
Xcas reference card

1 How to install Xcas

Xcas is a free software (GPL), you can download it at :
http ://www-fourier.ujf-grenoble.fr/~parisse/giac.htmlCAS
(Computer Algebra System) means exact, formal or symbolic calculus.

2 Interface

Interface

File Edit Cfg... is the main menu

session1.xws or is the name of the current session or
Unnamed if the session has not been saved

? open the help command index
Save save the session
Config : exact real... open the CAS configuration
STOP interrupt a computation
Kbd show/hide keyboard
X close the session

1| is a commandline

You can write your first command (click to have the cursor in the command-
line) : 1+1, then "Enter" (or "Return" depending on your keyboard). The result
appears below in an expression editor, as well as a new commandline (numbered
2) for the next command.Xcas has different data types : integers (2), fractions
(3/2), float numbers (2.0,1.5), formal parameters (x,t), variables (a:=2),
expressions (x^2-1), functions (f(x):=x^2-1), lists ([1,2,3]), sequences
(1,2,3), strings ("na") and geometric objects.

An expression is a combination beteween numbers and variables connected
with operators. A function associates a variable to an expression.
For example,a:=x^2+2*x+1 defines an expressiona butb(x):=x^2+2*x+1
defines a functionb andb(0)=subst(a,x=0)=1.

A matrix is a list of lists with same length, a sequence can’t contains sequence.

Ponctuation symbols

. between the integer part and the decimal part
, between the terms of a list or of a sequence
; ends each instruction of a program
:; ends an instruction whose answer will not be displayed
! n ! is the factorial ofn (4 !=1 · 2 · 3 · 4 = 24)
:= a:=2 affectation instruction that stocks2 into the variablea
[] list delimitations (L:=[0,2,4] andL[1] returns2)
"" string delimitations (C:="ba" andC[1] returns"a")

1

3 Configurations

Configurations

Cfg◮CAS config open the CAS configuration
Cfg◮graph config open the default graphic configuration
Cfg◮general configuration open the general configuration
cfg (Graph) open the configuration of this graphic level

Config : ... open the CAS configuration

Sheet config : open the sheet configuration

You can change the aspect of the interface and save your changes for the next
sessions using theCfg menu.

4 Levels

Each session is composed of numbered levels which are : command line for
cas commands, interactive geometry screen (2-d et 3-d), formal spreadsheet, turtle
drawing, programm editor etc...

Levels

Alt+c new comment
Alt+d new turtle graphic
Alt+e new expression editor
Alt+g new 2-d geometry figure
Alt+h new 3-d geometry figure
Alt+n new commandline
Alt+p new program editor
Alt+t new spreadsheet

5 Help

All commands are sorted in alphabetical order in the help index (Help◮Index)
and several manuals with exercises inHelp◮Manuals◮... and examples in
Help◮Examples.

Help

Help◮Index open the command index
Help◮Manuals◮... open one of manuals in your navigator
? open the command index
ce ? open the command index atceil
ce F1 open the command index atceil
ce ⇄ open the command index atceil
?ceil open the browser detailled help forceil
Cmds◮Real◮Base◮ceil print ceil short help inmsg opened with

Cfg◮Show◮msg or Kbd ◮ msg

2

Xcas reference card : basic CAS
– Type Enter to execute a commandline.
– Numbers may be exact or approx.
– Exact numbers are constants, integers, integer fractions and all expressions

with integers and constants.
– Approx numbers are written with the scientific standard notation : integer

part followed by the decimal point and the fractional part, optionally fol-
lowed bye and an exponent.

Operators

+ addition
- substraction

* mutiplication
/ division
^ power

Constants

pi π ≃ 3.14159265359
e e ≃ 2.71828182846
i i =

√
−1

infinity ∞
+infinity or inf +∞
-infinity or -inf −∞
euler_gamma Euler’s constant

Sequences, lists, vectors

S:=a,b,c S is a sequence of 3 elements
S:=[a,b,c] S is a list of 3 elements
S:=NULL S is an empty sequence
S:=[] S is an empty list
dim(S) returns the size of S
S[0] returns the first element of S
S[n] returns then + 1-th element of S
S[dim(S)-1] returns the last element of S
S:=S,d appends the elementd at the tail of a sequence S
S:=append(S,d) appends the elementd at the tail of a list S

Strings

S:="abc" S is a string of 3 characters
S:="" S is a string of 0 character
dim(S) is the length ofS
S[0] returns the first character ofS
S[n] returns then + 1-th character ofS
S[dim(S)-1] returns the last character ofS
S:=S+d appends the characterd at the tail of the stringS
"ab"+"def" concats the two strings and returns "abdef"

Fractions

propfrac returns integer part+fractional part
numer getNum numerator of the fraction after simplification
denom getDenom denominator of the fraction after simplification
f2nd [numer, denom] of the fraction after simplification
simp2 simplifies a pair
dfc continued fraction expansion of a real
dfc2f converts a continued fraction expansion into a real

3

Usual functions

evalf(t,n) num. approx. oft with n decimals sign sign (-1,0,+1)
max maximum min minimum
round nearest integer frac fractional part
floor greatest integer≤ ceil smallest integer≥
re real part im imaginary part
abs norm or absolute value arg argument
conj conjugate affix affix
factorial ! factorial binomial binomial coefficient
exp exponential sqrt square root
log10 common logarithm (base 10) ln log natural logarithm
sin cos sinus cosine csc sec 1/sinus 1/cosine
tan tangent cot cotangent
asin arcsinus acos arccosine
atan arctangent acot arccotangent
sinh hyperbolic sinus cosh hyperbolic cosine
asinh hyperbolic arcsine acosh hyperbolic arccosine
tanh hyperbolic tangent atanh hyperbolic arctangent

Arithmetic on integers

a%p a modp
powmod(a,n,p) an modp
irem euclidean remainder
iquo euclidean quotient
iquorem [quotient,remainder]
ifactor factorization into prime factors
ifactors list of prime factors
idivis list of divisors
gcd greatest common divisor
lcm lowest common multiple
iegcd extended greatest common divisor
iabcuv returns[u, v] such asau + bv = c
ichinrem chinese remainders for integers
is_prime test ifn is prime
nextprime next pseudoprime integer
previousprime previous pseudoprime integer

Transformations

simplify simplifies tsimplify simplifies (less powerful)
normal normal form ratnormal normal form (less powerful)
expand expands partfrac partial fraction expansion
factor factorizes convert converts into a specified format

Transformations and trigonometry

tlin linearize tcollect linearizes and collects
texpand expandsexp, ln and trig trig2exp trig to exp
hyp2exp hyperbolic toexp exp2trig exp to trig

4

Xcas reference card : statistics and
spreadsheet

Probabilities

comb(n,k) (n
k) = Ck

n

binomial(n,k,[p]) returns comb(n, k) ∗ pk(1 − p)n−k or comb(n,k)
perm(n,p) Ap

n

factorial(n), n! n !
rand(n) random integerp such that0 ≤ p < n
rand(p,q) random realt such thatt ∈ [p, q]
randnorm(mu,sigma random realt accordingN(µ, σ)

1-d statistics

mean mean of a list
median median of a list
quartiles [min,quartile1,median,quartile3,max]
boxwhisker whisker boxes of a statistical series
variance variance of a list
stddev standard deviation of a list
histogram histogram of its argument

2-d statistics

polygonplot polygonal line
scatterplot scattered points
polygonscatterplot polygonal pointed line
covariance covariance of 2 lists
correlation correlation of 2 lists
exponential_regression (m, b) for exponential fity = bemx

exponential_regression_plot graph of the exponential fity = bemx

linear_regression (a, b) for linear fity = ax + b
linear_regression_plot graph of the linear fity = ax + b
logarithmic_regression (m, b) for logarithmic fity = m ln(x) + b
logarithmic_regression_plot graph of the logarithmic fity = m ln(x) + b
polynomial_regression (an, ..a0) for polynomial fity = anxn + ..a0

polynomial_regression_plot graph of the polynomial fity = anxn + ..a0

power_regression (m, b) for power fity = bxm

power_regression_plot graph of the power fity = bxm

Statistic commands may be typed in a commandline or selected from theCmds◮Proba_stats
menu. They may be selected from theGraphic◮Statsmenu using dialog boxes.
The easiest way is however to open a spreadsheet enter data there, select the data
with the mouse, open the spreadheetMaths menu and fill the dialog boxes.

5

The Xcas spreadsheetis a symbolic spreadsheet (in addition to numeric values
and formula (beginning with=), cells may contain exact value, complex numbers,
expressions, ...) where Xcas commands and user-defined functions may be used.
Note that litteral entries must be quoted as strings, for example "Result", otherwise
they will be parsed as identifiers or may generate errors. The Xcas spreadsheet
uses standard conventions (columns are refered with letters starting atA, rows with
numbers starting at 0, references are relative except if the column or row number
is prefixed with$). Note that :

– theTable, Edit, Mathsmenu may be obtained by a right-click mouse
– theeval val 2-d 3-d buttons (reeval the spreadsheet, show the value

instead of formula, show 2-d or 3-d graph displaying cells with a graphic
object value in a window)

– the “goto” input-value (top-left) let you go to a cell or select a cell rangeif
you fill it in. It is filled if you make a mouse event

– the commandline to input cells values or formulas
– the configuration button : shows the current config, click to change the sheet

configuration : you may select to view all 2-d graphic objects of the spread-
sheet below or right to the sheet (Landscape mode)

Example : extended gcd, givena andb find u andv such thatau + bv =gcd(a, b)
– Enter the value ofa andb in A0 andA1 for example 78 and 56
– We will fill column A with remaindersrn, setA2 to =irem(A0,A1) and

copy down (Ctrl-d).
– ColumnEwill contain the quotients, setE2=iquo(A0,A1) and copy down
– ColumnsB andCwill contain values ofun andvn such thataun+bvn = rn,

enter 1 and 0 forB0, C0, 0 and 1 forB1 andC1, =B0-E2*B1 for B2, copy
down=C0-E2*C1 for C2, copy down

– ColumnD is aun + bvn, hence should be identical to columnA, setD0 to
=B0*A0+B1*A1 and copy down

– ColumnF will contain the answer or 0, setF0 to :
=if A0==0 then [B0,C0,D0] else 0 fi and copy down.

One can check in a standard commandline withiegcd(78,56) :
Fich Edit Cfg Aide CAS Expression Cmds Prg Graphic Geo Tableur Phys Scolaire Tortue

Sheet config: * Spreadsheet B R40C10 auto down fill
A B C D E F G H I

0 1 2 3 4 5 6 7 8 9

0 78 1 0 78 0 0 0 0 0 0
1 56 0 1 56 0 0 0 0 0 0
2 22 1 -1 22 1 0 0 0 0 0
3 12 -2 3 12 2 0 0 0 0 0
4 10 3 -4 10 1 0 0 0 0 0
5 2 -5 7 2 1 [-5,7,2] 0 0 0 0
6 0 28 -39 0 5 0 0 0 0 0
7 2 -5 7 2 0 [-5,7,2] 0 0 0 0
8 0 28 -39 0 0 0 0 0 0 0
9 2 -5 7 2 0 [-5,7,2] 0 0 0 0

10 0 28 -39 0 0 0 0 0 0 0
11 2 -5 7 2 0 [-5,7,2] 0 0 0 0
12 0 28 -39 0 0 0 0 0 0 0
13 2 -5 7 2 0 [-5,7,2] 0 0 0 0

eval val init 2-d 3-d Save B.tabTable Edit Maths
D0 =A0*B0+A1*C0

iegcd(78,56)
-5 7 2, , M

1

2

? Sauver Config : exact real RAD 12 xcas 14.969M STOP Kbd X
Unnamed

6

Xcas reference card : Algebra

Polynomials

normal normal form (expanded and reduced)
expand expanded form
ptayl Taylor polynomial
peval horner evaluation using Horner’s method
genpoly polynomial defined by its value at a point
canonical_form canonical form of a second degree polynomial
coeff coefficient or list of coefficients
poly2symb list polynomial to symbolic polynomial
symb2poly symbolic polynomial to list polynomial
pcoeff polynomial from it’s roots
degree degree
lcoeff coefficient of the monomial of highest degree
valuation degree of the monomial of lowest degree
tcoeff coefficient of the monomial of lowest degree
factor factorizes a polynomial
cfactor factorizes a polynomial onC
factors list of irreducible factors and multiplicities
divis list of divisors
collect factorization on the coefficients field
froot roots with their multiplicities
proot approx. values of roots
sturmab number of roots in an interval
getNum numerator of a rational fraction (unsimplified)
getDenom denominator of a rational fraction (unsimplified)
propfrac returns polynomial integer part + fractional part
partfrac partial fraction expansion
quo euclidean quotient
rem euclidean remainder
gcd greatest common divisor
lcm lowest common multiple
egcd extended greatest common divisor
chinrem chinese remainder
randpoly random polynomial
cyclotomic cyclotomic polynomial
lagrange Lagrange polynomial
hermite Hermite polynomial
laguerre Laguerre polynomial
tchebyshev1 Tchebyshev polynomial (1st type)
tchebyshev2 Tchebyshev polynomial (2nd type)

7

Matrices

M:=[[a,b,c],[f,g,h]] M is a matrix with 2 rows and 3 columns
dim(M) returns dimensions as a list [nrows, ncols]
M[0] returns the first line of M
M[n] returns then + 1-th line of M
row(M,n) returns then + 1-th line of M
col(M,n) returns then + 1-th column of M
M[dim(M)[0]-1] returns the last line of M
M[n..p] returns the sub-matrice of M with lines in[n..p]
append(M,[d,k,l]) appends the line[d, k, l] at the end of M
M[dim(M)[0]]:=[d,k,l] appends the line[d, k, l] at the end ofM
border(M,[d,k]) appends the column[d, k] at the end ofM

Operators on vectors and matrix

v*w scalar product
cross(v,w) dot product
A*B matrix product
A .* B term by term product
1/A inverse
tran transposes a matrix
rank rank
det determinant
ker kernel basis
image image basis
idn identity matrix
ranm matrix with random coefficients

Linear systems

linsolve linear system solver
rref Gauss-Jordan reduction
rank rank
det determinant of a system

Matrix reduction

jordan eigenvalue/characteristic vectors (Jordan reduction)
pcar characteristic polynomial
pmin minimal polynomial
eigenvals eigenvalues
eigenvects eigenvectors

8

Xcas reference card : Calculus

Derivatives

diff(E) or E’ expression derivative of an expressionE with respect tox
diff(E,t) or (E,t)’ expression derivative of an expressionE with respect tot
diff(f) or f’ function derivative of the functionf
diff(E,xn,ym) expression partial derivative ∂E

∂xn∂ym
of an expressionE

grad gradient
divergence divergence
curl rotationnal
laplacian laplacian
hessian hessian matrix

Limits and series expansion

limit(E,x,a) limit of an expressionE atx = a
limit(E,x,a,1) limit of an expressionE atx = a+

limit(E,x,a,-1) limit of an expressionE atx = a−

series(E,x=a,n) series expansion ofE ata with relative order=n
taylor(E,a) series expansion ofE atx = a with relative order=5

Integrals

int(E,x) antiderivative of an expressionE
int(f) antiderivative function of a functionf
int(E,x,a,b) integration of an expressionE from x = a to x = b
romberg(E,x,a,b) approximate value ofint(E,x,a,b)

Equations

solve(eq,x) exactR-solution of a polynomial equation
solve([eq1,eq2],[x,y]) exactR-solution of a list of polynomial equations
csolve(eq,x) exactC-solution of a list of polynomial equations
csolve(eq1,eq2],[x,y]) exactC-solution of a list of polynomial equations
fsolve(eq,x=x0) approx solution of an equation (x0=xguess)
fsolve([eq],[var],[val]) approx solution of a list of equations(val=xguess)
newton Newton’s method
linsolve linear system solver
proot approx roots of a polynomial

Ordinary Differential Equations (ODE)

desolve exact solution of an ODE
odesolve approx solution of an ODE
plotode plot the approx solution of an ODE
plotfield plot the field of an ODE
interactive_plotode plot an ODE field and solutions through mouse clicks

9

Curves

plot plots a 1-d expression
tangent draws the tangent lines to a curve
slope slope of a line
plotfunc plots a 1-d or 2-d expression
...,color=...) chooses the color of a plot
areaplot displays the area below a curve
plotparam plot a parametric curve
plotpolar plot a polar curve
plotimplicit(f(x,y),x,y) implicit plot of f(x, y) = 0

ExampleDefine the functionf overR − {−1, 0, 1, 2} by : f(x) =
ln(|2 − x|)

ln(|x|) .

We will show thatf can be extended to a continuous function onR − {−1, 2},
draw the graph off , and the tangents atx = −1/2, x = 0 andx = 1. We will
give an approximate value of the area betweenx = 3, x = 5, y = 0 and the curve,
using the trapezoid rule with 4 subdivisions.
Input :f(x) :=ln(abs(x-2))/ln(abs(x))
limit(f(x),x,1) answer-1.limit((f(x)+1)/(x-1),x,1) answer-1
Hence we can extendf atx = 1 and the slope of the tangent at (1,-1) is -1
limit(f(x),x,0) answer0,limit(f(x)/x,x,0,1) answer-infinity
andlimit(f(x)/x,x,0,-1) answer+(infinity). Hence we can extend
f atx = 0 and the tangent at (0,0) is they-axis
limit(f(x),x,-1) answerinfinity, sox = −1 is an asymptote.
limit(f(x),x,2) answer-infinity, sox = 2 is an asymptote.
limit(f(x),x,inf),limit(f(x),x,-inf) answer(1,1). We conclude
that the liney = 1 is an asymptote to the curve.
To extendf to a continuous function defined onR − {−1, 2}, input :
g :=when(x==0,0,when(x==1,-1,f(x)))
To get the graph, input :G :=plotfunc(g(x),x=-5..8,color=red);,
line(y=1),tangent(G,-1/2),line(1-i,slope=-1),
areaplot(g(x),x=3..5,4,trapezoid)

0.903226168665
x

y

-4 -2 0 2 4 6 8

-2

-1

0

1

2

In order to approximate the area with 4 trapezoids, type :
Digits :=3;0.5*(f(3)/2+f(3.5)+f(4)+f(4.5)+f(5)/2)
it will return 0.887.

Enterareaplot(g(x),x=3..5) to compute the area with Romberg’s method
(an acceleration of the trapezoid method) ; 3 digits are displayed. For more digits,
enterromberg(g(x),x,3,5), it returns 0.903226168665 ifDigits :=12;.

10

Xcas reference card : geometry

2-d geometry

point point given by its coordinates or its affix
...,display=...) attributs for a graphic object (last argument)
legend="..." set the legend of a graphic object
segment returns the segment given by 2 points
line(A,B) returns the lineAB
line(a*x+b*y+c=0) returns the lineax + by + c = 0
triangle(A,B,C) returns the triangleABC

bissector(A,B,C) returns the bissector of̂BAC

angle(A,B,C) returns the angle measure (in rad or deg) of̂BAC
median_line(A,B,C) draws the median-line throughA of the triangleABC
altitude(A,B,C) draws the altitude throughA of the triangleABC
perpen_bisector(A,B) draws the perpendicular bisector ofAB
square(A,B) draws the direct square of sideAB
circle(A,r) draws the circle with centerA and radiusr
cercle(A,B) draws the circle with diameterAB
radius(c) gives the radius of the circlec
center(c) gives the center of the circlec
distance(A,B) returns the distance fromA to B (point or curve)
inter(G1,G2) returns the list of points inG1 ∩ G2
inter_unique(G1,G2) returns one of the points inG1 ∩ G2

assume add a symbolic parameter (or an hypothesis)
element add a numeric parameter
polygon draws a polygon
open_polygon draws an open polygon
coordinates coordinates of a point
equation cartesian equation
parameq parametric equation
homothety(A,k,M) image ofM by the homothety of centerA and

coefficientk

translation(B-A,M) image ofM by the translation
−−→
AB

rotation(A,t,M) image ofM by the rotation of centerA and of anglet
similarity(A,k,t,M) image ofM by the similarity of centerA, coefficient

k and anglet
reflection(A,M) image ofM by the reflection (w.r.t. point or lineA)

You can either type a geometric command with the keyboard, or select it in the
Geo menu. Additionnally, inside a figure, you can select a geometric object shape
in Mode, and click with the mouse to construct it. Clicks will by default build
geometric objects with approx coordinates unless you uncheck∼ . If you choose
Landscape , the graphic screen will be larger and the commandlines will be

below the figure. If you modify one commandline and press Enter, all the following
commandlines will be re-evaluated and the figure will be synchronized.

11

Example, draw a triangleABC, the perpendicular bissector toAB and the cir-
cumcircle toABC.

– ChooseMode◮Polygon◮triangle. Click at the desired position for
the pointA, move the mouse (a segment joining to the first point is dis-
played) and click at the desired second point position, move the mouse (a
triangle following the mouse is displayed) and click again at the desired po-
sition forC. The triangle is now constructed and a few commandlines appear
at the left of the figure (A:=point(...), ...).

– ChooseMode◮Line◮perpen_bisector. Click onA, move the mouse
toB (a perpendicular bisector will follow the move), click, the perpendicular
bissector toAB is constructed and the corresponding commandline is added
at the left of the figure
E:=perpen_bissector(A,B,display=0)

– ChooseMode◮Circle◮circumcircle, click onA, move, click onB,
move (a circle follows the mouse move) and click onC, the circumcircle is
constructed and the corresponding commandline is added at the left of the
figure
F:=circumcircle(A,B,C,display=0

– ChooseMode◮Pointer. In this mode you can drag one of the pointA, B
or C and see the consequences on the figure.

Alternatively, one can also enter the commands directly in the commandline at the
left of the figure
A:=point(-1,2);
B:=point(1,0);
C:=point(-3,-2);
D:=triangle(A,B,C);
E:=perpen_bisector(A,B);
F:=circumcircle(A,B,C);

3-d geometry

plotfunc surfacez = f(x, y) given byf(x, y)
plotparam parametric surface or 3-d parametric curve

point point given by the list of its 3 coordinates
line line given by 2 equations or 2 points
inter intersection
plane plane given by 1 equation or 3 points
sphere sphere given by center and radius
cone cone given by vertex, axis and half-angle
cylinder cylinder given by axis and radius, [altidude]
polyhedron polyhedron
tetrahedron regular direct tetrahedron or pyramid
centered_tetrahedron regular direct tetrahedron
cube cube
centered_cube centered cube
parallelepiped parallelepiped
octahedron octahedron
dodechedron dodecahedron
icosahedron icosahedron

12

Xcas reference card : programmation
1. How to write a function
You have to :

• choose a syntax, we describe here theXcas syntax :
– either with the menuCfg◮Mode(syntax)◮xcas,
– or press on the buttonConfig :.. to open the CAS configuration win-

dow and chooseXcas in Prog style,

• open a program editor either withAlt+p, or with the menuPrg◮New
program. Note the :; at the end.

• write the function with the instructions separated by;
Check that the name of the function, arguments and variables are not re-
served keywords (they should be written in black, programming key words
are in blue and the commandnames in brown), this can be achieved by be-
ginning the function name by a Capital,

• click OK or pressF9 to compile the program.

• you are now ready to test your program in a commandline, write it’s name
followed by parenthesis, with the argument values separated with commas.

2. Theadd menu of a program editor
This menu may be used to remind the syntax of a function, of a test and of loops.

Syntax of a function :

f(x,y):={
local z,a,...,val;
instruction1;
instruction2;
val:=...;
.....
instructionk;
return val;

}:;

Example, Bezout’s algorithm :

Bezout(a,b):={
local la,lb,lr,q;
la:=[1,0,a];
lb:=[0,1,b];
while (b!=0){
q:=iquo(la[2],b)
lr:=la+(-q)*lb;
la:=lb;
lb:=lr;
b:=lb[2];

}
return la;

}:;

3. Compilation If compilation is successfull, you should seeDone (if the pro-
gram ends with:;) or the translation of your program
For the example, clickOK (or F9), you should obtain// Parsing Bezout//
Success compiling Bezout andDone. Then inputBezout(78,56)which
should return[-5,7,2] (-5*78+7*56=2=gcd(78,56)).
4. Step by stepYou can run a program line by line (for debugging or pedagogical
illustration) using the debug command, like e.g. :
debug(Bezout(78,56))
A new window opens, presssst (shortcut F5) to run the next instruction.

13

Instructions

affectation a:=2;
input expression input("a=",a);
input string textinput("a=",a);
output print("a=",a);
returned value return a;
quit a loop break;
alternative if <condition> then <inst> end_if;

if <condition> then <inst1> else <inst2>end_if;
for loop for j from a to b do <inst> end_for;

for j from a to b by p do <inst> end_for;
repeat loop repeat <inst> until <condition>;
while loop while <condition> do <inst> end_while;
do loop do<inst1> if (<condition>)break;<inst2>end_do;

C-like instructions

affectation a:=2;
input expression input("a=",a);
input string textinput("a=",a);
output print("a=",a);
returned value return(a);
stop break;
alternative if (<condition>) {<inst>};

if (<condition>) {<inst1>} else {<inst2>};
for loop for (j:= a;j<=b;j++) {<inst>};

for (j:= a;j<=b;j:=j+p) {<inst>};
repeat loop repeat <inst> until <condition>;
while loop while (<condition>) {<inst>};
do loop do <inst1> if (<condition>) break;<inst2> od;

Ponctuation symbols

. between the integer part and the decimal part
, between the terms of a list or of a sequence
; ends each instruction of a program
:; ends an instruction whose answer will not be displayed
! n ! is the factorial ofn

Operators

+ addition - substraction

* mutiplication / division
^ power a mod p a modulo p
== tests equality != tests difference
< strictly less <= less or equal
> strictly greater >= greater or equal
||, or boolean infixed operator \&\&, and boolean infixed operato
not logical not !(..) logical not
true is the boolean true or 1 false is the boolean false or 0

14

Xcas reference card : the turtle

Moves

clear efface clears the screen
forward forward
backward back
jump jump
side_step side step
turn_left turns left
turn_right turns right

Colors

pen gives the color of the pencil.
hide_turtle hides the turtle
show_turtle shows the turtle
draw_turtle(n) draws the turtle, the shape is filled ifn is 0

Shapes

turtle_circle circle or arc of circle
filled_triangle filled triangle
filled_rectangle filled rectangle (or square, rhombus, parallelogram)
disc filled circle (or angle sector) tangent to the turtle.
centered_disc circle (or angle sector) with the turtle as center
filled_polygon fill the polygon that has just been drawn before

Legends

write_string write on the screen at the turtle position
signature put a signature at the screen left botton

Turtle programs

if <c> then <inst> end_if < inst > are done if condition< c > is true
if <c> then <inst1> else < inst1 > (or < inst2 >) are done if

<inst2> end_if condition< c > is true (or false)
repeat_turtle n,<i1>,<i2> repeatn times the instructions< i1 >, < i2 >
for j from j1 to j2> do < inst > are done with an iteration variable

<inst> end_for j with a step=1 for the iteration
for j from j1 to j2 by < inst > are done with an iteration variable

p do <inst> end_for j with a stepp for the iteration
while <c> do <inst> < inst > are done while condition< c >is

end_while true
return return the value of a function
input(a) get a value from the keyboard, stores it ina,
textinput(a) get a string from the keyboard, stores it ina
write("toto",a,b) write functionsa, b in a file namedtoto
read("toto") read the functions from the file namedtoto

15

Position

position give the turtle position or change it’s position
cap give the turtle direction or change it’s direction
towards put the turtle direction to a point.

There should be at most one turtle picture level in a given session.
To drive the turtle, you can write a command, use theTurtle menu, or click on a
button below the turtle picture, each button is named after the first letters of a turtle
command (cr button displays also all the colors). At the right of the screen, there
is a small editor which records all your commands (called “recording editor”). You
may change commands there and synchronize the turtle picture by running allthese
commands (pressF7).

x 220
y 100
t 0Example : A pattern

This picture is obtained by repetition of a pattern, which is isolated above (turtle
start position is in yellow). Let’s make first the pattern : open a turtle level (Alt+d)
then enter in the commandlines at the left of the picture :
pen 1;
filled_rectangle ;
jump ;
turn_right ;
pen 4;
filled_rectangle ;
turn_left ;
jump ;
You can enter most commands by pressing buttonspe, fr, ju, tr,
The commands are echoed in the recording editor at the right of the picture.If
you make a mistake, modify the command in the small editor and pressF7 to
synchronize.
Once the commands are all entered, open a program editor (Alt+p) and copy-
paste the text from the small editor to the program editor. Replaceefface; at the
beginning bymotif():={ then add a} at the end before :; and pressF9.
Enter in a commandline at the left of the picture :
repeat_turtle 10, motif()
You can move or zoom the picture with mouse drags and with the mousewheel.

This example shows how to make a complex picture by decomposing it in
simple tasks, and how to properly use the recording editor to extract a procedure
from a picture built step by step.

16

