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The uniformization theorem in one complex variable
was formulated by Riemann and completely proved by
Koebe and independantly Poincaré in 1907.

Theorem 1 Let U be a connected and simply connected
Riemann Surface. Then U is isomorphic to either P1(C)
(elliptic case), C (parabolic case) or ∆ = {z ∈ C| |z| <
1} (hyperbolic case).

A Riemann surface is a paracompact complex manifold of dimension one.

The most efficent proof that a compact simply connected Riemann Surface
is isomorphic to a complex projective line relies on the Riemann-Roch theorem.
We shall assume in the rest of the discussion that we are in the non-compact case.

That U is isomorphic to C or ∆ means that there is a holomorphic function
z : U → C which gives rise to a homeomorphism from U to C or ∆. Call such
a z a global uniformization parameter for U .

Remark Global uniformization parameters are rather rigid, i.e.: determined
up to an isomorphism of the model space.

In the elliptic case, given such a z every global uniformization parameter
takes the form:

z′ = az + b a ∈ C∗, b ∈ C.

In the hyperbolic case, we have:

z′ =
pz + q

p′z + q′

(
p q
p′ q′

)
∈ U(1, 1)
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When U is the universal covering space of a compact
Riemann surface, we have the following more precise
statement:

Theorem 2 Let S be a compact connected Riemann sur-
face of genus g and π : U → S be its universal covering
space.

g = 0, then S is simply connected, U = S and S '
P1(C).

g = 1, then U ' C, S ' Λ\C where Λ ' Z2 is a rank 2
discrete subgroup of C.

g ≥ 2 then U ' ∆, S ' Γ\∆ where Γ ⊂ PU(1, 1) is a
torsion-free cocompact discrete subgroup isomorphic
to

< a1, b1, . . . , ag, bg | a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g = 1 >

For the proof of the uniformization theorem, we need to construct a global
uniformization parameter. There are various ways of doing this, some of them
working only a posteriori:

• (in the compact elliptic case) elliptic integrals.

• Solve Dirichlet problems to manufacture a Green’s function.

• (in the hyperbolic case) Find an extremal disk in S for the Kobayashi
metric.

• (in the hyperbolic case) Find an extremal function on U for the Caratheodory
metric.

• (in the compact hyperbolic case) Find a conformal hyperbolic metric, solv-
ing

1 + ∆gφ = eφv

where g is a conformal metric and v > 0 is a suitable smooth function.

• .....
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Question: What happens in several complex vari-
ables?

Structure of the universal covering space

The Shafarevich conjecture -actually this was not for-
mulated as a conjecture by Shafarevich, just as a guess-
predicts that the universal covering space of a complex
projective manifold (compact and embeddable in PN(C))
should be holomorphically convex.

This problem is open, in spite of recent positive results. These results are
expected to hold for compact Kähler manifolds.

Evidence comes from examples of projective (or compact Kähler) manifolds
with Stein universal covering. They include abelian varieties (or compact com-
plex tori) quotient of bounded symmetric examples, Mostow-Siu-Deraux exam-
ples.... Furthermore the conjecture is invariant by product, birational transfor-
mations and also enjoys some heredity.

Structure of the fundamental group

Any finitely generated group can arise as the funda-
mental group of a compact complex manifold of dimen-
sion 3 (Taubes).

On the other (Non-abelian) Hodge Theory strongly re-
stricts the class of Kähler groups, i.e.: finitely generated
groups arising as the fundamental group of a compact
Kähler manifold.

Characterizing the class of Kähler groups in terms of their algebraic or com-
binatorial properties seems to be out of reach.

From now on, we will restrict to the Kähler case and
introduce the basic ideas of Non abelian Hodge Theory
focusing on their applications to the Shafarevich conjec-
ture.
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Reformulations of the Shafarevich conjecture

Let X be a compact Kähler manifold and H ⊂ π1(X)
be a normal subgroup.

Say (X,H) satisfies (HC) iff H\X̃univ is holomorphi-
cally convex.

Example If (X,H) satisfies (HC) and f : Y → X is an holomorphic map
from a compact Kähler manifold then (Y, f−1

∗ H) satisfies (HC).

If (X,H) satisfies (HC), then there is a proper holomorphic map-
ping with connected fibers

s̃H : H\X̃univ → S̃H(X)

which contracts precisely the compact connected analytic sub-

spaces of H\X̃univ. The mapping sH is equivariant under the Ga-
lois group G = H\π1(X) which acts properly and cocompactly on

S̃H(X).

The quotient map sH : X → G\S̃H(X) is called theH-Shafarevich
morphism.

Constructing the H-Shafarevich morphism is the first step to
settle when trying to prove (HC).

The second step is to prove that the normal complex space S̃H(X)
is Stein.
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The best general result on the first step of the Shafarevich conjecture is:

Theorem 3 (Campana 1993, independant work by Kollár
in the projective case) One can construct a meromorphic

map s̃H : H\X̃univ → S̃H(X) which is proper and holo-
morphic outside π−1Z where Z ⊂ X is a proper complex
analytic subvariety whose general fiber is a maximal com-

pact connected analytic subvariety of H\X̃univ.

Cycle-theoretic methods do not give anything on the second step. Indeed
they are blind to the specific nature of H. To get (HC), one must take H large
enough in view of the Cousin example.

Example Let A be a simple abelian surface A = Λ\C2 with Λ ' Z4. Let
ρ : Λ→ Z be a surjective morphism. Then (X,H) = (A, ker(ρ)) is non compact
and has no nonconstant holomorphic functions. On the other hand, the first half
of (HC) does hold since s̃H = id satisfies the above property since ker(γ)\C2

has no positive dimensional compact complex submanifold.
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Crash course in (Abelian) Hodge theory

Definition 4 Let X be a complex manifold. A symplectic (real)
2-form ω is a Kähler form if it can be expressed in local complex
coordinates as:

ω =

√
−1

2

∑
1≤a,b≤n

gab̄dz
a ∧ dz̄b

with (gab̄) a smooth positive definite hermitian matrix.
A Kähler manifold is a complex manifold which carries a Kähler

form.

Example PN (C) is Kähler. More generally every complex projective man-
ifold is a compact Kähler manifold.

Proposition 5 Let X be a compact Kähler manifold.
Every holomorphic 1-form is closed and harmonic. Hence, a holo-

morphic 1-form is exact iff it is zero.
Conversely a complex harmonic one form η uniquely decomposes

as η = φ+ ψ̄ where φ, ψ are holomorphic one forms.

In particular, b1(X) ≡ 0[2] and we have a Hodge de-
composition:

H1
DR(X,C) = H1,0 ⊕H1,0 H1,0 = H0(X,Ω1

X).

This decomposition is orthonormal and definite for the
non degenerate form of signature (h0(Ω1), h0(Ω1)) de-
fined by:

S(η, η̄) =
√
−1

∫
X

η ∧ η̄ ∧ ωn−1.
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Using this we show (HC) for (X, [π1, π1]) using the
proper holomorphic mapping constructed from abelian
integrals:(

[π1, π1]\X̃univ −→ H0(Ω1
X)∗

p 7→ (α 7→
∫ p
x̃ α)

)
.
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Crash course in (Non-Abelian) Hodge theory

The non abelian cohomology set H1(X,GLN(C)) can be inter-
preted as the set of conjugacy classes of representations ρ : π1(X)→
GLN(C).

If it exists a harmonic ρ-equivariant mapping hρ:

hρ : X̃univ → GLN(C)/U(N)

is well defined up to the action of the normalizer of ρ(π1(X)) in
GLN(C). This might be seen as the harmonic representative of the
cohomology class defined by ρ.

Theorem 6 (Corlette-Labourie) Let (M, g) be a compact
Riemannian manifold and ρ : π1(M) → GLN(C) be a
representation. Then ρ has a harmonic representative iff
ρ is semisimple.

(Eells-Sampson) If X is a compact Kähler manifold
then the harmonic representative of a semisimple repre-
sentation does not depend on the Kähler metric and if
f : Y → X is a holomorphic mapping then hρ ◦ f̃ is a
harmonic representative for f ∗ρ.
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Higgs bundles, according to C. Simpson.

The information on hρ can be repackaged in a rank N Higgs
bundle.

Definition 7 A Higgs bundle (E, θ) on a compact Kähler manifold
X is:

• a holomorphic bundle E on X,

• θ : E → E ⊗ Ω1
X a holomorphic End(E)-valued 1-form,

• such that θ ∧ θ = 0.

Definition 8 A Higgs subsheaf (F, θ) ⊂ (E, θ) is a coherent analytic
subsheaf F ⊂ E which is θ-stable.

A Higgs bundle is stable iff for every non trivial Higgs subsheaf
(F, θ) ⊂ (E, θ) we have:∫

X
c1(F ).ωn−1

rk(F )
<

∫
X
c1(E).ωn−1

rk(E)
.

A Higgs bundle is polystable iff it is a direct sum of stable Higgs
bundles.

Theorem 9 (Simpson) A polystable Higgs bundle with∫
X c1(E)ωn−1 =

∫
X c2(E)ωn−2 = 0 comes from a semisim-

ple representation of the fundamental group.
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Example If ρ : π1(X) → C∗ is an abelian representation then
we may construct log |ρ| : π1(X)→ R and ρ/|ρ| : π1(X)→ U(1).

The representation log |ρ| can be interpreted as a degree 1 real co-
homology class whose harmonic representative takes the form <(α)
with α ∈ H0(Ω1

X).
A holomorphic line bundle is numerically trivial iff it its the holo-

morphic line bundle underlying a flat U(1) line bundle. Hence there
is a well defined numerically trivial line bundle L unambiguously
attached to ρ/|ρ|.

The Higgs bundle attached to ρ is (L, α).
Conversly if L is numerically trivial and α ∈ H0(Ω1

X) L carries a
flat unitary connection d and d + α is a flat connection on L since
dα = 0.
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An ubiquitous class of examples

Definition 10 A C-VHS (polarized complex variation of Hodge structures) on
X of weight w ∈ Z is a 5-tuple (X,V,F•,G•, S) where:

1. V is a local system of finite dimensional C-vector spaces,

2. S a non degenerate flat sesquilinear pairing on V,

3. F• = (Fp)p∈Z a biregular decreasing filtration of V⊗COX by holomorphic
subbundles such that d′Fp ⊂ Fp−1 ⊗ Ω1

X ,

4. G• = (Gq)q∈Z a biregular decreasing filtration of V⊗COX̄ by antiholomor-
phic subbundles such that d′′Gp ⊂ Gp−1 ⊗ Ω1

X̄
,

5. for every point x ∈ X the fiber at x (Vx,F•x ,G
•
x) is a C-HS polarized by

Sx.

These conditions can be expressed in saying that there is a Hodge decom-
position:

Vx = ⊕p+q=wHp,q
x

where Hp,q
x is a C∞-subbundle, the decomposition being S-orthogonal and

(−1)p.SHp,q > 0. The link is given by the formulae:

FP = ⊕p≥PHp,q GQ = ⊕q≥QHp,q.

Proposition 11 We can endow Hp,q with a holomorphic structure
by indentifying it with FP/FP+1. The d′-fundamental form then
gives a holomorphic map: ∇′ : Hp,q → Hp−1,q+1 ⊗ Ω1

X .
Then, (⊕pHp,q,⊕p∇′) is the Higgs bundle attached to V.

Theorem 12 (Simpson) If a numerically trivial polystable
Higgs bundle satisfies (E, θ) ' (E, tθ) for all t ∈ C∗ then
it underlies a polarizable C-VHS.
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The uniformization theorem in the compact hyperbolic
case

Let us use Theorem 12.
Let C be a Riemann surface of genus g ≥ 2. Then Ω1

X had degree 2g − 2 ≡
0[2]. Hence there is a holomorphic line bundle S such that S⊗2 ' Ω1

X . This
gives η : S → S−1 ⊗ Ω1

X .

The Higgs bundle (E, θ) = (S ⊕ S−1,

(
0 η
0 0

)
) is numerically trivial and

stable. It satisfies Simpson’s condition for a C-VHS with (h1,0, h0,1) = (1, 1).
The period mapping of this C-VHS is actually a holomorphic mapping,

equivariant by a reprentation ρ : π1(C)→ U(1, 1)

z : C̃univ → U(1, 1)/U(1)× U(1) = ∆

whose derivative is (essentially) η hence never vanishes. In particular z∗ds2
∆ is

a hyperbolic conformal metric and the uniformization theorem for C follows.
The period mapping for this VHS is thus a global uniformization parameter
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Reductive Shafarevich Conjecture

Theorem 13 (E., 2004)
Let X be a connected complex projective manifold and

H =
⋂

ρ:π1(X)→GLN (C) reductive

ker(ρ).

Then (X,H) satisfies (HC).

In fact, this is a consequence of a hereditary statement I will not describe.

This also implies that if π1(X) has a complex linear representation with in-
finite image then there are non constant holomorphic functions on X̃univ.

The period mappings of the C-VHS constructed via
Theorem 12 are major ingredients in the proof of this
statement.
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Linear Shafarevich Conjecture

Theorem 14 (E.- Katzarkov-Pantev-Ramachandran, 2009,
arxiv:0904.0693)

Let X be a connected complex projective manifold and

H =
⋂

ρ:π1(X)→GLN (A) A a C-algebra.

ker(ρ).

Then (X,H) satisfies (HC).

We have not been able to develop a hereditary statement implying this.
Hopefully, this can be done.

The compact Kähler case is expected to hold true.

Classical Abelian integrals are actually period map-
ping for unipotent VMHS (variations of Mixed Hodge
structures, a generalization of VHS). The period map-
pings of the universal C-VMHS constructed in (E.- Simp-
son 2009, arxiv:0902.2626) play actually the central role
in this case and turn out to be the right non-abelian
analogue of abelian integrals.
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