List of Misprints and additions

1. Mar 232004 (From Rita Pardini)

- On page 300 (bottom) the reference [Pa] is wrong and should be replaced by :
R. Pardini, The classification of double planes of general type with $p_{g}=0$ and $K^{2}=8$, J. of Algebra 259 (2003), 95-118 arXiv:mathAG0107100
This reference does not exist in the list of references.

2. Mar 232004 (From Chris Peters)

- In the Preface to the Second Edition: line 17 ether should read "either"
- On page 248: line -9 "in the real sense, i.e. in $\mathrm{NS}(X) \otimes \mathbb{Q}$ " should read "in the real sense, i.e. in $\operatorname{NS}(X) \otimes \mathbb{R}$ "
- line -4 "this meas should read "this means"
- "in th e light" should read "in the light"

3. April 142004 (From Jonghae Keum) Here one finds a list of folklore surfaces of general type with $p_{g}=0$ compiled by Jonghae Keum
4. Feb 132008 (From Victor Kulikov) The Burniat surface with $p_{g}=$ $q=0, c_{1}^{2}=2$ has torsion $(\mathbf{Z} / 2 \mathbf{Z})^{\oplus 3}$ instead of $(\mathbf{Z} / 2 \mathbf{Z})^{\oplus 2}$. There is an oversight in the reference [Pet2]; there are 4 additional 2-torsion elements coming from the 3 lines going to one of the four points A. This affects the table. See also Vic. S. Kulikov: Old and new examples of surfaces of general type with $p_{g}=0$. See also arXiv:mathAG0404134
5. Mar 22010 (From Klaus Hulek):
p. 143, above Theorem 2.12: it should read
$H_{\mathbb{R}}^{1,1}(X)=H^{1,1}(X) \cap H^{2}(X, \mathbb{R})$ instead of $\left.\cap H^{1}(X, \mathbb{R})\right)$.
6. May 302012 and Feb 132013 From (David Ploog)

- p. 131, (18.1) Theorem should read (18.1) Lemma.
- p. 41, 15: "and hence and defines" should read " and hence defines"
- p. 199, line -13 on bi-elliptic surfaces: The sequence (4) then shows $h^{1}\left(\mathcal{O}_{X}\right)=0$. should read The sequence (4) then shows $h^{1}\left(\mathcal{O}_{X}\right)=1$.
- In the index: "Bi-elliptic surface" gives two pages, 199 and 241 . should read pages 199, 244-245.

7. Jun 132013 (From Paolo Oliveirio)

- p. 33 line 7: y should read Y
- p. 56 line 6: $B^{\prime}=B \times_{Y} X$ should read $B^{\prime}=B \times{ }_{X} Y$
- p. 86 line $-4: E$ of D should read R of D
- p. 91: in Proposition 2.3, after $\left(K_{X}, D\right)$ need a point
- p. 111 line 14 and below: add a unit to (8), (9), (10)
- p. 107 line 13: σ^{\star} should read σ_{1}^{\star}
- p. 117 line 4: is should read if
- p. 134 line 14: 6 should read 16
- p. 137 line 19: $P_{m}(X) \geq 2$ should read $P_{m}(X) \geq 1$
- p. 143 line 9: $\sigma+d(\tau+\bar{\tau})$ should read $\sigma+d\left(\frac{\tau+\bar{\tau}}{2}\right)$
- p. 154 line 7: $E \cap E_{0}$ should read $E \cap X_{0}$
- p. 162 line 18: For the dual cone: $v \in V$ should read for $v \in C$
- p. 187 line 7: $b_{2}(X)=0$ should read $b_{1}(X)=0$
- p. 191 line 4: \mathbb{P}_{n} should read \mathbb{P}_{N}
- p. 191 line $5: f_{\star} \mathcal{L} \otimes \mathcal{O}_{X}(-F)$ should read $f_{\star}\left(\mathcal{L} \otimes \mathcal{O}_{X}(-F)\right)$
- p. 213 line 7: \mathcal{K}_{s} should read \mathcal{K}_{S}
- p. 214 line $-4: \chi\left(\mathcal{O}_{X}\right)=2$ should read $\chi\left(\mathcal{O}_{X}\right)=0$
- p. 214 line -4 and below :

$$
\begin{array}{cl}
\chi\left(\mathcal{O}_{X}\right)=1, & k=2, m_{1}=m_{2}=2 \\
\chi\left(\mathcal{O}_{X}\right)=2, & k=4, m_{1}=m_{2}=m_{3}=m_{4}=4 \\
\chi\left(\mathcal{O}_{X}\right)=2, & k=3, m_{1}=m_{2}=m_{3}=3 \\
& m_{1}=2, m_{2}=m_{3}=4 \\
& m_{1}=2, m_{2}=3, m_{3}=6 .
\end{array}
$$

should read

$$
\begin{array}{cl}
\chi\left(\mathcal{O}_{X}\right)=1, & k=2, m_{1}=m_{2}=2 \\
\chi\left(\mathcal{O}_{X}\right)=0, & k=4, m_{1}=m_{2}=m_{3}=m_{4}=2 \\
\chi\left(\mathcal{O}_{X}\right)=0, & k=3, m_{1}=m_{2}=m_{3}=3 \\
& m_{1}=2, m_{2}=m_{3}=4 \\
& m_{1}=2, m_{2}=3, m_{3}=6 .
\end{array}
$$

- p. 220 line -5 : Sect. 7 should read Sect. 6
- p. 223 line -2: Sect. 11 should read Sect. 10
- p. 223 line -11: $H^{i}\left(\mathcal{K}_{X}^{n}\right)=H^{i}\left(p_{\star} \mathcal{K}_{X}^{n}\right)$ should read $H^{i}\left(\mathcal{K}_{Y}^{n}\right)=$ $H^{i}\left(p_{\star} \mathcal{K}_{X}^{n}\right)$
- p. 289 line 24: the reference [ChenV.] does not exist in the bibliography. Meant is
[Chen, M. and E. Viehweg: Bicanonical and adjoint linear systems on surfaces of general type. Pacific J. Math. 219 (2005), no. 1, 83-95]
- p. 291 line 3: c_{2} increases should read c_{2} decreases
- p. 244 line -14: 6)K 3-surfaces should read 7)K 3-surfaces
- p. 280 line -15: $\operatorname{Proj}\left(R^{(n)}(X)\right)$ should read $\operatorname{Proj}\left(R^{[n]}(X)\right)$
- p. 287 line -21: degree 6 should read degree 8
- p. 287 line 12: $R(X)^{3} \neq R(X)$ and $R(X)^{4} \neq R(X)$ should read $R^{[3]}(X) \neq R(X)$ and $R^{[4]}(X) \neq R(X)$
- p. 412 In reference [Ko63] Ann. Math. should read Am. J. Math.

8. July 2016 (From Thomas Peternell)
p. 279 , line 11. $\frac{2}{9}$ instead of $\frac{1}{9}$.
9. May 2017 (From Klaus Hulek)
p. 360 just after Corollary (22.4) the definition of an M-polarization ϕ is not correct: not all, but just some divisor in $\phi^{-1}\left(C_{M}^{\mathrm{pol}}\right)$ should be ample; indeed, if (X, ϕ) is M-polarized, the ample cone $C(X) \subset$ $H^{2}(X, \mathbb{R})$ intersects $\phi^{-1} M_{\mathbb{R}}$ in a non-empty subcone of $\phi^{-1}\left(C_{M_{\mathbb{R}}}\right.$ pol $)$, i.e., $\emptyset \neq C(X) \cap \phi^{-1}\left(M_{\mathbb{R}}\right) \subset \phi^{-1}\left(C_{M_{\mathbb{R}}}^{\mathrm{pol}}\right)$ and the inclusion might be strict.
10. May 2017 (From Chris Peters)
p. 308, line $-9 / 8$ "we define the Kähler surface X " should be omitted.
11. April 2019 (Answering a question of Lingxu Meng)

On p. 43 , line $15 / 16$. "which by definition maps to": is incorrect.
To explain this, let $A^{p, q}$ stand for the global (p, q)-forms and A^{n} for the n-forms. A Dolbeault class of type (p, q) is represented by $\alpha \in A^{p, q}$ with $\bar{\partial} \alpha=0$. However $\partial \alpha \in F^{p+1} A^{p+q}$ need not be zero, and so there is not a priori a well-defined map to A^{n}. It only becomes well defined in the graded complex $\operatorname{Gr}_{F}^{p} A^{p+\bullet}$ which is the E_{1}-term of the spectral complex. Its cohomology is therefore the Dolbeault cohomology. The
$E_{\infty}^{p, q}$-term is $\operatorname{Gr}_{F}^{p} H^{p+q}$ and degeneracy at E_{1} implies that the latter is isomorphic to the Dolbeault group $H^{p, q}$.
This can also be shown as a consequence of the $\partial \bar{\partial}$-lemma. To see this one has to adapt also the (incomplete) statement of Corollary 13.7 on p. 45. Indeed, by Lemma 13.6 , if α is a $\bar{\partial}$-closed form of type (p, q) and $\partial \alpha=\beta$, one may write $\beta=\partial \bar{\partial} \gamma$ and hence $\tilde{\alpha}=\alpha-\bar{\partial} \gamma$ - which represents the same class as α - is now d-closed. This shows that the assignment

Dolbeault class of $\alpha \mapsto$ De Rham class of $\tilde{\alpha} \in F^{p} H^{p+q}$
gives a homorphism from $H^{p, q}$ to ${ }^{\prime} H^{p, q}$ which is clearly surjective and, again by the $\partial \overline{\text { -}}$-lemma, also injective. Since ${ }^{\prime} H^{p, q} \simeq \operatorname{Gr}_{F}^{p} H^{p+q}$ this also gives an isomorphism $H^{p, q} \simeq \operatorname{Gr}_{F}^{p} H^{p+q}$.

