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Abstract

Let X be an irreducible complex analytic space with j : U ↪→ X an
immersion of a smooth Zariski open subset, and let V be a variation
of Hodge structure of weight n over U . Assume X is compact Kähler.
Then IHk(X,V) is known to carry a pure Hodge structure of weight
k + n, while Hk(U,V) carries a mixed Hodge structure of weight ≥
k + n. In this note it is shown that the image of the natural map
IHk(X,V)→ Hk(U,V) is the lowest weight part of this mixed Hodge
structure. In the algebraic case this easily follows from the formalism
of mixed sheaves, but the analytic case is rather complicated especially
when the complement X − U is not a hypersurface.

Introduction

For a compact Kähler complex manifold X the decomposition of complex
valued C∞ differential k-forms into types induces the Hodge decomposition
for the De Rham group Hk(X,C) equipping this group with a pure weight k
Hodge structure. For singular or non-compact complex analytic spaces this
is no longer true in general. For instance H1(C∗) has rank 1 while it should
have even rank if it would carry a weight 1 Hodge structure.

Cohomology groups of algebraic varieties instead carry a canonical mixed
Hodge structure, i.e there is a rationally defined increasing weight filtra-
tion so that the k-th graded pieces carry a weight k Hodge structure. In the
∗MSC2000 classification: 14C30, 32S35
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example there is only one weight, namely 2 and H1(C∗) is pure of weight
(1, 1). In fact, Deligne [Del71, Del74] constructed a good functorial the-
ory for the cohomology of algebraic varieties. For a smooth variety U the
weight filtration can be seen on the level of forms as follows. First choose a
smooth compactification X such that D = X − U is a divisor with normal
crossings. Cohomology of U can now be calculated De Rham-style using
rational forms having at most poles along D. The weight keeps track of the
number of branches of D along which one has actual poles. Lowest weight
corresponds to forms that extend regularly across D. Indeed, Hk(U) carries
a mixed Hodge structure with Wk−1H

k(U) = 0 and where WkH
k(U) is the

image of the restriction Hk(X) → Hk(U). In the analytic case, a similar
assertion holds provided a Kähler compactification X of U exists. However,
the mixed Hodge structure one obtains may depend on the bimeromorphic
equivalence class of the compactification.

If one studies how cohomology behaves under morphisms f : Y → X be-
tween compact Kähler complex analytic spaces, the Leray spectral sequence
tells one to look at Hq(X,Rpf∗QY

). So cohomology groups with varying
coefficient system come up naturally. Assume that there is a non-empty
Zariski-open subset U ⊂ X over which Y and f are smooth so that the
sheaf Rpf∗QY

|U is locally constant and the fibers carry a weight p Hodge
structure. In fact these can be assembled to give the prototype of what is
called a variation of weight p Hodge structure (cf. for instance [CSP]).

So it is natural to look at Hk(U,V) where V is a local system which
carries a weight n variation of Hodge structure. It generalizes the previous
case where V = Q

U
and as in that situation, it is known that there is a

mixed Hodge structure on the cohomology group Hk(U,V) provided the
local monodromy operators around infinity are quasi-unipotent, a condition
which is known to hold as long as the local system is defined over Z [Schm].
The goal of this note is to show that also in this setting, the lowest weight
“comes from the compactification”.

One should perhaps clarify what is meant by “coming from the com-
pactification” because this is subtler than in the case of constant coeffi-
cients. According to [Zuc] if dimX = 1 this can be explained as follows,
Let j : U ↪→ X be the embedding of U into its compactification. The sheaf
j∗V is quasi-isomorphic to the complex of holomorphic forms with values
in V and with L2 growth conditions at the boundary (with respect to the
Poincaré metric). Forgetting the growth conditions gives a complex which
computes the cohomology of V on U ; whence a natural restriction map
L2Hk(U,V) → Hk(U,V). One of the main results from [Zuc] states that
the source has a pure Hodge structure of weight (k + n) which maps to the
lowest weight part of a functorial mixed Hodge structure on the target. As
claimed before, in the general situation this remains true but it turns out
to be easier to replace the approach using L2-forms by a purely topological
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approach, namely via the intersection complex.
In fact, for higher dimensional base we shall work with IHk(X,V). See

Remark 3.4 where the two are compared. That IHk(X,V) carries a pure
Hodge structure in the general situation (generalizing the curve case [Zuc])
is much harder. To tackle this problem the second author [Sa88, Sa90]
came up with a construction of mixed Hodge modules in which (filtered)
D-modules and perverse sheaves play an equally important role: in a mixed
Hodge module they come glued in pairs related via the Riemann-Hilbert
correspondence. More precisely, by means of the perverse component one
defines the rational structure of a mixed Hodge module while the filtered
D-module component defines the Hodge filtration. In the algebraic case
we can define the functors f∗ etc. between the derived categories of mixed
Hodge modules to get as much information as possible. In the analytic case,
however, we can usually define only the cohomological functors Hkf∗, etc.
between the abelian categories of mixed Hodge modules since the (global)
Zariski topology on analytic spaces is too coarse, and this makes the proof
of our main theorem quite complicated.

The goal of this note is to prove the assertion about the lowest weights.
This is the content of Theorem 3.5. In the algebraic case the proof uses an
argument which resembles the one from [Ha-Sa, Remarks 2.2. i)] used in
the l-adic situation and for constant coefficients (actually this works as long
as the formalism of mixed sheaves [Sa91] is satisfied). Originally the first
named author gave a different proof which works only in the case X − U is
a locally principal divisor and resembles the arguments in [Sa90, 4.5.7 and
4.5.9] and [Mor, 3.1.4]. See Remark 3.6. Note that our main theorem in
the algebraic case does not follow from the mixed Hodge version of [Mor,
3.1.4] unless j is an affine morphism since the t-structure in loc. cit. is not
associated to the mixed complexes of weight ≤ k in the usual sense, see
[Mor, 3.1.2] (and Remark 3.7 below).

In the analytic case the argument is much more complicated unless the
complement is a hypersurface. We need a theory of mixed Hodge complexes
on analytic spaces, and have to take a blowing-up ofX along the complement
of U to construct a mixed Hodge structure on Hk(U,V). Then we have to
study the direct image of the mixed Hodge complex under the blowing-
down map to compare this with the Hodge structure on IHk(X,V). (If the
reader prefers, he may assume as in Remark 2.2. 4) that the variations of
Hodge structures and their minimal extensions are of geometric origin in the
analytic case.)

In order to make the proof as self-contained as possible, we start with a
brief summary of the necessary results from the theory of perverse sheaves
and mixed Hodge modules.

The first named author wants to thank Stefan Müller-Stach for asking
this question and urging him to write down a proof.
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1 Perverse sheaves

We only give a minimal exposition of the theory of perverse sheaves to
explain the properties which will be used below. We shall only be working
with the so-called middle perversity which respects Poincaré duality. Full
details can be found in [B-B-D].

Let X be a complex analytic space. The category of perverse “sheaves”
of Q-vector spaces on X, denoted by Perv(X; Q), is an abelian category. The
fact that it is abelian follows from its very construction as a core with respect
to a t-structure. While the details of this are not so relevant for what follows,
one needs to know that the starting point is formed by the constructible
sheaves of Q-vector spaces on X. By definition these are sheaves of finite
dimensional Q-vector spaces which are locally constant on the strata of some
analytic stratification of X. We assume that the stratification is algebraic
in the algebraic case. The simplest examples of such sheaves are the locally
constant sheaves on X itself, or those which are locally constant on some
locally Zariski closed subset Z of X but zero elsewhere.

A core is defined with respect to a so-called t-structure and in the per-
verse situation the t-structure is defined by certain cohomological conditions,
the so called support and co-support conditions. Indeed, instead of starting
from complexes of constructible sheaves on X one departs from

Db
c (X; Q) : the derived category of bounded complexes

of sheaves of Q-vector spaces on X with
constructible cohomology sheaves.

(1)

By definition a perverse sheaf is such a complex F which obeys the support
and co-support conditions:

dim suppHp(F ) ≤ −p, dim suppHp(DF ) ≤ −p,

where DF := RHom(F,DX) is the Verdier dual of F and DX is the dualizing
complex. For X smooth and d-dimensional latter is just QX(d)[2d]. The
support condition implies that Hp(F ) = 0 for p > 0 while the co-support
condition implies Hp(F ) = 0 for p < −d (where d = dimX): perverse
sheaves are complexes “concentrated in degrees between −d and 0”.

On a complex manifold a (finite rank) local system of Q-vector spaces
V can be made perverse by placing it in degree −d: the complex V[d] is a
perverse sheaf. If X is no longer smooth this complex has to be replaced by
the so-called intersection complex. Indeed, if U ⊂ X is a dense Zariski-open
subset of X which consists of smooth points and V is any (finite rank) local
system of Q-vector spaces on U the intersection complex ICX(V[d])1 can
be constructed as in [B-B-D] (and 1.1 below). (It is also called the minimal

1Some people write ICX(V) instead of ICX(V[d])
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extension.) By definition, its hypercohomology groups are the intersection
cohomology groups:

IHk(X,V[d]) := Hk(ICX(V[d])). (2)

Remark. Even if X itself is smooth an intersection complex on X need not be
of the form Ṽ[d] for some local system Ṽ defined on X because of non-trivial
monodromy “around infinity” X − U .

The following two results explain the role of these intersection complexes.

Theorem 1.1 ([Bor84, Chap.V, 4]). Let X be a d-dimensional irreducible
complex analytic space and let U be a smooth dense Zariski-open subset of
X on which there is a local system V of finite dimensional Q vector spaces.
The intersection complex ICX(V[d]) is up to an isomorphism in the derived
category the unique complex of sheaves of Q-vector spaces on X which is
perverse on X, which restricts over U to V[d] and which has no non-trivial
perverse sub or quotient objects supported on X − U .

Theorem 1.2 ([B-B-D]). If X is compact or algebraic, Perv(X; Q) is Ar-
tinian and Noetherian. Its simple objects are the intersection complexes
F = ICZ(V[dimZ]) supported on an irreducible subspace Z ⊂ X and where
V is associated to an irreducible representation of π1(U), U ⊂ Z the largest
open subset of Z over which F is locally constant.

We also need filtered objects in the abelian category Perv(X; Q). A priori
these are not represented by filtered complexes in the usual sense of the word,
since the morphisms are in a derived category: they are “fractions” [f ]/[s] :
K → L where the bracket stands for the corresponding homotopy class,
f : K → N is a morphism of complexes and N s←− L is a quasi-isomorphism.
However, the category of sheaves on X with constructible cohomology has
enough injectives and replacing L by a complex L′ of injective objects, the
quasi-isomorphism s becomes invertible up to homotopy and so [f ]/[s] can
be represented by a true morphism K → L′. Next, recall:

Lemma 1.3. For any morphism of complexes v : A→ B, the morphism in
the derived category defined by it can be represented by an injective morphism
A→ B′ of complexes.

Proof : Take B′ := Cone(− id⊕v : A → A ⊕ B). Then A is a subcomplex
of B′ and we get an injective morphism A → B′ which is identified with v
by the quasi-isomorphism (0, v, id) : B′ → B.

Corollary 1.4. Let K ∈ Perv(X; Q). Any finite filtration on K can be
represented by a filtered complex in Perv(X; Q).

Proof : Induction on the length of the filtration, assumed to be an increasing
filtration W . The above discussion shows that the morphism Wi → Wi+1

in Perv(X; Q) can be represented by a morphism of complexes to which
Lemma. 1.3 can be applied.
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2 Mixed Hodge Modules

In this section we put together some properties of mixed Hodge modules
which will be used in the sequel. These properties are proven in [Sa88] and
[Sa90]. See also the exposition [PS, Cha. 14] where mixed Hodge Modules
are introduced axiomatically.

Let X be a complex algebraic variety or a complex analytic space. There
exists an abelian category MHM(X), the category of mixed Hodge mod-
ules on X.

Remark. Note that for nonproper complex algebraic varieties X we always
have MHM(X) 6= MHM(Xan) because of the difference between algebraic
and analytic stratifications. Note also that a mixed Hodge module on an
algebraic variety is always assumed to be extendable under an open im-
mersion. The last property cannot be well-formulated in the analytic case
due to the defect of the Zariski topology on analytic spaces, e.g. Zariski-
open immersions are not stable by composition and closed subspaces are not
intersections of hypersurfaces Zariski-locally.

Properties 2.1. A) There is a functor

ratX : DbMHM(X)→ Db
c (X; Q). (3)

such that MHM(X) is sent to Perv(X; Q). One says that ratXM is the
underlying rational perverse sheaf of M . Moreover, we say that

M ∈ MHM(X) is supported on Z ⇐⇒ ratXM is supported on Z.

B) The category of mixed Hodge modules supported on a point is the cat-
egory of graded polarizable rational mixed Hodge structures; the functor
“rat” associates to the mixed Hodge structure the underlying rational
vector space.

C) Each object M in MHM(X) admits a weight filtration W such that

• morphisms preserve the weight filtration strictly;

• the object GrWk M is semisimple in MHM(X);

• if X is a point the W -filtration is the usual weight filtration for the
mixed Hodge structure.

Since MHM(X) is an abelian category, the cohomology groups of any com-
plex of mixed Hodge modules on X are again mixed Hodge modules on
X. With this in mind, we say that for complex M ∈ DbMHM(X) the
weight satisfies

weight[M ]
{
≤ n,
≥ n ⇐⇒ GrWk H i(M) = 0

{
for k > i+ n
for k < i+ n.
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We observe that if we consider the weight filtration on the mixed Hodge
modules which constitute a complex M ∈ DbMHM(X) of mixed Hodge
modules we get a filtered complex in this category.

D)(i) For each morphism f : X → Y between complex algebraic vari-
eties, there are induced functors f∗, f! : DbMHM(X) → DbMHM(Y ) and
f∗, f ! : DbMHM(Y )→ DbMHM(X) which lift functors Rf∗, f! and f−1, f !

respectively; the latter functors are defined on the level of complexes with
constructible cohomology sheaves.

D)(ii) In the analytic case this is no longer necessarily true but we have:
— for f : X → Y projective or if X is compact Kähler and Y = pt, there
are cohomological functors H if∗ = H if! : MHM(X) → MHM(Y ) which
lift the perverse cohomological functor pRif∗ = pRif!;
— for any f there are cohomological functors H if∗, H if ! : MHM(Y ) →
MHM(X) which lift pH if−1, pH if ! respectively;

E) The functors f∗, f! do not increase weights in the sense that if M has
weights ≤ n, the same is true for f∗M and f!M .

F) The functors f∗, f ! do not decrease weights in the sense that if M has
weights ≥ n, the same is true for f∗M and f !M .

G) If f is proper, f∗ preserves weights, i.e. f∗ neither increases nor de-
creases weights.

Remarks 2.2. 1) Despite the fact that the functors f∗ etc. do not exist in
the analytic setting, properties E), F), G) still have a meaning as in [Sa90,
2.26] since the weight is defined in terms of cohomology only.
2) Since in the analytic setting Zariski-open immersions are not stable by
composition H if∗M , H if!M do not necessarily exist for analytic morphisms
f . This explains why in the analytic case D) not all morphisms are allowed.
3) The reader may interpret the Kähler condition on X in Property D) as
the existence of a projective morphism g from a Kähler manifold X ′ onto
X. Indeed, the construction of H if∗M for f : X →pt , where M is a pure
Hodge module, is reduced to the assertion for X ′: use the decomposition
theorem for g applied to a pure Hodge module on X ′ which is a subquotient
of the pullback of M by g. Then it follows from [CKS], [KK86], [KK87],
[KK89]. For the mixed case we can use the weight spectral sequence.
4) It is still unclear whether H if∗M exists for proper Kähler morphisms f
unless M is constant, see [Sa90b]. If the reader prefers, he may assume that
the polarizable Hodge modules in this paper are direct factors of the coho-
mological direct images of the constant sheaf by smooth Kähler morphisms
so that the above assertion follows from the decomposition theorem for the
direct image of the constant sheaf by proper Kähler morphisms [Sa90b].
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The above properties readily imply various basic properties of mixed
Hodge modules. For example, if M is a complex of mixed Hodge modules
on X its cohomology HqM is a mixed Hodge module on X. Properties B)
and D) imply:

Lemma 2.3. Let aX : X → pt be the constant map to the point. Assume
X is algebraic or compact Kähler. Then for any complex M of mixed Hodge
modules on X

Hp(X,M) := Hp((aX)∗M) (4)

is a mixed Hodge structure.

For the proof of the main theorem one needs the following two technical
constructions. The first is the adjunction construction:

Construction 2.4. Consider a morphism f : X → Y of algebraic va-
rieties and a mixed Hodge module M on Y . The adjunction morphism
f# : M → f∗f

∗M is a morphism of complexes of mixed Hodge modules.
For any bounded complex K of mixed Hodge modules on X, the identity
aX = aY ◦f induces a canonical identification Hn(Y, f∗K) = Hn(X,K). In
particular this holds for K = f∗M . Adjunction thus induces a morphism of
mixed Hodge structures

Hkf# : Hk(Y,M)→ Hk(X, f∗M). (5)

In the analytic case this construction remains valid for an open immer-
sion j whose complement is a hypersurface (defined locally by a function g).
Indeed, then j∗j

∗M is a mixed Hodge module whose underlying D-module
comes from localization by g. More generally, consider the complement U
of an intersection Z of global hypersurfaces. Then j∗j

∗M is a complex of
mixed Hodge modules due to a second construction:

Construction 2.5 ([Sa90, 2.19, 2.20]). Let gi, i = 1, . . . , r be holomorphic
functions on Y , let Z =

⋂r
i=1 g

−1
i (0)red and U = Y − Z. We set Yi =

Y − g−1
i (0) and and for I ⊂ {1, . . . , r} we set YI =

⋂
i∈I Yi. Let i : Z ↪→ Y ,

j : U ↪→ Y and jI : YI ↪→ Y be the natural inclusions. Let M be a
mixed Hodge module on Y ; then also j∗M , the restriction of M to U , is a
mixed Hodge module on U and there are quasi-isomorphisms in the category
DbMHM(Y )

i∗i
!M

∼−→ [· · · 0→M → B1 → B2 · · ·Br → 0], Bk =
⊕
|I|=k

(jI)∗j∗IM

j∗j
∗M

∼−→ [· · · 0→ B1 → B2 → B3 · · · → Br → 0], Bk in degree k − 1.

The above construction leads to
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Lemma 2.6 ( [Sa90, (4.4.1)]). Let i : Z ⊂ Y be a closed immersion and
j : U = Y − Z ↪→ Y be the inclusion of the complement. Assume Y, Z are
algebraic or, alternatively, that Z is an intersection of global hypersurfaces
of Y . Let M be a mixed Hodge module on Y . There is a distinguished
triangle 2

i∗i
!M −−−−→ M

j∗j
∗M

S
SSo

�
��/
α[1] (6)

in the bounded derived category of mixed Hodge modules lifting the analogous
triangle for complexes with constructible cohomology sheaves. The morphism
α induces the adjunction morphism Hkj# : Hk(Y,M) → Hk(U, j∗M) for j
(see (5)).

Proof : In the algebraic setting the local constructions 2.5 for a suitable
affine cover glue together to give globally defined quasi-isomorphisms for
i∗i

!M and j∗j∗M . The local construction shows the existence of the distin-
guished triangle. See [Sa90, 4.4.1] for details.

The same argument applies in the analytic case under the assumption
that Z is a global complete intersection. See the proof of [Sa90, 2.19].

Remark 2.7. The reader may wonder what happens in the general setting of
analytic spaces. The problem is that Construction 2.5 can not be globalized
to complexes of mixed Hodge modules. However, the cohomology sheaves of
the complexes do make sense globally and are indeed mixed Hodge modules.
Hence also the long exact sequence in cohomology associated to (6) exists
in the category of mixed Hodge modules.

3 Polarizable variations of Hodge structure and
the main theorem

In this section X is an irreducible compact Kähler complex analytic space of
dimension d. Let j : U ↪→ X is the inclusion of a dense Zariski-open subset
for which we make the crucial
Assumption 1) U is smooth.
Recall the basic result linking variation of Hodge structures and polarizable
Hodge modules [Sa88, Th. 5.4.3]:

Theorem 3.1. Suppose that V is a polarizable variation on U of weight n.
If assumption 1) holds, there is a polarizable Hodge module V Hdg of weight
n+ d on U whose underlying perverse component is V[d].

2We shall write triangles also as M ′ → M → M ′′ → [1]
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Polarizable Hodge modules in the analytic case in loc. cit. and pure
Hodge modules in the algebraic case in [Sa90] are slightly different: for the
former no condition at infinity is imposed while the condition formulated as
Assumption 2) below is supposed to hold for the latter since the mixed Hodge
modules are always extendable under open immersions in the algebraic case.

Anyway both form semi-simple categories (this is implied by the po-
larizability condition, see also 2.1.C) and both satisfy moreover the strict
support condition:

Property 3.2. A polarizable weight n Hodge module M is a direct sum of
polarizable weight n Hodge modules MZ which have strict support Z where
Z are irreducible subvarieties of X,3 and the same assertion holds for pure
Hodge modules.

The condition at infinity alluded to before is reduced in this case to the
following assumption on the local system V:
Assumption 2) For a smooth compactification Ū of U with D = Ū − U a
divisor with normal crossings, the local monodromy operators around D are
quasi-unipotent. (This is independent of the choice of a compactification.)
Then, by [Sa90, 3.20, 3.21] one has:

Theorem 3.3. If assumptions 1) and 2) hold, and if V underlies a polarized
variation of Hodge structures of weight n on U , then there is a unique pure
Hodge module V Hdg

X of weight n + d on X having strict support in X and
which restricts over U to V Hdg.

Remark. Note that this checks with the assertion in Theorem 1.1 which
holds for the rational component of the mixed Hodge modules.

We next claim that IHk(X,V) carries a pure Hodge structure of weight
k+n. To see this, note that the hypercohomology groups Hk(X, ICX(V[d]))
carry pure Hodge structures of weight k + d + n. This follows from the
properties mentioned in 2: consider the proper map aX : X → pt; then
[aX ]∗V Hdg is a complex of pure mixed Hodge modules of weight n+ d over
a point and its k-th cohomology - which is exactly Hk(X, ICX(V[d])) - has
weight k+d+n. Since by (2) one has IHk(X,V) = Hk(X, ICX V), it follows
that IHk(X,V) indeed carries a pure Hodge structure of weight k + n.
Remark 3.4. Suppose that in addition X is smooth and X − U is a divisor
with normal crossings. Then, by [CKS, Theorem 1.5], [KK86], [KK87],
[KK89] IHk(X,V) can be identified with L2Hk(U,V) provided one measures
integrability with respect to the Poincaré metric around infinity (one is in
the normal crossing situation, so locally around infinity you have a product
of disks and punctured disks). Summarizing:

Hk(ICX(V)) = IHk(X,V) = L2Hk(U,V)
3M is said to have strict support Z if it is supported on Z but no quotient or sub

object of M has support on a proper subvariety of Z.
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has a pure Hodge structure of weight k + n.

Next one wants to relate intersection cohomology and ordinary cohomol-
ogy. This is the content of the main theorem:

Theorem 3.5. Assume (X,U) satisfies the assumptions 1) and 2) above.
Then
a) There is a morphism of mixed Hodge structures

Hkj# : IHk(X,V)→ Hk(U,V); (7)

b) the image of Hkj# under (7) is exactly the lowest weight part of Hk(U,V).

Some remarks are in order. In the algebraic case formula (5) for the
inclusion j : U ↪→ X and the mixed Hodge module M := V Hdg

X show that
(7) is indeed a morphism of mixed Hodge structures. In the analytic case
Lemma 2.6 implies this result when Z = X − U is a hypersurface.

The general case is much subtler. See § 5 where the problems in the
analytic case will be fully dealt with. Now we pass to the
Proof in the algebraic case; strategy of the proof in the analytic setting.
Let i : Z = X − U ↪→ X be the inclusion. To start, suppose that we
are in the algebraic setting. Set M = V Hdg

X , M ′ = j∗V
Hdg = j∗j

∗V Hdg
X

and M ′′ = i∗i
!V Hdg
X . Form the distinguished triangle (6). Portion of its

associated long exact sequence in hypercohomology reads

· · · → IHk(X,V)
Hkj#

−−−−→ Hk(U,V)∥∥ ∥∥
Hk−d(X,M) −−−−→ Hk−d(X,M ′) → Hk−d+1(X,M ′′)→ . . .

(8)

By Theorem 3.3 M = V Hdg
X is pure of weight n+d, and so by Property 2.1.F

the complex i!V Hdg
X has weight ≥ n + d. By Property 2.1.G this also holds

for the complex M ′′ = i∗i
!V Hdg
X . Applying once more Property 2.1.G to

the functor (aX)∗ one sees that Hk−d+1(X,M ′′) has weights ≥ k + n + 1
and hence the image of the map (7) is exactly the weight (k + n)-part of
Hk(U,V).

Now assume that we are in the analytic setting but assume moreover
that Z is a hypersurface. By Lemma 2.6 the same proof works. In the
general situation one has to perform a suitable blow-up π : X ′ → X which
is the identity in U and such that Z ′ = X ′ − U is a divisor. Now we would
like to apply the functor π∗. The problem is that this functor does not exist
in the derived categories of mixed Hodge modules. So we have to find a
substitute for this which still preserves enough of the Properties 2.1 so that
we can complete the proof as in the algebraic case. It turns out that the
correct category to use is the one of mixed Hodge complexes. See § 4.
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Remark 3.6. In the algebraic setting the following claim is easily shown to
imply the main result as well and can be seen as a refinement of it.

Claim. Suppose Z is a locally principal divisor or j is an affine morphism.
Then the adjunction morphism j# : V Hdg

X → j∗j
∗V Hdg

X is injective and
identifies V Hdg

X with the lowest weight part of j∗j∗V
Hdg
X = j∗V

Hdg

Indeed, the extra hypothesis on j implies (see Construction 2.5 and
[Sa90, 2.11]) that j∗V Hdg is a mixed Hodge module (not just a complex
of mixed Hodge modules) and the main theorem then follows easily from
the Claim. The latter can be proved using the long exact sequence 0 →
H0i∗i

!V Hdg
X → V Hdg

X → j∗V
Hdg → H1i∗i

!V Hdg
X where H0i∗i

!V Hdg
X = 0 by

the strict support condition.
The above claim can alternatively be shown using adjunction. This was

how the first named author originally proved the main result.

Remark 3.7. It would not be difficult to construct a mixed Hodge version of
[Mor, 3.1.4]. However, this would not immediately imply our main theorem
unless j is an affine morphism. Indeed, the t-structure in loc. cit. is defined
by the condition that pH iK has weight ≤ k and not ≤ i+ k as in the case
of mixed Hodge complexes of weight ≤ k, see [Mor, 3.1.2]. It does not seem
that there exists a t-structure associated to mixed complexes of weight ≤ k
since the weight filtration is not strict and the weight spectral sequence does
not degenerate at E1 (see also Section 5 on the proof of Theorem 3.5 in the
analytic case where mixed Hodge complexes in the Hodge setting are used).

4 Mixed Hodge complexes on analytic spaces

For the proof of Theorem 3.5 in the analytic case we need a theory mixed
Hodge complexes on analytic spaces which refines Deligne’s theory [Del71]
of cohomological mixed Hodge complexes. We present it here in a rather
simplified manner which has the defect that the mapping cones are not well-
defined. However, this does not cause a problem for the proof of Theorem 3.5
since all we need is the existence of the long exact sequence (12). See [Sa00]
for a a more elaborate formulation taking care of the problem with the cones.

Notation. — MFW (DX): the category of filtered DX -modules (M,F )
with a finite filtration W . For singular X this can be defined by using
closed embeddings of open subsets of X into complex manifolds, see [Sa88,
2.1.20].
— Db

hFW (DX): the derived category of bounded complexes (M,F,W ) such
that 1) the sheaves

⊕
pH

iFp GrWk M are coherent over the sheaf
⊕

p FpDX

and 2) the sheaves H i GrWk M are holonomic DX -modules.
—Db

cW (X,Q): the derived category of of bounded filtered complexes (K,W )
such thatW is finite and GrWk K ∈ Db

c (X,Q) for any k: we defineDb
cW (X,C)

similarly.
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— Db
hFW (DX ,Q): the “fibre” product of Db

hFW (DX) and Db
cW (X,Q)

over Db
cW (X,C) where the functor DR : Db

hFW (DX) → Db
cW (X,C) in-

duced by the De Rham functor is used to glue the two categories. More
precisely, its objects are triples

M = ((M,F,W ), (K,W ), α)

where (M,F,W ) ∈ Db
hFW (DX), (K,W ) ∈ Db

cW (X,Q) and

α : DR(M,W ) ∼= (K,W )⊗Q C in Db
cW (X,C)

and morphisms in the category are pairs of morphisms of Db
hFW (DX) and

Db
cW (X,Q) compatible with α. Forgetting the filtration W we can define

Db
hF (DX), Db

c (X,Q) and Db
hF (DX ,Q) similarly.

— GrWk M = (GrWk (M,F ),GrWk K,GrWk α) ∈ Db
hF (DX ,Q).

Definition 4.1. 1) The category of mixed Hodge complexes MHC(X) is the
full subcategory ofDb

hFW (DX ,Q) consisting ofM = ((M,F,W ), (K,W ), α)
satisfying the following conditions for GrWk M for any k, i:
(i) The GrWk (M,F ) are strict and we have a decomposition

GrWk M∼=
⊕
j

(Hj GrWk M)[−j]. (9)

(ii) The H i GrWk M are polarizable Hodge modules of weight k + i.
2) Let MHW(X) denote the category of weakly mixed Hodge modules, i.e.
its objects have a weight filtration W fow which the gradeds GrWk are polar-
izable Hodge modules of weight k, but there is no condition on the extension
between the graded pieces.
3) We say that M u→M′ v→M′′ w→M[1] is a weakly distinguished triangle
in MHC(X) if u, v, w are morphisms of MHC(X) and its underlying triangle
of complexes of sheaves of Q-vector spaces is distinguished. Here the weight
filtration W onM[1] is shifted by 1 so thatM[1] is a mixed Hodge complex.

Remarks 4.2. 1) Note that the stability by direct images asserted in Corol-
lary 4.8 does not follow from Theorem 4.7 if we replace k+i by k in condition
(ii) in the above definition of MHC(X). (This causes the shift of the filtra-
tion W in Proposition 4.4 below.)
2) In the case X =pt , we do not have to assume the decomposition (9) in
condition (i) of Definition 4.1,1). One reason is that this is only needed to
prove the stability by the direct image under a morphism from X. Another
reason is that this decomposition actually follows from the other conditions
in this case since the category of vector spaces over a field is semisimple.

We have by [Sa88, 5.1.14]
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Proposition 4.3. The category MHW(X) is an abelian category whose mor-
phisms are strictly compatible with (F,W ).

For a mixed Hodge complex M, set

H iM = (H i(M,F ), pH i(K), pH iα).

We put a weight filtration on it by letting Wk be the image of H iWk−iM
(or, equivalently, the one induced by the filtration DecW for the underlying
D-module (cf. Proposition 4.4 below). This shift of the filtration W comes
from condition (ii) in the above definition of MHC(X).

Using [Sa88, 1.3.6 and 5.1.11], etc. we have

Proposition 4.4. With the weight filtration W defined above, the H iM
are weakly mixed Hodge modules. There is a weight spectral sequence in the
abelian category of weakly mixed Hodge modules MHW(X)

Ep,q1 = Hp+q GrW−pM⇒ Hp+qM, (10)

which degenerates at E2, and whose abutting filtration on Hp+qM coincides
with the weight filtration of weakly mixed Hodge modules shifted by p+ q as
above, i.e.

Ep,q∞ = GrWq Hp+qM (11)

Moreover, (M,F,DecW ) is bistrict, and the weight filtration on Hp+qM is
induced by DecW where M is the underlying D-module of M and

(DecW )kM i := Ker(d : Wk−iM
i → GrWk−iM

i+1).

Combining this with Proposition 4.3 we get

Proposition 4.5. A weakly distinguished triangle as in Definition 4.1, 3)
induces a long exact sequence in the abelian category MHW(X)

→ H iM u→ H iM′ v→ H iM′′ w→ H i+1M→ . (12)

For a morphism of mixed Hodge complexes u : M → M′, there is a
mapping coneM′′ := Cone(u :M→M′) in the usual way. Here the weight
filtration W on M[1] is shifted by 1 so that GrW u in the graded pieces
of the differential of M′′ vanishes and hence conditions (i) and (ii) above
are satisfied. However,M′′ is not unique up to a non-canonical isomorphism
because of a problem of homotopy. So we cannot get a triangulated category
although there is a weakly distinguished triangle M → M′ → M′′ → [1]
which by Proposition 4.5 induces the long exact sequence (12) in the category
MHW(X).

Since the weight filtration on the perverse component of a weakly mixed
Hodge module can be represented by an honest filtered complex (Cor. 1.4)
we have:
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Proposition 4.6. Considering a weakly mixed Hodge module as a mixed
Hodge complex concentrated in degree 0 we get a functor

ιX : MHW(X)→ MHC(X).

By the decomposition theorem for polarizable Hodge modules [Sa88,
5.3.1] together with the uniqueness of the decomposition [Del94], we have

Theorem 4.7. Let f : X → Y be a projective morphism, and M be the
image of a polarizable Hodge module by ιX . Then we have a decomposition

f∗M∼=
⊕
i

(H if∗M)[−i] in Db
hF (DX ,Q).

Combining this with Properties 2.1.D) (ii) we get

Corollary 4.8. Mixed Hodge complexes and weakly distinguished triangles
are stable by the direct image under f : X → Y if f is projective or if X is
compact Kähler and Y = pt.

5 Proof of Theorem 3.5 in the analytic case

Let π : X ′ → X be a bimeromorphic projective morphism inducing the
identity over U and such that X ′−U is a hypersurface (defined locally by a
function). Let j′ : U → X ′ denote the inclusion. Then Rj′∗V[d] is a perverse
sheaf, and underlies a mixed Hodge module j′∗V

Hdg, see [Sa90, 2.17]. By
Proposition 4.6 this gives a mixed Hodge complex concentrated in degree 0

M′ = ((M ′, F,W ), (K ′,W ), α) := ιX′(j′∗V
Hdg), (13)

such that K ′ = Rj′∗V[d] and M′|U is identified with V Hdg. We denote the
direct image of M′ by

M = ((M,F,W ), (K,W ), α) := π∗M′ = (π∗(M ′, F,W ), π∗(K ′,W ), π∗α).

By Corollary 4.8 this is a mixed Hodge complex since π is projective.

Proposition 5.1. We have GrWd+nH
0M = ιX(V Hdg

X ), and GrWk H iM = 0
if k = d+ n+ i, i 6= 0 or if k < d+ n+ i.

Proof : It suffices to show the assertion for the underlying complex of D-
modules M since the condition on strict support in Theorem 3.3 is detected
by its underlying D-module. Moreover we may restrict to a sufficiently small
open subset Y of X enabling us to apply Construction 2.5.

So let g1, . . . , gr be functions on Y such that Z ∩ Y =
⋂
i g
−1
i (0). Set

Yi = Y − g−1
i (0). Abusing notation, let i : Y ∩ Z → Y , j : Y − Z → Y

denote the inclusions. By Lemma 2.6 there is a distinguished triangle

i∗i
!(V Hdg

X |Y )→ V Hdg
X |Y → j∗j

∗(V Hdg
X |Y )→ [1],

inducing a long exact sequence of cohomology.
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Claim. The underlying bifiltered D-modules of ιY (H ij∗j
∗(V Hdg

X |Y )) and
H iM|Y are isomorphic to each other.

Suppose that the Claim has been shown. Then the same argument as in
the proof of Theorem 3.5 in the algebraic case gives the result. Indeed, we
have the exact sequence

H i(V Hdg
X |Y )→ H ij∗j

∗(V Hdg
X |Y )→ H i+1i∗i

!(V Hdg
X |Y ),

and H i+1i∗i
!(V Hdg

X |Y ) has weights ≥ d+n+ i+1 by Properties 2.1.F and G.
This gives the assertion for i = 0 since V Hdg

X |Y is pure of weight d+ n. For
i 6= 0 we have H i(V Hdg

X |Y ) = 0 and hence the last morphism of the exact
sequence is injective so that the assertion follows.
Proof of the Claim. Let Y ′ = π−1(Y ), Y ′i = π−1(Yi), and g′i = π∗gi. By
Construction 2.5 the associated Čech complex gives a resolution of j′∗V

Hdg.
The components of this Čech complex are direct sums of (j′I)∗(V

Hdg|Y ′I )
where Y ′I =

⋂
i∈I Y

′
i with the inclusion j′I : Y ′I → Y . By the uniqueness of

the open direct image in [Sa90, 2.11] we have moreover

π∗(j′I)∗(V
Hdg|Y ′I ) = (jI)∗(V Hdg|YI),

where jI : YI :=
⋂
i∈I Yi → Y . So we get the desired isomorphism (using

the filtration DecW from Proposition 4.4), and Proposition 5.1 follows.

We return to the proof of Theorem 3.5 in the analytic case. Applying
Proposition 5.1 to M′, we get

GrWd+nM′ = ιX′(GrWd+n j
′
∗V

Hdg) = ιX′(V
Hdg
X′ ).

This implies that we get a morphism u′ : ιX′(V
Hdg
X′ ) → M′ to which we

apply π∗. The decomposition Theorem 4.7 together with the semisimplicity
of polarizable Hodge modules imply that V Hdg

X is a direct factor of π∗V
Hdg
X′ .

So we get a morphism
u : ιX(V Hdg

X )→M.

It is not clear whether u is uniquely defined (since the decomposition is
not unique). However, its underlying morphism of Q-complexes coincides
with the canonically defined adjunction morphism j# so that it induces the
desired morphism of mixed Hodge structures

H ij# : IH i(X,V)→ H i(U,V).

LetM′′ be a mapping cone of u : ιX(V Hdg
X )→M as defined in Section 4.

Remember (13) that M comes from j′∗V
Hdg, a mixed Hodge module of

weight ≥ n+d (by Properties 2.1. F)) and hence GrWk M = 0 for k < d+n.
Then, by definition of the cone, one has

GrWk M′′ = GrWk M = 0 for k < d+ n. (14)
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Using Proposition 5.1 (e.g. ιX(V Hdg
X ) = GrWd+nH

0M) together with the long
exact sequence (12) we get moreover

GrWk H iM′′ = 0 for k ≤ i+ d+ n.

Since by (11) we have Ei,k∞ = GrWk H i+kM′, the weight spectral sequence
(10) implies the surjectivity of

E−d−n−1,d+n+1+j
1

d1−−→ E−d−n,d+n+j+1
1∥∥∥ ∥∥∥

Hj GrWd+n+1M′′ → Hj+1 GrWd+nM′

for all j, and this map splits by the semisimplicity of polarizable Hodge
modules. So we get the surjectivity of

H i(aX)∗Hj GrWd+n+1M′′ → H i(aX)∗Hj+1 GrWd+nM′′ for any i, j.

Claim. This implies the surjectivity of

H i(aX)∗GrWd+n+1M′′ → H i+1(aX)∗GrWd+nM′′ for any i.

Proof of the claim. The truncation τ≤j on GrWk M ′′ splits by the definition
of mixed Hodge complexes so that GrWk M ′′ '

⊕
iH

i(GrWk M ′′)[−i] where
M ′′ is the underlying D-module ofM′′. Now the truncation induces a filtra-
tion τ ′ on H i(aX)∗GrWk M ′′ and the preceding splitting for GrWk M ′′ coming
from the truncation induces a splitting for H i(aX)∗GrWd+n+1M

′′ coming
from τ ′. Its factors are isomorphic to H i−j(aX)∗Hj GrWd+n+1M′′ and this
factor maps surjectively to the factor of H i+1(aX)∗GrWd+n isomorphic to
H i−j(aX)∗Hj+1 GrWd+nM′′.

Again using GrWk M′′ = 0 for k < d + n (14) it follows from the weight
spectral sequence for (aX)∗M′′ that

GrWk H i(aX)∗M′′ = 0 for k ≤ d+ n+ i.

So we get the desired assertion as in the algebraic case (using Corollary 4.8)
since the long exact sequence (12) for the direct image of the weakly distin-
guished triangle of the cone for u under aX : X →pt reads

· · ·H i(aX)∗M′′ → IH i(X,V)
Hi(j#)
−−−−−→ H i(U,V)→ H i+1(aX)∗M′′ .

This completes the proof of Theorem 3.5 in the analytic case.
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