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Introduction to the spectrum

Let (M, g) be a compact Riemannian manifold (possibly with
boundary). We consider the Laplacian on M, acting on functions,

∆g (f ) = δg (df ),

where δg is the divergence operator on 1-forms.

The divergence of a 1-form ω is given by

δg (ω) =
n∑

j=1
(Dg

Ej
ω)(Ej) =

n∑
j=1

[
Ej · ω(Ej)− ω(Dg

Ej
Ej)
]
,

where {Ej}nj=1 a local orthonormal frame.
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In a local coordinate system {xj}nj=1, the Laplacian is given by

∆f = − 1
vg (x)

n∑
i ,j=1

∂

∂xi
(vg (x)gĳ(x)

∂f
∂xj

),

where
(
gĳ(x)

)
is the inverse matrix

(
gĳ(x)

)−1, the

gĳ(x) = g(
∂

∂xi
,
∂

∂xj
) are the coefficients of the Riemannian metric

in the local coordinates, and vg (x) =
(
Det(gĳ(x))

)1/2.

In local coordinates, the Riemannian measure dvg on (M, g) is
given by

dvg = vg (x) dx1 . . . dxn.
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We are interested in the eigenvalue problem for the Laplacian on
(M, g), i.e. in finding the pairs (λ, u), where λ is a (real) number
and u a non-zero function, such that

∆u = λu

and, when M has a boundary ∂M, u|∂M = 0 (Dirichlet eigenvalue
problem).

We have the following theorem.
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Theorem
Let (M, g) be a compact Riemannian manifold. Then there exist a
sequence λ1 < λ2 ≤ . . . ≤ λk ≤ . . . of non-negative real numbers
with finite multiplicities, and an L2(M, dvg )-orthonormal basis
{ϕ1, ϕ2, . . . , ϕk , . . .} of real C∞ functions such that ∆ϕj = λjϕj ,
and ϕj |∂M = 0 if M has a boundary.

The set σ(M, g) = {λ1, λ2, . . . , λk , . . .} is called the spectrum of
the Riemannian manifold (M, g) (Dirichlet spectrum, if M has a
boundary). This is a Riemannian invariant (i.e. two isometric
Riemannian manifolds have the same spectrum).
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The main questions addressed by spectral geometry are the
following.

I Given a compact Riemannian manifold (M, g), can one
describe σ(M, g) ?

I What information on σ(M, g) can one draw from geometric
information on (M, g) ?

I What geometric information on (M, g) can one draw from
σ(M, g) ?

By information on σ(M, g), we mean bounds on the eigenvalues,
their asymptotic behaviour, etc .

By information on (M, g), we mean bounds on curvature, on the
volume, on the diameter, etc .
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Given (M, g), describe σ(M, g). Two examples.

I Flat tori. Let Γ be a lattice in Rn, Γ? the dual lattice and let
TΓ = Rn/Γ be the corresponding flat torus. Then,

σ(TΓ) = {4π2‖γ?‖2 | γ? ∈ Γ?},

with associated eigenfunctions (Vol(TΓ))−1/2e2iπ〈γ?,x〉.
I Round spheres. Let S2 be the unit sphere in R3, with induced

metric. Then,

σ(S2) = {k(k + 1), with multiplicity 2k + 1 | k ∈ N}.

The associated eigenfunctions are the restrictions to the
sphere of harmonic homogeneous polynomials in R3.
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Heat kernel

As an introduction to Gérard Besson’s lectures, I will first discuss
some results obtained using the heat equation.

Let (M, g) be a closed (i.e. compact without boundary)
n-dimensional Riemannian manifold.

We are interested in solving the Cauchy problem for the heat
equation, 

∂u
∂t (t, x) + ∆xu(t, x) = 0
u(0, x) = f (x)

where f is a given continuous function on M.
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One can prove that the solution u(t, x) is given by the formula

u(t, x) =

∫
M
kM(t, x , y) dvg (y),

where kM(t, x , y) ∈ C∞(R•+ ×M ×M) is the so-called
fundamental solution of the heat equation (or heat kernel) of M,
given by the formula

kM(t, x , y) =
∞∑

i=1
e−λi tϕi (x)ϕi (y)

where the series converges for t > 0, x , y ∈ M.
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Heat kernel, proofs
Let (M, g) be a closed Riemannian manifold.

Definition
A fundamental solution of the heat equation is a function
k : R•+ ×M ×M → R with the following properties.
1. The function k is in C0(R•+ ×M ×M). It admits one

derivative with respect to the first variable and first and
second derivatives in the third variable and these derivatives
are in C0(R•+ ×M ×M).

2. The function k satisfies the equation

∂k
∂t + ∆yk = 0, in R•+ ×M ×M.

3. For any f ∈ C0(M), limt→0+

∫
M k(t, x , y)f (y) dvg (y) = f (x).
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Uniqueness of the heat kernel

Let (M, g) be a closed Riemannian manifold, and let {ϕj , j ≥ 1}
be an orthonormal basis of eigenfunctions of the Laplacian, with
associated eigenvalues λj , j ≥ 1.

Proposition (Gaffney)
Assume that (M, g) admits a heat kernel k. Then, the series

∞∑
j=1

e−λj t ϕj(x)ϕj(y)

converges for all (t, x , y) ∈ R•+ ×M ×M and its sum is k(t, x , y).
As a consequence, for all x , y ∈ M, one has k(t, x , y) = k(t, y , x).
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Corollary
The series

∑∞
j=1 e−λj t converges for all t > 0 and its sum is equal

to
∫

M k(t, x , x) dvg (x).
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Parametrix

Let (M, g) be a closed Riemannian manifold.

Definition
A parametrix for the heat equation is a function
p : R•+ ×M ×M → R with the following properties.
1. The function p is in C∞(R•+ ×M ×M).

2. The function ∂p
∂t + ∆yp extends to a function in

C0(R+ ×M ×M).

3. For any f ∈ C0(M), limt→0+

∫
M p(t, x , y)f (y) dvg (y) = f (x).
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Duhamel’s principle

Let k(t, x , y) be the fundamental solution (assuming it exists).
Given u ∈ C0(M), the function

u(t, x) =

∫
M
k(t, x , y)u0(y) dvg (y)

solves the Cauchy problem
∂u
∂t + ∆u = 0,
u0(0, ·) = u0.
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The function

v(t, x) =

∫ t

0
u(τ, x) dτ =

∫ t

0

( ∫
M
k(τ, x , y)u0(y) dvg (y)

)
dτ

solves the inhomogeneous Cauchy problem
∂v
∂t + ∆u = u0,

u0(0, ·) = 0.
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Assume that p(t, x , y) is a parametrix of the heat equation. Then,
∂p
∂t + ∆yp = q,
limt→0+ p(t, x , ·) = δx ,

where q ∈ C∞(R•+ ×M ×M) ∩ C0(R+ ×M ×M).

Consider p̃(t, x , y) = k(t, x , y)− p(t, x , y). This function satisfies

∂p̃
∂t + ∆y p̃ = −q, p̃(0, ·, ·) = 0.
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Using Duhamel’s principle, we have that

k(t, x , y) +

∫ t

0

( ∫
M
q(τ, x , z)k(t − τ, z , y) dvg (z)

)
dτ = p(t, x , y),

or (I + T )(k) = p, where the operator T is defined by

T (a)(t, x , y) =: q ? a(t, x , y)

:=
∫ t

0
( ∫

M q(τ, x , z)a(t − τ, z , y) dvg (z)
)
dτ.
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It follows that the heat kernel can be expressed in terms of a
parametrix,

k =
∞∑

j=0
(−1)jq?j ? p.

The next step is to look for a parametrix in the form

pk(t, x , y) = (4πt)−n/2e−d2(x ,y)/4tη(x , y)
(
u0(x , y) + t u1(x , y)

+ · · ·+ tk uk(x , y)
)
,

where the functions uj(x , y) are defined inductively in such a way

that ∂pk
∂t + ∆yp has lowest possible order in t as t goes to 0+.
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We introduce the so-called partition function

ZM(t) =

∫
M
kM(t, x , x) dvg (x) =

∞∑
i=1

e−λi t .

Giving the function Z(M,g)(t) is equivalent to giving σ(M, g).

That this function (and hence the spectrum) carries interesting
geometric information is already apparent in Poisson’s formula.
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Asymtotic formulas

Poisson formula
Let Γ be a lattice in Rn and let Γ? be the dual lattice. Then,

ZTΓ
(t) =

∑
γ?∈Γ?

e−4π2‖γ?‖2t = (4πt)−n/2Vol(TΓ)
∑
γ∈Γ

e−‖γ‖2/4t .

Minakshisundaram-Pleĳel formula
There exist coefficients aj(M) such that, when t tends to 0+,

ZM(t) ∼ (4πt)−n/2{Vol(M) +a1(M)t + · · ·+ak(M)tk +O(tk+1)
}
.
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Weyl’s formula
When j tends to infinity, the eigenvalues of a compact n-
dimensional manifold have the following asymptotic behaviour

λj ∼ 4π2(Vol(Bn)

Vol(M)

)2/n j2/n.
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Embedding Riemannian manifolds by their heat kernel
Let `2 be the Hilbert space of real sequences {ai}i≥1 such that∑

a2
i <∞.

Definition
Given a closed n-dimensional Riemannian manifold M and an
orthonormal basis A of eigenfunctions of the Laplacian of M, one
defines a family of maps

Ψa
t : M → `2 for t > 0,

by
x →

√
2(4π)n/4t(n+2)/4{e−λj t/2ϕAj (x)

}
j≥2

(notice that we have suppressed the constant eigenfunction for
convenience).
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Theorem (P. B. - G. Besson - S. Gallot)
Fix a closed n-dimensional Riemannian manifold (M, g) and an
orthonormal basis A of eigenfunctions of its Laplacian. Let can
denote the Euclidean scalar product on `2 .

I For all positive t, the map ΨAt is an embedding of M into `2.
I The pulled–back metric

(
ΨAt
)∗can is asymptotic to the metric

g of M when t goes to zero. More precisely,

(
ΨAt
)∗can = g +

t
3
(1
2Scalg · g − Ricg

)
+ O(t2)

when t → 0+ (Scalg is the scalar curvature and Ricg the
Ricci curvature tensor of the metric g).
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An application

Theorem (PB)
Let (M, g) be an n-dimensional closed Riemannian manifold and
let {ϕj , j ≥ 1} be an orthonormal basis of eigenfunctions of the
Laplacian. Let N(λ) = Card{j ≥ 1 | λj ≤ λ}. Let
a = (a1, . . . , aN(λ)) ∈ RPN(λ)−1. Consider the function
Φa =

∑N(λ)
j=1 ajϕj and let Za = Φ−1

a (0) be the nodal set of Φa.
Then

1
Vol(RPN(λ)−1)

∫
RPN(λ)−1

Voln−1(Za) da ∼ Vol(Sn−1)Vol(M, g)√
n + 2Vol(Sn)

√
λ

when λ tends to infinity.
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Lower bounds on the eigenvalues

Theorem (P.B. - G. Besson - S. Gallot)
Let (M, g) be a closed n-dimensional Riemannian manifold. Define
rmin(M) = inf{Ric(u, u) | u ∈ UM} and let d(M) be the diameter
of M. Assume that (M, g) satisfies rmin(M)d(M)2 ≥ (n − 1)εα2

for some ε ∈ {−1, 0, 1} and some positive number α. Then, there
exists a real number R = a(n, ε, α)d(M), such that

Vol(M)kM(t, x , x) ≤ ZSn(1)(t/R2).
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As a consequence of the previous theorem, we have the following
estimates for the eigenvalues and eigenfunctions of a closed
n-dimensional Riemannian manifold (M, g) such that
Ricg ≥ (n − 1)kg and d(M) ≤ D.

There exist explicit constants A(n, k,D) and B(n, k,D) such that λj(M, g) ≥ A(n, k,D) j2/n

Vol(M, g)
∑
λj≤λ ϕ

2
j (x) ≤ B(n, k,D)λn/2.
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Generalized Faber-Krahn inequality

Theorem (P. B. - G. Besson - S. Gallot)
Let (M, g) be a closed n-dimensional Riemannian manifold such
that rmin(M)d(M)2 ≥ (n − 1)εα2 for some ε ∈ {−1, 0, 1} and
some positive number α. Then, there exists a real number
b(n, ε, α), such that

λ2(M, g) ≥ b(n, ε, α)d(M)−2.
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Another embedding

We define another embedding of a closed n-dimensional
Riemannian manifold (M, g). Given some t > 0 and an
orthonormal basis A of eigenfunctions of the Laplacian, let

IAt (x) = {
√

Vol(M) e−λj t/2 ϕAj (x)}j≥2.

We also introduce the set

Mn,k,D =
{

(M, g)| dimM = n,Ricg ≥ (n − 1)kg ,Diam(M) ≤ D
}

of closed Riemannian manifolds.



29/53

Spectral problems on Riemannian manifolds
Another embedding

Theorem (P. B. - G. Besson - S. Gallot)
Define

dt(M,M ′) = max{ sup
A∈B(M)

inf
A′∈B(M′)

HD(IAt (M), IA′t (M ′)),

sup
A′∈B(M′)

inf
A∈B(M)

HD(IAt (M), IA′t (M ′))},

where HD is the Hausdorff distance between subsets of `2. Then,
I For all t > 0, dt is a distance between isometry classes of

Riemannian manifolds.
I For any t > 0, the spaceMn,k,D is dt-precompact.
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Variational method and applications

Let (M, g) be a compact, connected Riemannian manifold (M, g).

Notations.

I We denote by L the real vector space L2(M, dvg ) with the
scalar product 〈u,w〉0 =

∫
M u w dvg (x) and associated norm

‖u‖0.
I We denote by H the completion of C∞0 (M,R) for the norm
‖u‖1 associated with the scalar product
〈u,w〉1 =

∫
M
(
g?(du, dw) + u w

)
dvg .



31/53

Spectral problems on Riemannian manifolds
Variational method and applications

When ∂M = ∅, the Hilbert space H is the space H1(M, g). When
∂M 6= ∅, this is the space H1

0 (M, g) of H1-functions whose trace
on the boundary is zero.

I For u ∈ H, we denote by D(u) the Dirichlet integral
D(u) =

∫
M g?(du, dw) dvg .

I Finally, for u ∈ H \ {0}, we define the Rayleigh quotient of u

by D(u)

‖u‖20
.

One can prove the existence of eigenvalues and eigenfunctions
inductively by minimizing the Rayleigh quotient on a chain of
Hilbert spaces starting from H.
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Variational method, proofs

Recall our first theorem.

Theorem
Let (M, g) be a compact Riemannian manifold. Then there exist a
sequence λ1 < λ2 ≤ . . . ≤ λk ≤ . . . of non-negative real numbers
with finite multiplicities, and an L2(M, dvg )-orthonormal basis
{ϕ1, ϕ2, . . . ϕk , . . .} of real C∞ functions such that ∆ϕj = λjϕj
and ϕj |∂M = 0 if M has a boundary.

We now sketch a proof of this theorem using the variational
method.
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Lemma
Let A be a closed subspace of H. Then, the infimum

µA = inf{D(u) | u ∈ A, ‖u‖0 = 1} = inf{R(u) | u ∈ A \ {0}}

exists and is achieved on a finite dimensional subspace EA ⊂ H
which is characterized by

u ∈ EA ⇔ ∀v ∈ H, D(u, v) = µA〈u, v〉0.
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I The first eigenvalue is obtained by choosing A = H in the
previous lemma.

I Higher eigenvalues.
I Other statements.
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Min-max and Max-min

Theorem
Let Gk be the set of k-dimensional subspaces in H.
The eigenvalues satisfy the min-max principle.

λk = inf
F∈Gk

sup{D(u) | u ∈ F , ‖u‖0 = 1}.

The eigenvalues satisfy the max-min principle.

λ1 = inf{D(u) | u ∈ H, ‖u‖0 = 1} and, for k ≥ 2

λk = sup
F∈Gk−1

inf{D(u) | u ∈ F , ‖u‖0 = 1, 〈u,F 〉0}.
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The least eigenvalue has a remarkable property. Any eigenfunction
associated with λ1 does not vanish in the interior of M, the
corresponding eigenspace E1 has dimension 1, any eigenfuction
which does not vanish in the interior of M must be associated with
the least eigenvalue λ1.
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Monotonicity principle

Proposition
Let (M, g) be a Riemannian manifold and let Ω1 ⊂ Ω2 ⊂ M be
two relatively compact domains. Then

λD
1 (Ω1) ≥ λD

1 (Ω2)

and strict inequality holds if the interior of Ω2 \ Ω1 is not empty.



38/53

Spectral problems on Riemannian manifolds
Variational method, proofs

Courant’s nodal domain theorem

Theorem
Let u be an eigenfunction associated with the k-th eigenvalue.
Then the number of nodal domains of u (i.e. of connected
components of M \ u−1(0)) is at most k.



39/53

Spectral problems on Riemannian manifolds
Variational method, proofs

Eigenvalue comparison theorems

Theorem (S.Y. Cheng)
Let (M, g) be any complete n-dimensional Riemannian manifold
such that Ricg ≥ (n − 1)kg. Then, for any x ∈ M and any R > 0,
one has

λD
1 (B(x ,R)) ≤ λD

1 (Bk(R)),

where Bk(R) denotes a ball with radius R in the simply-connected
n-dimensional model manifold with constant sectional curvature k.
Furthermore, equality holds if and only if B(x ,R) is isometric to
Bk(R).
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Theorem (S.Y. Cheng, M. Gromov)
Let (M, g) be a closed n-dimensional Riemannian manifold such
that Ricg ≥ (n − 1)kg. Let λ(k, ε) = λD

1 (Bk(ε)). Then, for all
ε > 0 and all j ≤ Vol(M)/Vol(Bk(2ε), λj ≤ λ(k, ε). In particular,
there exists a constant C(n, k) such that

λj ≺ C(n, k)
( j
Vol(M)

)2/n

when j tends to infinity.

Note that this estimate is coherent with Weyl’s asymptotic
estimate.
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Geometric operators

We have so far only considered the Laplacian on a closed
Riemannian manifold. One can consider other interesting
geometric operators. Of particular interest is the Jacobi operator
associated with the second variation of the area of minimal or
constant mean curvature hypersurfaces.

Let Mn # M̂n+1 be a complete minimal orientable hypersurface
immersed into some Riemannian manifold M̂. Let NM be a unit
normal field along the immersion and let AM be the associated
second fundamental form. The Jacobi operator of the immersion is
the operator

JM = ∆M −
(
R̂ic(NM ,NM) + ‖AM‖2

)
.
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Let λD
1 (JM ,Ω) denote the least eigenvalue of the operator JM with

Dirichlet boundary conditions in Ω.

We say that the domain Ω is stable if λD
1 (JM ,Ω) > 0 and weakly

stable if λD
1 (JM ,Ω) ≥ 0.

The index of the domain Ω is the number of negative eigenvalues
of the operator JM in Ω with Dirichlet boundary condition.
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Positivity and applications

Theorem (I. Glazman / D. Fischer-Colbrie - R. Schoen)
Let (M, g) be a complete Riemannian manifold and let q : M → R
be a smooth function. For a relatively compact domain Ω ⊂ M, let
λ1(Ω) be the least eigenvalue of the operator ∆ + q in Ω, with
Dirichlet boundary condition. The following assertions are
equivalent.
1. For all Ω b M, λ1(Ω) ≥ 0.
2. For all Ω b M, λ1(Ω) > 0.
3. There exists a positive function u on M such that

∆u + qu = 0.
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Complete metrics on the unit disk

Theorem (D. Fischer-Colbrie – R. Schoen)
Let (D, g) be the unit disk equiped with a metric g = µge
conformal to the Euclidean metric. Let K and ∆ denote
respectively the Gauss curvature and the Laplacian for the metric g
(then 2K = ∆ lnµ).

If g is complete, then for any a ≥ 1, there is no positive solution of
the equation (∆ + aK )f = 0 on D.
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As a matter of fact, one has the following result (which has been
improved by Ph. Castillon).

Proposition
Let g = µge a complete conformal metric on the unit disk D.
Then, there exists some numer 0 ≤ a0(g) < 1 such that

I for a ≤ a0, there exist no positive solution to (∆ + aK )f = 0
on D,

I for a > a0, there exists a positive solution to (∆ + aK )f = 0
on D.



46/53

Spectral problems on Riemannian manifolds
Positivity and applications

Corollary
Let g be a complete conformal metric on the unit disk D. For
a ≥ 1 (a constant) and for p ≥ 0 (a function on D), there exist no
positive solution to (∆ + aK )f = pf .
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Stable minimal surfaces in R3

Theorem (M. do Carmo - C. Peng / D. Fischer-Colbrie -
R. Schoen)
The only complete oriented stable minimal surface in R3 is the
plane.
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Jacobi fields

Let JM be the Jacobi operator of a minimal hypersurface M # M̂.
A Jacobi field is a function u on M such that JM(u) = 0.

The geometry provides natural Jacobi fields. Indeed, we have the
following properties.

1. Let K be a Killing field in M̂. Then the function
uK = ĝ(K,NM) is a Jacobi field on M.

2. Let ψa : M # M̂ be a family of minimal immersions. Then
the function va = ĝ(dψa

da ,NM) is a Jacobi field on M.
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Catenoïds in R3

Part of the proof of the positivity theorem can be restated as the
following corollary.

Corollary
Let Ω be any bounded open domain. Assume that there exists a
positive function u on Ω such that (∆ + q)u = 0. Then,
λ1(Ω) ≥ 0.
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As an application, we can prove Lindelöf’s theorem for catenoïds in
R3.

Theorem
One can characterize the maximal rotation-invariant stable domains
of the catenoids as generated by the arcs of the catenary whose
end-points have tangents meeting on the axis of the catenary. In
particular, the half vertical catenoïd x2 + y2 = cosh2(z), z ≥ 0 is a
maximal weakly stable rotation invariant domain.

Observe that the catenoïd x2 + y2 = cosh2(z) has index 1.
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Generalizations

The same analysis can be applied to catenoids in H2 × R or in H3

and to their higher dimensional analogues, with the occurence of
interesting phenomena. (work in progress PB - R. Sá Earp).
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