Xcas reference card

1 How to install Xcas

Xcas is a free software (GPL), you can download it at :
http ://www-fourier.ujf-grenoble.fr/~parisse/giac.html CAS (Computer Algebra System) means exact, formal or symbolic calculus.

2 Interface

	Interface
File Edit Cfg...	is the main menu is the name of the current session or if the session has not been saved
session1.xws or	
Unnamed	open the help command index save the session open the CAS configuration
Save	interrupt a computation show/hide keyboard close the session
Config : exact real...	is a commandline
STOP	
Kbd	

You can write your first command (click to have the cursor in the commandline) : $1+1$, then "Enter" (or "Return" depending on your keyboard). The result appears below in an expression editor, as well as a new commandline (numbered 2) for the next command. Xcas has different data types : integers (2), fractions $(3 / 2)$, float numbers $(2.0,1.5)$, formal parameters (x, t), variables $(a:=2)$, expressions $\left(x^{\wedge} 2-1\right)$, functions $\left(f(x):=x^{\wedge} 2-1\right)$, lists $([1,2,3])$, sequences $(1,2,3)$, strings ("na") and geometric objects.

An expression is a combination beteween numbers and variables connected with operators. A function associates a variable to an expression.
For example, $a:=x^{\wedge} 2+2 \star x+1$ defines an expression a but $b(x):=x^{\wedge} 2+2 * x+1$ defines a function b and $b(0)=$ subst $(a, x=0)=1$.

A matrix is a list of lists with same length, a sequence can't contains sequence.

Ponctuation symbols

. between the integer part and the decimal part
, between the terms of a list or of a sequence
; ends each instruction of a program
:; ends an instruction whose answer will not be displayed
$!\quad \mathrm{n}!$ is the factorial of $n(4!=1 \cdot 2 \cdot 3 \cdot 4=24)$
$:=a:=2$ affectation instruction that stocks 2 into the variable a
[] list delimitations $(L:=[0,2,4]$ and $L[1]$ returns 2)
"" string delimitations (C:="ba" and C[1] returns "a")

3 Configurations

	Configurations
Cfg CAS config	open the CAS configuration
Cfg \backslash graph config	open the default graphic configuration
Cfg \backslash general configuration	open the general configuration
cfg (Graph)	open the configuration of this graphic level
Config : . .	open the CAS configuration Sheet config $:$

You can change the aspect of the interface and save your changes for the next sessions using the Cfg menu.

4 Levels

Each session is composed of numbered levels which are : command line for cas commands, interactive geometry screen (2 -d et 3-d), formal spreadsheet, turtle drawing, programm editor etc...

Levels	
Alt +c	new comment
Alt +d	new turtle graphic
Alt +e	new expression editor
Alt +g	new 2-d geometry figure
Alt +h	new 3-d geometry figure
Alt +n	new commandline
Alt +p	new program editor
Alt $+t$	new spreadsheet

5 Help

All commands are sorted in alphabetical order in the help index (Help Index) and several manuals with exercises in HelpManuals... and examples in Help Examples.

	Help
Help Index	open the command index
Help Manuals \ldots	open one of manuals in your navigator
$?$	open the command index
ce ?	open the command index at ceil
ce F1	open the command index at ceil
ce	open the command index at ceil
?ceil	open the browser detailled help for ceil
Cmds Real Baseceil	print ceil short help in msg opened with
	Cfg Show msg or Kbd msg

Xcas reference card : basic CAS

- Type Enter to execute a commandline.
- Numbers may be exact or approx.
- Exact numbers are constants, integers, integer fractions and all expressions with integers and constants.
- Approx numbers are written with the scientific standard notation : integer part followed by the decimal point and the fractional part, optionally followed by e and an exponent.

Operators	
+	addition
-	substraction
\star	mutiplication
$/$	division
\wedge	power

Constants	
pi	$\pi \simeq 3.14159265359$
e	$e \simeq 2.71828182846$
i	$i=\sqrt{-1}$
infinity	∞
+infinity or inf	$+\infty$
-infinity or -inf	$-\infty$
euler_gamma	Euler's constant

	Sequences, lists, vectors
$S:=a, b, c$	S is a sequence of 3 elements
$S:=[a, b, c]$	S is a list of 3 elements
$S:=$ NULL	S is an empty sequence
$S:=[]$	S is an empty list
$\operatorname{dim}(S)$	returns the size of S
$S[0]$	returns the first element of S
$S[n]$	returns the $n+1$-th element of S
$S[\operatorname{dim}(S)-1]$	returns the last element of S
$S:=S, d$	appends the element d at the tail of a sequence S
$S:=a p p e n d(S, d)$	appends the element d at the tail of a list S

Strings

Strings	
$\mathrm{S}:=$ "abc"	S is a string of 3 characters
$\mathrm{S}:=$ " "	S is a string of 0 character
$\operatorname{dim}(\mathrm{S})$	is the length of S
$\mathrm{~S}[0]$	returns the first character of S
$\mathrm{~S}[\mathrm{n}]$	returns the $n+1$-th character of S
$\mathrm{~S}[\operatorname{dim}(\mathrm{~S})-1]$	returns the last character of S
$\mathrm{~S}:=\mathrm{S}+\mathrm{d}$	appends the character d at the tail of the string S
"ab"+"def"	concats the two strings and returns "abdef"

Fractions				
propfrac	returns integer part+fractional part			
numer	getNum	numerator of the fraction after simplification 1 denom getDenom	denominator of the fraction after simplification	
:---	:---			
d2nd	[numer, denom] of the fraction after simplification			
simp2	simplifies a pair			
dfc	continued fraction expansion of a real			
dfc2f	converts a continued fraction expansion into a real			

Usual functions			
evalf (t, n)	num. approx. of t with n decimals	sign	sign (-1,0,+1)
max	maximum	min	minimum
round	nearest integer	frac	fractional part
floor	greatest integer \leq	ceil	smallest integer \geq
re	real part	im	imaginary part
abs	norm or absolute value	arg	argument
conj	conjugate	affix	affix
factorial $!$	factorial	binomial	binomial coefficient
exp	exponential	sqrt	square root
log10	common logarithm (base 10)	ln log	natural logarithm
sin cos	sinus cosine	csc sec	1/sinus 1/cosine
tan	tangent	cot	cotangent
asin	arcsinus	acos	arccosine
atan	arctangent	acot	arccotangent
\sinh	hyperbolic sinus	cosh	hyperbolic cosine
asinh	hyperbolic arcsine	acosh	hyperbolic arccosine
tanh	hyperbolic tangent	atanh	hyperbolic arctangent

Arithmetic on integers	
a\%p	a mod p
powmod $(\mathrm{a}, \mathrm{n}, \mathrm{p})$	$a^{n} \bmod p$
irem	euclidean remainder
iquo	euclidean quotient
iquorem	[quotient,remainder]
ifactor	factorization into prime factors
ifactors	list of prime factors
idivis	list of divisors
gcd	greatest common divisor
lcm	lowest common multiple
iegcd	extended greatest common divisor
iabcuv	returns $[u, v]$ such as $a u+b v=c$
ichinrem	chinese remainders for integers
is_prime	test if n is prime
nextprime	next pseudoprime integer
previousprime	previous pseudoprime integer

	Transformations		
simplify	simplifies	tsimplify	simplifies (less powerful)
normal	normal form	ratnormal	normal form (less powerful)
expand	expands	partfrac	partial fraction expansion
factor	factorizes	convert	converts into a specified format

Transformations and trigonometry			
tlin	linearize	tcollect	linearizes and collects
texpand	expands exp, ln and trig	trig2exp	trig to exp
hyp2exp	hyperbolic to exp	exp2trig	exp to trig

Xcas reference card : statistics and spreadsheet

Probabilities	
$\operatorname{comb}(\mathrm{n}, \mathrm{k})$	$\binom{n}{k}=C_{n}^{k}$
$\operatorname{binomial}(\mathrm{n}, \mathrm{k},[\mathrm{p}])$	returns $\operatorname{comb}(n, k) * p^{k}(1-p)^{n-k}$ or $\operatorname{comb}(\mathrm{n}, \mathrm{k})$
$\operatorname{perm}(\mathrm{n}, \mathrm{p})$	A_{n}^{p}
$\operatorname{factorial}(\mathrm{n}), \mathrm{n}!$	$\mathrm{n}!$
$\operatorname{rand}(\mathrm{n})$	random integer p such that $0 \leq p<n$
rand ($\mathrm{p}, \mathrm{q})$	random real t such that $t \in[p, q]$
randnorm(mu, sigma	random real t according $N(\mu, \sigma)$

	1-d statistics
mean	mean of a list
median	median of a list
quartiles	[min,quartile1,median,quartile3, max]
boxwhisker	whisker boxes of a statistical series
variance	variance of a list
stddev	standard deviation of a list
histogram	histogram of its argument

	2-d statistics
polygonplot	polygonal line
scatterplot	scattered points
polygonscatterplot	polygonal pointed line
covariance	covariance of 2 lists
correlation	correlation of 2 lists
exponential_regression	(m, b) for exponential fit $y=b e^{m x}$
exponential_regression_plot	graph of the exponential fit $y=b e^{m x}$
linear_regression	(a, b) for linear fit $y=a x+b$
linear_regression_plot	graph of the linear fit $y=a x+b$
logarithmic_regression	(m, b) for logarithmic fit $y=m \ln (x)+b$
logarithmic_regression_plot	graph of the logarithmic fit $y=m \ln (x)+b$
polynomial_regression	$\left(a_{n}, . . a_{0}\right)$ for polynomial fit $y=a_{n} x^{n}+. . a_{0}$
polynomial_regression_plot	graph of the polynomial fit $y=a_{n} x^{n}+. . a_{0}$
power_regression	(m, b) for power fit $y=b x^{m}$
power_regression_plot	graph of the power fit $y=b x^{m}$

Statistic commands may be typed in a commandline or selected from the Cmds Proba_stats menu. They may be selected from the Graphic Stats menu using dialog boxes. The easiest way is however to open a spreadsheet enter data there, select the data with the mouse, open the spreadheet Maths menu and fill the dialog boxes.

The Xcas spreadsheet is a symbolic spreadsheet (in addition to numeric values and formula (beginning with $=$), cells may contain exact value, complex numbers, expressions, ...) where Xcas commands and user-defined functions may be used. Note that litteral entries must be quoted as strings, for example "Result", otherwise they will be parsed as identifiers or may generate errors. The Xcas spreadsheet uses standard conventions (columns are refered with letters starting at A, rows with numbers starting at 0 , references are relative except if the column or row number is prefixed with \$). Note that :

- the Table, Edit, Maths menu may be obtained by a right-click mouse
- the eval val 2-d 3-d buttons (reeval the spreadsheet, show the value instead of formula, show 2-d or 3-d graph displaying cells with a graphic object value in a window)
- the "goto" input-value (top-left) let you go to a cell or select a cell range if you fill it in. It is filled if you make a mouse event
- the commandline to input cells values or formulas
- the configuration button : shows the current config, click to change the sheet configuration : you may select to view all 2-d graphic objects of the spreadsheet below or right to the sheet (Landscape mode)
Example : extended gcd, given a and b find u and v such that $a u+b v=\operatorname{gcd}(a, b)$
- Enter the value of a and b in A0 and A1 for example 78 and 56
- We will fill column A with remainders r_{n}, set A2 to =irem (A0, A1) and copy down (Ctrl-d).
- Column E will contain the quotients, set $\mathrm{E} 2=\mathrm{iquo}$ (A0, A1) and copy down
- Columns B and C will contain values of u_{n} and v_{n} such that $a u_{n}+b v_{n}=r_{n}$, enter 1 and 0 for $\mathrm{B} 0, \mathrm{C} 0,0$ and 1 for B 1 and $\mathrm{C} 1,=\mathrm{B} 0-\mathrm{E} 2 \star \mathrm{~B} 1$ for B 2 , copy down $=C 0-E 2 \star C 1$ for $C 2$, copy down
- Column D is $a u_{n}+b v_{n}$, hence should be identical to column A, set D0 to $=B 0 * \$ A \$ 0+B 1 * \$ A \$ 1$ and copy down
- Column F will contain the answer or 0 , set F 0 to : =if $A 0==0$ then $[B 0, C O, D O]$ else 0 fi and copy down.
One can check in a standard commandline with iegcd $(78,56)$:

Xcas reference card : Algebra

	Polynomials
normal	normal form (expanded and reduced)
expand	expanded form
ptayl	Taylor polynomial
peval horner	evaluation using Horner's method
genpoly	polynomial defined by its value at a point
canonical_form	canonical form of a second degree polynomial
coeff	coefficient or list of coefficients
poly2symb	list polynomial to symbolic polynomial
symb2poly	symbolic polynomial to list polynomial
pcoeff	polynomial from it's roots
degree	degree
lcoeff	coefficient of the monomial of highest degree
valuation	degree of the monomial of lowest degree
tcoeff	coefficient of the monomial of lowest degree
factor	factorizes a polynomial
cfactor	factorizes a polynomial on \mathbb{C}
factors	list of irreducible factors and multiplicities
divis	list of divisors
collect	factorization on the coefficients field
froot	roots with their multiplicities
proot	approx. values of roots
sturmab	number of roots in an interval
getNum	numerator of a rational fraction (unsimplified)
getDenom	denominator of a rational fraction (unsimplified)
propfrac	returns polynomial integer part + fractional part
partfrac	partial fraction expansion
quo	euclidean quotient
rem	euclidean remainder
gcd	greatest common divisor
lcm	lowest common multiple
egcd	extended greatest common divisor
chinrem	chinese remainder
randpoly	random polynomial
cyclotomic	cyclotomic polynomial
lagrange	Lagrange polynomial
hermite	Hermite polynomial
$l a g u e r r e$	Laguerre polynomial
tchebyshev1	Tchebyshev polynomial (1st type)
tchebyshev2	Tchebyshev polynomial (2nd type)

	Matrices
$M:=[[a, b, c],[f, g, h]]$	M is a matrix with 2 rows and 3 columns
$\operatorname{dim}(M)$	returns dimensions as a list $[$ nrows, ncols $]$
$M[0]$	returns the first line of M
$M[n]$	returns the $n+1$-th line of M
$\operatorname{row}(M, n)$	returns the $n+1$-th line of M
$\operatorname{col}(M, n)$	returns the $n+1$-th column of M
$M[\operatorname{dim}(M)[0]-1]$	returns the last line of M
$M[n . \operatorname{pen}$	returns the sub-matrice of M with lines in $[n . . p]$
$\operatorname{append}(M,[d, k, l])$	appends the line $[d, k, l]$ at the end of M
$M[\operatorname{dim}(M)[0]]:=[d, k, l]$	appends the line $[d, k, l]$ at the end of M
border $(M,[d, k])$	appends the column $[d, k]$ at the end of M

Operators on vectors and matrix	
$\mathrm{V} \star \mathrm{W}$	scalar product
$\mathrm{Cross}(\mathrm{v}, \mathrm{w})$	dot product
$\mathrm{A} \star \mathrm{B}$	matrix product
$\mathrm{A} . \star \mathrm{B}$	term by term product
$1 / \mathrm{A}$	inverse
tran	transposes a matrix
rank	rank
det	determinant
ker	kernel basis
image	image basis
$i d n$	identity matrix
ranm	matrix with random coefficients

Linear systems	
linsolve	linear system solver
rref	Gauss-Jordan reduction
rank	rank
det	determinant of a system

Matrix reduction	
jordan	eigenvalue/characteristic vectors (Jordan reduction)
pcar	characteristic polynomial
pmin	minimal polynomial
eigenvals	eigenvalues
eigenvects	eigenvectors

Xcas reference card : Calculus

	Derivatives
$\operatorname{diff}(E)$ or E^{\prime}	expression derivative of an expression E with respect to x
$\operatorname{diff}(E, t)$ or $(E, t)^{\prime}$	expression derivative of an expression E with respect to t
$\operatorname{diff}(f)$ or f^{\prime}	function derivative of the function f
$\operatorname{diff}(E, x \$ n, y \$ m)$	expression partial derivative $\frac{\partial E}{\partial x^{n} \partial y^{m}}$ of an expression E
grad	gradient
divergence	divergence
curl	rotationnal
laplacian	laplacian
hessian	hessian matrix

	Limits and series expansion
$\operatorname{limit}(\mathrm{E}, \mathrm{x}, \mathrm{a})$	limit of an expression E at $x=a$
$\operatorname{limit}(\mathrm{E}, \mathrm{x}, \mathrm{a}, 1)$	limit of an expression E at $x=a^{+}$
$\operatorname{limit}(\mathrm{E}, \mathrm{x}, \mathrm{a},-1)$	limit of an expression E at $x=a^{-}$
$\operatorname{series}(E, \mathrm{x}=\mathrm{a}, \mathrm{n})$	series expansion of E at a with relative order= n
$\operatorname{taylor}(E, \mathrm{a})$	series expansion of E at $x=a$ with relative order=5

Integrals	
int (E, x)	antiderivative of an expression E
int (f)	antiderivative function of a function f
int $(\mathrm{E}, \mathrm{x}, \mathrm{a}, \mathrm{b})$	integration of an expression E from $x=a$ to $x=b$
$\operatorname{romberg}(\mathrm{E}, \mathrm{x}, \mathrm{a}, \mathrm{b})$	approximate value of int $(\mathrm{E}, \mathrm{x}, \mathrm{a}, \mathrm{b})$

	Equations
solve $(e q, x)$	exact \mathbb{R}-solution of a polynomial equation
solve $[\mathrm{eq} 1, \mathrm{eq} 2],[\mathrm{x}, \mathrm{y}])$	exact \mathbb{R}-solution of a list of polynomial equations
csolve $(\mathrm{eq}, \mathrm{x})$	exact \mathbb{C}-solution of a list of polynomial equations
csolve $(\mathrm{eq} 1, \mathrm{eq} 2],[\mathrm{x}, \mathrm{y}])$	exact \mathbb{C}-solution of a list of polynomial equations
fsolve $(\mathrm{eq}, \mathrm{x}=\mathrm{x} 0)$	approx solution of an equation $(\mathrm{x} 0=\mathrm{x}$ guess)
fsolve $[\mathrm{eq}],[\mathrm{var}],[\mathrm{val}])$	approx solution of a list of equations(val=xguess)
newton	Newton's method
linsolve	linear system solver
proot	approx roots of a polynomial

Ordinary Differential Equations (ODE)	
desolve	exact solution of an ODE
odesolve	approx solution of an ODE
plotode	plot the approx solution of an ODE
plotfield	plot the field of an ODE
interactive_plotode	plot an ODE field and solutions through mouse clicks

Curves	
plot	plots a 1-d expression
tangent	draws the tangent lines to a curve
slope	slope of a line
plotfunc	plots a 1-d or 2-d expression
$\ldots, \operatorname{color}=\ldots)$	chooses the color of a plot
areaplot	displays the area below a curve
plotparam	plot a parametric curve
plotpolar	plot a polar curve
plotimplicit $(\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{x}, \mathrm{y})$	implicit plot of $f(x, y)=0$

Example Define the function f over $\mathbb{R}-\{-1,0,1,2\}$ by : $f(x)=\frac{\ln (|2-x|)}{\ln (|x|)}$.
We will show that f can be extended to a continuous function on $\mathbb{R}-\{-1,2\}$, draw the graph of f, and the tangents at $x=-1 / 2, x=0$ and $x=1$. We will give an approximate value of the area between $x=3, x=5, y=0$ and the curve, using the trapezoid rule with 4 subdivisions.
Input: $f(x) \quad:=\ln (a b s(x-2)) / \ln (a b s(x))$
limit ($\mathrm{f}(\mathrm{x}), \mathrm{x}, 1$) answer -1. limit ($(\mathrm{f}(\mathrm{x})+1) /(\mathrm{x}-1), \mathrm{x}, 1)$ answer-1
Hence we can extend f at $x=1$ and the slope of the tangent at $(1,-1)$ is -1
limit ($f(x), x, 0)$ answer $0, \operatorname{limit}(f(x) / x, x, 0,1)$ answer-infinity and limit $(f(x) / x, x, 0,-1)$ answer $+(i n f i n i t y)$. Hence we can extend f at $x=0$ and the tangent at $(0,0)$ is the y-axis
$\operatorname{limit}(\mathrm{f}(\mathrm{x}), \mathrm{x},-1)$ answer infinity, so $x=-1$ is an asymptote.
limit ($\mathrm{f}(\mathrm{x}), \mathrm{x}, 2$) answer -infinity, so $x=2$ is an asymptote.
$\operatorname{limit}(f(x), x, \inf), \operatorname{limit}(f(x), x,-i n f)$ answer (1,1). We conclude that the line $y=1$ is an asymptote to the curve.
To extend f to a continuous function defined on $\mathbb{R}-\{-1,2\}$, input :
$g:=$ when $(x==0,0$, when $(x==1,-1, f(x)))$
To get the graph, input: $G:=p l o t f u n c(g(x), x=-5 . .8$, color=red) ; , line $(y=1)$, tangent $(G,-1 / 2)$, line (1 -i, slope=-1), areaplot ($g(x), x=3 . .5,4$,trapezoid)

In order to approximate the area with 4 trapezoids, type :
Digits $:=3 ; 0.5 *(f(3) / 2+f(3.5)+f(4)+f(4.5)+f(5) / 2)$
it will return 0.887 .
Enter areaplot ($\mathrm{g}(\mathrm{x}$) , $\mathrm{x}=3 \mathrm{~F} .5$) to compute the area with Romberg's method (an acceleration of the trapezoid method); 3 digits are displayed. For more digits, enter romberg $(g(x), x, 3,5)$, it returns 0.903226168665 if Digits $:=12 ;$.

Xcas reference card : geometry

	2-d geometry
```point ...,display=...) legend="..." segment line(A,B) line (a*x+b*y+c=0) triangle(A,B,C) bissector(A,B,C) angle(A,B,C) median_line(A,B,C) altitude (A,B,C) perpen_bisector(A,B) square (A,B) circle(A,r) cercle(A,B) radius(c) center(c) distance (A,B) inter(G1,G2) inter_unique(G1,G2)```	point given by its coordinates or its affix attributs for a graphic object (last argument)   set the legend of a graphic object   returns the segment given by 2 points   returns the line $A B$   returns the line $a x+b y+c=0$   returns the triangle $A B C$   returns the bissector of $\widehat{B A C}$   returns the angle measure (in rad or deg) of $\widehat{B A C}$   draws the median-line through $A$ of the triangle $A B C$   draws the altitude through $A$ of the triangle $A B C$   draws the perpendicular bisector of $A B$   draws the direct square of side $A B$   draws the circle with center $A$ and radius $r$   draws the circle with diameter $A B$   gives the radius of the circle $c$   gives the center of the circle $c$   returns the distance from $A$ to $B$ (point or curve)   returns the list of points in $G 1 \cap G 2$   returns one of the points in $G 1 \cap G 2$
assume element	add a symbolic parameter (or an hypothesis) add a numeric parameter
$\begin{aligned} & \text { polygon } \\ & \text { open_polygon } \end{aligned}$	draws a polygon draws an open polygon
coordinates equation parameq	coordinates of a point cartesian equation parametric equation
```homothety(A,k,M) translation (B-A,M) rotation(A,t,M) similarity(A,k,t,M) reflection(A,M)```	image of $M$ by the homothety of center $A$ and coefficient $k$   image of $M$ by the translation $\overrightarrow{A B}$   image of $M$ by the rotation of center $A$ and of angle $t$ image of $M$ by the similarity of center $A$, coefficient $k$ and angle $t$ image of $M$ by the reflection (w.r.t. point or line $A$ )

You can either type a geometric command with the keyboard, or select it in the Geo menu. Additionnally, inside a figure, you can select a geometric object shape in Mode, and click with the mouse to construct it. Clicks will by default build geometric objects with approx coordinates unless you uncheck \sim. If you choose Landscape, the graphic screen will be larger and the commandlines will be below the figure. If you modify one commandline and press Enter, all the following commandlines will be re-evaluated and the figure will be synchronized.

Example, draw a triangle $A B C$, the perpendicular bissector to $A B$ and the circumcircle to $A B C$.

- Choose ModePolygontriangle. Click at the desired position for the point A, move the mouse (a segment joining to the first point is displayed) and click at the desired second point position, move the mouse (a triangle following the mouse is displayed) and click again at the desired position for C. The triangle is now constructed and a few commandlines appear at the left of the figure (A:=point (...), ...).
- Choose Mode Lineperpen_bisector. Click on A, move the mouse to B (a perpendicular bisector will follow the move), click, the perpendicular bissector to $A B$ is constructed and the corresponding commandline is added at the left of the figure

```
E:=perpen_bissector(A,B,display=0)
```

- Choose Mode Circle circumcircle, click on A, move, click on B, move (a circle follows the mouse move) and click on C, the circumcircle is constructed and the corresponding commandline is added at the left of the figure

```
F:=circumcircle(A,B,C,display=0
```

- Choose Mode Pointer. In this mode you can drag one of the point A, B or C and see the consequences on the figure.
Alternatively, one can also enter the commands directly in the commandline at the left of the figure

```
A:=point (-1,2);
B:=point (1,0);
C:=point (-3,-2);
D:=triangle(A,B,C);
E:=perpen_bisector(A,B);
F:=circumcircle(A,B,C) ;
```

	3-d geometry
plot func	surface $z=f(x, y)$ given by $f(x, y)$
plotparam	parametric surface or 3-d parametric curve
point	point given by the list of its 3 coordinates
line	line given by 2 equations or 2 points
inter	intersection
plane	plane given by 1 equation or 3 points
sphere	sphere given by center and radius
cone	cone given by vertex, axis and half-angle
cylinder	cylinder given by axis and radius, [altidude]
polyhedron	polyhedron
tetrahedron	regular direct tetrahedron or pyramid
centered_tetrahedron	regular direct tetrahedron
cube	cube
centered_cube	centered cube
parallelepiped	parallelepiped
octahedron	octahedron
dodechedron	dodecahedron
icosahedron	icosahedron

Xcas reference card : programmation

1. How to write a function

You have to :

- choose a syntax, we describe here the Xcas syntax :
- either with the menu Cfg Mode (syntax) xcas,
- or press on the button Config : . . to open the CAS configuration window and choose Xcas in Prog style,
- open a program editor either with Alt+p, or with the menu Prg New program. Note the : ; at the end.
- write the function with the instructions separated by ; Check that the name of the function, arguments and variables are not reserved keywords (they should be written in black, programming key words are in blue and the commandnames in brown), this can be achieved by beginning the function name by a Capital,
- click OK or press F9 to compile the program.
- you are now ready to test your program in a commandline, write it's name followed by parenthesis, with the argument values separated with commas.

2. The add menu of a program editor

This menu may be used to remind the syntax of a function, of a test and of loops.
Example, Bezout's algorithm :

Syntax of a function :

```
f(x,y):={
    local z,a,...,val;
    instruction1;
    instruction2;
    val:=...;
    . .
    instructionk;
    return val;
}:;
```

Bezout $(\mathrm{a}, \mathrm{b}):=\{$
local la,lb,lr,q;
la: $=[1,0, a]$;
$l \mathrm{~b}:=[0,1, \mathrm{~b}]$;
while (b!=0) \{
q:=iquo (la[2],b)
lr: $=1 \mathrm{a}+(-q) * \mathrm{lb}$;
la:=lb;
lb: =lr;
b:=lb[2];
\}
return la;
\}: ;
3. Compilation If compilation is successfull, you should see Done (if the program ends with : ;) or the translation of your program
For the example, click OK (or F9), you should obtain // Parsing Bezout// Success compiling Bezout and Done. Then input Bezout $(78,56)$ which should return $[-5,7,2](-5 * 78+7 * 56=2=\operatorname{gcd}(78,56))$.
4. Step by step You can run a program line by line (for debugging or pedagogical illustration) using the debug command, like e.g. :
debug (Bezout (78,56))
A new window opens, press sst (shortcut F5) to run the next instruction.

	Instructions
affectation input expression input string output returned value quit a loop alternative for loop repeat loop while loop do loop	```a:=2; input("a=",a); textinput("a=",a); print("a=",a); return a; break; if <condition> then <inst> end_if; if <condition> then <inst1> else <inst2>end_if; for j from a to b do <inst> end_for; for j from a to b by p do <inst> end_for; repeat <inst> until <condition>; while <condition> do <inst> end_while; do<inst1> if (<condition>)break;<inst2>end_do;```

C-like instructions	
affectation	a: = ${ }^{\text {; }}$
input expression	input ("a=", a) ;
input string	textinput ("a=", a) ;
output	print ("a=", ${ }^{\text {a }}$)
returned value	return(a);
stop	break;
alternative	if (<condition>) \{<inst>\};
	if (<condition>) \{<inst1>\} else \{<inst2>\};
for loop	for (j:= a; j<=b; j++) \{<inst>\};
	for (j:= a; j<=b; j:=j+p) \{<inst>\};
repeat loop	repeat <inst> until <condition>;
while loop	while (<condition>) \{<inst>\};
do loop	do <instl> if (<condition>) break; <inst2> od;

Ponctuation symbols

- between the integer part and the decimal part
, between the terms of a list or of a sequence
; ends each instruction of a program
:; ends an instruction whose answer will not be displayed
! $\quad \mathrm{n}!$ is the factorial of n

Operators			
+	addition	-	substraction
\star	mutiplication	$/$	division
\wedge	power	a mod p	a modulo p
$==$	tests equality	$<=$	tests difference
$<$	strictly less	less or equal	
$>$	strictly greater	$>=$	greater or equal
$\|\mid$, or	boolean infixed operator	$\backslash \& \backslash \&$, and	boolean infixed operato
not	logical not	$!(\ldots)$	logical not
true	is the boolean true or 1	false	is the boolean false or 0

Xcas reference card : the turtle

Moves	
clear efface	clears the screen
forward	forward
backward	back
jump	jump
side_step	side step
turn_left	turns left
turn_right	turns right

Colors	
pen	gives the color of the pencil.
hide_turtle	hides the turtle
show_turtle	shows the turtle
draw_turtle(n)	draws the turtle, the shape is filled if n is 0

Shapes	
turtle_circle	circle or arc of circle
filled_triangle	filled triangle
filled_rectangle	filled rectangle (or square, rhombus, parallelogram)
disc	filled circle (or angle sector) tangent to the turtle.
centered_disc	circle (or angle sector) with the turtle as center
filled_polygon	fill the polygon that has just been drawn before

Legends

write_string write on the screen at the turtle position signature put a signature at the screen left botton

Position	
position	give the turtle position or change it's position
cap	give the turtle direction or change it's direction
towards	put the turtle direction to a point.

There should be at most one turtle picture level in a given session.
To drive the turtle, you can write a command, use the Turt le menu, or click on a button below the turtle picture, each button is named after the first letters of a turtle command (cr button displays also all the colors). At the right of the screen, there is a small editor which records all your commands (called "recording editor"). You may change commands there and synchronize the turtle picture by running all these commands (press F7).

This picture is obtained by repetition of a pattern, which is isolated above (turtle start position is in yellow). Let's make first the pattern : open a turtle level (Al $t+d$) then enter in the commandlines at the left of the picture :

```
pen 1;
filled_rectangle ;
jump ;
turn_right ;
pen 4;
filled_rectangle ;
turn_left ;
jump ;
```

You can enter most commands by pressing buttons pe, fr, ju, tr, ... The commands are echoed in the recording editor at the right of the picture. If you make a mistake, modify the command in the small editor and press F7 to synchronize.
Once the commands are all entered, open a program editor ($A l t+p$) and copypaste the text from the small editor to the program editor. Replace efface; at the beginning by motif() $:=\{$ then add a $\}$ at the end before $: ;$ and press F9. Enter in a commandline at the left of the picture :
repeat_turtle 10 , motif()
You can move or zoom the picture with mouse drags and with the mousewheel.
This example shows how to make a complex picture by decomposing it in simple tasks, and how to properly use the recording editor to extract a procedure from a picture built step by step.

