary to understand Hain’s approach to mixed Hodge the-
ory on homotopy which we give in Chapter 8. The older approach, due to
Sullivan and Morgan is explained in Chapter 9.

The fourth and last part is about local systems in relation to Hodge the-
ory and starts with the foundational Chapter 10. In Chapter 11 Steenbrink’s
approach to the limit mixed Hodge structure is explained from a more mod-
ern point of view which incorporates Deligne’s vanishing and nearby cycle
sheaves. The starting point is that the cohomology of any smooth fibre in a
one-parameter degeneration can be reconstructed as the cohomology of a par-
ticular sheaf on the singular fibre, the nearby cycle sheaf. So a mixed Hodge
structure can be put on cohomology by extending the nearby cycle sheaf to a
mixed Hodge complex of sheaves on the singular fibre. This is exactly what
we do in Chapter 11. Important applications are given next: the monodromy
theorem, the local invariant cycle theorem and the Clemens-Schmid exact
sequence.

Follows Chapter 12 with applications to singularities (the cohomology of
the Milnor fibre and the spectrum), and to cycles (Grothendieck’s induction
principle).

The fourth part is leading up to Saito’s theory which, as we explained
in the historical part, incorporates D-modules into Hodge theory through
the Riemann-Hilbert correspondence. This is explained in Chapter 13, where
the reader can find some foundational material on D-modules and perverse
sheaves. In the final Chapter 14 Saito’s theory is sketched. In this chapter
we axiomatize his theory and directly deduce the important applications we
mentioned in the Historical Part. We proceed giving ample detail on how to
construct Hodge modules as well as mixed Hodge modules, and briefly sketch
how the axioms can be verified. Clearly, many technical details had to be omit-
ted, but we hope to have clarified the overall structure. Many mathematicians
consider Saito’s formidable work to be rather impenetrable. The final chap-
ter is meant as an introductory guide and hopefully motivates an interested
researcher to penetrate deeper into the subject by reading the original articles.
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The book ends with three appendices: Appendix A with basics about de-
rived categories, spectral sequences and filtrations, Appendix B where several
fundamental results about the algebraic topology of varieties is assembled,
and Appendix C about stratifications and singularities.

Finally a word about what is not in this book. Due to incompetence on
behalf of the authors, we have not treated mixed Hodge theory from the
point of view of L2-theory. Hence we don’t say much on Zucker’s fundamental
work about L2-cohomology. Neither do we elaborate on Schmid’s work on
one-parameter degenerations of abstract variations of Hodge structures, apart
from the statement in Chapter 10 of some of his main results. In the same
vein, the work of Cattani-Kaplan-Schmid on several variables degenerations
is mostly absent. We only give the statement of the application of this theory
to Hodge loci (Theorem 10.15), the result about the Hodge conjecture alluded
to in the Historical Part.

The reader neither finds many applications to singularities. In our opinion
Kulikov’s monograph [Ku] fills in this gap rather adequately. For more re-
cent applications we should mention Hertling’s work, and the work of Douai-
Sabbah on Frobenius manifolds and tt∗-structures [Hert03, D-S03, D-S04].

Mixed Hodge theory on Lawson homology is not treated because this falls
too far beyond the scope of this book. For the same reason non-abelian Hodge
theory is absent, as are characteristic p methods, especially motivic integra-
tion, although the motivic nearby and motivic vanishing cycles are introduced
(Remark 11.27).


