List of Misprints and additions

- 1. Mar 23 2004 (From Rita Pardini)
 - On page 300 (bottom) the reference [Pa] is wrong and should be replaced by :

R. Pardini, The classification of double planes of general type with $p_g = 0$ and $K^2 = 8$, J. of Algebra 259 (2003), 95–118 [arXiv:mathAG0107100]

This reference does not exist in the list of references.

- 2. Mar 23 2004 (From Chris Peters)
 - In the Preface to the Second Edition: line 17 ether should read "either"
 - On page 248: line -9 "in the real sense, i.e. in $NS(X) \otimes \mathbb{Q}$ " should read "in the real sense, i.e. in $NS(X) \otimes \mathbb{R}$ "
 - line -4 "this meas should read "this means"
 - "in the light" should read "in the light"
- 3. April 14 2004 (From Jonghae Keum) Here one finds a list of folklore surfaces of general type with $p_g = 0$ compiled by Jonghae Keum
- 4. Feb 13 2008 (From Victor Kulikov) The Burniat surface with $p_g = q = 0, c_1^2 = 2$ has torsion $(\mathbf{Z}/2\mathbf{Z})^{\oplus 3}$ instead of $(\mathbf{Z}/2\mathbf{Z})^{\oplus 2}$. There is an oversight in the reference [Pet2]; there are 4 additional 2-torsion elements coming from the 3 lines going to one of the four points A. This affects the table. See also Vic. S. Kulikov: Old and new examples of surfaces of general type with $p_g = 0$. See also arXiv:mathAG0404134
- 5. Mar 2 2010 (From Klaus Hulek):
 - p. 143, above Theorem 2.12: it should read

 $H^{1,1}_{\mathbb{R}}(X) = H^{1,1}(X) \cap H^2(X,\mathbb{R}) \text{ instead of } \cap H^1(X,\mathbb{R})).$

- 6. May 30 2012 and Feb 13 2013 From (David Ploog)
 - p. 131, (18.1) Theorem should read (18.1) Lemma.
 - p. 41, 15: "and hence and defines" should read "and hence defines"
 - p. 199, line -13 on bi-elliptic surfaces: The sequence (4) then shows $h^1(\mathcal{O}_X) = 0$. should read The sequence (4) then shows $h^1(\mathcal{O}_X) = 1$.

- In the index: "Bi-elliptic surface" gives two pages, 199 and 241. should read pages 199, 244–245.
- 7. Jun 13 2013 (From Paolo Oliveirio)
 - p. 33 line 7: y should read Y
 - p. 56 line 6: $B' = B \times_Y X$ should read $B' = B \times_X Y$
 - p. 86 line -4: E of D should read R of D
 - p. 91: in Proposition 2.3, after (K_X, D) need a point
 - p. 111 line 14 and below: add a unit to (8), (9), (10)
 - p. 107 line 13: σ^* should read σ_1^*
 - p. 117 line 4: is should read if
 - p. 134 line 14: 6 should read 16
 - p. 137 line 19: $P_m(X) \ge 2$ should read $P_m(X) \ge 1$
 - p. 143 line 9: $\sigma + d(\tau + \bar{\tau})$ should read $\sigma + d(\frac{\tau + \bar{\tau}}{2})$
 - p. 154 line 7: $E \cap E_0$ should read $E \cap X_0$
 - p. 162 line 18: For the dual cone: $v \in V$ should read for $v \in C$
 - p. 187 line 7: $b_2(X) = 0$ should read $b_1(X) = 0$
 - p. 191 line 4: \mathbb{P}_n should read \mathbb{P}_N
 - p. 191 line 5 : $f_{\star}\mathcal{L} \otimes \mathcal{O}_X(-F)$ should read $f_{\star}(\mathcal{L} \otimes \mathcal{O}_X(-F))$
 - p. 213 line 7: \mathcal{K}_s should read \mathcal{K}_S
 - p. 214 line -4 : $\chi(\mathcal{O}_X) = 2$ should read $\chi(\mathcal{O}_X) = 0$
 - $\bullet\,$ p. 214 line -4 and below $\,$:

$$\chi(\mathcal{O}_X) = 1, \quad k = 2, \quad m_1 = m_2 = 2$$

$$\chi(\mathcal{O}_X) = 2, \quad k = 4, \quad m_1 = m_2 = m_3 = m_4 = 4$$

$$\chi(\mathcal{O}_X) = 2, \quad k = 3, \quad m_1 = m_2 = m_3 = 3$$

$$m_1 = 2, \quad m_2 = m_3 = 4$$

$$m_1 = 2, \quad m_2 = 3, \quad m_3 = 6.$$

should read

$$\chi(\mathcal{O}_X) = 1, \quad k = 2, \quad m_1 = m_2 = 2$$

$$\chi(\mathcal{O}_X) = 0, \quad k = 4, \quad m_1 = m_2 = m_3 = m_4 = 2$$

$$\chi(\mathcal{O}_X) = 0, \quad k = 3, \quad m_1 = m_2 = m_3 = 3$$

$$m_1 = 2, \quad m_2 = m_3 = 4$$

$$m_1 = 2, \quad m_2 = 3, \quad m_3 = 6.$$

- p. 220 line -5: Sect. 7 should read Sect. 6
- p. 223 line -2: Sect. 11 should read Sect. 10
- p. 223 line -11: $H^i(\mathcal{K}^n_X) = H^i(p_\star \mathcal{K}^n_X)$ should read $H^i(\mathcal{K}^n_Y) = H^i(p_\star \mathcal{K}^n_X)$
- p. 289 line 24: the reference [ChenV.] does not exist in the bibliography. Meant is

[Chen, M. and E. Viehweg: Bicanonical and adjoint linear systems on surfaces of general type. Pacific J. Math. **219** (2005), no. 1, 83–95]

- p. 291 line 3: c_2 increases should read c_2 decreases
- p. 244 line -14: 6)K 3-surfaces should read 7)K 3-surfaces
- p. 280 line -15: $Proj(R^{(n)}(X))$ should read $Proj(R^{[n]}(X))$
- p. 287 line -21: degree 6 should read degree 8
- p. 287 line 12: $R(X)^3 \neq R(X)$ and $R(X)^4 \neq R(X)$ should read $R^{[3]}(X) \neq R(X)$ and $R^{[4]}(X) \neq R(X)$
- p. 412 In reference [Ko63] Ann. Math. should read Am. J. Math.
- 8. July 2016 (From Thomas Peternell) p. 279, line 11. $\frac{2}{9}$ instead of $\frac{1}{9}$.
- 9. May 2017 (From Klaus Hulek)

p. 360 just after Corollary (22.4) the definition of an *M*-polarization ϕ is not correct: not all, but just some divisor in $\phi^{-1}(C_M^{\text{pol}})$ should be ample; indeed, if (X, ϕ) is *M*-polarized, the ample cone $C(X) \subset H^2(X, \mathbb{R})$ intersects $\phi^{-1}M_{\mathbb{R}}$ in a non-empty subcone of $\phi^{-1}(C_{M_{\mathbb{R}}}^{\text{pol}})$, i.e., $\emptyset \neq C(X) \cap \phi^{-1}(M_{\mathbb{R}}) \subset \phi^{-1}(C_{M_{\mathbb{R}}}^{\text{pol}})$ and the inclusion might be strict.

- 10. May 2017 (From Chris Peters)p. 308, line -9/8 "we define the Kähler surface X" should be omitted.
- 11. April 2019 (Answering a question of Lingxu Meng)

On p. 43 , line 15/16. "which by definition maps to": is incorrect.

To explain this, let $A^{p,q}$ stand for the global (p,q)-forms and A^n for the *n*-forms. A Dolbeault class of type (p,q) is represented by $\alpha \in A^{p,q}$ with $\bar{\partial}\alpha = 0$. However $\partial\alpha \in F^{p+1}A^{p+q}$ need not be zero, and so there is not a priori a well-defined map to A^n . It only becomes well defined in the graded complex $\operatorname{Gr}_F^p A^{p+\bullet}$ which is the E_1 -term of the spectral complex. Its cohomology is therefore the Dolbeault cohomology. The $E_{\infty}^{p,q}$ -term is $\operatorname{Gr}_{F}^{p}H^{p+q}$ and degeneracy at E_{1} implies that the latter is isomorphic to the Dolbeault group $H^{p,q}$.

This can also be shown as a consequence of the $\partial\bar{\partial}$ -lemma. To see this one has to adapt also the (incomplete) statement of Corollary 13.7 on p. 45. Indeed, by Lemma 13.6, if α is a $\bar{\partial}$ -closed form of type (p,q)and $\partial \alpha = \beta$, one may write $\beta = \partial \bar{\partial} \gamma$ and hence $\tilde{\alpha} = \alpha - \bar{\partial} \gamma$ – which represents the same class as α – is now *d*-closed. This shows that the assignment

Dolbeault class of $\alpha \mapsto \text{ De Rham class of } \tilde{\alpha} \in F^p H^{p+q}$

gives a homorphism from $H^{p,q}$ to $'H^{p,q}$ which is clearly surjective and, again by the $\partial \bar{\partial}$ -lemma, also injective. Since $'H^{p,q} \simeq \operatorname{Gr}_F^p H^{p+q}$ this also gives an isomorphism $H^{p,q} \simeq \operatorname{Gr}_F^p H^{p+q}$.